威宁彝族回族苗族自治县第二中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

威宁彝族回族苗族自治县第二中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设函数f (x )=
则不等式f (x )>f (1)的解集是( )
A .(﹣3,1)∪(3,+∞)
B .(﹣3,1)∪(2,+∞)
C .(﹣1,1)∪(3,+∞)
D .(﹣∞,
﹣3)∪(1,3)
2. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可
构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )
A . C . D .
3. 椭圆22
:143
x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的
取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )
A .31,42⎡⎤-
-⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤
⎢⎥⎣⎦
【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力. 4. “2
4
x π
π
-
<≤
”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 5. 一个几何体的三视图如图所示,则该几何体的体积为( )
A .
B .
C .
D .
6. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
7. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}
B .{1,3,5}
C .{1,4,5}
D .{2,3,4}
8. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )
A .b ≥0
B .b ≤0
C .b >0
D .b <0
9. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( ) A .3
B .4
C .5
D .6
10.设F 为双曲线22
221(0,0)x y a b a b
-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为1
||2OF ,则双曲线的离心率为( )
A .
B
C .
D .3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 11.从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 12.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平
面11D CB .其中正确结论的个数是( )
A .
B .
C .
D .
二、填空题
13.i 是虚数单位,化简:
= .
14.【泰州中学2018届高三10月月考】设函数()()21x
f x e x ax a =--+,其中1a <,若存在唯一的整数
0x ,使得()00f x <,则a 的取值范围是
15.已知椭圆+
=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈[

],则该椭圆离心率e 的取值范围为 .
16.长方体1111ABCD A B C D -中,对角线1A C 与棱CB 、CD 、1CC 所成角分别为α、β、, 则2
2
2
sin sin sin αβγ++= . 17.已知x 、y 之间的一组数据如下:
x 0 1 2
3 y 8 2 6
4
则线性回归方程
所表示的直线必经过点 .
18.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g
(x )(a >0且a ≠1),+
=.若数列{}的前n 项和大于62,则n 的最小值
为 .
三、解答题
19.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)
的数据资料,计算得
x i =80,
y i =20,
x i y i =184,
x i 2=720.
(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
20.已知矩阵M=
的一个属于特质值3的特征向量
=
,正方形区域OABC 在矩阵N 应对的变换作
用下得到矩形区域OA ′B ′C ′,如图所示. (1)求矩阵M ;
(2)求矩阵N 及矩阵(MN )﹣1

21.(本小题满分12分)
如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使
PAD θ∠=,构成四棱锥P ABCD -,且
2PC CD
PF CE
==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为
3
π
时,求折起的角度.
22.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如
(Ⅰ)该同学为了求出y 关于x 的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)
(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X ,求X 的分布列和数学期望.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.
(1)当1a =时,解不等式()211f x x <--;
(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.
24.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
威宁彝族回族苗族自治县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题
1.【答案】A
【解析】解:f(1)=3,当不等式f(x)>f(1)即:f(x)>3
如果x<0 则x+6>3可得x>﹣3,可得﹣3<x<0.
如果x≥0 有x2﹣4x+6>3可得x>3或0≤x<1
综上不等式的解集:(﹣3,1)∪(3,+∞)
故选A.
2.【答案】D
【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,
由于f(x)==1+,
①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,
满足条件.
②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.
③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.
综上可得,≤t≤2,
故实数t的取值范围是[,2],
故选D.
【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.
3.【答案】B
4. 【答案】A
【解析】因为tan y x =在,22ππ⎛⎫
-
⎪⎝⎭
上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当
tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24
x ππ
-<≤”是“tan 1x ≤”
的充分不必要条件,故选A.
5. 【答案】 B
【解析】解:三视图复原的几何体是一个半圆锥和圆柱的组合体, 它们的底面直径均为2,故底面半径为1, 圆柱的高为1,半圆锥的高为2,
故圆柱的体积为:π×12
×1=π,
半圆锥的体积为:×=,
故该几何体的体积V=π+=

故选:B
6. 【答案】D 【解析】
试题分析:分段间隔为5030
1500
=,故选D. 考点:系统抽样 7. 【答案】B
【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B
8.【答案】A
【解析】解:抛物线f(x)=x2+bx+3开口向上,
以直线x=﹣为对称轴,
若函数y=x2+bx+3在[0,+∞)上单调递增函数,
则﹣≤0,解得:b≥0,
故选:A.
【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.
9.【答案】B
【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,
两式相减得
3a3=a4﹣a3,
a4=4a3,
∴公比q=4.
故选:B.
10.【答案】B
【解析】
11.【答案】
【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),
(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,
4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =3
10.
12.【答案】D 【解析】

点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.
【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.
二、填空题
13.【答案】 ﹣1+2i .
【解析】解: =
故答案为:﹣1+2i .
14.【答案】
【解析】试题分析:设
,由题设可知存在唯一的整数0x ,使得
在直线
的下方.因为
,故当
时,
,函数
单调递减;
当时,
,函数
单调递增;故,而当
时,
,故当

,解之得,应填答案
3,12e ⎡⎫
⎪⎢⎣⎭
.
考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线
的下方.然后再借助导数的知识求出函数的最小值,依
据题设建立不等式组求出解之得.
15.【答案】 [,﹣1] .
【解析】解:设点A (acos α,bsin α),则B (﹣acos α,﹣bsin α)(0≤α≤);
F (﹣c ,0); ∵AF ⊥BF ,

=0,
即(﹣c ﹣acos α,﹣bsin α)(﹣c+acos α,bsin α)=0,
故c 2﹣a 2cos 2α﹣b 2sin 2
α=0,
cos 2α==2﹣,
故cos α=,
而|AF|=,
|AB|==2c ,
而sin θ=
==

∵θ∈[

],
∴sin θ∈[,],
∴≤≤,
∴≤+
≤,
∴,


解得,≤e ≤﹣1; 故答案为:[

﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
16.【答案】 【解析】
试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:
222
2
2
2
1111
222111sin sin sin BC DC AC AC AC AC αβγ++=++22212
12()2AB AD AA AC ++==.
考点:直线与直线所成的角.
【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键. 17.【答案】 (,5) .
【解析】解:∵,
=5
∴线性回归方程y=a+bx 所表示的直线必经过点(1.5,5)
故选C
【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.
18.【答案】1.
【解析】解:∵x为实数,[x]表示不超过x的最大整数,
∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,
再左右扩展知f(x)为周期函数.
结合图象得到函数f(x)=x﹣[x]的最小正周期是1.
故答案为:1.
【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.
三、解答题
19.【答案】
【解析】解:(1)由题意,n=10,=x
=8,=y i=2,
i
∴b==0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x﹣0.4;
(2)∵b=0.3>0,
∴y与x之间是正相关;
(3)x=7时,y=0.3×7﹣0.4=1.7(千元).
20.【答案】
【解析】解:(1)根据题意,可得,
故,解得
所以矩阵M=;
(2)矩阵N 所对应的变换为,
故N=,
MN=

∵det (MN )=,

=.
【点评】本题考查矩阵与变换、矩阵的特征值、特征向量等基础知识,考查运算求解能力,考查函数与方程的思想.
21.【答案】(1)证明见解析;(2)23
π
θ=. 【解析】
试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:
(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,1
2
FG CD =
,又//AB CD ,1
2
AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,
因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23
π
θ=.
考点:点、线、面之间的位置关系的判定与性质. 22.【答案】
【解析】解:(1)
, =5…
且,代入回归直线方程可得
∴=0.6x+3.2,
x=6时, =6.8,…
(2)X 的取值有0,1,2,3,则




【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.
23.【答案】(1){}
11x x x ><-或;(2)(,2]-∞-. 【解析】

题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,
当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;

1
12x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当1
2
x <时,1211x x -+-<-,∴1x <-,从而1x <-;
综上,不等式的解集为{}11x x x ><-或.
(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,
所以当(1)()0x x a --≥时,121x x a x a -+-=--;
当(1)()0x x a --<时,121x x a x a -+->--
记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.
考点:1.含绝对值的不等式;2.分类讨论. 24.【答案】
【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1 f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2, 由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题 因此,1≤m <2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.。

相关文档
最新文档