基于改进模糊连接度的CT图像肝脏血管三维分割方法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Three-Dimensional Liver Vessel Segmentation Method for CT Images Using Improved Fuzzy Connectedness
Zhang Rui1 Wu Weiwei2 Zhou Zhuhuang1* Jiang Tao1 Wu Shuicai1
1( College of Life Science and Bioengineering,Beijing University of Technology,Beijing 100124,China) 2( College of Biomedical Engineering,Capital Medical University,Beijing 100069,China)
38 卷 1 期 2019 年 2 月
中国生物医学工程学报 Chinese Journal of Biomedical Engineering
Vol. 38 No. 1 February 2019
基于改进模糊连接度的 CT 图像肝脏血管三维分割方法
张 睿1 吴薇薇2 周黄1* 姜 涛1 吴水才1
1( 北京工业大学生命科学与生物工程学院,北京 100124) 2( 首都医科大学生物医学工程学院,北京 100069)
摘 要: 解决传统模糊连接度难以较好分割 CT 图像肝血管、需要多个种子点和较耗时等问题。改进传统模糊连 接度分割算法: 对最新的 Jerman 血管增强算法进行改进; 将改进的血管增强响应引入模糊亲和度函数; 使用 Otsu 多阈值算法代替置信连接度,进行模糊连接度算法的初始化。预处理包括自适应 S 型非线性灰度映射和各向同性 插值采样; 随后,执行改进的 Jerman 血管增强算法; 再将其增强响应引入模糊亲和度函数,同时利用 Otsu 多阈值算 法统计前景目标信息,对模糊连接度进行初始化; 最终,结合单一种子点实现三维肝脏血管的自动分割。选用内含 20 例 CT 的公开数据集,定量评估改进的血管增强算法和模糊连接度分割算法。评价标准主要包括对比度噪声 比、准确性、敏感性和特异性。该血管增强算法的平均对比度噪声比为 8. 43 dB,优于传统血管增强算法。该血管 分割算法的准确性达 98. 11%,优于基于置信连接度的传统模糊连接度分割算法、区域生长算法和水平集分割算 法。此外,在分割算法的耗时方面,该算法也具有明显优势。提出的三维分割方法能有效解决传统模糊连接度分 割 CT 影像中肝血管结构的不足,可提升分割精度和效率。 关键词: 肝血管; 三维图像分割; 血管增强; 模糊连接度; 增强 CT 图像 中图分类号: R318 文献标志码: A 文章编号: 0258-8021( 2019) 01-0018-10
Abstract: Traditional fuzzy connectedness methods exist some drawbacks in segmentation of liver vessels from computed tomography ( CT ) images, including unsatisfactory segmentation performance, requirement on multiple seeds,and low time efficiency. In this paper,the traditional fuzzy connectedness method was improved from following three steps: 1) The Jerman' s vesselness filter was improved; 2) The improved vesselness was incorporated into the fuzzy affinity function; 3) The fuzzy connectedness was initialized by the Otsu multithresholding algorithm instead of the confidence connectedness. The preprocessing comprised adaptive sigmoid filtering and isotropic resample filtering. Next,the improved Jerman' s vesselness filter was performed. Then, the improved Jerman's vesselness was integrated into the fuzzy affinity function. The foreground information was analyzed to initialize the fuzzy connectedness by using the Otsu multi -thresholding algorithm. Finally,threedimensional ( 3D) liver vessels were segmented with one single seed. The improved vesselness filter and the improved fuzzy connectedness method were quantitatively evaluated by using 20 cases of public CT data sets. The evaluation metrics included contrast to noise ratio ( CNR ) ,accuracy,sensitivity and specificity. The average CNR of the improved vesselness filter was 8. 43 dB,which was superior to the traditional vesselness filters. The accuracy of the proposed vessel segmentation method was 98. 11%,which was better than the
Zhang Rui1 Wu Weiwei2 Zhou Zhuhuang1* Jiang Tao1 Wu Shuicai1
1( College of Life Science and Bioengineering,Beijing University of Technology,Beijing 100124,China) 2( College of Biomedical Engineering,Capital Medical University,Beijing 100069,China)
38 卷 1 期 2019 年 2 月
中国生物医学工程学报 Chinese Journal of Biomedical Engineering
Vol. 38 No. 1 February 2019
基于改进模糊连接度的 CT 图像肝脏血管三维分割方法
张 睿1 吴薇薇2 周黄1* 姜 涛1 吴水才1
1( 北京工业大学生命科学与生物工程学院,北京 100124) 2( 首都医科大学生物医学工程学院,北京 100069)
摘 要: 解决传统模糊连接度难以较好分割 CT 图像肝血管、需要多个种子点和较耗时等问题。改进传统模糊连 接度分割算法: 对最新的 Jerman 血管增强算法进行改进; 将改进的血管增强响应引入模糊亲和度函数; 使用 Otsu 多阈值算法代替置信连接度,进行模糊连接度算法的初始化。预处理包括自适应 S 型非线性灰度映射和各向同性 插值采样; 随后,执行改进的 Jerman 血管增强算法; 再将其增强响应引入模糊亲和度函数,同时利用 Otsu 多阈值算 法统计前景目标信息,对模糊连接度进行初始化; 最终,结合单一种子点实现三维肝脏血管的自动分割。选用内含 20 例 CT 的公开数据集,定量评估改进的血管增强算法和模糊连接度分割算法。评价标准主要包括对比度噪声 比、准确性、敏感性和特异性。该血管增强算法的平均对比度噪声比为 8. 43 dB,优于传统血管增强算法。该血管 分割算法的准确性达 98. 11%,优于基于置信连接度的传统模糊连接度分割算法、区域生长算法和水平集分割算 法。此外,在分割算法的耗时方面,该算法也具有明显优势。提出的三维分割方法能有效解决传统模糊连接度分 割 CT 影像中肝血管结构的不足,可提升分割精度和效率。 关键词: 肝血管; 三维图像分割; 血管增强; 模糊连接度; 增强 CT 图像 中图分类号: R318 文献标志码: A 文章编号: 0258-8021( 2019) 01-0018-10
Abstract: Traditional fuzzy connectedness methods exist some drawbacks in segmentation of liver vessels from computed tomography ( CT ) images, including unsatisfactory segmentation performance, requirement on multiple seeds,and low time efficiency. In this paper,the traditional fuzzy connectedness method was improved from following three steps: 1) The Jerman' s vesselness filter was improved; 2) The improved vesselness was incorporated into the fuzzy affinity function; 3) The fuzzy connectedness was initialized by the Otsu multithresholding algorithm instead of the confidence connectedness. The preprocessing comprised adaptive sigmoid filtering and isotropic resample filtering. Next,the improved Jerman' s vesselness filter was performed. Then, the improved Jerman's vesselness was integrated into the fuzzy affinity function. The foreground information was analyzed to initialize the fuzzy connectedness by using the Otsu multi -thresholding algorithm. Finally,threedimensional ( 3D) liver vessels were segmented with one single seed. The improved vesselness filter and the improved fuzzy connectedness method were quantitatively evaluated by using 20 cases of public CT data sets. The evaluation metrics included contrast to noise ratio ( CNR ) ,accuracy,sensitivity and specificity. The average CNR of the improved vesselness filter was 8. 43 dB,which was superior to the traditional vesselness filters. The accuracy of the proposed vessel segmentation method was 98. 11%,which was better than the