【真卷】2016-2017年云南省曲靖市罗平县腊山一中八年级上学期数学期末试卷及答案

合集下载

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)在下列实数:,,,中,无理数的个数是()A . 1个B . 2 个C . 3个D . 4个2. (2分)(2018·攀枝花) 若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于E、F两点;再分别以E、F为圆心,大于的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠CMA=25°,则∠C的度数为()A . 100°B . 110°C . 120°D . 130°4. (2分)一次函数y=kx+b与反比例函数y=kx的图象如图所示,则下列说法正确的是()A . 它们的函数值y随着x的增大而增大B . 它们的函数值y随着x的增大而减小C . 它们的自变量x的取值为全体实数D . k<05. (2分) (2019九上·秀洲期中) 如图,等腰的直角边与正方形的边长均为2,且与在同一直线上,开始时点与点重合,让沿这条直线向右平移,直到点与点重合为止.设的长为,与正方形重合部分(图中阴影部分)的面积为,则与之间的函数关系的图象大致是A .B .C .D .6. (2分) (2019八下·江油开学考) 在△ABC中,∠ACB=90°,AC=BC=4,点D为AB的中点,M , N分别在BC , AC上,且BM=CN ,现有以下四个结论:①DN=DM;②∠NDM=90°;③四边形CMDN的面积为4;④△CMN的面积最大为2.其中正确的结论有()A . ①②④B . ①②③C . ②③④D . ①②③④二、填空题 (共10题;共11分)7. (1分) (2017八上·深圳月考) 的立方根是________.8. (1分) (2019八上·句容期末) 用四舍五入法把圆周率精确到千分位,得到的近似值是________.9. (2分) (2019八上·莎车期末) 如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D 到AB边的距离是________.10. (1分) (2017八下·海淀期末) 如图,分别是边长为4的正方形四条边上的点,且 . 那么四边形的面积的最小值是________11. (1分)(2014·成都) 在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1 , y1)、P2(x2 ,y2)两点,若x1<x2 ,则y1________y2 .(填“>”“<”或“=”)12. (1分) (2015七下·龙口期中) 如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为________.13. (1分)(2019·香坊模拟) △ABC中,∠C=90°,AC=3,BC=4,将△ABC绕点C顺时针旋转a度(0°<a<180°)得到△DCE,点A与点D对应,点B与点E对应,当点D落在△ABC的边上时,则BD的长________14. (1分) (2016八下·宝丰期中) 一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b >0的解集是________15. (1分)(2017·河西模拟) 如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).16. (1分) (2019九下·邓州模拟) 如图,在菱形ABCD中,∠DAB=45°,AB=4,点P为线段AB上一动点,过点P作PE⊥AB交直线AD于点E,将∠A沿PE折叠,点A落在F处,连接DF,CF,当△CDF为直角三角形时,线段AP的长为________.三、解答题 (共10题;共81分)17. (5分)计算:18. (10分) (2019七下·红塔期中) 求下列等式中x的值:(1) 2x2﹣=0;(2)(x+4)3=125.19. (2分) (2016八上·麻城开学考) 如图,已知点A(﹣m,n),B(0,m),且m、n满足 +(n﹣5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.(1)写出D点坐标并求A、D两点间的距离;(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ 和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.20. (6分) (2018八上·泰兴期中) 如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:(1)在图1中,画一个顶点为格点、面积为5的正方形;(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)(3)在图3中,找一格点D,满足:①到CB、CA的距离相等;②到点A、C的距离相等.21. (5分) (2017八上·汉滨期中) 如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.试证明:OC=OD.22. (11分)(2018·秀洲模拟) 某公司经营杨梅业务,以3万元/吨的价格买入杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,包装成本为1万元/吨,它的平均销售价格y(单位:万元/吨)与销售数量x(≥2,单位:吨)之间的函数关系如图所示;B类杨梅深加工后再销售,深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是,平均销售价格为9万元/吨.(1) A类杨梅的销售量为5吨时,它的平均销售价格是每吨多少万元?(2)若该公司收购10吨杨梅,其中A类杨梅有4吨,则经营这批杨梅所获得的毛利润(w)为多少万元?(毛利润=销售总收入-经营总成本)(3)若该公司收购20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元.①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?23. (5分)在△ABC中,c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2<c2时,△ABC是钝角三角形;当a2+b2>c2时,△ABC是锐角三角形.若a=2,b=4,试判断△ABC的形状(按角分),并求出对应的c 的取值范围.24. (10分) (2017八上·南涧期中) 如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)25. (15分) (2020九上·鄞州期末) 如图1,小明用一张边长为6cm的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为xcm的正方形,再折成如图2所示的无盖纸盒,记它的容积为ycm3 .(1) y关于x的函数表达式是________,自变量x的取值范围是________。

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·镇平期中) 化简的结果是()A . 4B . 2C . 3D . 22. (2分) (2020八上·通榆期末) 下列等式正确的是A . (-2)-2=B .C . (a-b)2=a2-b2D . a2+a=a(a+1)3. (2分)用反证法证明命题:如果AB⊥CD,AB⊥EF,那么CD∥EF,证明的第一个步骤是()A . 假设CD∥EFB . 假设AB∥EFC . 假设CD和EF不平行D . 假设AB和EF不平行4. (2分)(2016·葫芦岛) 九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A . 方差B . 众数C . 平均数D . 中位数5. (2分)下列各组数中不能作为直角三角形的三边长的是()A . 6,12,8B . 7,24,25C . 1.5,2,2.5D . 9,12,156. (2分)初二(1)班有48位学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去苏州乐园的学生数”的扇形圆心角60,则下列说法正确的是()A . 想去苏州乐园的学生占全班学生的60%B . 想去苏州乐园的学生有12人C . 想去苏州乐园的学生肯定最多D . 想去苏州乐园的学生占全班学生的7. (2分)(2016·海南) 下列计算中,正确的是()A . (a3)4=a12B . a3•a5=a15C . a2+a2=a4D . a6÷a2=a38. (2分) (2017八上·义乌期中) 一副三角板按如图所示叠放在一起,则图中∠α的度数是()A . 60°B . 75°C . 90°D . 105°9. (2分)(2017·乌鲁木齐模拟) 如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;② = ;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE其中正确的是()A . ①②④B . ③④⑤C . ①③④D . ①③⑤10. (2分)(2017·达州) 如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为()A . 2017πB . 2034πC . 3024πD . 3026π二、填空题 (共5题;共6分)11. (1分) (2018八上·临安期末) 命题“如果a2=b2 ,那么a=b”的逆命题是________命题.(填写“真”或“假”)12. (1分)在一块试验田抽取1000个麦穗考察它的长度(单位:cm)对数据适当分组后看到落在5.75~6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75~6.05cm之间的麦穗约占________%.13. (1分) (2017八上·江门月考) 如图,∠BAC=∠ABD,请你添加一个条件:________,能使△ABD≌△BAC (只添一个即可).14. (1分)如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B 点到P点的最短路线的长为________15. (2分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB=________三、解答题 (共8题;共66分)16. (20分) (2019七下·乌兰浩特期中) 解方程(组)(1) 2(x﹣1)3+16=0.(2);(3).(4)17. (5分)先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣4y2+2x3),其中x=﹣3,y=﹣2.18. (2分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△AB E和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.19. (10分) (2019八上·萧山期中) 在Rt△ABC中,∠ACB=90°,利用直尺和圆规作图(1)作出AB边上的中线CD;(2)作出△ABC的角平分线AE;(3)若AC=5,BC=12,求出斜边AB上的高的长度.20. (11分)(2019·香坊模拟) 为了解某小区群众对绿化建设的满意程度,对小区内居民进行了随机调查,居民在“非常满意、满意、一般和不满意“中必选且只能选一个,并将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名居民?(2)通过计算补全条形统计图;(3)若该小区一共有1350人,估计该小区居民对绿化建设“非常满意”的有多少人.21. (5分) (2019八下·路北期中) 如图,中,,,,将折叠,使点B恰好落在斜边AC上,与点重合,AD为折痕,求的长.22. (2分)(2019·重庆模拟) 如图,边长为a的正方形ABCD被两条与边平行的线段EF、GH分割成四个小矩形,EF与GH交于点P,连接AF、AH、FH.(1)如图1,若a=1,AE=AG=,求FH的值;(2)如图2,若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长l=a,求矩形EPHD的面积S与l的关系(只写结果,不写过程).23. (11分) (2017九下·睢宁期中) 如图,矩形ABCD中,AD=5,AB=8,点E为射线DC上的一个动点,把△ADE沿AE折叠点.D的对应点为D′.(1)求点D′刚好落在对角线AC上时,D′C的长;(2)求点D′刚好落在此对称轴上时,线段DE的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3、答案:略4-1、5-1、6-1、7-1、8-1、9、答案:略10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共66分)16-1、16-2、16-3、16-4、17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、。

罗平县2016-2017学年八年级上期末数学模拟试卷含答案解析

罗平县2016-2017学年八年级上期末数学模拟试卷含答案解析
) A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2 2=a4 D.(a+1) 23=.a如2+图1 ,为估计池塘岸边 A、B 的距离,小方在池塘的一侧选取一点 O,测得 OA=15 米,OB=10 米,A、B 间的距离不可能是( )
A.20 米 B.1ห้องสมุดไป่ตู้ 米 C.10 米 D.5 米 4.如图,∠A=50°,P 是等腰△ABC 内一点,且∠PBC=∠PCA,则∠BPC 为 ()
2016-2017 学年云南省曲靖市罗平县八年级(上)期末数学模 拟试卷
一、选择题(本大题共 8 个小题,每小题只有一个正确选项,每小题 4 分,满 分 32 分) 1.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的 ()
A.轴对称性 B.用字母表示数 C.随机性 D.数形结合 2.下列计算正确的是( )
A.100°B.140°C.130° D.115° 5.若 3x=4,9y
=7,则 3x﹣2y 的值为( ) A. B. C.﹣3 D.
(2)若点 D 在线段 AM 上时,求证:△ADC≌△BEC; (3)当动点 D 在直线 AM 上时,设直线 BE 与直线 AM 的交点为 O,试判断∠ AOB 是否为定值?并说明理由.

曲靖市八年级上学期数学期末考试试卷

曲靖市八年级上学期数学期末考试试卷

曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)据报道:今年四月初,在北方检测出的“核辐射”菠菜上,碘-131的值不超过0.066微西弗,可以安全食用.数字0.066用科学记数法表示为()A . 0.66×10-1B . -6.6×10C . -6.6×102D . 6.6×10-22. (2分) (2016八上·大悟期中) 下列图形中不是轴对称图形的是()A .B .C .D .3. (2分)下列运算正确的是()A . x2•x3=x6B . 3﹣2=﹣6C . (x3)2=x5D . 40=14. (2分)具备下列条件的△ABC中,不是直角三角形的是()A . ∠A+∠B=∠CB . ∠A= ∠B= ∠CC . ∠A:∠B:∠C=1:2:3D . ∠A=∠B=3∠C5. (2分)将中的都变为原来的4倍,则分式的值()A . 不变B . 是原来的4倍C . 是原来的16倍D . 是原来的8倍6. (2分)如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3 ,且G1=2G2=4G3 ,已知FG=LK,EF=6,则AB的长是()A . 9.5B . 10C . 10.5D . 117. (2分) (2015八上·海淀期末) 下列各式中,计算正确的是()A . x(2x﹣1)=2x2﹣1B . =C . (a+2)2=a2+4D . (x+2)(x﹣3)=x2+x﹣68. (2分)等腰三角形的三边长分别为3x﹣2,4x﹣3,6﹣2x,则该三角形的周长为()A . 6B . 6或9或8.5C . 9或8.5D . 与x的取值有关9. (2分) (2018八上·银海期末) 已知x+ =7,则x2 + 的值是()A . 49B . 48C . 47D . 5110. (2分)(2017·重庆模拟) 两个相似三角形的最短边分别是5cm和3cm,它们的周长之差为12cm,那么小三角形的周长为()A . 14cmB . 16cmC . 18cmD . 30cm二、填空题 (共4题;共4分)11. (1分)(2017·临高模拟) 分解因式:a3﹣25a=________.12. (1分)(2011·泰州) 点P(﹣3,2)关于x轴对称的点P′的坐标是________.13. (1分)(2019·湘潭) 函数中,自变量的取值范围是________.14. (1分) (2020九上·信阳期末) 如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是________.三、解答题 (共9题;共68分)15. (5分)先化简,再求值:,其中x=2013.16. (10分) (2020九下·长春月考) 图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.17. (10分)某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?18. (5分) (2020七下·高新期中) 如图,在△ABC中,∠ACB=90°,AE平分∠BAC,CD是AB边上的高,CD 和AE交于点F。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·宁津模拟) 下列计算正确的是()A . ()﹣2=9B . =﹣2C . (﹣2)0=﹣1D . |﹣5﹣3|=22. (2分) (2015八上·丰都期末) 如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A . 90°﹣αB . 90°+ αC .D . 360°﹣α3. (2分) (2016·龙湾模拟) 使分式无意义的x的值是()A . x=﹣B . x=C . x≠﹣D . x≠4. (2分)已知一个等腰三角形有一个角为50,则顶角是()A . 50°B . 80°C . 50°或80°D . 不能确定5. (2分) (2017八上·濮阳期末) 如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④PQ∥AC.其中结论正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2017七下·合浦期中) 下列各式计算正确的是()A . a2+a2=a4B . (3x)2=6x2C . (x2)3=x6D . (x+y)2=x2+y27. (2分) (2016七下·岱岳期末) 点M(﹣2,1)关于x轴对称的点的坐标是()A . (﹣2,﹣1)B . (2.1)C . (2,﹣1)D . (1.﹣2)8. (2分)一次课堂练习,一位同学做了4道因式分解题,你认为这位同学做得不够完整的题是()A . x2﹣2xy+y2=(x﹣y)2B . x2y﹣xy2=xy(x﹣y)C . x2﹣y2=(x+y)(x﹣y)D . x3﹣x=(x2﹣1)9. (2分) (2019八上·阳东期末) 如图,OP平分∠AOB ,PC⊥OA于C ,点D是OB上的动点,若PC=6cm ,则PD的长可以是()A . 7cmB . 4cmC . 5cmD . 3cm10. (2分) (2018七下·浏阳期中) 有下列四个命题:(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)垂直于同一条直线的两条直线互相垂直.其中是假命题的有()A . 1个B . 2个C . 3个D . 4个11. (2分)若关于x的分式方程 = 的根为正数,则k的取值范围是()A . k<- 且k≠-1B . k≠-1C . - <k<1D . k<-12. (2分)如图,把△ABC沿AD对折后完全重合,则图中全等三角形有()A . 1对B . 2对C . 3对D . 4对二、填空题 (共6题;共6分)13. (1分)分解因式:3m2﹣27=________14. (1分) PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为________ .15. (1分)若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=________ .16. (1分)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件:________(答案不唯一),使△ADB≌△CEB.17. (1分) (2017七下·扬州期中) 若代数式4x2+mx+9是一个完全平方式,则常数m的值为________18. (1分) (2020八上·甘州期末) 如图,△OB1A2、△OB2A3、△OB3A4、…△OBnAn+1都是等边三角形,其中B1A1、B2A2、…Bn An都与x轴垂直,点A1、A2、…An都在x轴上,点B1、B2、…Bn都在直线y= x上,已知OA1=1,则点Bn的坐标为________.三、解答题 (共7题;共60分)19. (10分) (2017八上·哈尔滨月考) 在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)①作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;②平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(2)△ABC的面积是多少?20. (5分)(2019·新会模拟) 先化简,再求值:÷(x﹣),其中x= +1.21. (20分)计算。

云南省曲靖市八年级上学期期末数学试卷

云南省曲靖市八年级上学期期末数学试卷

云南省曲靖市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2013·资阳) 16的平方根是()A . 4B . ±4C . 8D . ±82. (2分)数字,,π,sin60°,中是无理数的个数是()A . 1个B . 2个C . 3个D . 4个3. (2分)(2018八下·桐梓月考) 有下列四个结论:①二次根式是非负数;②若,则a的取值范围是a≥1;③将m4﹣36在实数范围内分解因式,结果为(m2+6)(m+ )(m﹣);④当x>0时,<x,其中正确的结论是()A . ①②③B . ①③④C . ②③④D . ①②③④4. (2分) (2017八上·西湖期中) 根据下列已知条件,能判定是直角三角形的是().A . ,B . ,,C . ,边上的中线为D .5. (2分) (2016九上·宜城期中) 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .6. (2分)下列命题是真命题的是()A . 内错角相等B . 任何数的0次方是1C . 一个角的补角一定大于它本身D . 平行于同一直线的两条直线平行7. (2分)(2018·无锡模拟) 一组数据:2,-1,0,3,-3,2.则这组数据的中位数和众数分别是()A . 0,2B . 1.5,2C . 1,2D . 1,38. (2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A . x=B . x=3C . x=﹣D . x=﹣39. (2分)下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是()A .B .C .D .10. (2分) (2019八上·兴化月考) 6月1日起,我国将全面试行居民阶梯式电价,某市出台了实施细则,具体规定如下:设用电量为a度,当a≤150时,电价为现行电价,每度0.51元;当150<a≤240时,在现行电价基础上,每度提高0.05元;当a>240时,在现行电价基础上,每度提高0.30元.设某户的月用电量为x(度),电费为y(元).则y与x之间的函数关系的大致图像是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2018七上·嘉兴期中) 的算术平方根为________.12. (1分) (2016八上·海门期末) 若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.13. (1分)若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为________.14. (1分)(2017·新化模拟) 如图,直线a∥b,∠1=85°,∠2=35°,则∠3为________.三、解答题 (共14题;共110分)15. (15分) (2019八下·赵县期末) 计算:(1) (3 -2 + )÷2(2) ( -1)2+( +2)2-2( -1)( +2)(3)先化简:再求值.,其中a=2 ,b=16. (10分)解下列不等式或不等式组,并在数轴上表示其解集:(1)﹣x﹣1<(2).17. (5分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=35°,求∠ACB的度数;②若∠ACB=150°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.18. (15分)(2011·南京) 某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由;(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.19. (10分)(2011·福州)(1)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?20. (10分) (2019八上·泰州月考) 如图,直线l与x轴交于点A,与一次函数y=﹣ x+5的图象交于点B.点P(a,1)是一次函数y=﹣ x+5图象上的一点,过点P作PD∥x轴,交y轴于点C,交直线l于点D,过点B作BE⊥PD,垂足为E,且∠ABE=∠PBE,PE=6.(1)求证:△BDE≌△BPE;(2)求直线l所对应的函数表达式.21. (1分) (2018八下·兴义期中) 计算的结果是________22. (1分) (2019九上·许昌期末) 如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.23. (1分) (2018八上·江干期末) 如图,已知函数y=kx+b和y= x﹣2的图象交于点P,根据图象则不等式组kx+b< x﹣2<0的解是________.24. (1分)(2017·槐荫模拟) 已知在平面直角坐标系中,已知A(2,3),B(3,5),点P为直线y=x﹣2上一个动点,当|PB﹣PA|值最大时,点P的坐标为________.25. (1分)(2012·宜宾) 如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为________.26. (10分) (2011·泰州) 小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?27. (15分) (2020八上·青岛期末) 如图,已知直线经过点,交x轴于点A , y 轴于点B , F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC ,过点F作直线FC的垂线交x轴于点D ,设点C的运动时间为t秒.(1)当时,求证:;(2)连接CD,若的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,是否为定值?若是,请求出这个定值;若不是,请说明理由.28. (15分) (2017八下·沧州期末) 某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共14题;共110分)15-1、15-2、15-3、16-1、16-2、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、25-1、26-1、26-2、27-1、27-3、28-1、28-2、28-3、。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分)若|a|=4,=3,且a+b<0,则a﹣b的值是()A . 1,7B . -1,7C . 1,-7D . -1,-72. (1分) (2016七下·泗阳期中) 下列等式由左边至右边的变形中,属于因式分解的是()A . x2+3x﹣1=x(x+3)﹣1B . x2﹣9+2x=(x+3)(x﹣3)+2xC . a2﹣16=(a+4)(a﹣4)D . (x+2)(x﹣2)=x2﹣43. (1分)已知x+y=2,xy=﹣2,则(1﹣x)(1﹣y)的值为()A . -1B . 1C . 5D . -34. (1分) (2019八上·绥化月考) 三角形的三边a,b,c满足(a+b)2-c2=2ab,则此三角形是().A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等边三角形5. (1分) (2016八下·大石桥期中) 已知|a|=5, =7,且|a+b|=a+b,则a﹣b的值为()A . 2或12B . 2或﹣12C . ﹣2或12D . ﹣2或﹣126. (1分)近年来,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.组观点人数A大气气压低,空气不流动80B地面灰尘大,空气湿度低MC汽车尾部排放ND工厂造成污染120E其他60若该市人口约有800万人,请根据图表中提供的信息,请你估计其中持C组和D组“观点”的市民人数大约有()万人.A . 200B . 240C . 440D . 4807. (1分) (2017八下·濮阳期中) 已知x、y为正数,且|x﹣4|+(y﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为直径的圆的面积为()A . 5πB . 25πC . 7πD . 6.25π8. (1分)(2017·肥城模拟) 如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A . 4B .C .D .二、填空题 (共4题;共4分)9. (1分) (2016七上·瑞安期中) 已知如下实数:, 0,,,,(每两个“1”之间多一个“0”).其中无理数有________个.10. (1分) (2017八下·常熟期中) 一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为________,频率为________.11. (1分)直角三角形是特殊的三角形,所以不仅可以应用一般三角形判定全等的方法,还有直角三角形特殊的判定方法,即________公理.12. (1分) (2017八上·江海月考) 如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为________°.三、解答题 (共6题;共13分)13. (2分)(2020·荆门) 先化简,再求值:,其中 .14. (1分) (2017八下·桂林期中) 如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(Ⅰ)请写出AF与BE的数量关系与位置关系分别是什么,并证明.(Ⅱ)如图2,若将条件“两个等边三角形ADE和DCF”变为两个等腰三角形ADE和DCF,且EA=ED=FD=FC,第(1)问中的结论是否仍然成立?请作出判断并给予证明;15. (2分)(2017·陕西模拟) 如图,已知△ABC,用尺规作出△ABC外心.(保留作图痕迹,不写作法)16. (3分) (2018九上·雅安期中) 某校为了解九年级男同学的体育考试准备情况.随机抽取部分男同学进行了1000米跑测试按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图,根据图中信息解答下列问题:(1)扇形统计图中“良好”所对应的圆心角度数是多少;请补全条形统计图;(2)该校九年级有600名男生,请估计成绩未达到良好的有多少名?(3)某班甲、乙两位成绩获“优秀”的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A , B ,C , D四组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?(用树状图或列表法解答)17. (2分)(2018·遵义模拟) 已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN 交矩形对角线 AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.(1)如图1,当EP⊥BC时,求CN的长;(2)如图2,当EP⊥AC时,求AM的长;(3)请写出线段CP的长的取值范围,及当CP的长最大时MN的长.18. (3分)(2017·荆门) 已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.参考答案一、单选题 (共8题;共8分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共4题;共4分)9-1、10-1、11-1、12-1、三、解答题 (共6题;共13分)13-1、14-1、15-1、16-1、16-2、16-3、17-1、17-2、17-3、18-1、18-2、。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八上·江门月考) 使分式有意义的x的取值范围是()A . x≠3B . x=3C . x≤3D . x≥32. (2分) (2016七上·中堂期中) 如果 xa+2y3与﹣3x3y2b﹣1是同类项,那么a、b的值分别是()A .B .C .D .3. (2分) (2019八上·慈溪期中) 如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,依据“SSS”还需要添加一个条件是()A . AD=CDB . AD=CFC . BC∥EFD . DC=CF4. (2分)下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)(2018·铜仁模拟) 正十二边形的每一个内角的度数为()A . 120°B . 135°C . 150°D . 108°6. (2分)点(3,-2)关于x轴的对称点是()A . (-3,-2)B . (3,2)C . (-3,2)D . (3,-2)7. (2分)如(a,b为有理数),那么a+b等于()A . 2B . 3C . 8D . 108. (2分)如下图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A . 8+2aB . 8+aC . 6+aD . 6+2a9. (2分)如图,∠MON=90°,点B在射线ON上且OB=2,点A在射线OM上,以AB为边在∠MON内部作正方形ABCD,其对角线AC、BD交于点P.在点A从O点出发,沿射线OM的运动过程中,下列说法正确的是()A . 点P始终在∠MON的平分线上,且线段OP的长有最小值等于B . 点P始终在∠MON的平分线上,且线段OP的长有最大值等于C . 点P不一定在∠MON的平分线上,但线段OP的长有最小值等于D . 点P运动路径无法确定10. (2分) (2020八上·郑州期末) 若关于x的分式方程=a无解,则a为()A . 1B . -1C . ±1D . 0二、填空题 (共7题;共8分)11. (1分) (2019八下·宜兴期中) 已知分式的值为零,那么x的值是________.12. (1分)(2017·平塘模拟) 分解因式:x2+4+4x﹣y2=________.13. (1分) (2016八上·防城港期中) 已知等腰三角形的两边长分别为5cm和8cm,且它的周长大于19cm,则第三边长为________14. (1分) (2019九上·清江浦月考) 一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是________cm.15. (1分)若a2﹣2a﹣1=0,则a2+=________16. (1分) (2019七下·二道期中) 如图,A、B、C分别是线段的中点,若的面积是14,那么△ABC的面积是________.17. (2分) (2018八上·郓城期中) 已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=________。

2016-2017年云南省曲靖市罗平县八年级上学期期末数学试卷和答案

2016-2017年云南省曲靖市罗平县八年级上学期期末数学试卷和答案

2016-2017学年云南省曲靖市罗平县八年级(上)期末数学试卷一、选择题(本题共8个小题,每小题4分,共32分)1.(4分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(4分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b3.(4分)在,,,﹣0.7xy+y3,,中,分式有()A.2个 B.3个 C.4个 D.5个4.(4分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣25.(4分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)6.(4分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度7.(4分)在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AB的长度是()A.4 B.3 C.2 D.18.(4分)如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③二、填空题(本小题共6小题,每小题3分,共18分)9.(3分)一个多边形的内角和为900°,则这个多边形的边数为.10.(3分)若分式的值为零,则x的值等于.11.(3分)若x2+kx+4是完全平方式,则k的值是.12.(3分)已知a+b=3,ab=2,则a2b+ab2=.13.(3分)等腰三角形有两条边长为4cm和9cm,则该三角形的周长是.14.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是.三、解答题(本大题共9个小题,70分)15.(8分)(1)计算:(12a3﹣6a2+3a)÷3a﹣1(2)因式分解:﹣3x3+6x2y﹣3xy2.16.(6分)先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.17.(7分)化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.18.(7分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)19.(8分)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.20.(8分)小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.21.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数.22.(8分)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形.(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.23.(10分)已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,我们能得到什么结论?并证明.2016-2017学年云南省曲靖市罗平县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题4分,共32分)1.(4分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(4分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(ab)3=a3b【解答】解:A、x3•x3=x6,正确;B、3x2+2x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:A.3.(4分)在,,,﹣0.7xy+y3,,中,分式有()A.2个 B.3个 C.4个 D.5个【解答】解:在,,,﹣0.7xy+y3,,中,分式有,,,一共3个.故选:B.4.(4分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣2【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、没把一个多项式转化成几个整式积的形式,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.5.(4分)解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.6.(4分)如图,BD∥CE,∠1=85°,∠2=37°,则∠A的度数是()A.15度B.37度C.48度D.53度【解答】解:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC是△ABD的外角,∴∠A=∠BDC﹣∠2=85°﹣37°=48°,故选:C.7.(4分)在△ABC中,∠ACB为直角,∠A=30°,CD⊥AB于D,若BD=1,则AB的长度是()A.4 B.3 C.2 D.1【解答】解:∵∠ACB为直角,∠A=30°,∴∠B=90°﹣∠A=60°,∵CD⊥AB于D,∴∠DCB=90°﹣∠B=30°∴AB=2BC,BC=2BD,∴AB=4BD=4.故选A.8.(4分)如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.①B.②C.①和②D.①②③【解答】解:如图,连接AD;在△ABE与△ACF中,,∴△ABE≌△ACF(SAS);∴∠B=∠C;∵AB=AC,AE=AF,∴BF=CE;在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),∴DC=DB;在△ADC与△ADB中,,∴△ADC≌△ADB(SAS),∴∠CAD=∠BAD;综上所述,①②③均正确,故选D二、填空题(本小题共6小题,每小题3分,共18分)9.(3分)一个多边形的内角和为900°,则这个多边形的边数为7.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.10.(3分)若分式的值为零,则x的值等于2.【解答】解:根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案是:2.11.(3分)若x2+kx+4是完全平方式,则k的值是±4.【解答】解:∵x2+kx+4是一个多项式的完全平方,∴kx=±2×2•x,∴k=±4.故答案为:±4.12.(3分)已知a+b=3,ab=2,则a2b+ab2=6.【解答】解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=6.故答案为:6.13.(3分)等腰三角形有两条边长为4cm和9cm,则该三角形的周长是22cm.【解答】解:①4是腰长,∵4+4=8<9,∴4、4、9不能组成三角形,②9是腰长,能够组成三角形,9+9+4=22cm,所以,三角形的周长是22cm.故答案为:22cm.14.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD 的面积是30.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共9个小题,70分)15.(8分)(1)计算:(12a3﹣6a2+3a)÷3a﹣1(2)因式分解:﹣3x3+6x2y﹣3xy2.【解答】解(1)原式=4a2﹣2a+1﹣1=4a2﹣2a;(2)原式=﹣3x(x2﹣2xy+y2)=﹣3(x﹣y)2.16.(6分)先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.【解答】解:原式=(a+1)(4a﹣2a+1)=(a+1)(2a+1)当a=2时,∴原式=3×5=1517.(7分)化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.【解答】解:原式=•=•=,当x=2时,原式=.18.(7分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.19.(8分)将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad﹣bc.上述记号叫做2阶行列式,若=8.求x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.20.(8分)小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费x元根据题意:=,解得:x=0.18,经检验:x=0.18是原方程的解,答:新购买的纯电动汽车每行驶1千米所需的电费是0.18元..21.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数.【解答】(1)证明:在△ABE和△DCE中,,∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.22.(8分)如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形.(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.【解答】(1)证明:∵AD平分∠CAE,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠B,∠CAD=∠C,∴∠B=∠C,∴AB=AC.故△ABC是等腰三角形.(2)解:当∠CAE=120°时△ABC是等边三角形.∵∠CAE=120°,AD平分∠CAE,∴∠EAD=∠CAD=60°,∵AD∥BC,∴∠EAD=∠B=60°,∠CAD=∠C=60°,∴∠B=∠C=60°,∴△ABC是等边三角形.23.(10分)已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,我们能得到什么结论?并证明.【解答】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∴∠DBA+∠DAB=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,∵AB=AC,∴△ADB≌△CEA,∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;(2)BD=DE+CE,理由是:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAD=90°,∵∠BAC=90°, ∴∠ABD +∠EAC=90°, ∴∠BAD=∠EAC , ∵AB=AC ,∴△ADB ≌△CEA , ∴BD=AE ,CE=AD , ∵AE=AD +DE , ∴BD=CE +DE .赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016八上·东营期中) 下列图形中,是轴对称图形的是()A .B .C .D .【考点】2. (2分)(2012·北海) 下列计算正确的是()A . 2m3+3m2=5m5B . ﹣5(﹣x3)﹣2=﹣C . (3a3b3)2=6a6b6D . =﹣2【考点】3. (2分)(2020·定兴模拟) 把0.00205写成a×10n(1≤a<10,n为整数)的形式,则n为()A . -2B . -3C . -4D . -5【考点】4. (2分) (2020八上·路北月考) 如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,S△ABC=4平方厘米,则S△BEF的值为()A . 2平方厘米B . 1平方厘米C . 平方厘米D . 平方厘米【考点】5. (2分) (2020七下·碑林期末) 如图,已知A,B,C,D四点共线,AE∥DF,BE∥CF,AC=BD,则图中全等三角形有()A . 4对B . 6对C . 8对D . 10对【考点】6. (2分)下列变形正确的是()A .B .C .D .【考点】7. (2分) (2019八上·台州开学考) 如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有()A . 1个B . 2个C . 3个D . 4个【考点】8. (2分)(2019·玉州模拟) 如图所示,将绕点按顺时针旋转一定角度得到,点的对应点恰好落在边上,若,,则的长为()A .B .C .D .【考点】二、填空题 (共6题;共7分)9. (2分)分式的值为0,则x的值为________.【考点】10. (1分) 22x+1+4x=48,则x=________.【考点】11. (1分) (2020七下·瑞安期末) 图1是一盏可折叠台灯。

八年级上册曲靖数学期末试卷试卷(word版含答案)

八年级上册曲靖数学期末试卷试卷(word版含答案)

八年级上册曲靖数学期末试卷试卷(word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BP t (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.3.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系;②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论.【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD .理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC ,∴∠BAD=∠CAE .又 BA=CA ,AD=AE ,∴△ABD ≌△ACE (SAS )∴∠ACE=∠B=45°且 CE=BD .∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD .故答案为垂直,相等;②都成立,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE ,在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC ,∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45︒,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学轴对称解答题压轴题(难)6.再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22AC BC+=2212+=5.故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=5.AN=AC=1,CD=AD﹣AC=5﹣1.∵BC=2,∴CDBC=51-,∴矩形BCDE是黄金矩形.∵MNDN=15+=512-,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH51,宽HE=35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.7.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒∴18090BNM ANM =︒-=︒∠∠∴在Rt BNM ∆中,2BM BN =在Rt ABM ∆中,2AB BM =∴24AB AN BN BM BN =+==∴3AN BN=即3ANBN=.(2)如下图:过点M作ME∥BC交AC于E∴∠CME=∠MCB,∠AEM=∠ACB∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒∴60AEM ACB∠=∠=︒,120MBN=︒∠∴120CEM MBN∠==︒∠,60AEM A∠=∠=︒∴AM=ME∵MNB MCB∠=∠∴∠CME=∠MNB,MN=MC∴在MEC∆与NBM∆中CME MNBCEM MBNMC MN∠=∠⎧⎪∠=∠⎨⎪=⎩∴()MECNBM AAS∆∆≌∴ME BN=∴AM BN=(3)如下图:过点P作PM∥BC交AB于M∴AMP ABC=∠∠∵ABC∆是等边三角形∴∠A=∠ABC=∠ACB=60︒,AB AC BC==∴60AMP A==︒∠∠∴AP MP=,180120EMP AMP=︒-=︒∠∠,180120FCP ACB=︒-=︒∠∠∴AMP ∆是等边三角形,120EMP FCP ==︒∠∠∴AP MP AM ==∵P 点是AC 的中点∴111222AP PC MP AM AC AB BC ====== ∴12AM MB AB == 在EMP ∆与FCP ∆中EMP FCP AEP PFC MP PC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EMP FCP AAS ∆∆≌∴ME FC =∴1322BF BE FC BC BE ME BC BE MB BC BC BC BC -=+-=+-=+=+= ∴3322BC BF BE BC BC -==. 【点睛】本题考查全等三角形的判定,等边三角形的性质及判定,通过作等边三角形第三边的平行线构造等边三角形和全等三角形是解题关键,将多个量转化为同一个量是求比值的常用方法.8.如图所示,已知ABC ∆中,10AB AC BC ===厘米,M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度是1厘米/秒的速度,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M 、N 同时停止运动.(1)M 、N 同时运动几秒后,M 、N 两点重合?(2)M 、N 同时运动几秒后,可得等边三角形AMN ∆?(3)M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰AMN ∆,如果存在,请求出此时M 、N 运动的时间?【答案】(1)10;(2)点M 、N 运动103秒后,可得到等边三角形AMN ∆;(3)当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒. 【解析】【分析】(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=;(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①,1AM t t =⨯=,102AN AB BN t =-=-根据等边三角形性质得102t t =-;(3)如图②,假设AMN ∆是等腰三角形,根据等腰三角形性质证ACB ∆是等边三角形,再证ACM ∆≌ABN ∆(AAS ),得CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形,故10CM y =-,302NB y =-,由CM NB =,得10302y y -=-;【详解】解:(1)设点M 、N 运动x 秒后,M 、N 两点重合,1102x x ⨯+=解得:10x =(2)设点M 、N 运动t 秒后,可得到等边三角形AMN ∆,如图①1AM t t =⨯=,102AN AB BN t =-=-∵三角形AMN ∆是等边三角形∴102t t =- 解得103t = ∴点M 、N 运动103秒后,可得到等边三角形AMN ∆. (3)当点M 、N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知10秒时M 、N 两点重合,恰好在C 处,如图②,假设AMN ∆是等腰三角形,∴AN AM =,∴AMN ANM ∠=∠,∴AMC ANB ∠=∠,∵AB BC AC ==,∴ACB ∆是等边三角形,∴C B ∠=∠,在ACM ∆和ABN ∆中,∵AC AB C B AMC ANB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴ACM ∆≌ABN ∆(AAS ),∴CM BN =,设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,AMN ∆是等腰三角形, ∴10CM y =-,302NB y =-,CM NB =,10302y y -=-解得:403y =,故假设成立. ∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰AMN ∆,此时M 、N 运动的时间为403秒.【点睛】考核知识点:等边三角形判定和性质,全等三角形判定和性质.理解等腰三角形的判定和性质,把问题转化为方程问题是关键.9.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠,CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==,3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.10.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.12.若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22521=+.再如,()222222M x xy y x y y =++=++(x ,y 是整数),所以M 也是“完美数”. (1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知224412S x y x y k =++-+(x ,y 是整数,是常数),要使S 为“完美数”,试求出符合条件的一个2200-0=值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”..【答案】(1)8、29是完美数(2)S 是完美数(3)mn 是完美数【解析】【分析】(1)利用“完美数”的定义可得;(2)利用配方法,将S 配成完美数,可求k 的值(3)根据完全平方公式,可证明mn 是“完美数”;【详解】(1) 22228,8+=∴是完美数;222925,29=+∴是完美数 (2) ()222)2313S x y k =++-+-( 13.k S ∴=当时,是完美数(3) 2222,m a b n c d 设=+=+,则()()()()222222mn a bc d ac bd ad bc =++=++- 即mn 也是完美数.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.13.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,321=+,∴321是“和数”,2232-1=,∴321是“谐数”,∴321是“和谐数”.(1)最小的和谐数是 ,最大的和谐数是 ;(2)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(3)已知103817m b c =++(0714b c ≤≤≤≤,,且,b c 均为整数)是一个“和数”,请求出所有m .【答案】(1)110;954;(2)见解析;(3)880m =或853或826.【解析】【分析】(1)根据“和数”与“谐数”的概念求解可得;(2)设“谐数”的百位数字为x 、十位数字为y ,个位数字为z ,根据“谐数”的概念得x=y 2-z 2=(y+z )(y-z ),由x+y+z=(y+z )(y-z )+y+z=(y+z )(y-z+1)及y+z 、y-z+1必然一奇一偶可得答案;(3)先判断出2≤b+2≤9、10≤3c+7≤19,据此可得m=10b+3c+817=8×100+(b+2)×10+(3c-3),根据“和数”的概念知8=b+2+3c-3,即b+3c=9,从而进一步求解可得.【详解】(1)最小的和谐数是110,最大的和谐数是954.(2)设:“谐数”的百位数字为x ,十位数字为y ,个位数字为z(19,09,09x y z ≤≤≤≤≤≤且 y z >且 ,,x y z 均为正数),由题意知,()()22x y z y z y z =-=+-, ∴()()()()1x y z y z y z y z y z y z ++=+-++=+-+,z∵y z +与y z -奇偶性相同,∴y z +与1y z -+必一奇一偶,∴()()1y z y z +-+必是偶数,∴任意“谐数”的各个数位上的数字之和一定是偶数;(3)∵07b ≤≤,∴229b ≤+≤,∵14c ≤≤,∴3312c ≤≤,∴103719c ≤+≤,∴817103m b c =++,()()810011037b c =⨯++⨯++()()81002103710b c =⨯++⨯++-()()810021033b c =⨯++⨯+-,∵m 为和数,∴8233b c =++-,即39b c +=,∴61b c =⎧⎨=⎩或32b c =⎧⎨=⎩或03b c =⎧⎨=⎩, ∴880m =或853或826.【点睛】本题考查因式分解的应用,解题的关键是理解题意、熟练掌握“和数”与“谐数”的概念及整式的运算、不等式的性质.14.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.15.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,有阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式 (用字母表示)(应用)请应用这个公式完成下列各题①已知22412m n -=,24m n +=,则2m n -的值为②计算:(2)(2)a b c a b c +--+(拓展)①()()()()24832(21)21212121+1+++++结果的个位数字为 ②计算:222222221009998974321-+-++-+-【答案】[探究](1)a 2﹣b 2;(a +b )(a ﹣b );(2)(a +b )(a ﹣b )=a 2﹣b 2;[应用]①3;②4a 2﹣b 2+2bc ﹣c 2;[拓展]①6;②5050.【解析】【分析】[探究](1)由面积公式可得答案;(2)公式由(1)直接可得;[应用]①用平方差公式分解4m 2﹣n 2,将已知值代入可求解;②将三项恰当组分成两组,先用平方差,再用完全平方公式展开后合并同类项即可;[拓展]①将原式乘以(2﹣1),就可以反复运用平方差公式化简,最后按照循环规律可得解;②将原式从左向右依次两项一组,运用平方差公式分解,化为100+99+98+…+4+3+2+1,从而可得答案.【详解】(1)图①按照正方形面积公式可得:a 2﹣b 2;图②按照长方形面积公式可得:(a +b )(a ﹣b ).故答案为:a 2﹣b 2;(a +b )(a ﹣b ).(2)令(1)中两式相等可得:(a +b )(a ﹣b )=a 2﹣b 2故答案为:(a +b )(a ﹣b )=a 2﹣b 2.【应用】①∵4m 2﹣n 2=12,2m +n =4,4m 2﹣n 2=(2m +n )(2m ﹣n ),∴(2m ﹣n )=12÷4=3. 故答案为:3.②(2a +b ﹣c )(2a ﹣b +c )=[2a +(b ﹣c )][2a ﹣(b ﹣c )]=4a 2﹣(b ﹣c )2=4a 2﹣b 2+2bc ﹣c 2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264.∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16.故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050.【点睛】本题考查了平方差公式的几何背景及其应用与拓展,计算具有一定的难度,属于中档题.四、八年级数学分式解答题压轴题(难)16.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;… (1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立; (3)利用等式计算:11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++. 【答案】(1)一般性等式为111=(+11n n n n -+);(2)原式成立;详见解析;(3)244x x+. 【解析】【分析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…, 知它的一般性等式为111=(+11n n n n -+); (2)1111(1)(1)n n n n n n n n +-=-+++111(1)1n n n n ==⋅++, ∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++ 1111112x x x x =-+-+++11112334x x x x +-+-++++ 114x x =-+ 244x x=+. 【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.17.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.18.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a b a b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.19.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.【答案】小红骑自行车的速度是每小时20千米.【解析】。

云南省曲靖市罗平县钟山一中八年级数学上学期期末模拟试题(含解析) 新人教版

云南省曲靖市罗平县钟山一中八年级数学上学期期末模拟试题(含解析) 新人教版

云南省曲靖市罗平县钟山一中2015-2016学年八年级数学上学期期末模拟试题一、选择题(共10小题,每小题3分,满分30分)1.如图所示的图形中为轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,83.下列分式是最简分式的是()A.B.C.D.4.若将分式中的字母x与y的值分别扩大为原来的10倍,则这个分式的值()A.扩大为原来的10倍B.扩大为原来的20倍C.不改变D.缩小为原来的5.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠18.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等9.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.410.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是()A.﹣=2 B. =2+C.﹣=2 D. =2+二、填空题(24分)11.分解因式:3x2﹣6xy+3y2= .12.已知x+y=10,xy=20,则x2+y2= .13.化简: = .14.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.15.等腰三角形的两边长分别为4和9,则第三边长为.16.如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C1⊥AC1,垂足分别是B1、C1,那么B1C1= cm.17.若点M(a,3)和点N(2,a+b)关于x轴对称,则b的值为.18.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).三、解答题(每题66分)19.因式分解:(1)m2﹣4n2;(2)2a2﹣4a+2.20.解方程:(1)=﹣3(2)+=1.21.先化简,再求值:(1)(m+2﹣),其中m=.(2)(﹣4),其中x=﹣1.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)23.已知:,求:的值.24.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?25.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.2015-2016学年云南省曲靖市罗平县钟山一中八年级(上)期末数学模拟试卷(1)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图所示的图形中为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A,C,D都不是轴对称图形,只有B是轴对称图形.故选B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,8【考点】三角形三边关系.【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【解答】解:A、1+2=3,不符合三角形三边关系定理,故本选项错误;B、4+5=9,不符合三角形三边关系定理,故本选项错误;C、6+8>10,6+10>8,8+10>6,符合三角形三边关系定理,故本选项正确;D、5+8<15,不符合三角形三边关系定理,故本选项错误;故选C.【点评】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A.不能约分,是最简分式,B. =,C. =,D. =﹣1,故选:A.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.4.若将分式中的字母x与y的值分别扩大为原来的10倍,则这个分式的值()A.扩大为原来的10倍B.扩大为原来的20倍C.不改变D.缩小为原来的【考点】分式的基本性质.【分析】根据分式的性质:分子分母都乘以10,分式的值不变.【解答】解:由子分母都乘以10,分式的值不变,得分式中的字母x与y的值分别扩大为原来的10倍,则这个分式的值不变,故选:C.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.5.如图,在下列条件中,不能证明△ABD≌△ACD的条件是()A.∠B=∠C,BD=DC B.∠ADB=∠AD C,BD=DCC.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB=AC【考点】全等三角形的判定.【分析】根据全等三角形的判定方法SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:A、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;D、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.7.如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2B.∠2>∠1>∠A C.∠A>∠2>∠1D.∠2>∠A>∠1【考点】三角形的外角性质.【分析】先根据∠1是△ACD的外角,故∠1>∠A,再根据∠2是△CDE的外角,故∠2>∠1,进而可得出结论.【解答】解:∵∠1是△ACD的外角,∴∠1>∠A;∵∠2是△CDE的外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.【点评】本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.8.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=A C,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.【点评】本题考查了全等三角形的判定定理和性质定理,等边三角形的性质的应用,主要考查学生对判定定理的理解能力,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是()A.﹣=2 B. =2+C.﹣=2 D. =2+【考点】由实际问题抽象出分式方程.【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【解答】解:设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得, =2+.故选D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(24分)11.分解因式:3x2﹣6xy+3y2= 3(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.已知x+y=10,xy=20,则x2+y2= 60 .【考点】完全平方公式.【分析】将x2+y2化简为完全平方的形式,再将x+y,以及xy的值代入即可求得代数式的值.【解答】解:∵x+y=10,xy=20,∴x2+y2=(x+y)2﹣2xy,=100﹣40,=60;故答案是:60.【点评】本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.13.化简: = .【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.若直角三角形的一个锐角为50°,则另一个锐角的度数是40 度.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余解答.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.【点评】本题利用直角三角形两锐角互余的性质.15.等腰三角形的两边长分别为4和9,则第三边长为9 .【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当4是腰时,因4+4<9,不能组成三角形,应舍去;当9是腰时,4、9、9能够组成三角形.则第三边应是9.故答案为:9.【点评】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.16.如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C1⊥AC1,垂足分别是B1、C1,那么B1C1= 3.75 cm.【考点】含30度角的直角三角形.【分析】根据直角三角形的性质:30°角所对的直角边等于斜边的一半解答.【解答】解:在Rt△ABC中,∠CAB=30°,AB=10cm,∴BC=AB=5cm,∵CB1⊥AB,∴∠B+∠BCB1=90°,又∵∠A+∠B=90°,∴∠BCB1=∠A=30°,在Rt△ACB1中,BB1=BC=2.5cm,∴AB1=AB﹣BB1=10﹣2.5=7.5cm,∴在Rt△AB1C1中,∠A=30°,∴B1C1=AB1=×7.5=3.75cm.故答案为:3.75.【点评】本题考查三角形的性质和直角三角形的性质,本题是一道综合性较强的题目,需要同学们用30°角所对的直角边等于斜边的一半解答.17.若点M(a,3)和点N(2,a+b)关于x轴对称,则b的值为﹣5 .【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点M(a,3)和点N(2,a+b)关于x轴对称,∴a=2,a+b=﹣3,解得:b=﹣5,故答案为为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.18.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).【考点】分式的加减法.【专题】压轴题;规律型.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.【点评】本题主要是利用规律求值,能够理解本题中给出的规律是解答本题的关键.三、解答题(每题66分)19.因式分解:(1)m2﹣4n2;(2)2a2﹣4a+2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接利用平方差公式进行分解即可;(2)先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a ﹣b)2.【解答】解:(1)m2﹣4n2=m2﹣(2n)2=(m+2n)(m﹣2n);(2)2a2﹣4a+2=2(a2﹣2a+1)=2(a﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.解方程:(1)=﹣3(2)+=1.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1=x﹣1﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.先化简,再求值:(1)(m+2﹣),其中m=.(2)(﹣4),其中x=﹣1.【考点】分式的化简求值.【专题】计算题;分式.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式==﹣=﹣2(m+3)=﹣2m﹣6,当m=时,原式=﹣﹣6=﹣7;(2)原式==x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【专题】作图题;压轴题.【分析】(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B绕点C顺时针旋转90°后的A2、B2的位置,然后顺次连接即可;(3)利用勾股定理列式求出BC的长,再根据弧长公式列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C如图所示;(3)根据勾股定理,BC==,所以,点B旋转到B2所经过的路径的长==π.【点评】本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.已知:,求:的值.【考点】分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】先把括号内通分,再进行分式的乘法运算,接着把除法运算化为乘法运算,约分后得到原式=,然后根据非负数的性质得2a﹣b+1=0,3a+b=0,解得a=﹣,b=,再把a和b的值代入原式=中计算即可.【解答】解:原式=÷()=÷()==,∵,∴2a﹣b+1=0,3a+b=0,∴a=﹣,b=,∴原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了非负数的性质.24.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x天,根据甲、乙两队合作完成该项目共需72天建立方程求出其解即可;(2)设乙工程队平均每天的施工费用为a万元,由施工的总费用不能超过甲工程队的费用建立方程求出其解即可.【解答】解:(1)设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x天,由题意,得解得:x=120经检验,x=120是原方程的解∴甲单独完成建校工程需时间为:1.5×120=180天.答:甲单独完成建校工程需180天,乙单独完成建校工程需120天;(2)设乙工程队平均每天的施工费用为a万元,由题意,得120a≤0.8×180a≤1.2∵a取最大值∴a=1.2答:乙工程队平均每天的施工费用最多1.2万元.【点评】本题考查了工程问题的数量关系工作效率×工作时间=工作总量的运用,列一元一次不等式进而实际问题的运用,分式方程的解法的运用,解答时根据甲、乙两队合作完成该项目共需72天建立方程求出甲、乙单独完成需要的时间是关键.25.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据Rt△ABC≌Rt△ADE,得出AC=AE,BC=DE,AB=AD,∠ACB=∠AED,∠BAC=∠DAE,从而推出∠CAD=∠EAB,△ACD≌△AEB,△CDF≌△EBF,(2)由△CDF≌△EBF,得到CF=EF.【解答】(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.证法二:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB,∴CD=EB,∠ADC=∠ABE.又∵∠ADE=∠ABC,∴∠CDF=∠EBF.又∵∠DFC=∠BFE,∴△CDF≌△EBF(AAS).∴CF=EF.证法三:连接AF,∵Rt△ABC≌Rt△ADE,∴AB=AD.又∵AF=AF,∴Rt△ABF≌Rt△ADF(HL).∴BF=DF.又∵BC=DE,∴BC﹣BF=DE﹣DF.即CF=EF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九下·夏津模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2016·海曙模拟) 已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是()A .B .C .D .3. (2分) (2019八上·宝安期中) 若点P的坐标为(a,0),且a<0,则点P位于()A . x轴正半轴B . x轴负半轴C . y轴正半轴D . y轴负半轴4. (2分)如图所示,表示三人体重A,B,C的大小关系正确的是()A . B>AB . A>CC . B>CD . C>B5. (2分) (2017八上·孝南期末) 已知图中的两个三角形全等,则∠1等于()A . 72°B . 60°C . 50°D . 58°6. (2分)若三角形的3个内角度数之比为5:3:1,则三角形中最大内角是()度A . 50°B . 100°C . 60°D . 无法确定7. (2分)(2017·林州模拟) 如图,放置的△OAB1 ,△B1A1B2 ,△B2A2B3 ,…都是边长为2的等边三角形,边AO在y轴上,点B1 , B2 , B3 ,…都在直线y= x上,则A2017的坐标为()A . 2015 ,2017B . 2016 ,2018C . 2017 ,2019D . 2017 ,20178. (2分)(2017·嘉兴) 一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A .B .C .D .9. (2分) (2017八下·罗平期末) 如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A . AB=CDB . ∠BAE=∠DCEC . EB=EDD . ∠ABE一定等于30°10. (2分) (2017九上·顺义月考) 函数y=ax2与y=ax+b(a>0,b>0)在同一坐标系中的大致图象是()A .B .C .D .二、填空题 (共10题;共10分)11. (1分) (2019八上·富阳月考) 如图,AE是的角平分线,于点 D ,若,, ________度12. (1分) (2018八上·建湖月考) 已知点M(3a,1-a),将M点向右平移3个单位后落在y轴上,a=________.13. (1分)(2019·吉林模拟) 在平面直角坐标系中,一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示,根据图象中的信息可求得关于x的方程kx+b=﹣1的解为________.14. (1分) (2017八上·启东期中) 写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,________.求证:________.证明:15. (1分) (2016八上·宁海月考) 已知等腰直角三角形的直角边长为,则它的斜边长为________.16. (1分) (2017七下·杭州期中) 某商品进价200元,标价300元,商场规定可以打折销售,但其利润不能低于5%,该商品最多可以________折.17. (1分) (2017八上·独山期中) 如图,已知AC=BD,∠A=∠D,请你添一个直接条件,________,使△AFC≌△DEB.18. (1分) (2019八上·呼和浩特期中) 如图所示,在等腰△ABC中,AB=AC,且△ABC的周长为22cm,过腰AB的中点D作AB的垂线,交另一腰AC于E,连接BE,若△BCE的周长是14cm,则BC=________。

云南省曲靖市八年级上学期末数学试卷

云南省曲靖市八年级上学期末数学试卷

云南省曲靖市八年级上学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·港南期中) 若3x4y2与﹣1 x2myn是同类项,则9m2﹣5mn﹣17的值是()A . ﹣1B . ﹣2C . ﹣3D . ﹣42. (2分) (2015八下·绍兴期中) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .3. (2分)(2018·贵港) 若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A . ﹣5B . ﹣3C . 3D . 14. (2分)在、、、m+ 中,分式共有()A . 1个B . 2个C . 3个D . 4个5. (2分)下列命题的逆命题不正确的是()A . 平行四边形的对角线互相平分B . 两直线平行,内错角相等C . 等腰三角形的两个底角相等D . 对顶角相等6. (2分)等腰三角形一个角等于70°,则底角为()A . 70°或40°B . 40°或55°C . 55°或70°D . 70°7. (2分)已知一个等腰三角形的两条边长分别为3和8,则这个等腰三角形的周长为()A . 11B . 14C . 19D . 14或198. (2分) 2014年,山西省某地实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/小时,则所列方程正确的为()A . +=B . =+C . +10=D . -10=9. (2分)如果关于x的方程无解,则m的值等于()A . -3B . -2C . -1D . 310. (2分)如图,等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=60°,则图中有几对全等的等腰三角形()A . 5对B . 6对C . 7对D . 8对二、填空题 (共10题;共10分)11. (1分) (2017七下·江阴期中) 生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个数量用科学记数法可表示为2×10ncm,则n=________.12. (1分)已知△ABC≌△DEF,且△ABC的三边长分别为3,4,5,则△DEF的周长为________ cm.13. (1分)分解因式:﹣a2c+b2c=.________.14. (1分)(2016·荆州) 当a= ,﹣1时,代数式的值是________.15. (1分)(2016·杭州) 已知关于x的方程 =m的解满足(0<n<3),若y>1,则m的取值范围是________.16. (1分) (2015八上·重庆期中) 如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点.连接AE,将△ABE沿AE折叠,点B落在点F处,连接CF,现将△CEF绕点E顺时针旋转α角(其中0°≤α≤180°)得到△EC1F1 ,旋转过程中,直线C1F1分别交射线EC、射线AE于点M、N,当EM=EN时,则CM=________.17. (1分)(a﹣b)2=(a+b)2+________18. (1分)(2011·温州) 如图,AB是⊙O的直径,点C,D都在⊙O上,连接CA,CB,DC,DB.已知∠D=30°,BC=3,则AB的长是________.19. (1分)(2017·五华模拟) 计算:()﹣1+(﹣π)0﹣•tan60°=________.20. (1分)如图,若双曲线(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为________ .三、计算题 (共4题;共36分)21. (20分) (2019七下·郑州开学考) 计算:(1)−14−(−2)2+(0. 125)100×(−8)101(2) (−1)2016÷(−3)−2−(−2)× +(−2)−2(3) [(2x+y)2−(2x+y)(2x−y)]÷2y(4)22. (5分) (2020八下·镇平月考) 先化简,再求值:,x在1,2,-3中选取适当的值代入求值.23. (1分)(2017·无棣模拟) 已知点A(1,5),B(4,2),点P在x轴上,当AP+BP最小时,点P的坐标为________.24. (10分)解方程:(1) x2﹣4x+1=0(2)﹣ = .四、解答题 (共3题;共20分)25. (5分) (2017九上·镇雄期末) 如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)26. (5分) (2018八上·婺城期末) 某批服装进价为每件200元,商店标价每件300元,现商店准备将这批服装打折出售,但要保证毛利润不低于,问售价最低可按标价的几折?要求通过列不等式进行解答27. (10分)(2018·秀洲模拟) 购物广场内甲、乙两家商店对A,B两种商品均有优惠促销活动;甲商店的促销方案是:A商品打八折,B商品打七五折;乙商店的促销方案是:购买一件A商品,赠送一件B商品,多买多送。

2016-2017年云南省曲靖市罗平县腊山一中八年级上学期期末数学模拟试卷和答案

2016-2017年云南省曲靖市罗平县腊山一中八年级上学期期末数学模拟试卷和答案

2016-2017学年云南省曲靖市罗平县腊山一中八年级(上)期末数学模拟试卷一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.(4分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合2.(4分)下列计算正确的是()A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2)2=a4D.(a+1)2=a2+13.(4分)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.(4分)如图,∠A=50°,P是等腰△ABC内一点,AB=AC,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130° D.115°5.(4分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.6.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10 B.11 C.12 D.137.(4分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°8.(4分)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD中正确个数为()A.3个 B.2个 C.1个 D.0个二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)若有意义,则x的取值范围是.10.(3分)在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=.11.(3分)若|a﹣2|+(b﹣5)2=0,则点P (a,b)关于x轴对称的点的坐标为.12.(3分)如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件.13.(3分)若x2﹣kxy+9y2是一个完全平方式,则k=.14.(3分)仔细观察杨辉三角系数表,按规律写出(a+b)4展开式所缺的系数:(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+ a2b2+4ab3+b4.三、解答题(本大题共8个小题,满分70分)15.(6分)计算:(1)﹣12014﹣×(﹣)﹣2+(π﹣)0﹣|﹣4|+(2)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b).16.(8分)分解因式(1)﹣x3﹣2x2﹣x(2)1﹣a2﹣4b2+4ab.17.(4分)作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.18.(10分)已知A=﹣.(1)化简A;(2)当x满足方程=时,求A的值.19.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P 的坐标.20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.21.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(12分)如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB 是否为定值?并说明理由.2016-2017学年云南省曲靖市罗平县腊山一中八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.(4分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合【解答】解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选:A.2.(4分)下列计算正确的是()A.a2+a2=a4 B.a2•a3=a6 C.(﹣a2)2=a4D.(a+1)2=a2+1【解答】解:A、a2+a2=2a2,错误;B、a2•a3=a5,错误;C、(﹣a2)2=a4,正确;D、(a+1)2=a2+2a+1,错误;故选C.3.(4分)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.4.(4分)如图,∠A=50°,P是等腰△ABC内一点,AB=AC,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130° D.115°【解答】解:∵∠A=50°,△ABC是等腰三角形,∴∠ACB=(180°﹣∠A)=(180°﹣50)=65°,∵∠PBC=∠PCA,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°﹣(∠PCB+∠PBC)=180°﹣65°=115°.故选D.5.(4分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选A.6.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10 B.11 C.12 D.13【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选C.7.(4分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选:B.8.(4分)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD中正确个数为()A.3个 B.2个 C.1个 D.0个【解答】解:∵△ABC是等边三角形,△AED是等边三角形,∴AB=AC=BC,∠BAC=60°,AE=AD=ED,∠EAD=60°,∵∠DAB=∠DAC=30°,∴AD⊥BC,故①正确,∠EAB=∠BAD=30°,∴AB⊥ED,EF=DF,故②正确∴BE=BD,故③正确,故选A.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)若有意义,则x的取值范围是x≠2.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.10.(3分)在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=40°.【解答】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故答案为:40°.11.(3分)若|a﹣2|+(b﹣5)2=0,则点P (a,b)关于x轴对称的点的坐标为(2,﹣5).【解答】解:由题意得,a﹣2=0,b﹣5=0,解得a=2,b=5,所以,点P的坐标为(2,5),所以,点P (a,b)关于x轴对称的点的坐标为(2,﹣5).故答案为:(2,﹣5).12.(3分)如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件∠ABC=∠DAB.【解答】解:条件是∠ABC=∠DAB,理由是:∵在△ACB和△BDA中∴△ACB≌△BDA(AAS),故答案为:∠ABC=∠DAB.13.(3分)若x2﹣kxy+9y2是一个完全平方式,则k=±6.【解答】解:∵x2﹣kxy+9y2是一个完全平方式,∴k=±6,故答案为:±6.14.(3分)仔细观察杨辉三角系数表,按规律写出(a+b)4展开式所缺的系数:(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+ 6a2b2+4ab3+b4.【解答】解:∵(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3∴(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:6.三、解答题(本大题共8个小题,满分70分)15.(6分)计算:(1)﹣12014﹣×(﹣)﹣2+(π﹣)0﹣|﹣4|+(2)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b).【解答】解:(1)原式=﹣1﹣12+1﹣2+4=﹣10;(2)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab.16.(8分)分解因式(1)﹣x3﹣2x2﹣x(2)1﹣a2﹣4b2+4ab.【解答】解:(1)﹣x3﹣2x2﹣x=﹣x(x2+2x+1)=﹣x(x+1)2;(2)1﹣a2﹣4b2+4ab=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).17.(4分)作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.【解答】解:如图所示:P点即为所求.18.(10分)已知A=﹣.(1)化简A;(2)当x满足方程=时,求A的值.【解答】解:(1)A=﹣===;(2)分式方程去分母得:100x+700=30x,移项合并得:70x=﹣700,解得:x=﹣10,经检验x=﹣10是分式方程的解,则A=﹣.19.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P 的坐标.【解答】解:(1)如图所示;(2)由图可知,B′(2,1);(3)如图所示,点P即为所求点,设直线A′B1的解析式为y=kx+b(k≠0),∴,解得,∴直线A′B1的解析式为y=x+1.∵当y=0时,x+1=0,解得x=﹣1,∴P(﹣1,0).20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.21.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.22.(12分)如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=30度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB 是否为定值?并说明理由.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,故答案为:30;(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS);(3)∠AOB是定值,∠AOB=60°,理由如下:①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即∴∠BOA=90°﹣30°=60°.②当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.③当点D在线段MA的延长线上时,∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠ACE=∠BCE+∠ACE=60°∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上,当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分) (2020七下·北海期末) 下列图形中是轴对称图形的是()A .B .C .D .2. (1分) (2017七下·永春期中) 下列长度的各组线段能组成三角形的是()A . 3 、8 、5 ;B . 12 、5 、6 ;C . 5 、5 、10 ;D . 15 、10 、7 .3. (1分) (2017八上·蒙阴期末) 如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A . AC∥DFB . ∠A=∠DC . AC=DFD . ∠ACB=∠F4. (1分) (2020八上·南岗期末) 下列计算中正确的是()A .B .C .D .5. (1分) (2020七下·鼎城期中) 下列从左到右的变形,属于因式分解的是().A .B .C .D .6. (1分)下列说法中,不正确的是()A . 等腰三角形底边上的中线就是它的顶角平分线B . 等腰三角形底边上的高就是底边的垂直平分线的一部分C . 一条线段可看作以它的垂直平分线为对称轴的轴对称图形D . 两个三角形能够重合,它们一定是轴对称的7. (1分) (2018八上·南昌月考) 已知三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A . 2<x<5B . 4<x<10C . 3<x<7D . 无法确定8. (1分) (2020八下·成都期中) 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A . 2B . 2C . 4D . 4二、填空题 (共6题;共6分)9. (1分) (2016七上·兖州期中) 计算:(﹣2)3=________.10. (1分) (2020八上·交城期末) 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A点处行走的路程是________.11. (1分) (2019七上·浦东期末) 当x=________时,分式的值为0.12. (1分) (2019八上·嘉荫期中) 若a、b、c为三角形的三边长,且a、b满足|a﹣3|+(b﹣2)2=0,则第三边长c的取值范围是________.13. (1分) (2019八上·江阴开学考) 若二项式4a2+ma+1是一个含a的完全平方式,则m=________.14. (1分)如图,都是由相同小正方形组成的图形,已知图1中有2个小正方形,图2中有7个小正方形,图3中有14个小正方形,……,那么第10个图中有________个小正方形.三、解答题 (共9题;共10分)15. (1分) (2019七下·莲湖期末) 计算(1)106÷10-2×100(2)(a+b-3)(a-b+3)(3)103×97(利用公式计算)(4)(-3a2b)2(2ab2)÷(-9a4b2)16. (1分) (2017八下·东台期中) 解分式方程:.17. (1分) (2020八下·河源月考) 先化简,再求值:,其中.18. (1分)(2018·灌南模拟) 如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.19. (1分) (2020八上·黑龙江期中) 如图所示,在△ABC中,AE是角平分线,AD是高,∠BAC=80°,∠EAD =10°,求∠B的度数20. (1分) (2019八下·青原期中) 已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC ,点D是BC的中点,CE⊥AD ,垂足为点E ,BF∥AC交CE的延长线于点F .求证:AC=2BF .21. (1分)(2020·长春模拟) 在大城市,很多上班族选择“低碳出行”、电动车和共享单车成为他们的代步工具。

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷

云南省曲靖市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八上·重庆期中) 下列各组的两个图形属于全等图形的是()A .B .C .D .2. (2分) (2020七下·建湖月考) 下列计算错误的是()A . (0.0001)0=1B . (0.1)2=0.01C . (10-2×5)0=1D . 10-4=0.00013. (2分)如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC的度数为()A . 120°B . 30°C . 60°D . 80°4. (2分) (2020八上·绵阳期末) 下列运算正确是()A . a0•a-2=a2B . 3a•2b=6abC . (a3)2=a5D . (ab2)3=ab65. (2分)下面给出的五个角,可以用一副三角尺画出来的是().(1)15°的角(2)65º的角(3)75º的角(4)135º的角(5)145º的角A . (1)(2)(4);B . (1)(3)(5);C . (2)(4)(5)D . (1)(3)(4)6. (2分)如图,某人把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是()A . 带①去B . 带②去C . 带①或②去D . 带③去7. (2分)(2017·南开模拟) 下列算式中,你认为错误的是()A .B .C .D .8. (2分) (2016九上·广饶期中) 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD= ,则△ABC的边长为()A . 3B . 4C . 5D . 69. (2分)下列各对数中,互为相反数的是()A . 2与B . ﹣(﹣3)和+|﹣3|C . ﹣(﹣2)与﹣|﹣2|D . +(﹣5)与﹣(+5)10. (2分) (2018八上·海安月考) 如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,CE=4,△ABD的周长为12,则△ABC的周长为()A . 12B . 16C . 20D . 24二、填空题 (共4题;共4分)11. (1分) (2016九上·重庆期中) 三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是________.12. (1分) (2019七下·遂宁期中) 方程组的解是________13. (1分)在平面直角坐标系中,O为坐标原点,点M(0,1)和点N(0,a)是y轴上两点,点P(3,2),若三角形MNP的面积为6,则a的值为________.14. (1分)(2017·浙江模拟) 如图,在平面直角坐标系中,点A(8,0),点P(0,m),将线段PA绕着点P 逆时针旋转90°,得到线段PB,连接AB,OB,则BO+BA的最小值为________.三、解答题 (共11题;共81分)15. (5分) (2016六下·新泰月考) 化简求值(1)已知2x﹣2=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值(2)已知x=4,y= ,求代数式 xy214(xy)2 x5的值(3)已知:x2n=3,求x4n+(2xn)(﹣5x5n)的值.16. (5分)(2017·兴庆模拟) 先化简,后求值.(﹣)÷ ﹣,其中a= +1.17. (5分)用尺规作图的方法(只用圆规和无刻度的直尺)画出∠AOB的角平分线,保留作图痕迹,不写作法.18. (15分) (2015八上·卢龙期末) 如图,如下图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.19. (5分)已知分式,根据给出的条件,求解下列问题:(1)当x=1时,分式的值为0,求2x+y的值;(2)如果|x﹣y|+=0,求分式的值.20. (5分)如图,已知AB∥CD,AF=CE,∠B=∠D,证明BE和DF的关系.21. (10分)(2017·襄州模拟) 某学校去年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2400元,购买乙种足球共花费1600元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)今年学校为编排“足球操”,决定再次购买甲、乙两种足球共50个.如果两种足球的单价没有改变,而此次购买甲、乙两种足球的总费用不超过3500元,那么这所学校最少可购买多少个甲种足球?22. (5分)如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.23. (10分) (2015七下·茶陵期中) 把下列各式分解因式:(1)﹣9x2+24x﹣16(2) x2y2﹣x2(3) x2﹣2x﹣15(4) a2﹣b2﹣6a+6b.24. (6分) (2017八上·西湖期中) 已知,,为直线上一点,为直线上一点,,设,.(1)如图,若点在线段上,点在线段上.①如果,,那么 ________, ________.②求α ,β 之间的关系式.(2)是否存在不同于以上②中的,之间的关系式?若存在,求出这个关系式,(求出一种不同于②中的关系即可),若不存在,请说明理由.25. (10分) (2015八上·宜昌期中) 解答(1)如图①,等边△ABC中,点D是AB边上的一动点(点D与点B不重合),以CD为一边,向上作等边△EDC,连接AE.你能发现线段AE、AD与AC之间的数量关系吗?证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想线段AE、AD与AC之间的数量关系,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共81分)15-1、15-2、15-3、16-1、17-1、18-1、19-1、20-1、21-1、21-2、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、第11 页共11 页。

曲靖市八年级上学期期末数学试卷

曲靖市八年级上学期期末数学试卷

曲靖市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016九上·盐城开学考) 如图图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2018·江都模拟) 如果一个正多边形的内角和等于,那么该正多边形的一个外角等于()A .B .C .D .3. (2分)下列判断,其中正确的是()A . 三个角对应相等的两个三角形全等B . 周长相等的两个三角形全等C . 周长相等的两个等边三角形全等D . 有两边和第三边上的高对应相等的两个三角形全等4. (2分) (2018八上·长春期末) 分解因式结果正确的是()A .B .C .D .5. (2分) (2017八上·乌拉特前旗期末) 已知,则的值等于()A . 6C .D .6. (2分) (2019七上·慈溪期中) 某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的优惠价开展促销活动,这时该商品的售价为()A . a元B . 0.8a元C . 0.92a元D . 1.04a元7. (2分) (2020七下·黄石期中) 下列图形中具有稳定性是()A . 正方形B . 平行四边形C . 梯形D . 直角三角形8. (2分)一个正多边形的每个外角都是60°,那么它是()A . 正六边形B . 正七边形C . 正八边形D . 正九边形9. (2分)下列各式由左到右的变形中,属于分解因式的是()A . a(m+n)=am+anB . a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C . 10x2﹣5x=5x(2x﹣1)D . x2﹣16+6x=(x+4)(x﹣4)+6x10. (2分) (2019八上·广丰月考) 为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D ,使CD=BC ,再作出BF的垂线DE ,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC ,得ED=AB ,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()B . ASAC . SSSD . AAS二、填空题 (共6题;共6分)11. (1分)若关于x的分式方程﹣ =2有增根,则m的值为________.12. (1分) (2016八上·宁江期中) 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠A=50°,则∠DBC=________°.13. (1分)(2017·顺义模拟) 如图的四边形均为矩形或正方形,根据图形的面积,写出一个正确的等式:________.14. (1分) (2018九下·新田期中) 2011年3月,英国和新加坡研究人员制造出观测极限为0.00000005米的光学显微镜,其中0.00000005米用科学记数法表示为________;15. (1分) (2016九上·肇源月考) △ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为500 ,则∠B=________16. (1分)(2018·成都模拟) 已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3 x+8=0,则△ABC 的周长是________.三、解答题 (共8题;共80分)17. (10分) (2016八上·路北期中) 红枣丰收了,为了运输方便,小华的爸爸打算把一个长为(a+2b)cm、宽为(a+b)cm的长方形纸板制成一个有底无盖的盒子,在长方形纸板的四个角各截去一个边长为 bcm的小正方形,然后沿折线折起即可,如图所示,现将盒子的外表面贴上彩色花板.(1)则至少需要彩纸的面积是多少?(2)当a=8,b=6时,求至少需要彩纸的面积是多少?18. (10分) (2017八下·邗江期中) 化简:(1)﹣(2)÷ .19. (10分)(2019·赣县模拟)(1)解方程:(2)计算:20. (5分)若关于x,y的二元一次方程组的解满足x+y>- ,求出满足条件的m的所有正整数值.21. (5分) (2016八上·南开期中) 已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.22. (15分)(2018·哈尔滨) 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD 上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE 于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙0于点R,连接BR,若△BER的面积与△DHK的面积的差为 ,求线段BR的长.23. (10分)(2017·槐荫模拟) 小明到离家2400米的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有40分钟,于是他立即步行(匀速)回家取票,在家取票用时2分钟,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20分钟,骑自行车的速度是步行速度的3倍.(1)小明步行的速度(单位:米/分钟)是多少?(2)小明能否在球赛开始前赶到体育馆?24. (15分)(2020·太仓模拟) 如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2 , E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年云南省曲靖市罗平县腊山一中八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.(4分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合2.(4分)下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+13.(4分)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米4.(4分)如图,∠A=50°,P是等腰△ABC内一点,AB=AC,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130°D.115°5.(4分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3D.6.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.137.(4分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°8.(4分)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD中正确个数为()A.3个B.2个C.1个D.0个二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)若有意义,则x的取值范围是.10.(3分)在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=.11.(3分)若|a﹣2|+(b﹣5)2=0,则点P (a,b)关于x轴对称的点的坐标为.12.(3分)如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件.13.(3分)若x2﹣kxy+9y2是一个完全平方式,则k=.14.(3分)仔细观察杨辉三角系数表,按规律写出(a+b)4展开式所缺的系数:(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+ a2b2+4ab3+b4.三、解答题(本大题共8个小题,满分70分)15.(6分)计算:(1)﹣12014﹣×(﹣)﹣2+(π﹣)0﹣|﹣4|+(2)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b).16.(8分)分解因式(1)﹣x3﹣2x2﹣x(2)1﹣a2﹣4b2+4ab.17.(4分)作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.18.(10分)已知A=﹣.(1)化简A;(2)当x满足方程=时,求A的值.19.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P 的坐标.20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,联结DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.21.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?22.(12分)如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB 是否为定值?并说明理由.2016-2017学年云南省曲靖市罗平县腊山一中八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)1.(4分)如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合【分析】根据轴对称的定义可以得出,数学美体现在蝴蝶图案的对称性.【解答】解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选:A.2.(4分)下列计算正确的是()A.a2+a2=a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同类项、同底数幂的乘法、幂的乘方和完全平方公式计算即可.【解答】解:A、a2+a2=2a2,错误;B、a2•a3=a5,错误;C、(﹣a2)2=a4,正确;D、(a+1)2=a2+2a+1,错误;3.(4分)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.4.(4分)如图,∠A=50°,P是等腰△ABC内一点,AB=AC,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130°D.115°【分析】根据等腰三角形两底角相等求出∠ACB,然后求出∠PCB+∠PBC=∠ACB,再根据三角形的内角和定理列式计算即可得解.【解答】解:∵∠A=50°,△ABC是等腰三角形,∴∠ACB=(180°﹣∠A)=(180°﹣50)=65°,∵∠PBC=∠PCA,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°﹣(∠PCB+∠PBC)=180°﹣65°=115°.5.(4分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3D.【分析】由3x=4,9y=7与3x﹣2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x﹣2y=3x÷32y=3x÷(32)y=4÷7=.故选:A.6.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.13【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.7.(4分)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选:B.8.(4分)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论:①AD⊥BC;②EF=FD;③BE=BD中正确个数为()A.3个B.2个C.1个D.0个【分析】根据等腰三角形三线合一,即可一一判断.【解答】解:∵△ABC是等边三角形,△AED是等边三角形,∴AB=AC=BC,∠BAC=60°,AE=AD=ED,∠EAD=60°,∵∠DAB=∠DAC=30°,∴AD⊥BC,故①正确,∠EAB=∠BAD=30°,∴AB⊥ED,EF=DF,故②正确∴BE=BD,故③正确,故选:A.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)若有意义,则x的取值范围是x≠2.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.10.(3分)在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=40°.【分析】首先根据作图过程得到MN垂直平分AB,然后利用中垂线的性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.【解答】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故答案为:40°.11.(3分)若|a﹣2|+(b﹣5)2=0,则点P (a,b)关于x轴对称的点的坐标为(2,﹣5).【分析】根据非负数的性质求出a、b的值,从而得到点P的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:由题意得,a﹣2=0,b﹣5=0,解得a=2,b=5,所以,点P的坐标为(2,5),所以,点P (a,b)关于x轴对称的点的坐标为(2,﹣5).故答案为:(2,﹣5).12.(3分)如图,∠ACB=∠ADB,要使△ACB≌△BDA,请写出一个符合要求的条件∠ABC=∠DAB.【分析】条件是∠ABC=∠DAB,根据AAS推出即可.【解答】解:条件是∠ABC=∠DAB,理由是:∵在△ACB和△BDA中∴△ACB≌△BDA(AAS),故答案为:∠ABC=∠DAB.13.(3分)若x2﹣kxy+9y2是一个完全平方式,则k=±6.【分析】利用完全平方公式的结构特征判断即可.【解答】解:∵x2﹣kxy+9y2是一个完全平方式,∴k=±6,故答案为:±6.14.(3分)仔细观察杨辉三角系数表,按规律写出(a+b)4展开式所缺的系数:(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+ 6a2b2+4ab3+b4.【分析】根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可.【解答】解:∵(a+b)=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3∴(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:6.三、解答题(本大题共8个小题,满分70分)15.(6分)计算:(1)﹣12014﹣×(﹣)﹣2+(π﹣)0﹣|﹣4|+(2)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b).【分析】(1)原式利用乘方的意义,平方根、立方根定义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用多项式除以单项式,以及平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣12+1﹣4+3=﹣13;(2)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab.16.(8分)分解因式(1)﹣x3﹣2x2﹣x(2)1﹣a2﹣4b2+4ab.【分析】(1)先提取公因式﹣x,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2;(2)先后面三项根据完全平方公式因式分解,再根据平方差公式即可求解;【解答】解:(1)﹣x3﹣2x2﹣x=﹣x(x2+2x+1)=﹣x(x+1)2;(2)1﹣a2﹣4b2+4ab=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).17.(4分)作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【解答】解:如图所示:P点即为所求.18.(10分)已知A=﹣.(1)化简A;(2)当x满足方程=时,求A的值.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)求出分式方程的解得到x的值,代入计算即可求出A的值.【解答】解:(1)A=﹣===;(2)分式方程去分母得:100x+700=30x,移项合并得:70x=﹣700,解得:x=﹣10,经检验x=﹣10是分式方程的解,则A=﹣.19.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P 的坐标.【分析】(1)根据点A,C的坐标建立平面直角坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)作点B关于x轴的对称点B1,连接A′B1交x轴于点P,利用待定系数法求出直线A′B1的解析式,进而可得出P点坐标.【解答】解:(1)如图所示;(2)由图可知,B′(2,1);(3)如图所示,点P即为所求点,设直线A′B1的解析式为y=kx+b(k≠0),∵A′(4,5),B1(﹣2,﹣1),∴,解得,∴直线A′B1的解析式为y=x+1.∵当y=0时,x+1=0,解得x=﹣1,∴P(﹣1,0).20.(10分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,联结DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【分析】①可以找出△BAE≌△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.②由①可得出∠DCA=∠ABC=45°,则∠BCD=90°,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中,∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.21.(10分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.22.(12分)如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)填空:∠CAM=30度;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB 是否为定值?并说明理由.【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=AC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD ≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【解答】解:(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,∴∠CAM=30°.故答案为:30;(2)∵△ABC与△DEC都是等边三角形∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS);(3)∠AOB是定值,∠AOB=60°,理由如下:①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即∴∠BOA=90°﹣30°=60°.②当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.③当点D在线段MA的延长线上时,∵△ABC与△DEC都是等边三角形∴∠ACD+∠ACE=∠BCE+∠ACE=60°∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD同理可得:∠CAM=30°∴∠CBE=∠CAD=150°∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.综上,当动点D在直线AM上时,∠AOB是定值,∠AOB=60°.附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

相关文档
最新文档