皋兰县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

皋兰县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 下列命题的说法错误的是( )
A .若复合命题p ∧q 为假命题,则p ,q 都是假命题
B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件
C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”
2. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )
A .1
B .
C .
D .
3. 已知双曲线C :22
221x y a b
-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆
被双曲线C 截得劣弧长为23
a π
,则双曲线C 的离心率为( )
A .65
B
C .5
D
4. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )
A .13
B .26
C .52
D .56
5. 已知函数()x e f x x
=,关于x 的方程2
()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的
取值范围是( )
A .21(,)21e e -+?-
B .21(,)21e e --?-
C .21(0,)21e e --
D .2121e e 禳-镲

-镲铪
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
6. 已知函数()x
F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )
A .(-∞
B .(-∞
C .
D .)+∞ 7. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .n ≤8?
B .n ≤9?
C .n ≤10?
D .n ≤11?
8. 设函数f (x )=
则不等式f (x )>f (1)的解集是( )
A .(﹣3,1)∪(3,+∞)
B .(﹣3,1)∪(2,+∞)
C .(﹣1,1)∪(3,+∞)
D .(﹣∞,
﹣3)∪(1,3)
9. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O
P Q ∆的面积等于( )
A .
B .
C .
2 D .4
10.下列函数中,既是奇函数又是减函数的为( ) A .y=x+1
B .y=﹣x 2
C .
D .y=﹣x|x|
11.已知向量=(1,),=(
,x )共线,则实数x 的值为( )
A .1
B .
C .
tan35°
D .tan35°
12.∃x ∈R ,x 2﹣2x+3>0的否定是( )
A .不存在x ∈R ,使∃x 2﹣2x+3≥0
B .∃x ∈R ,x 2﹣2x+3≤0
C .∀x ∈R ,x 2﹣2x+3≤0
D .∀x ∈R ,x 2﹣2x+3>0
二、填空题
13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。

14.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
15
由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年
推销金额为 万元.
16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 . 17.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
18.【泰州中学2018届高三10月月考】设函数()()21x
f x e
x ax a =--+,其中1a <,若存在唯一的整数
0x ,使得()00f x <,则a 的取值范围是 三、解答题
19.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件
(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+
=1.
20.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;
(2)已知函数g (x )=log ,当x ∈[,
]时,不等式 f (x )≥g (x )有解,求k 的取值范围.
21.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n (单位:台,n ∈N )的函数解析式f (n );
以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.
22.已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)
的焦点F与椭圆C1的一个焦点重合.
(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;
(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠APB为定值,并求出这个定值.
23.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).
(Ⅰ)判断f(x)奇偶性,并证明;
(Ⅱ)当0<a<1时,解不等式f(x)>0.
24.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;
(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.
皋兰县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
13.
14. (1,2) .
15. .
16.1 17. 6 .
18.
三、解答题
19. 20. 21. 22.
23.
24.。

相关文档
最新文档