2020-2021中考数学压轴题专题复习——圆的综合的综合及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学压轴题专题复习——圆的综合的综合及答案
一、圆的综合
1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
【答案】(1)证明见解析(2)23
【解析】
【分析】
(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;
(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.
【详解】
(1)如图所示,连接OD.
∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶
BD CD
=,∴OD⊥BC.
又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.
又∵OD为⊙O半径,∴直线DM是⊙O的切线.
(2)连接BE.∵E为内心,∴∠ABE=∠CBE.
∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即
∠BED=∠DBE,∴BD=DE.
又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DB
DB DA
=,即DB2=DF•DA.
∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.
【点睛】
本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
2.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tan A=1
2
,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
【答案】(1)答案见解析;(2)AB=3BE;(3)3.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x,进而得出OE=1+2x,最后用勾股定理
即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,
∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,
∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD
AE DE AD
==.∵Rt△ABD
中,tan A=BD
AD
=
1
2
,∴
DE BE
AE DE
==
1
2

∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(3
2
x)2+(2x)2=(1+2x)2,∴x=﹣
2
9
(舍)或x=2,
∴圆O的半径为3.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD ∽△EDA 是解答本题的关键.
3.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点.
()1如图①,若m 5=,则C ∠的度数为______o ; ()2如图②,若m 6=.
①求C ∠的正切值;
②若ABC V 为等腰三角形,求ABC V 面积.
【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或
432
25
. 【解析】 【分析】
()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;
()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结
论;
②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.
【详解】
()1如图1,连接OB ,OA ,
OB OC 5∴==, AB m 5==Q , OB OC AB ∴==, AOB ∴V 是等边三角形,
AOB 60∠∴=o ,
1
ACB AOB 302
∠∠∴==o ,
故答案为30;
()2①如图2,连接AO 并延长交O e 于D ,连接BD ,
AD Q 为O e 的直径,
AD 10∴=,ABD 90∠=o ,
在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=,
AB 3
tan ADB BD 4
∠∴=
=, C ADB ∠∠=Q ,
C ∠∴的正切值为3
4

②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,
AC BC =Q ,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,
ABC 11
S AB CE 692722
∴=⨯=⨯⨯=V ;
Ⅱ、当AC AB 6==时,如图4,
连接OA 交BC 于F ,
AC AB =Q ,OC OB =, AO ∴是BC 的垂直平分线, 过点O 作OG AB ⊥于G ,
1AOG AOB 2∠∠∴=,1
AG AB 32
==,
AOB 2ACB ∠∠=Q , ACF AOG ∠∠∴=,
在Rt AOG V 中,AG 3
sin AOG AC 5
∠=
=, 3
sin ACF 5
∠∴=,
在Rt ACF V 中,3
sin ACF 5
∠=,
318
AF AC 55
∴==,
24CF 5
∴=
, ABC 111824432S AF BC 225525
∴=
⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432
S 25
=
V .
【点睛】
圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.
4.如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为»AB ,P 是半径OB 上一动点,Q 是»AB 上的一动点,连接PQ.
发现:∠POQ =________时,PQ 有最大值,最大值为________;
思考:(1)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求»BQ
的长; (2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积;
探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.
【答案】发现: 90°,2; 思考:(1)10
3
π=;(2)25π−12+100;(3)点O 到折痕PQ 30 【解析】
分析:发现:先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;
思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;
(2)先在Rt △B'OP 中,OP 22−10)2=(10-OP )2,解得2−10,最后用面积
的和差即可得出结论.
探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=
1
2
OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是»AB 上的一动点, ∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合, 此时,∠POQ=90°,PQ=22OA OB +=102; 思考:(1)如图,连接OQ ,
∵点P 是OB 的中点,
∴OP=
12OB=1
2OQ . ∵QP ⊥OB , ∴∠OPQ=90°
在Rt △OPQ 中,cos ∠QOP=1
2
OP OQ =, ∴∠QOP=60°, ∴l BQ =
601010
1803
ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =102, 在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2 解得OP=102−10,
S 阴影=S 扇形AOB -2S △AOP =290101
210(10210)3602
π⨯-⨯⨯⨯-
=25π−1002+100;
探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,
则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是¼B Q '所在圆的圆心,
∴O′C=OB=10,
∵折叠后的弧QB′恰好与半径OA 相切于C 点, ∴O′C ⊥AO , ∴O′C ∥OB ,
∴四边形OCO′B 是矩形,
在Rt △O′BP 中,O′B=226425-=, 在Rt △OBO′K ,OO′=2210(25)=230-, ∴OM=
12OO ′=1
2
×230=30, 即O 到折痕PQ 的距离为30.
点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=
180
n R
π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.
5.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

解决问题:如图,点A 与点B 的坐标分别是(1,0),(5,0),点P 是该直角坐标系内的一个动点.
(1)使∠APB=30°的点P 有_______个;
(2)若点P 在y 轴正半轴上,且∠APB=30°,求满足条件的点P 的坐标;
(3)设sin ∠APB=m ,若点P 在y 轴上移动时, 满足条件的点P 有4个,求m 的取值范围.
【答案】(1)无数;(2)(0,370,37+3)0﹤m ﹤
23
. 【解析】
试题分析:(1)已知点A 、点B 是定点,要使∠APB =30°,只需点P 在过点A 、点B 的圆上,且弧AB 所对的圆心角为60°即可,显然符合条件的点P 有无数个.
(2)结合(1)中的分析可知:当点P 在y 轴的正半轴上时,点P 是(1)中的圆与y 轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P 的
坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,由此即可求出m的范围.
试题解析:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,则∠APB=1
2
∠ACB=1
2
×60°=30°,∴使∠APB=30°的点P
有无数个.
故答案为:无数.
(2)点P在y轴的正半轴上,过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),∴OA=1,OB=5,∴AB=4.
∵点C为圆心,CG⊥AB,∴AG=BG=1
2
AB=2,∴OG=OA+AG=3.
∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG
=
∴点C的坐标为(3,
过点C作CD⊥y轴,垂足为D,连接CP2,如图1.∵点C的坐标为(3,
∴CD=3,OD

∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.
∵CP
2=CA=4,CD=3,∴DP2.
∵点C为圆心,CD⊥P
1P2,∴P1D=P2D∴P1(0,),P2(0,
).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大.由sin∠AEH=
2
AE
得:当AE
最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.∵∠APB为锐角,∴sin∠APB随∠APB增大而增大,.
连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.
∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°,∴四边形OPEH是矩形,∴OP=EH,
PE=OH=3,∴EA=3.sin∠APB=sin∠AEH=2
3
,∴m的取值范围是
2
3
m
<<.
点睛:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.
6.如图1,延长⊙O的直径AB至点C,使得BC=1
2
AB,点P是⊙O上半部分的一个动点
(点P不与A、B重合),连结OP,CP.
(1)∠C的最大度数为;
(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;
(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.
【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.
【解析】
试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;
(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到
CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.
试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:
∵sin∠OCP=OP
OC =
2
4
=
1
2
,∴∠OCP=30°
∴∠OCP的最大度数为30°,故答案为:30°;
(2)有最大值,理由:
∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,
而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC
=
1
2
OC•OP=
1
2
×6×3=9;
(3)连结AP,BP,如图2,
在△OAP与△OBD中,
OA OD
AOP BOD
OP OB
=


∠=∠

⎪=

,∴△OAP≌△OBD,∴AP=DB,
∵PC=DB,∴AP=PC,
∵PA=PC,∴∠A=∠C,
∵BC=1
2
AB=OB,∴CO=OB+OB=AB,
在△APB和△CPO中,
AP CP
A C
AB CO
=


∠=∠

⎪=

,∴△APB≌△CPO,∴∠CPO=∠APB,
∵AB为直径,∴∠APB=90°,∴∠CPO=90°,
∴PC切⊙O于点P,即CP是⊙O的切线.
7.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若
1
3
CF
DF
=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.
【答案】(1)证明见解析;(2)FG =2;(3)
4
.
【解析】
分析:(1)由AB是 O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,
继而证得△ADF∽△AED;(2)由
1
3
CF
FD
= ,CF=2,可求得DF的长,继而求得CG=DG=4,
则可求得FG=2;(3)由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得
tan∠
本题解析:①∵AB是⊙O的直径,弦CD⊥AB,
∴DG=CG,∴»»
AD AC
=,∠ADF=∠AED,
∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;
②∵
1
3
CF
FD
=,CF=2,∴FD=6,∴CD=DF+CF=8,
∴CG=DG=4,∴FG=CG-CF=2;
③∵AF=3,FG=2,∴=,
点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.
8.如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
(2)探究证明
将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
(3)拓展延伸
在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.
【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1.
【解析】
【分析】
(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系
(2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O ,
证明CDB AEB ∆∆≌,得到CD AE =,EB BD =,
根据BED ∆为等腰直角三角形,得到2DE BD =,
再根据DE AD AE AD CD =-=-,即可解出答案.
(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.
在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==

由BD AD =即可得出答案.
【详解】
解:(1)如图1中,
由题意:BAE BCD ∆∆≌,
∴AE=CD ,BE=BD ,
∴CD+AD=AD+AE=DE ,
∵BDE ∆是等腰直角三角形,
∴2BD ,
∴2BD ,
2.
(2)2AD DC BD -=.
证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .
∵90ABC DBE ∠=∠=︒,
∴ABE EBC CBD EBC ∠+∠=∠+∠,
∴ABE CBD ∠=∠.
∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠,
∴BAE BCD ∠=∠,
∴ABE DBC ∠=∠.又∵AB CB =,
∴CDB AEB ∆∆≌,
∴CD AE =,EB BD =,
∴BD ∆为等腰直角三角形,2DE BD =
. ∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.
(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.
此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH == ∴21BD AD ==
+.
【点睛】 本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
9.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分
别交AB、BD于点G、H,且EF=BD.
(1)求证:EF∥BC;
(2)若EH=4,HF=2,求»BE的长.
【答案】(1)见解析;(2) 2
3
3
【解析】
【分析】
(1)根据EF=BD可得»EF=»BD,进而得到»»
BE DF
=,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.
(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定»BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.
【详解】
(1)∵EF=BD,
∴»EF=»BD
∴»»
BE DF
=
∴∠D=∠DEF
又BD=BC,
∴∠D=∠C,
∴∠DEF=∠C
EF∥BC
(2)∵AB是直径,BC为切线,
∴AB⊥BC
又EF∥BC,
∴AB⊥EF,弧BF=弧BE,
GF=GE=1
2
(HF+EH)=3,HG=1
DB平分∠EDF,
又BF∥CD,
∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2
∴cos∠BHG=HG
HB =
1
2
,∠BHG=60°.
∴∠FDB=∠BDE=30°
∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.
∴弧BE=1
6×43π=
2
3

【点睛】
本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.
10.如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与A、B重合),连AP,BP,过C作CM∥BP交PA的延长线于点M,
(1)求证:△PCM为等边三角形;
(2)若PA=1,PB=2,求梯形PBCM的面积.
【答案】(1)见解析;(215
3 4
【解析】
【分析】
(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM为等边三角形;
(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】
(1)证明:作PH⊥CM于H,
∵△ABC是等边三角形,
∴∠APC=∠ABC=60°,
∠BAC=∠BPC=60°,
∵CM ∥BP ,
∴∠BPC=∠PCM=60°,
∴△PCM 为等边三角形;
(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,
∴∠PCA+∠ACM=∠BCP+∠PCA ,
∴∠BCP=∠ACM ,
在△BCP 和△ACM 中,
BC AC BCP ACM CP CM =⎧⎪∠=∠⎨⎪=⎩

∴△BCP ≌△ACM (SAS ),
∴PB=AM ,
∴CM=CP=PM=PA+AM=PA+PB=1+2=3,
在Rt △PMH 中,∠MPH=30°,
∴PH=332
, ∴S 梯形PBCM =
12(PB+CM )×PH=12×(2+3)×33
=1534.
【点睛】
本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.
11.如图,AB 是O e 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .
(1)求证:DF 是O e 的切线;
(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.
【答案】(1)见解析;(2)
【解析】
【分析】(1) 连接OD,由垂径定理证OF为CD的垂直平分线,得CF=DF,∠CDF=∠DCF,由∠CDO=∠OCD,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD⊥DF,结论成立.
(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB,FB=OB= OC =2,在直角三角形OCE中,解直角三角形可得CE,再推出CD=2CE.
【详解】(1)证明:连接OD
∵CF是⊙O的切线
∴∠OCF=90°
∴∠OCD+∠DCF=90°
∵直径AB⊥弦CD
∴CE=ED,即OF为CD的垂直平分线
∴CF=DF
∴∠CDF=∠DCF
∵OC=OD,
∴∠CDO=∠OCD
∴∠CDO +∠CDB=∠OCD+∠DCF=90°
∴OD⊥DF
∴DF是⊙O的切线
(2)解:连接OD
∵∠OCF=90°, ∠BCF=30°
∴∠OCB=60°
∵OC=OB
∴ΔOCB为等边三角形,
∴∠COB=60°
∴∠CFO=30°
∴FO=2OC=2OB
∴FB=OB= OC =2
在直角三角形OCE中,∠CEO=90°∠COE=60°
CE
∠==
sin COE
OC
∴CF
=
∴CD=2 CF=
【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.
12.如图,AB 是O e 的直径,DF 切O e 于点D ,BF DF ⊥于F ,过点A 作AC //BF 交BD 的延长线于点C .
(1)求证:ABC C ∠∠=;
(2)设CA 的延长线交O e 于E BF ,交O e 于G ,若¼DG
的度数等于60o ,试简要说明点D 和点E 关于直线AB 对称的理由.
【答案】(1)见解析;(2)见解析.
【解析】
【分析】
(1)作辅助线,连接OD ,由DF 为⊙O 的切线,可得OD ⊥DF ,又BF ⊥DF ,AC ∥BF ,所以OD ∥AC ,∠ODB=∠C ,由OB=OD 得∠ABD=∠ODB ,从而可证∠ABC=∠C ;
(2)连接OG ,OD ,AD ,由BF ∥OD ,»GD =60°,可求证»BG =»»GD AD ==60°,由平行线
的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.
【详解】
(1)连接OD ,
∵DF 为⊙O 的切线,
∴OD ⊥DF .
∵BF ⊥DF ,AC ∥BF ,
∴OD ∥AC ∥BF .
∴∠ODB=∠C .
∵OB=OD ,
∴∠ABD=∠ODB .
∴∠ABC=∠C.
(2)连接OG,OD,AD,DE,DE交AB于H,
∵BF∥OD,
∴∠OBG=∠AOD,∠OGB=∠DOG,
∴»»
==»BG.
GD AD
∵»GD=60°,
∴»BG=»»
==60°,
GD AD
∴∠ABC=∠C=∠E=30°,
∵OD//CE
∴∠ODE=∠E=30°.
在△ODH中,∠ODE=30°,∠AOD=60°,
∴∠OHD=90°,
∴AB⊥DE.
∴点D和点E关于直线AB对称.
【点睛】
本题考查的是切线的性质、圆周角定理及垂径定理,解答此题的关键是作出辅助线,利用数形结合解答.
13.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.
求证:(1)AD是⊙B的切线;
(2)AD=AQ;
(3)BC2=CF×EG.
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;
()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52
G CDG BDG BCD ∠=∠=∠=
∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.
【详解】
证明:()1连接BD ,
Q 四边形BCDE 是正方形,
45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,
C Q 为AB 的中点,
CD ∴是线段AB 的垂直平分线,
AD BD ∴=,
45DAB DBA ∴∠=∠=o ,
90ADB ∴∠=o ,
即BD AD ⊥,
BD Q 为半径,
AD ∴是B e 的切线;
()2BD BG =Q ,
BDG G ∴∠=∠,
//CD BE Q ,
CDG G ∴∠=∠,
122.52
G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,
AD AQ ∴=;
()3连接DF ,
在BDF V 中,BD BF =,
BFD BDF ∴∠=∠,
又45DBF ∠=o Q ,
67.5BFD BDF ∴∠=∠=o ,
22.5GDB ∠=o Q ,
在Rt DEF V 与Rt GCD V 中,
67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,
Rt DCF ∴V ∽Rt GED V ,
CF CD ED EG
∴=, 又CD DE BC ==Q ,
2BC CF EG ∴=⋅.
【点睛】
本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.
14.如图,直角坐标系中,直线y kx b =+分别交x ,y 轴于点A (-8,0),B (0,6),C (m ,0)是射线AO 上一动点,⊙P 过B ,O ,C 三点,交直线AB 于点D (B ,D 不重合). (1)求直线AB 的函数表达式.
(2)若点D 在第一象限,且tan ∠ODC =53
,求点D 的坐标.
【答案】(1)364y x =
+;(2)D (8825,21625
). 【解析】
【分析】 (1)把A 、B 两点坐标代入y=kx+b 求出k 、b 的值即可;(2)连结BC ,作DE ⊥OC 于点E ,根据圆周角定理可得∠OBC=∠ODC ,由tan ∠ODC=53
可求出OC 的长,进而可得AC 的长,利用∠DAC 的三角函数值可求出DE 的长,即可得D 点纵坐标,代入直线AB 解析式求出D 点横坐标即可得答案.
【详解】
(1)∵A (-8,0)、B (0,6)在y=kx+b 上,
∴086k b b =-+⎧⎨=⎩
, 解得346
k b ⎧=⎪⎨⎪=⎩,
∴直线AB 的函数表达式为y=
34
x+6. (2)连结BC ,作DE ⊥OC 于点E ,
∵∠BOC=90°,
∴BC 为⊙P 的直径,
∴∠ADC=90°,
∵∠OBC=∠ODC ,tan ∠ODC=53
, ∴OC 5OB 3
=, ∵OB=6,OA=8,
∴OC=10,AC=18,AB=10, ∵cos ∠DAC=OA AB =45,sin ∠DAC=OB AB =35
, 472AD AC cos DAC 1855∠=⋅=⨯
=,
723216DE AD sin DAC 5525∠=⋅=
⨯=, ∵D 点在直线AB 上,
∴2163x 6254
=+, 解得:88x 25=
, ∴D (8825,21625

【点睛】
本题考查待定系数法求一次函数解析式、圆周角定理及锐角三角函数的定义,熟练掌握直径所对的圆周角等于90°及正切、正弦、余弦等三角函数的定义是解题关键.
15.我们知道,如图1,AB 是⊙O 的弦,点F 是¼AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.
(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB”的中点,即AE =EC+CB .
(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.
(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.
【答案】(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH的长为3﹣1或3+1.
【解析】
【分析】
(1)在AC上截取AG=BC,连接FA,FG,FB,FC,证明△FAG≌△FBC,根据全等三角形的性质得到FG=FC,根据等腰三角形的性质得到EG=EC,即可证明.
(2)在CA上截取CG=CB,连接FA,FB,FC,证明△FCG≌△FCB,根据全等三角形的性质得到FG=FB,得到FA=FG,根据等腰三角形的性质得到AE=GE,即可证明.
(3)分点P在弦AB上方和点P在弦AB下方两种情况进行讨论.
【详解】
解:(1)如图2,
在AC上截取AG=BC,连接FA,FG,FB,FC,
∵点F是¼
AFB的中点,FA=FB,
在△FAG和△FBC中,
,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩
∴△FAG ≌△FBC (SAS ),
∴FG =FC ,
∵FE ⊥AC ,
∴EG =EC ,
∴AE =AG+EG =BC+CE ;
(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,
理由:如图3,
在CA 上截取CG =CB ,连接FA ,FB ,FC ,
∵点F 是¼AFB 的中点,
∴FA =FB ,¶¶ FA
FB =, ∴∠FCG =∠FCB ,
在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩
∴△FCG ≌△FCB (SAS ),
∴FG =FB ,
∴FA =FG ,
∵FE ⊥AC ,
∴AE =GE ,
∴CE =CG+GE =BC+AE ;
(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232
BC AB AC =
==,, 当点P 在弦AB 上方时,如图4,
在CA 上截取CG =CB ,连接PA ,PB ,PG ,
∵∠ACB =90°,
∴AB 为⊙O 的直径,
∴∠APB =90°,
∵∠PAB =45°,
∴∠PBA =45°=∠PAB ,
∴PA =PB ,∠PCG =∠PCB ,
在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩
∴△PCG ≌△PCB (SAS ),
∴PG =PB ,
∴PA =PG ,
∵PH ⊥AC ,
∴AH =GH ,
∴AC =AH+GH+CG =2AH+BC , ∴2322AH =+, ∴31AH =,
当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG
∵∠ACB =90°,
∴AB 为⊙O 的直径,
∴∠APB =90°,
∵∠PAB =45°,
∴∠PBA =45°=∠PAB ,
∴PA =PB ,
在△PAG 和△PBC 中,
,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩
∴△PAG ≌△PBC (SAS ),
∴PG =PC ,
∵PH ⊥AC ,
∴CH =GH ,
∴AC =AG+GH+CH =BC+2CH , ∴2322CH ,=+
∴31CH =-,
∴()
233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+
【点睛】
考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.。

相关文档
最新文档