4.2.1 角 北师版七年级数学上册课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
∠A? C
A B C
A
D
⑴
∠BAC ,∠CAD ,∠BAD
O
D
⑵
有几个角?它们分别是?
例1 根据下图填空: (1)图中能用顶点的一个 大写字母表示的角有_∠__B_,__∠__C__; (2)以A为顶点的角有 ∠__B_A__D_,__∠__B_A__E_,__∠__B_A__C_,__∠__D__A_E_,__∠__D__A_C_,__∠__E__A_C__. [解析] (1)当顶点只有一个角时,可以用顶点的一个大写 字母表示角.观察图形可知这样的顶点有两个,分别是B, C. (2)数出以A为顶点的角,可先按逆时针的方向数出以AB为 一边的角,再数出以AD为一边的角,最后数出以AE为一边 的角.
[归纳总结] 在进行度、分、秒的加、减、乘、除运算时,
要注意三点: ①度、分、秒均是60进制的; ②加、减法的运算,可以本着“度与度加减、分与 分加减、秒与秒加减,不够减的时候借位”的原则; ③乘、除法运算可以按分配律来进行,不够除可以 把余数化为低位的再除.
例4 小红早晨8:30出发,中午12:30到家,则
做一做 如图,下面的表示方法对不对,如果错了,应
该怎样改正? (1)图中的∠1表示成∠A; (2)图中的∠2表示成∠D; (3)图中的∠3表示成∠C.
解:(1)图中的∠1表示成∠DAC; (2)图中的∠2表示成∠ADC; (3)图中的∠3表示成∠ECF.
角的另一种定义
终边
如图,角也可以看成是由一
按1″=(60
60
把分化成度(整数化小数)
例3 计算下列各题:
(1)153°39′+25°40′38″; (2)90°-37°24′38″;
(3)25°53′28″×5;
(4)15°20′÷6.
解:(1)153°39′+25°40′38″ =178°79′38″=179°19′38″.
(2)90°-37°24′38″ =89°59′60″-37°24′38″=52°35′22″.
(3)25°53′28″×5 =25°×5+53′×5+28″×5 =125°+265′+140″=129°27′20″.
解: (4)15°20′÷6 =12°200′÷6=12°÷6+200′÷6 =2°+198′÷6+2′÷6 =2°+33′+120″÷6 =2°33′20″.
A.70° B.75° C.85° D.90°
4.120°=_43__直角,13平角=__6_0___度. 5.52.34°=___5_2___度_2__0_分__2_4___秒.
条射线绕着它的端点旋转而成的. O 始边
例如,裁纸刀在开合过程中形成了大小不同的角.
知识点 2 角的度量与换算
角度制起源于四大文明古国之一的古代巴比伦. 为什么选择60这个数作为进制的基数呢?据说是由于 60这个数是许多常用的数2,3,4,5,6,10,12, 15,20,30的倍数,60=12×5,12是一年中的月数, 5是一只手的手指数,所以古代巴比伦人认为60是一 个特别而又重要的数.
(2)1800''=(1800÷60)'=30', 1800''=30'=(30÷60)°=0.5°.
(3)45°25′48″=45°+25′+(48÷60)'=45°+25.8' =45°+(25.8÷60)°=45.43°.
方法归纳:
按1°=60′,1′=60″先把度化成分,再把 分化成秒(小数化整数)
A
α
记作:∠α.
1
O
B
记作:∠O.
记作:∠1.
角的表示方法总结
方法
图标
记法
适用范围
1.用三个 大写字母 表示
2.用一个 大写字母 表示
3.用一个数 字或希腊字 母来表示
A ∠AOB
或∠BOA
O
B
任何角
O
1
∠O 顶点处只有一个角 有弧线和数字
弧线和小写希腊字母 1
试一试:用适当方式分别表示下图中的每个角.
1.常用的角的度量单位为度、分、秒,这种角的度量 制叫做角度制. 1°=60′,1′=60″.除角度制外,角的度量制还要学 弧度制、密位制等.
2.常见的角的分类:锐角:大于0°,小于90°的角; 钝角:大于90°,小于180°的角;1直角=90°, 1平角=180°,1周角=360°.
3.角的度量工具有:量角器、经纬仪、测角器 等.
4.借助三角尺可以画出30°,45°,60°,90° 等特殊角,借助量角器可以画出任何给定度数 的角.
例2 计算: (1)1.45°等于多少分?等于多少秒? (2)1800''等于多少分?等于多少度? (3)把45°25′48″化成度.
解:(1)1.45°=1.45×60'=87', 1.45°=87'=87×60''=5220''.
说一说
下列图形是角吗?
(1)
(2)
都不 是.
(3)
合作探究
1
(1)表示角的几何符号是什么? (2)表示一个角有几种方法? (3)用三个大写字母表示一个角应注意什么? (4)什么情况下可以用角的顶点表示这个角? (5)用希腊字母和阿拉伯数字表示一个角应注意什么?
说一
说
A
O
B
记作:∠AOB或∠BOA.
小红出发时时针和分针的夹角为 75° ,到家 时时针和分针的夹角为 165° .
解析:与12点整相比,8:30时,时针转过了
(8+
30 60
)×30°=255°,分针转过了30×6°
=180°,所以夹角为255°-180°=75°.
同理12:30时,时针和分针的夹角为165°.
开动脑筋
确定相应钟表上时针与分针所成的角度
30°
120°
90°
0°
三 随堂练习
1.下面四个选项中,能用∠1,∠AOB,∠O 三种方法表示同一个角的是(B )
2.把18°15′36″化为用度表示,下列正确的是( C ) A.18.15° B.18.16° C.18.26° D.18.36°
3.钟表在3点半时,它的时针和分针所成的锐 角是( B )
北师版七年级数学上册
四 基本平面图形
4.3 角
一 情境导入
你能不能从图中找到角?
二 新课探究
知识点 1 角的概念及表示方法
A
E
O
B
D
C
(1)你能指出所画角的边和顶点吗?
(2)角的两边是前面学过的什么图形,它们的位置关系如何?
(3)你能描述一下怎样的几何图形叫做角吗?
概念归纳
有公共端点的两条射线组成的图形叫做 两角条. 射线的公共端点是这个角的顶点 两条射线是这个角的两条边.