备战中考数学压轴题专题复习—直角三角形的边角关系的综合及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战中考数学压轴题专题复习—直角三角形的边角关系的综合及答案
一、直角三角形的边角关系
1.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.
(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;
(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时
tan∠DBF'的值,如果不能,请说明理由.
【答案】(1)证明见解析;(2)①证明见解析;②1
2
3
【解析】
【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;
(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;
②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.
【详解】(1)由翻折可知:∠DFP=∠DFQ,
∵PF∥BC,
∴∠DFP=∠ADF,
∴∠DFQ=∠ADF,
∴△DEF是等腰三角形;
(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,
∵∠P′DF′=∠PDF,
∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,
∴∠P′DC=∠F′DB,
由旋转的性质可知:△DP′F′≌△DPF,
∵PF∥BC,
∴△DPF∽△DCB,
∴△DP′F′∽△DCB ∴
'
'
DC DP DB DF = , ∴△DP'C ∽△DF'B ;
②当∠F′DB=90°时,如图所示, ∵DF′=DF=1
2
BD , ∴
'1
2
DF BD =, ∴tan ∠DBF′=
'1
2
DF BD =;
当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,
∵DF′=DF=1
2
BD , ∴∠DBF′=30°,
∴tan ∠DBF′=
33
.
【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.
2.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .
(1)求证:PA是☉O的切线;
(2)若=,且OC=4,求PA的长和tan D的值.
【答案】(1)证明见解析;(2)PA =3,tan D=.
【解析】
试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;
(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.
试题解析:(1)连接OB,则OA=OB,
∵OP⊥AB,∴AC=BC,
∴OP是AB的垂直平分线,∴PA=PB,
在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)
∴∠PBO=∠PAO,PB=PA,
∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,
∴PA是⊙O的切线;
(2)连接BE,
∵,且OC=4,∴AC=6,∴AB=12,
在Rt△ACO中,由勾股定理得:AO=,
∴AE=2OA=4,OB=OA=2,
在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,
在Rt△APO中,由勾股定理得:AP==3.
易证,所以,解得,
则,在中,.
考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.
3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.
(1)AE的长为 cm;
(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;
(3)求点D′到BC的距离.
【答案】(1);(2)12cm;(3)cm.
【解析】
试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:
∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.
∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).
∵点E为CD边上的中点,∴AE=DC=cm.
(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.
(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则
∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.
试题解析:解:(1).
(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,
∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.
∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.
∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.
∴点E,D′关于直线AC对称.
如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.
∵△ADE是等边三角形,AD=AE=,
∴,即DP+EP最小值为12cm.
(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=.
在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′
(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.
设D′G长为xcm,则CG长为cm,
在Rt△GD′C中,由勾股定理得,
解得:(不合题意舍去).
∴点D′到BC边的距离为cm.
考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.
4.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)
【答案】215.6米. 【解析】 【分析】
过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,
根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】
解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点
在Rt △ACM 中,∵45ACF ∠=︒, ∴AM=CM=200米,
又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN
DN =
≈o
米,
∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】
本题主要考查三角函数,正确做辅助线是解题的关键.
5.在△ABC 中,∠B =45°,∠C =30°,点D 是边BC 上一点,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接DE .
(1)如图①,当点E 落在边BA 的延长线上时,∠EDC = 度(直接填空); (2)如图②,当点E 落在边AC 上时,求证:BD =
1
2
EC ; (3)当AB =2E 到AC 31时,直接写出tan ∠CAE 的值.
【答案】(1)90;(2)详见解析;(3)
633 tan
11
EAC
-
∠=
【解析】
【分析】
(1)利用三角形的外角的性质即可解决问题;
(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,
由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=
6-33
.
【详解】
(1)如图1中,
∵∠EDC=∠B+∠BED,∠B=∠BED=45°,
∴∠EDC=90°,
故答案为90;
(2)如图2中,作PA⊥AB交BC于P,连接PE.
∵∠DAE=∠BAP=90°,
∴∠BAD=∠PAE,
∵∠B=45°,
∴∠B=∠APB=45°,
∴AB=AP,
∵AD=AE,
∴△BAD≌△PAE(SAS),
∴BD=PE,∠APE=∠B=45°,
∴∠EPD=∠EPC=90°,
∵∠C=30°,
∴EC=2PE=2BD;
(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.
设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,
∴EP3,EH=2PH=2x,
∴FH=31,CF3FH=33
∵△BAD≌△PAE,
∴BD=EP3,AE=AD,
在Rt△ABG中,∵AB=2
∴AG=GB=2,
在Rt△AGC中,AC=2AG=4,
∵AE2=AD2=AF2+EF2,
∴22+(23)231)2+(4﹣3﹣32,
整理得:9x2﹣12x=0,
解得x=4
3
(舍弃)或0
∴PH =0,此时E ,P ,H 共点, ∴AF =1+3, ∴tan ∠EAF =
EF AF =31
31
-+=2﹣3. 根据对称性可知当点E 在AC 的上方时,同法可得tan ∠EAC =6-33
. 【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
6.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .
(1)求证:DE DF ⊥; (2)求证:DH DF =:
(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.
【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】
(1)根据正方形性质, CF AE =得到DE DF ⊥.
(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于
45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠,
所以DH DF =.
(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得
222BD AB AD AB =
+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得
HM HN =.因为4590HBN HNB ∠=︒∠=︒,
,所以22sin 45HN
BH HN HM ===︒
.
由22cos 45DF
EF DF DH =
==︒
,得22EF AB HM =-.
【详解】
(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。
∴AED CFD △△≌. ∴ADE CDF ∠=∠.
∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=︒. ∴DE DF ⊥.
(2)证明:∵AED CFD △△≌, ∴DE DF =. ∵90EDF ∠=︒, ∴45DEF DFE ∠=∠=︒.
∵90ABC ∠=︒,BD 平分ABC ∠, ∴45DBF ∠=︒. ∵FH 平分EFB ∠, ∴EFH BFH ∠=∠.
∵45DHF DBF BFH BFH ∠=∠+∠=︒+∠,
45DFH DFE EFH EFH ∠=∠+∠=︒+∠, ∴DHF DFH ∠=∠. ∴DH DF =.
(3)22EF AB HM =-.
证明:过点H 作HN BC ⊥于点N ,如图,
∵正方形ABCD 中,AB AD =,90BAD ∠=︒, ∴222BD AB AD AB =+=.
∵FH 平分,
EFB HM EF HN BC ∠⊥⊥,,
∴HM HN =. ∵4590HBN HNB ∠=︒∠=︒,
, ∴22sin 45HN BH HN HM ===︒
. ∴22DH BD BH AB HM =-=
-. ∵22cos 45DF EF DF DH ===︒
, ∴22EF AB HM =-.
【点睛】
本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.
7.如图,AB 是⊙O 的直径,PA 、PC 与⊙O 分别相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E .
(1)求证:∠EPD=∠EDO ;
(2)若PC=3,tan ∠PDA=34
,求OE 的长.
【答案】(1)见解析;(25. 【解析】
【分析】 (1)由切线的性质即可得证.(2)连接OC ,利用tan ∠PDA=
34,可求出CD=2,进而求得OC=32
,再证明△OED ∽△DEP ,根据相似三角形的性质和勾股定理即可求出OE 的长. 【详解】
(1)证明:∵PA ,PC 与⊙O 分别相切于点A ,C ,
∴∠APO=∠CPO, PA ⊥AO ,
∵DE ⊥PO ,
∴∠PAO=∠E=90°,
∵∠AOP=∠EOD ,
∴∠APO=∠EDO ,
∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,
∵tan∠PDA=3
4
,
∴在Rt△PAD中,
AD=4,PD=22
PA AD
+=5,∴CD=PD-PC=5-3=2,
∵tan∠PDA=3
4
,
∴在Rt△OCD中,
OC=3
2
,
OD=22
OC CD
+=5
2
,
∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,
∴PD
DO =
PE
DE
=
DE
OE
=2,
∴DE=2OE,
在Rt△OED中,OE2+DE2=OD2,即5OE2=
2
5
2
⎛⎫
⎪
⎝⎭
=
25
4
,
∴OE=5.
【点睛】
本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用
tan∠PDA=3
4
,得线段的长是解题关键.
8.兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长为152米,主塔处桥面距地面7.9米(CD的长),试求出主塔BD的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
【答案】主塔BD的高约为86.9米.
【解析】
【分析】
根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】
在Rt△ABC中,∠ACB=90°,
sin BC
A
AB
=.
∴sin152sin311520.5279.04
BC AB A︒
=⨯=⨯=⨯=.
79.047.986.9486.9
BD BC CD
=+=+=≈(米)
答:主塔BD的高约为86.9米.
【点睛】
本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.
9.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)
(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.
【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,
∠FCN的大小总保持不变,tan∠FCN=4
3
.理由见解析.
【解析】
【分析】
(1)根据三角形判定方法进行证明即可.
(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.
(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.
【详解】
(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,
∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,
∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,
∴∠BAE =∠DAG ,
在△ADG 和△ABE 中,
ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△ADG ≌△ABE (AAS ).
(2)解:∠FCN =45°,理由如下:
作FH ⊥MN 于H ,如图1所示:
则∠EHF =90°=∠ABE ,
∵∠AEF =∠ABE =90°,
∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,
∴∠FEH =∠BAE ,在△EFH 和△ABE 中,
EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△EFH ≌△ABE (AAS ),
∴FH =BE ,EH =AB =BC ,
∴CH =BE =FH ,
∵∠FHC =90°,
∴∠FCN =45°.
(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:
作FH ⊥MN 于H ,如图2所示:
由已知可得∠EAG=∠BAD=∠AEF=90°,
结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,
∴CH=BE,
∴EH FH FH
AB BE CH
==;
在Rt△FEH中,tan∠FCN=
84
63 FH EH
CH AB
===,
∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4
3
.
【点睛】
本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.
10.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).
【答案】拦截点D处到公路的距离是(500+500)米.
【解析】
试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离
DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出
CF=CD=500米,则DA=BE+CF=(500+500)米.
试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的
垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.
在Rt△BCE中,∵∠E=90°,∠CBE=60°,
∴∠BCE=30°,
∴BE=BC=×1000=500米;
在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,
∴CF=CD=500米,
∴DA=BE+CF=(500+500)米,
故拦截点D处到公路的距离是(500+500)米.
考点:解直角三角形的应用-方向角问题.
11.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽
略不计,参考数据:tan53°≈4
3
,tan63.4°≈2)
【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】
分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,
设PF=5x,CF=12x,
∵四边形BFPE为矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=AB BC
,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.
在RT△AEP中,
tan∠APE=
18054
90123 AE x
EP x
-
≈
=
+
,
∴x=20
7
,
∴PF=5x=10014.3
7
≈.
答:此人所在P的铅直高度约为14.3米.
由(1)得CP=13x,
∴CP=13×20
7
≈37.1,BC+CP=90+37.1=127.1.
答:从P到点B的路程约为127.1米.
点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
12.已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
(1)如图1,当AB=AC,且sin∠BEF=3
5
时,求
BF
CF
的值;
(2)如图2,当tan ∠ABC=12
时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G,当2FG BF CG =⋅时,求矩形BCDE 的面积
【答案】(1)
17
;(2)80;(3)100. 【解析】
【分析】 (1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=35得出35
FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故17
BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.
【详解】
解:(1)过A 作AK ⊥BC 于K ,
∵sin ∠BEF =
35,sin ∠FAK =35, ∴35
FK AK =, 设FK =3a ,AK =5a ,
∴AK =4a ,
∵AB =AC ,∠BAC =90°,
∴BK =CK =4a ,
∴BF =a ,
又∵CF =7a ,
∴17
BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,
∵∠AGE =∠DHE =90°,
∴△EGA ∽△EHD ,
∴EH ED EG EA
=,
∴·EH EA EG ED ⋅=,其中EG =BK ,
∵BC =10,tan ∠ABC =12, cos ∠ABC =5, ∴BA =BC · cos ∠ABC =
5, BK= BA·cos ∠ABC =
855
⨯= ∴EG =8,
另一方面:ED =BC =10,
∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,
∵BC ∥KT ,
BF AF FG KE AE ED ==, ∴BF KE FG DE =,同理:FG ED CG DT
= ∵FG 2= BF ·CG ∴BF FG FG CG
=, ∴ED 2= KE ·DT ∴
KE ED DE DT = , 又∵△KEB ∽△CDT ,∴
KE CD BE DT
=, ∴KE ·DT =BE 2, ∴BE 2=ED 2
∴ BE =ED
∴1010100BCDE S =⨯=矩形
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.。