北京永乐店中学七年级下学期期末数学试题题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京永乐店中学七年级下学期期末数学试题题
一、选择题
1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108
B .6.5×107
C .6.5×108
D .65×106
2.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5
h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒
B .4秒
C .5秒
D .6秒
3.-2的倒数是( ) A .-2
B .12
- C .
12
D .2
4.计算(3)(5)-++的结果是( ) A .-8
B .8
C .2
D .-2
5.将图中的叶子平移后,可以得到的图案是()
A .
B .
C .
D .
6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3
P ⋯,如图所示排列,根据这个规律,点2014P 落在( )
A .射线OA 上
B .射线OB 上
C .射线OC 上
D .射线OD 上
7.﹣3的相反数是( ) A .13
-
B .
13
C .3-
D .3
8.已知a =b ,则下列等式不成立的是( ) A .a+1=b+1
B .1﹣a =1﹣b
C .3a =3b
D .2﹣3a =3b ﹣2
9.一个几何体的表面展开图如图所示,则这个几何体是( )
A .四棱锥
B .四棱柱
C .三棱锥
D .三棱柱
10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数
法表示为 ( )吨. A .415010⨯ B .51510⨯
C .70.1510⨯
D .61.510⨯
11.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是
( ) A .①②④
B .①②③
C .②③④
D .①③④
12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏
B .盈利 37.5 元
C .亏损 25 元
D .盈利 12.5 元
二、填空题
13.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.
14.=38A ∠︒,则A ∠的补角的度数为______.
15.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.
16.单项式2
2
ab -的系数是________.
179________
18.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________
19.52.42°=_____°___′___″.
20.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.
21.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.
22.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.
23.五边形从某一个顶点出发可以引_____条对角线.
24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.
三、解答题
25.解方程:(1)()43203x x --= (2)
2321
1510
x x -+-= 26.小明同学有一本零钱记账本,上面记载着某一周初始零钱为100元,周一到周五的收支情况如下(记收入为+,单位:元): +25,-15.5,-23,-17,+26
(1)这周末他可以支配的零钱为几元?
(2)若他周六用了a 元购得2本书,周日他爸爸给了他10元买早饭,但他实际用了15元,恰好用完了所有的零钱,求a 的值。
27.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
进价(元/千克) 售价(元/千克) 甲种 5 8 乙种
9
13
(1)这两种水果各购进多少千克?
(2)若该水果店按售价销售完这批水果,获得的利润是多少元? 28.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).
29.如图所示,∠AOB=∠AOC=90°,∠DOE=90°,OF 平分∠AOD ,∠AOE=36°.
(1)求∠COD 的度数; (2)求∠BOF 的度数.
30.如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x +7|=1的两个解(a < b ),且(c -12)2 与| d -16 |互为相反数.
(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD =2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC =3AD ?若存在,求t 的值;若不存在,说明理由.
四、压轴题
31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、
2Q 、3Q 的位置如图2所示.
解决如下问题:
(1)如果4t =,那么线段13Q Q =______;
(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.
32.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t
>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?
33.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是
∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
详解:65 000 000=6.5×107.
故选B.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中
1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.C
解析:C
【解析】
【分析】
根据题意直接把高度为102代入即可求出答案.
【详解】
由题意得,当h=102时,
2
4.5=20.25 25=25 且20.25<20.4<25
∴
∴4.5<t<5
∴与t最接近的整数是5.故选C.
【点睛】
本题考查的是估算问题,解题关键是针对其范围的估算. 3.B
解析:B
【解析】
【分析】
根据倒数的定义求解.
【详解】
-2的倒数是-1 2
故选B
【点睛】
本题难度较低,主要考查学生对倒数相反数等知识点的掌握
4.C
解析:C
【解析】
【分析】
根据有理数加法法则计算即可得答案.
【详解】
(3)(5)
-++
=5+-3-
=2
故选:C.
【点睛】
本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.
5.A
解析:A
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】
解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.
6.A
解析:A 【解析】 【分析】
根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,
1P 到5P 顺时针,5P 到9P 逆时针,
()2014182515-÷=⋯,
∴点2014P 落在OA 上,
故选A . 【点睛】
本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.
7.D
解析:D 【解析】 【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 【详解】
根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】
本题考查相反数,题目简单,熟记定义是关键.
8.D
解析:D 【解析】
根据等式的基本性质对各选项进行逐一分析即可. 【详解】
A 、∵a =b ,∴a+1=b+1,故本选项正确;
B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;
C 、∵a =b ,∴3a =3b ,故本选项正确;
D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误. 故选:D . 【点睛】
本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.
9.A
解析:A 【解析】
试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.
考点:几何体的展开图.
10.D
解析:D 【解析】 【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】
150万=1500000=61.510⨯, 故选:D. 【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
11.B
解析:B 【解析】 【分析】
根据圆锥、圆柱、球、五棱柱的形状特点判断即可. 【详解】
圆锥,如果截面与底面平行,那么截面就是圆; 圆柱,如果截面与上下面平行,那么截面是圆; 球,截面一定是圆;
五棱柱,无论怎么去截,截面都不可能有弧度. 故选B .
12.D
解析:D 【解析】 【分析】
设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则
(120%)100y -=,用售价减去进价即可.
【详解】
解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元.. 故选:D 【点睛】
本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.
二、填空题
13.【解析】 【分析】
先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论. 【详解】
解:∵AB =4,BC =2AB , ∴B
解析:【解析】 【分析】
先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论. 【详解】
解:∵AB =4,BC =2AB , ∴BC =8. ∴AC =AB +BC =12. ∵D 是AC 的中点, ∴AD =
1
2
AC =6. ∴BD =AD ﹣AB =6﹣4=2. 故答案为:2. 【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.14.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:142︒
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
∠=,
A
38
∴A
∠的补角的度数为:18038142
-=,
故答案为:142︒.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
15.-5
【解析】
【分析】
首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.
【详解】
解:根据如图所示:
当输入的是的时候,,
此时结果
解析:-5
【解析】
【分析】
>-,此时就需要将结果返首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1
<-,才能输出结果.
回重新计算,直到结果1
【详解】
解:根据如图所示:
当输入的是1-的时候,1(3)21-⨯--=,
此时结果1>-需要将结果返回,
即:1(3)25⨯--=-,
此时结果1<-,直接输出即可,
故答案为:5-.
【点睛】
本题考查程序设计题,解题关键在于数的比较大小和读懂题意.
16.【解析】
【分析】
直接利用单项式的系数的概念分析得出即可.
【详解】
解:单项式的系数是,
故答案为:.
【点睛】
此题主要考查了单项式,正确把握相关定义是解题关键. 解析:12
- 【解析】
【分析】
直接利用单项式的系数的概念分析得出即可.
【详解】 解:单项式2
2ab -的系数是12
-, 故答案为:12
-
. 【点睛】
此题主要考查了单项式,正确把握相关定义是解题关键. 17.【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
解:∵,
∴的算术平方根是;
故答案为:.
【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
=,
3
;
【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
18.-5
【解析】
【分析】
合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.
【详解】
解:根据题意得:=(a-1)x2+(b-6)x+1,
由结果与x取值
解析:-5
【解析】
【分析】
合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.
【详解】
解:根据题意得:2261
-++-+=(a-1)x2+(b-6)x+1,
x bx ax x
由结果与x取值无关,得到a-1=0,b-6=0,
解得:a=1,b=6.
∴a-b=-5.
【点睛】
此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.
19.52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即
解析:52; 25; 12.
【解析】
【分析】
将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.
【详解】
52.42°=52°25′12″.
故答案为52、25、12.
【点睛】
此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.
20.5
【解析】
【分析】
要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴
解析:5
【解析】
【分析】
要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.
【详解】
解:设驴子原来驮x袋,根据题意,得:
2(x﹣1)﹣1﹣1=x+1
解得:x=5.
故驴子原来所托货物的袋数是5.
故答案为5.
【点睛】
解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
21.2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知
解析:2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知,a-b=-7,c+d=2013,
∴原式=7+2013=2020,
故答案为:2020.
【点睛】
本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.
22.11cm .
【解析】
【分析】
根据点为线段的中点,可得,再根据线段的和差即可求得的长.
【详解】
解:∵,且,,
∴,
∵点为线段的中点,
∴,
∵,
∴.
故答案为:.
【点睛】
本题考查了两点
解析:11cm .
【解析】
【分析】
根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.
【详解】
解:∵DC DB BC =-,且8DB =,5CB =,
∴853DC =-=,
∵点D 为线段AC 的中点,
∴3AD =,
∵AB AD DB =+,
∴3811()AB cm =+=.
故答案为:11cm .
【点睛】
本题考查了两点间的距离,解决本题的关键是掌握线段的中点.
23.2
【解析】
【分析】
从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=2条对角线,
故答案为2.
【点睛】
本题考查了多边形的对角线,熟记
解析:2
【解析】
【分析】
从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=2条对角线,
故答案为2.
【点睛】
本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.
24.6
【解析】
如图,∵AB=2cm,BC=2AB ,
∴BC=4cm,
∴AC=AB+BC=6cm.
故答案为:6.
解析:6
【解析】
如图,∵AB=2cm ,BC=2AB ,
∴BC=4cm ,
∴AC=AB+BC=6cm.
故答案为:6.
三、解答题
25.(1)x=9;(2)x=8.5
【解析】
【分析】
(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得
462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.
【详解】
解:(1)()43203x x --=,
46033x x -+=,
763x =,
9x =;
(2)23211510
x x -+-=, ()()2232110x x --+=,
462110x x ---=,
217x =,
8.5x =.
26.(1)95.5元;(2)90.5a =.
【解析】
【分析】
(1)根据题意把每天的收支情况进行相加即可得出答案;
(2)根据周一到周五的收支情况求出其可以支配的零钱,因为给了10元,实际用了15,说明
他花了零钱中的5元,即可求得买本花的钱.
【详解】
解:(1)根据题意可得:
周末他可以支配的零钱为:2515.523171026=95.50+---+(元)
(2)根据周一到周五的收支情况求出其可以支配的零钱,
因为给了10元,实际用了15,说明他花了零钱中的5元,
即可求得买本花的钱:95.5590.5a =-=(元)
【点睛】
本题考查有理数加减法的问题,解题关键是对题意得理解.
27.(1)、甲种65千克,乙种75千克;(2)、495元.
【解析】
试题分析:首先设甲种水果x 千克,则乙种水果(140-x )千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.
试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),
答:购进甲种水果65千克,乙种水果75千克.
(2)3×65+4×75=495,
答:利润为495元.
考点:一元一次方程的应用.
28.﹣32
3
.
【解析】
【分析】
原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】
解:原式=﹣8﹣2
3
+5=﹣3
2
3
.
【点睛】
此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键.
29.(1)144°;(2)63°
【解析】
【分析】
(1)先根据互余的关系求出∠COE=54°,然后利用∠COD=∠DOE+∠COE计算即可;(2)先根据互余的关系求出∠AOD=54°,再求出∠BOD和∠DOF,利用角的和差关系即可求出∠BOF.
【详解】
(1)∵∠AOC=90°,
∴∠COE=90°﹣AOE=90°﹣36°=54°,
∴∠COD=∠DOE+∠COE=90°+54°=144°;
(2)∵∠DOE=90°,∠AOE=36°,
∴∠AOD=90°﹣36°=54°,
∵∠AOB=90°,
∴∠BOD=90°﹣54°=36°,
∵OF平分∠AOD,
∴∠DOF=1
2
∠AOD=27°,
∴∠BOF=36°+27°=63°.
考点:1.余角和补角;2.角平分线的定义.
30.(1)a =-8 ,b =-6,c = 12 ,d = 16;(2)
31
6
t=;(3)t =
27
4
或t =
45
8
时,BC
= 3AD 【解析】
【分析】
(1)根据绝对值的含义a a ±=(a 为正数) 及平方和绝对值的非负性20,0a a ≥≥ 即可求解;(2)AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点C 对应的数为:12 - t , 点 D 对应的数为: 16 - t ,根据题意列出关于t 的等式求解即可;(3)根据题意求出t 的取值范围,用含t 的式子表示出BC 和AD ,再根据BC =3AD 即可求出t 值.
【详解】
(1) | x + 7 |= 1,
∴ x = -8 或-6
∴ a = -8 , b = -6,
(c -12)2 + | d -16 |= 0 ,
∴ c = 12 , d = 16
(2) AB 、CD 运动时, 点 A 对应的数为: -8 + 3t , 点 B 对应的数为: -6 + 3t , 点
C 对应的数为:12 - t , 点
D 对应的数为: 16 - t ,
∴ BD =|16 - t - (-6 + 3t ) |=| 22 - 4t |
AC =|12 - t - (-8 + 3t ) |=| 20 - 4t |
BD = 2 AC ,
∴ 22 - 4t = ±2(20 - 4t )
解得: 9
2t =或31
6t = 当9
2t =时,此时点 B 对应的数为15
2,点C 对应的数为15
2,此时不满足题意, 故31
6t =
(3)当点 B 运动到点 D 的右侧时, 此时-6 + 3t > 16 - t
11
2t ∴>,
BC =|12 - t - (-6 + 3t ) |=|18 - 4t | ,
AD =|16 - t - (-8 + 3t ) |=| 24 - 4t | ,
BC = 3AD ,
∴|18 - 4t |= 3 | 24 - 4t | ,
解得: t =274 或t = 458
经验证,t =
274 或t = 458, BC = 3AD 【点睛】
本题考查了有理数与数轴的综合问题,涉及字母的表示,绝对值的性质,解方程,灵活应用绝对值的性质是解题的关键.
四、压轴题
31.(1)4;(2)
12或72;(3)27或2213或2 【解析】
【分析】
(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.
(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由
(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.
(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =
【详解】
解:(1)∵t+2t+3t=6t,
∴当t=4时,6t=24,
∵24122=⨯,
∴点3Q 与M 点重合,
∴134Q Q =
(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2
= (3)情况一:3t+4t=2, 解得:2t 7
= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=
情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)
解得:t=2.
综上所述:t的值为,2或2
7
或
22
13
.
【点睛】
本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.
32.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;
②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.
【详解】
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为5t,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣5t,
故答案为﹣4,6﹣5t;
(2)①点P运动t秒时追上点Q,
根据题意得5t=10+3t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+3a﹣5a=8,解得a=1;
当P超过Q,则10+3a+8=5a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【点睛】
在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.
33.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的
定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。