人教版数学八年级上册 轴对称填空选择单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册 轴对称填空选择单元测试卷(解析版)
一、八年级数学全等三角形填空题(难)
1.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D ,B ,C 分别在直线MN 和PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =_____.
【答案】7
【解析】
由MN ∥PQ ,AB ⊥PQ ,可知∠DAE=∠EBC=90°,可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AE+BE=AD+BC=7.
故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
2.如图,已知点I 是△ABC 的角平分线的交点.若AB +BI =AC ,设∠BAC =α,则∠AIB =______(用含α的式子表示)
【答案】1206α︒-
【解析】
【分析】 在AC 上截取AD=AB ,易证△ABI ≌△ADI ,所以BI=DI ,由AB +BI =AC ,可得DI=DC ,
设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.
【详解】
解:如图所示,在AC 上截取AD=AB ,连接DI ,
点I 是△ABC 的角平分线的交点
所以有∠BAI=∠DAI ,∠ABI=∠CBI ,∠ACI=∠BCI ,
在△ABI 和△ADI 中,
AB=AD BAI=DAI AI=AI ⎧⎪∠∠⎨⎪⎩
∴△ABI ≌△ADI (SAS )
∴DI=BI
又∵AB +BI =AC ,AB+DC=AC
∴DI=DC
∴∠DCI=∠DIC
设∠DCI=∠DIC=β
则∠ABI=∠ADI=2∠DCI=2β
在△ABC 中,
∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a , ∴180=3066
β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI
121802
αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝⎭ =1206α
︒-
【点睛】
本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.
3.已知:如图,△ABC 和△DEC 都是等边三角形,D 是BC 延长线上一点,AD 与BE 相交于点P ,AC 、BE 相交于点M ,AD ,CE 相交于点N ,则下列五个结论:①AD =BE ;②AP =BM ;③∠APM =60°;④△CMN 是等边三角形;⑤连接CP ,则CP 平分∠BPD ,其中,正确
的是_____.(填写序号)
【答案】①③④⑤.
【解析】
【分析】
①根据△ACD ≌△BCE (SAS )即可证明AD =BE ;②根据△ACN ≌△BCM (ASA )即可证明AN =BM ,从而判断AP ≠BM ;③根据∠CBE +∠CDA =60°即可求出∠APM =60°;④根据
△ACN ≌△BCM 及∠MCN =60°可知△CMN 为等边三角形;⑤根据角平分线的性质可知.
【详解】
①∵△ABC 和△CDE 都是等边三角形
∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°
∴∠ACE =60°
∴∠ACD =∠BCE =120°
在△ACD 和△BCE 中
CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩
∴△ACD ≌△BCE (SAS )
∴AD =BE ;
②∵△ACD ≌△BCE
∴∠CAD =∠CBE
在△ACN 和△BCM 中
ACN BCM CA CB
CAN CBM ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ACN ≌△BCM (ASA )
∴AN =BM ;
③∵∠CAD +∠CDA =60°
而∠CAD =∠CBE
∴∠CBE +∠CDA =60°
∴∠BPD =120°
∴∠APM =60°;
④∵△ACN ≌△BCM
∴CN=BM
而∠MCN=60°
∴△CMN为等边三角形;
⑤过C点作CH⊥BE于H,CQ⊥AD于Q,如图
∵△ACD≌△BCE
∴CQ=CH
∴CP平分∠BPD.
故答案为:①③④⑤.
【点睛】
本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.
4.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边
△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:
①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)
【答案】①②③⑤
【解析】
【分析】
①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.
③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;
②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.
④没有条件证出BO=OE,得出④错误;
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.
【详解】
解:∵△ABC和△CDE都是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
AC BC
ACD BCE CD CE
=


∠=∠

⎪=


∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵∠ACB=∠DCE=60°,
∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,
在△ACP和△BCQ中,
ACP BCQ
CAP CBQ AC BC
∠=∠


∠=∠

⎪=


∴△ACP≌△BCQ(AAS),
∴CP=CQ,结论③正确;
又∵∠PCQ=60°,
∴△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE,结论②正确.
∵△ACD≌△BCE,
∴∠ADC=∠AEO,
∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,
∴结论⑤正确.没有条件证出BO=OE,④错误;
综上,可得正确的结论有4个:①②③⑤.
故答案是:①②③⑤.
【点睛】
此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正确的有.
【答案】①③④
【解析】
【分析】
由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由
∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,
∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.
【详解】
解:在△ABE和△ACF中,
∠E=∠F=90°,AE=AF,∠B=∠C,
∴△ABE≌△ACF,
∴∠EAB=∠FAC,AE=AF,AB=AC,
∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,
在△AEM和△AFN中,
∠E=∠F=90°,AE=AF,∠EAM=∠FAN,
∴△AEM≌△AFN,
∴EM=FN,∠FAN=∠EAM,故选项①和③正确;
在△ACN和△ABM中,
∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),
∴△ACN≌△ABM,故选项④正确;
若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,
则正确的选项有:①③④.
故答案为①③④
6.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E 从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.
【答案】0、2、6、8
【解析】
∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,
∴∠CAB=∠DBE=90°,
∴△CAB和△EBD都是Rt△,
∵点E 运动过程中两三角形始终保持斜边ED=CB ,
∴当BE=BA=12cm 或BE=AC=6cm 时,两三角形全等,
如图共有四种情形,此时AE 分别等于0cm 、6cm 、18cm 、24cm ,
又∵点E 每秒钟移动3cm ,
∴当点E 移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.
7.如图所示,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段上,连接EF 、CF ,则下列结论
2BCD DCE ①∠=∠;EF CF =②;3DFE AEF ③∠=∠,2BEC CEF S
S =④中一定
成立的是______ .(把所有正确结论的序号都填在横线上)
【答案】②③
【解析】
分析:由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,易得AF=FD=CD ,继而证得①∠DCF=12
∠BCD ;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系,进而得出答案.
详解:①∵F 是AD 的中点,
∴AF=FD ,
∵在▱ABCD 中,AD=2AB , ∴AF=FD=CD ,
∴∠DFC=∠DCF ,
∵AD ∥BC ,
∴∠DFC=∠FCB ,
∴∠DCF=∠BCF ,
∴∠DCF=12
∠BCD , 即∠BCD=2∠DCF ;故此选项错误;
②延长EF ,交CD 延长线于M ,
∵四边形ABCD 是平行四边形,
∴AB ∥CD ,
∴∠A=∠MDF ,
∵F 为AD 中点,
∴AF=FD ,
在△AEF 和△DFM 中,
A FDM AF DF
AFE DFM ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△AEF ≌△DMF (ASA ),
∴FE=MF ,∠AEF=∠M ,
∵CE ⊥AB ,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF ,
∴FC=FM ,故②正确;
③设∠FEC=x ,则∠FCE=x ,
∴∠DCF=∠DFC=90°-x ,
∴∠EFC=180°-2x ,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x ,
∴∠DFE=3∠AEF ,故此选项正确.
④∵EF=FM ,
∴S △EFC =S △CFM ,
∵MC >BE ,
∴S △BEC <2S △EFC
故S △BEC =2S △CEF 错误;
综上可知:一定成立的是②③,
故答案为②③.
点睛:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME 是解题关键.
8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为点E .已知AB =12,则△DEB 的周长为_______.
【答案】12
【解析】
根据角平分线的性质,由AD是∠CAB的平分线,DE⊥AB,∠C=90°,可得到CD=ED,然后根据直角三角形的全等判定HL证得Rt△ACD≌Rt△AED,再由全等的性质得到
AC=AE,然后根据AC=BC,因此可得△DEB的周长
=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=12.
故答案为:12.
点睛:此题主要考查了全等三角形的性质和角平分线的性质,解题时根据全等三角形的性质和角平分线的性质得到相等的线段,然后再代还求解即可.
9.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,则DC=_______
【答案】2cm
【解析】
试题解析:
解:连接AD,
∵ED是AB的垂直平分线,
∴BD=AD=4c m,
∴∠BAD=∠B=30°,
∵∠C=90°,
∴∠BAC=90°-∠B=90°-30°=60°,
∴∠DAC=60°-30°=30°,
在Rt△ACD中,
∴DC=1
2
AD==
1
2
× 4=2c m.
故答案为2c m.
点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.
10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,若
CD=6,BD=6.5,则AD=_________.
【答案】2.5
【解析】
解:以CD为边向外作出等边三角形DCE,连接AE,∵∠ADC=30°,∴∠ADE=90°,在△ACE 与△BCD
中,∵AC=BC,∠ACE=∠BCD,CE=DC,∴△ACE≌△BCD,∴BD=AE=6.5,∴AD2+DE2=AE2,∴AD3+62=6.52,∴AD=2.5.故答案为:2.5.
二、八年级数学全等三角形选择题(难)
11.如图,已知 AD 为△ABC 的高线,AD=BC,以 AB 为底边作等腰 Rt△ABE,连接 ED,EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;
④S△BDE=S△ACE,其中正确的有()
A.①③B.①②④C.①②③④D.②③④
【答案】C
【分析】
①易证∠CBE=∠DAE ,即可求证:△ADE ≌△BCE ;②根据①结论可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .
【详解】
∵AD 为△ABC 的高线,
∴∠CBE+∠ABE+∠BAD=90°,
∵Rt △ABE 是等腰直角三角形,
∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,
∴∠CBE+∠BAD=45°,
∴∠DAE=∠CBE ,
在△DAE 和△CBE 中,
AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩
∴△ADE ≌△BCE (SAS );
故①正确;
②∵△ADE ≌△BCE ,
∴∠EDA=∠ECB ,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠ECB=90°,
∴∠DEC=90°,
∴CE ⊥DE ;
故②正确;
③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,
∴∠BDE=∠AFE ,
∵∠BED+∠BEF=∠AEF+∠BEF=90°,
∴∠BED=∠AEF ,
在△AEF 和△BED 中,
BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩
===
∴△AEF ≌△BED (AAS ),
∴BD=AF ;
故③正确;
④∵AD=BC ,BD=AF ,
∴CD=DF ,
∴△FDC 是等腰直角三角形,
∵DE ⊥CE ,
∴EF=CE ,
∴S △AEF =S △ACE ,
∵△AEF ≌△BED ,
∴S △AEF =S △BED ,
∴S △BDE =S △ACE .
故④正确;
综上①②③④都正确,故选:C .
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE ≌△CDE 是解题的关键.
12.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )
A .3:4
B .3:5
C .4:5
D .2:3
【答案】B
【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=
12×32×3:12×32
×5=3:5.
故选:B .
点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.
13.如图所示,在Rt ABC ∆中,E 为斜边AB 的中点,ED AB ⊥,且
:1:7CAD BAD ∠∠=,则BAC ∠=( )
A .70
B .45
C .60
D .48
【答案】D
【解析】 根据线段的垂直平分线,可知∠B=∠BAD ,然后根据直角三角形的两锐角互余,可得∠BAC+∠B=90°,设∠CAD=x ,则∠BAD=7x ,则x+7x+7x=90°,解得x=6°,因此可
知∠BAC=∠CDA+∠BAD=6°
+42°=48°. 故选:D.
点睛:此题主要考查了线段垂直平分线的性质,利用线段垂直平分线的性质和直角三角形的性质求角的关系,根据比例关系设出未知数,然后根据角的关系列方程求解是解题关键.
14.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【解析】
试题解析:如图,
过E作EQ⊥AB于Q,
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ,
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°,
∵EQ⊥AB,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,
∴AB=AQ+BQ=AC+CE,
∴③正确;
作∠ACN=∠BCD,交AD于N,
∵∠CAD=
1
2
∠CAB=22.5°=∠BAD,∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD,∴∠DBC=∠CAD,
在△ACN和△BCD中,
DBC CAD
AC BC
ACN DCB
∠∠



⎪∠∠





∴△ACN≌△BCD,
∴CN=CD,AN=BD,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN,∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CD=AN=EN=
12AE , ∵AN=BD ,
∴BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====, ∴△DCF ≌△DBH ,
∴BH=CF ,
由勾股定理得:AF=AH , ∴
2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++====, ∴AC+AB=2AF ,
AC+AB=2AC+2CF ,
AB-AC=2CF ,
∵AC=CB ,
∴AB-CB=2CF , ∴④正确.
故选D
15.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,
AQ PQ =,PR PS =,下面三个结论:
①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).
A .①②
B .②③
C .①③
D .①②③
【答案】A
【解析】
连接AP ,
由题意得,90ARP ASP ∠=∠=︒, 在Rt APR 和Rt APS 中,
AP AP PR PS =⎧⎨=⎩
, ∴△APR ≌()APS HL ,
∴AS AR =,故①正确.
BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,
在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,
∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,
∴PQ AB ∥,故②正确; 在Rt BRP 和Rt CSP 中,只有PR PS =,
不满足三角形全等的条件,故③错误.
故选A .
点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.
16.在边长为1的正方形网格中标有A 、B 、C 、D 、E 、F 六个格点,根据图中标示的各点位置,与△ABC 全等的是( )
A.△ACF B.△ACE
C.△ABD D.△CEF
【答案】C
【解析】
【分析】
利用勾股定理先分别求得△ABC的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.
【详解】
在△ABC中,AB=22
+=10,BC=22
31
+=2,AC=22,
11
A、在△ACF中,AF=22
21
+=5≠10,5≠2,5≠22,则△ACF与△ABC不全等,故不符合题意;
B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;
C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;
D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.
【点睛】
本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.
17.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;
;,其中正确的有( )个.
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;
由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;
先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;
先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】
‚解:①∵∠DAF=90°,∠DAE=45°,
∴∠FAE=∠DAF-∠DAE=45°.
在△AED与△AEF中,

∴△AED≌△AEF(SAS),①正确;
②∵△AED≌△AEF,
∴AF=AD,
∵,
∴∠FAB=∠CAD,
∵AB=AC,
∴≌,②正确;
③∵∠BAC=∠DAF=90°,
∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.
在△ACD与△ABF中,

∴△ACD≌△ABF(SAS),
∴CD=BF,
由①知△AED≌△AEF,
∴DE=EF.
在△BEF中,∵BE+BF>EF,
∴BE+DC>DE,③正确;
④由③知△ACD≌△ABF,
∴∠C=∠ABF=45°,
∵∠ABE=45°,
∴∠EBF=∠ABE+∠ABF=90°.④正确.
故答案为D.
【点睛】
本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.
=,D、E是斜边BC上两点,且∠DAE=45°,将18.如图,在Rt△ABC中,AB AC
△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:
+=
①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )
A.②④B.①④C.②③D.①③
【答案】D
【解析】
解:∵将△ADC绕点A顺时针旋转90︒后,得到△AFB,∴△ADC≌△AFB,故①正确;
②无法证明,故②错误;
③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;
④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.
故选D.
19.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC 上任意一点,连接EC.下列结论:①△AEC△ADB;②EC⊥BC ;③以A、C、D、E为顶点的四边形面积为8;④当BD=时,四边形AECB的周长为10524;⑤当
BD=32B 时,ED=5AB ;其中正确的有( )
A .5个
B .4个
C .3 个
D .2个
【答案】B
【解析】解:
∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =
2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;
当BD =32BC 时,CD =12BC ,∴DE =22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
=10BC =5AB .故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
20.如图,把ΔABC 剪成三部分,边AB ,BC ,AC 放在同一直线上,点O 都落在直线MN 上,直线MN ∥AB .在ΔABC 中,若∠AOB =125°,则∠ACB 的度数为( )
A .70°
B .65°
C .60°
D .85°
【答案】A
【解析】
【分析】
利用平行线间的距离处处相等,可知点O 到BC 、AC 、AB 的距离相等,得出O 为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.
【详解】
如图1,过点O 作OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F .
∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).
如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.
由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点.
∵∠AOB=125°,∴∠OAB+∠OBA=180°-125°=55°,
∴∠CAB+∠CBA=2×55°=110°,∴∠ACB=180°-110°=70°.
故选A.
【点睛】
本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD=OE=OF.
21.如图,在△ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形()
A.8对B.7对C.6对D.5对
【答案】B
【解析】
【分析】
易证△ABC是关于AF对称的图形,其中的小三角形也关于AF对称,共可找出7对三角形.【详解】
全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;
④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB
证明①△AFB≌△AFC
∵AB=AC,CE⊥AB,BD⊥AC
又∵
11
22
ABC
S AB CE AC BD ==
∴CE=BD
∴在Rt△BCE和Rt△CBD中
BC BC
CE BD
=


=

∴△BCE≌△CBD
∴BE=CD,∴AE=AD
在Rt△AEO和Rt△ADO中
AE AD
AO AO
=


=

∴△AEO≌△ADO
∴∠EOD=∠DOA
在△BAF和△CAF中
AB AC
BAF CAF
AF AF
=


∠=∠

⎪=

∴△BAF≌△CAF,得证
其余全等证明过程类似
故选:B
【点睛】
本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备
22.如图,在四边形ABCD中,//
AB CD.不能判定ABD CDB
∆≅∆的条件是()A.AB CD
=B.AD BC
=C.//
AD BC D.A C
∠=∠
【答案】B
【解析】
【分析】
根据已知条件,分别添加选项进行排查,即可完成解答;注意BD是公用边这个条件.【详解】
解:A.若添加AB=CD,根据AB∥CD,则∠ABD=∠CDB,依据SAS可得
△ABD≌△CDB,故A选项正确;
B.若添加AD=BC,根据AB∥CD,则∠ADB=∠CBD,不能判定△ABD≌△CDB,故B选项错误;
C.若添加//
AD BC,则四边形ABCD是平行四边形,能判定△ABD≌△CDB,故C选项正确;
D.若添加∠A=∠C,根据AB∥CD,则∠ABD=∠CDB,且BD公用,能判定
△ABD≌△CDB,故D选项正确;
故选:B.
【点睛】
本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
23.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()
A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE
【答案】A
【解析】
【分析】
根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.
【详解】
∵AB∥DE,
∴∠B=∠E,
∵BF=CE,
∴BF+FC=CE+FC,
∴BC=EF,
若添加AC=DF,则不能判定△ABC≌△DEF,故选项A符合题意;
若添加AC∥DF,则∠ACB=∠DFE,可以判断△ABC≌△DEF(ASA),故选项B不符合题意;
若添加∠A=∠D,可以判断△ABC≌△DEF(AAS),故选项C不符合题意;
若添加AB=DE,可以判断△ABC≌△DEF(SAS),故选项D不符合题意;
故选:A.
【点睛】
此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.
24.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()
A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF
【答案】A
【解析】
【分析】
通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
【详解】
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=1
2
BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故选项C不符合题意,
∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故选项D不符合题意,
连接BH,
∵AG =BG ,DG ⊥AB ,
∴AH =BH ,
∴∠HAB =∠HBA =22.5°,
∴∠EHB =45°,且AE ⊥BC ,
∴∠EHB =∠EBH =45°,
∴HE =BE ,
故选项B 不符合题意,
故选:A .
【点睛】
本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.
25.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()
A .∠1=∠3
B .∠2=∠3
C .∠3=∠4
D .∠4=∠5
【答案】A
【解析】
【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.
【详解】
如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒
45BAC ACB ∠∴∠==︒
904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒
BF AD ⊥
1190BAD CBG ∴∠+∠=∠+∠=︒
BAD CBG
∴∠=∠
在BAD
∆和CBG
∆中,
90
BAD CBG
AB BC
ABD BCG
∠=∠


=

⎪∠=∠=︒

()
BAD CBG ASA
∴∆≅∆
,1
BD CG G
∴=∠=∠
点D是BC的中点
CD
BD CG
∴==
在CDF
∆和CGF
∆中,45
CD CG
DCF GCF
CF CF
=


∠=∠=︒

⎪=

()
CDF CGF SAS
∴∆≅∆
3G
∴∠=∠
13
∠∠
∴=
故选:A.
【点睛】
本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.
26.如图,AOB
∆的外角,
CAB DBA
∠∠的平分线,
AP BP相交于点P,PE OC
⊥于E,PF OD
⊥于F,下列结论:(1)PE PF
=;(2)点P在COD
∠的平分线上;(3)90
APB O
∠=︒-∠,其中正确的有()
A.0个B.1个C.2个D.3个
【答案】C
【解析】
【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正
确;由12APB EPF ∠=
∠,180EPF O ∠+∠=︒,得到1902
APB O ∠=︒-∠,可判断(3)错误;即可得到答案.
【详解】
解:过点P 作PG ⊥AB ,如图:
∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,
∴PE PG PF ==;故(1)正确;
∴点P 在COD ∠的平分线上;故(2)正确;
∵12
APB APG BPG EPF ∠=∠+∠=
∠, 又180EPF O ∠+∠=︒, ∴11(180)9022
APB O O ∠=
⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;
故选:C .
【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.
27.如图,AD 是ABC 的角平分线,DE AC ⊥;垂足为,//E BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.给出下列三个结论:①DE DF =;②DB DC =;③AD BC ⊥.其中正确的结论共有( )个
A .0
B .1
C .2
D .3
【答案】D
【解析】
【分析】
由BF∥AC,AD是ABC的角平分线,BC平分ABF
∠得∠ADB=90︒;利用AD平分∠CAB证得△ADC≌△ADB即可证得DB=DC;根据DE AC
⊥证明△CDE≌△BDF得到DE DF
=.
【详解】
∵DE AC
⊥,BF∥AC,
∴EF⊥BF,∠CAB+∠ABF=180︒,
∴∠CED=∠F=90︒,
∵AD是ABC的角平分线,BC平分ABF
∠,
∴∠DAB+∠DBA=1
2
(∠CAB+∠ABF)=90︒,
∴∠ADB=90︒,即AD BC
⊥,③正确;
∴∠ADC=∠ADB=90︒,
∵AD平分∠CAB,
∴∠CAD=∠BAD,
∵AD=AD,
∴△ADC≌△ADB,
∴DB=DC,②正确;
又∵∠CDE=∠BDF,∠CED=∠F,
∴△CDE≌△BDF,
∴DE=DF,①正确;
故选:D.
【点睛】
此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.
28.如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )
A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化
【答案】B
【解析】
【分析】
作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.
【详解】
如图,过点E作EN⊥BM,垂足为点N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE,
∵△ABE、△BFO均为等腰直角三角形,
∴AB=BE,BF=BO;
在△ABO与△BEN中,
BAO NBE
AOB BNE
AB BE
∠∠


∠∠






∴△ABO≌△BEN(AAS),
∴BO=NE,BN=AO;
∵BO=BF,
∴BF=NE,
在△BPF与△NPE中,
FBP ENP
FPB EPN
BF NE
∠∠


∠∠






∴△BPF≌△NPE(AAS),
∴BP=NP=
1
2
BN;而BN=AO,
∴BP=
1
2
AO=
1
2
×8=4,
故选B.
【点睛】
本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.
29.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()
①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.
A .①②③
B .①②④
C .①②
D .①②③④
【答案】A
【解析】
【分析】 根据题意结合图形证明△AFB ≌△AEC ;利用四点共圆及全等三角形的性质问题即可解决.
【详解】
如图,
∵∠EAF=∠BAC ,
∴∠BAF=∠CAE ;
在△AFB 与△AEC 中,
AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩
===, ∴△AFB ≌△AEC (SAS ),
∴BF=CE ;∠ABF=∠ACE ,
∴A 、F 、B 、C 四点共圆,
∴∠BFC=∠BAC=∠EAF ;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
30.如图,等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上的一点,当PA =CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )
A
.PD=DQ B.DE=
1
2
AC C.AE=
1
2
CQ D.PQ⊥AB
【答案】D
【解析】
过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,
∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ
中,
FPD Q
PDE CDQ
PF CQ
∠=∠


∠=∠

⎪=

,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,
∵AE=EF,∴DE=1
2
AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=
1
2
AP=
1
2
CQ,∴C选项
正确,故选D.。

相关文档
最新文档