最新浙江版高考数学一轮复习(讲+练+测)专题8.1空间几何体的结构及其三视图和直观图(讲)及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第01节空间几何体的结构及其三视图和直观图
【考纲解读】
年统计
0,12,20;
合,考查数学应用的
【知识清单】
1.空间几何体的结构特征
一、多面体的结构特征
二、旋转体的形成
三、简单组合体
简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.
对点练习:
有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
【答案】A
2空间几何体的直观图
简单几何体的直观图常用斜二测画法来画,基本步骤是:
(1)画几何体的底面
在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.
(2)画几何体的高
在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.
对点练习:
【2017年福建省数学基地校高三复习试卷】一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( )
A. B. C. D.
【答案】D
3.空间几何体的三视图
三视图
几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.
对点练习:
【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为
(B)(C)(D)2
(A)
【答案】B
【解析】
【考点深度剖析】
三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征.
【重点难点突破】
考点1:空间几何体的结构特征
【1-1】如图几何体中是棱柱的有( )
A.1个B.2个C.3个D.4个
【答案】C
【1-2】下列命题中正确的有__________.
①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;
②存在一个四个侧面都是直角三角形的四棱锥;
③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;
④圆台的任意两条母线所在直线必相交;
【答案】②④
【解析】①不正确,因为不能保证等腰梯形的各个腰延长后交与一点.
②如右图的四棱锥,底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形,故②正确;
③如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形;
故③错误
④根据圆台的定义和性质可知,命题④正确. 所以答案为②④ 【领悟技法】
系或增加线、面等基本元素,然后再依据题意判定.
三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决. 【触类旁通】
【变式1】一个棱柱是正四棱柱的条件是( ). A .底面是正方形,有两个侧面是矩形 B .底面是正方形,有两个侧面垂直于底面
C .底面是菱形,具有一个顶点处的三条棱两两垂直
D .每个侧面都是全等矩形的四棱柱 【答案】C
【解析】 A ,B 两选项中侧棱与底面不一定垂直,D 选项中底面四边形不一定为正方形,故选C.
【变式2】【2018届云南省名校月考一】已知长方体1111ABCD A BC D 的所有顶点在同一个球面上,若球心到过A 点的三条棱所在直线的距离分别是则该球的半径等于__________.
考点2 空间几何体的直观图
【2-1】利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号). ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 【答案】①②④
【解析】①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.
【2-2】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2 cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________ cm 2.
【答案】矩形 8
【领悟技法】
按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:
S
直观图S 原图形,S 原图形=直观图.
【触类旁通】
【变式1】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )
A
.2+
B. 1
2
C. 2
2
+
D
.1+
【答案】A
【解析】由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰
和上底长度均为1
,得下底长为1+
1, 1
2的直角梯形.
所以面积S=1
2
(1+
2+故选A.
【变式2】如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是( )
A.正方形B.矩形C.菱形D.一般的平行四边形
【答案】C
【解析】将直观图还原得▱OABC,如图,
∵O′D′=2O′C′=2 2 (cm),
OD=2O′D′=4 2 (cm),
C′D′=O′C′=2 (cm),∴CD=2 (cm),
OC=CD2+OD2=22+422=6 (cm),
OA=O′A′=6 (cm)=OC,
故原图形为菱形.
综合点评:解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.
考点3 空间几何体的三视图
【3-1】【2018届河南省新乡市第一中学高三8月月考】一几何体的直观图如右图,下列给出的四个俯视图中正确的是()
【答案】B
【3-2】【江西卷】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )
【答案】(1)D (2)D
【解析】(1)球、正方体的三视图形状都相同,大小均相等,首先排除选项A和
C.对于如图所示三棱锥OABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选
D.
(2)如图所示,点D 1的投影为C 1,点D 的投影为C ,点A 的投影为B ,故选D.
【3-3】【2018届广东省广州市海珠区高三综合测试一】如图,点,M N 分别是正方体1111ABCD A BC D 的棱1111,A B A D 的中点,
用过点,,A M N 和点1,,D N C 的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为( )
A. ①③④
B. ②④③
C. ①②③
D. ②③④
【答案】D
【领悟技法】
三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别. 揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.
简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.
在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.
【触类旁通】
【变式1】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )
【答案】C
【变式2】如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是( ).
【答案】D
【变式3】【武汉市部分学校2016 届高三调研】)一个简单几何体的正视图、侧视
).
图如右图所示,则其俯视图不可能为(
.....
①长方形;②正方形;③圆;④椭圆.
中的
A.①②
B.②③
C.③④
D.①④
【答案】B
【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.
综合点评:三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.
【易错试题常警惕】
易错典例:一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).
①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.
【错解】①②⑤
【错因】忽视几何体的不同放置对三视图的影响,漏选③.
【正解】①三棱锥的主视图是三角形;②当四棱锥的底面是四边形放置时,其主视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的主视图是三角形;④对于四棱柱,不论怎样放置,其主视图都不可能是三角形;
⑤当圆锥的底面水平放置时,其主视图是三角形;⑥圆柱不论怎样放置,其主视图也不可能是三角形.
故正确答案为①②③⑤.
【学科素养提升之思想方法篇】
数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.
在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:
【典例】【2017届河北省石家庄市二模】如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45 ,过圆柱的轴的平面截该几何体所得的四边形''
AA将其侧面剪开,其侧面展开图形状大致为()ABB A为矩形,若沿'
A. B. C.
D.
【答案】A。

相关文档
最新文档