宝丰县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝丰县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数f (x )=kx +b
x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )
A .-1
B .1
C .2
D .4
2. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)
3. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
A .10
B .40
C .50
D .80
4. 下列各组函数中,表示同一函数的是( )
A .y=1,y=x 0
B .y=
•
,y=
C .y=x ,y=
D .y=|x|,t=(
)2
5. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )
A .2sin 2cos 2αα-+
B .sin 3αα-+
C. 3sin 1αα+ D .2sin cos 1αα-+
6. 若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
7. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( ) A .(0,+∞)
B .(1,+∞)
C .(0,1)
D .(1,2)
8. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=
,则
•
=( )
A .﹣1
B .1
C .﹣
D .
9. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )
A
. B .4 C
. D .2
10.已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
11.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为
( )
A
.15 B
. C
.15 D
.15
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 12.已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( )
A .
14 B .18 C .23 D .112 二、填空题
13.若正方形P 1P 2P 3P 4的边长为1,集合
M={x|x=
且i ,j ∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
14.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则
= .
15.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
16.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .
17.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C
相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则
= .
18.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .
三、解答题
19.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;
(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.
20.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求AC边的长.
21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.
(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;
(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.
22.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:AD⊥BC
(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.
23.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.
(Ⅰ)求线段AD的长;
(Ⅱ)比较∠ADC和∠ABC的大小.
24.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.
(Ⅰ)求证:AE=EB;
(Ⅱ)若EF•FC=,求正方形ABCD的面积.
宝丰县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题
1. 【答案】
【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),
则⎩
⎪⎨⎪⎧n =
km +b m +1
4-n =k (-2-m )+b -1-m ,恒成立.
由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,
∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,
∴b =1,故选B. 2. 【答案】A
【解析】解:令f (x )=x 3
﹣
,
∵f ′(x )=3x 2
﹣
ln =3x 2
+ln2>0,
∴f (x )=x 3
﹣
在R 上单调递增;
又f (1)=1
﹣
=>0, f (0)=0﹣1=﹣1<0,
∴f (x )=x 3
﹣
的零点在(0,1),
∵函数y=x 3与y=
()x
的图象的交点为(x 0,y 0),
∴x 0所在的区间是(0,1). 故答案为:A .
3. 【答案】 C
【解析】 二项式定理. 【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k
的系数,将k 的值代入求出各种情况的系数.
【解答】解:(x+2)5的展开式中x k 的系数为C 5k 25﹣k
当k ﹣1时,C 5k 25﹣k =C 5124
=80, 当k=2时,C 5k 25﹣k =C 5223
=80, 当k=3时,C 5k 25﹣k =C 5322
=40, 当k=4时,C 5k 25﹣k =C 54
×2=10, 当k=5时,C 5k 25﹣k =C 55
=1,
故展开式中x k
的系数不可能是50
故选项为C
【点评】本题考查利用二项展开式的通项公式求特定项的系数.
4. 【答案】C
【解析】解:A 中的两个函数y=1,y=x 0
,定义域不同,故不是同一个函数.
B 中的两个函数定义域不同,故不是同一个函数.
C 中的两个函数定义域相同,y=x ,y==x ,对应关系一样,故是同一个函数.
D 中的两个函数定义域不同,故不是同一个函数.综上,只有C 中的两个函数是同一个函数.
故选:C .
5. 【答案】A 【解析】
试题分析:利用余弦定理求出正方形面积()
ααcos 22cos 2-112
2
1-=+=S ;利用三角形知识得出四个等
腰三角形面积ααsin 2sin 112
1
42=⨯⨯⨯⨯=S ;
故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.
考点:余弦定理和三角形面积的求解.
【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角
形面积公式ααsin 2
1
sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-112
2+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到
答案.
6. 【答案】A 【解析】
试题分析:4
2
7
3
1,1i i i i i ==-∴==-,因为复数满足7
1i i z
+=,所以()1,1i i i i z i z +=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算. 7. 【答案】A
【解析】解:集合A={x|y=ln (x ﹣1)}=(1,+∞),集合B={y|y=2x }=(0,+∞) 则A ∪B=(0,+∞) 故选:A .
【点评】本题考查了集合的化简与运算问题,是基础题目.
8. 【答案】B
【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且||=
,
即有||2+|
|2=|
|2,
可得△OAB 为等腰直角三角形,
则,的夹角为45°,
即有
•=|
|•|
|•cos45°=1×
×
=1.
故选:B .
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
9. 【答案】C
【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得 这个几何体是一个四棱锥
由图可知,底面两条对角线的长分别为2,2,底面边长为2
故底面棱形的面积为=2
侧棱为2,则棱锥的高h=
=3
故V=
=2
故选C
10.【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
11.【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面
ABCD ,如图所示,所以此四棱锥表面积为1S =262创?11
23+22622
创
创?
15=,故选C .
46
46
1010
1
1
32
6
E V
D C
B
A
12.【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型.
二、填空题
13.【答案】 ①③⑤
【解析】解:建立直角坐标系如图:
则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,
1). ∵集合M={x|x=
且i ,j ∈{1,2,3,4}},
对于
①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确; 对于②
,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i ,j ∈{1,2
,3,4}}, ∴
=
(1,﹣1),
=
=(
0,﹣1),
==(
1
,0),
∴
•
=1
;
•=1
;
•
=1;
•
=1;
∴当x=1时,(i ,j )有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i ,j )有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i ,j )有4种不同取值;当x=﹣1时,(i ,j )有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2; 当i=2,j=4,或i=4,j=2时,x=0, ∴M 中的元素之和为0,故⑤正确. 综上所述,正确的序号为:①③⑤, 故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
14.【答案】(﹣,).
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为
则
解得:
∴
又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,
可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
15.【答案】3
16.【答案】35.
【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),
∴数列{a n}为等差数列,
又a2+a8=6,∴2a5=6,解得:a5=3,
又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,
∴d2=1,解得:d=1或d=﹣1(舍去)
∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.
∴a1=﹣1,
∴S10=10a1+=35.
故答案为:35.
【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.
17.【答案】.
【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,
过F斜率为的直线与抛物线C相交于A,B两点,
直线AO与l相交于D,
∴直线AB的方程为y=(x﹣),l的方程为x=﹣,
联立,解得A(﹣,P),B(,﹣)
∴直线OA的方程为:y=,
联立,解得D(﹣,﹣)
∴|BD|==,
∵|OF|=,∴==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.
18.【答案】.
【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,
由几何概型的计算方法,
可以得出所求事件的概率为P=,
故答案为:.
【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.
三、解答题
19.【答案】
【解析】解:(1),
令f'(x)>0,则;令f'(x)<0,则.
∴f(x)在x=a时取得最大值,即
①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞
∴f(x)的图象与x轴有2个交点,分别位于(0,)及()
即f(x)有2个零点;
②当,即a=1时,f(x)有1个零点;
③当,即a>1时f(x)没有零点;
(2)由得(0<x1<x2),
=,令
,设,t∈(0,1)且h(1)=0
则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0
即,又,
∴f'(x0)=<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算
比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.
20.【答案】
【解析】解:(Ⅰ)由题意,因为sinB=,所以cosB=…
又cos∠ADC=﹣,所以sin∠ADC=…
所以sin∠BAD=sin(∠ADC﹣∠B)=×﹣(﹣)×=…
(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…
故BC=15,
从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3×15×(﹣)=,所以AC=…
【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题.
21.【答案】
【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,
∴BD⊥AC,可知A(),
故,m=2;
(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,
设E(x1,y1),由于A,E均在椭圆T上,则
,
由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,
显然x1≠x0,从而=,
∵AE⊥AC,∴k AE•k AC=﹣1,
∴,
解得,
代入椭圆方程,知.
【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.
22.【答案】
【解析】(Ⅰ)证明:∵AB是圆O的直径,
∴AC⊥BC,
又∵DC⊥平面ABC
∴DC⊥BC,
又AC∩CD=C,
∴BC⊥平面ACD,
又AD⊂平面ACD,
∴AD⊥BC.
(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.
则C(0,0,0),B(2,0,0),,D(0,0,a).
由(Ⅰ)可得,AC⊥平面BCD,
∴平面BCD的一个法向量是=,
设=(x,y,z)为平面ABD的一个法向量,
由条件得,=,=(﹣2,0,a).
∴即,
不妨令x=1,则y=,z=,
∴=.
又二面角A﹣BD﹣C所成角θ的正切值是2,
∴.
∴=cosθ=,
∴==,解得a=2.
∴V ABCDE=V E﹣ADC+V E﹣ABC
=+
=+
=
=8.
∴该几何体ABCDE的体积是8.
【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.
23.【答案】
【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,
在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,
由余弦定理可得AD==;
(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,
∴问题转化为比较∠ADE与∠EBC的大小.
在△ADE中,由正弦定理可得,
∴sin∠ADE=<=sin30°,
∴∠ADE<30°
∴∠ADC<∠ABC.
【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.
24.【答案】
【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,
且四边形ABCD为正方形,
∴EA为圆D的切线,且EB是圆O的切线,
由切割线定理得EA2=EF•EC,
故AE=EB.
(Ⅱ)设正方形的边长为a,连结BF,
∵BC为圆O的直径,∴BF⊥EC,
在Rt△BCE中,由射影定理得EF•FC=BF2=,
∴BF==,解得a=2,
∴正方形ABCD的面积为4.
【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.。