苏教版数学八年级上册 压轴题 期末复习试卷测试题(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版数学八年级上册 压轴题 期末复习试卷测试题(Word 版 含解析)
一、压轴题
1.定义:在平面直角坐标系中,对于任意两点(),A a b ,(),B c d ,若点(),T x y 满足3a c x +=,3
b d y +=那么称点T 是点A ,B 的融合点.例如:()1,8A -,()4,2B -,当点(),T x y 满足1413x -+=
=,()8223
y +-==时,则点()1,2T 是点A ,B 的融合点. (1)已知点()1,5A -,()7,4B ,()2,3C ,请说明其中一个点是另外两个点的融合点. (2)如图,点()4,0D ,点(),25E t t +是直线l 上任意一点,点(),T x y 是点D ,E 的融合点.
①试确定y 与x 的关系式;
②在给定的坐标系xOy 中,画出①中的函数图象;
③若直线ET 交x 轴于点H .当DTH 为直角三角形时,直接写出点E 的坐标.
2.已知ABC 是等腰直角三角形,∠C=90°,点M 是AC 的中点,延长BM 至点D ,使DM =BM ,连接AD .
(1)如图①,求证:DAM ≌BCM ;
(2)已知点N 是BC 的中点,连接AN .
①如图②,求证:ACN ≌BCM ;
②如图③,延长NA 至点E ,使AE =NA ,连接,求证:BD ⊥DE .
3.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .
(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.
①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使
△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
4.如图,在平面直角坐标系中,直线y=﹣3
4
x+m分别与x轴、y轴交于点B、A.其中B
点坐标为(12,0),直线y=3
8
x与直线AB相交于点C.
(1)求点A的坐标.
(2)求△BOC的面积.
(3)点D为直线AB上的一个动点,过点D作y轴的平行线DE,DE与直线OC交于点E (点D与点E不重合).设点D的横坐标为t,线段DE长度为d.
①求d与t的函数解析式(写出自变量的取值范围).
②当动点D在线段AC上运动时,以DE为边在DE的左侧作正方形DEPQ,若以点H
(1
2
,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点时,请直接写出t
的取值范围.
5.在平面直角坐标系xOy中,若P,Q为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.图1为点P,Q的“相关矩形”的示意图.已知点A的坐标为(1,2).
(1)如图2,点B 的坐标为(b ,0). ①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;
②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .
(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;
(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.
6.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:
若1,(2),(2)
b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).
(1)①点3,1)-的限变点的坐标是________;
②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)
(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.
7.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).
(1)点M 、N 从移动开始到停止,所用时间为 s ;
(2)当ABM ∆与MCN ∆全等时,
①若点M 、N 的移动速度相同,求t 的值;
②若点M 、N 的移动速度不同,求a 的值;
(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.
8.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:
(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?
(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;
(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF
9.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .
(1)如图1,
①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;
②直接写出∠BDC 的度数(用含α的式子表示)为 ;
(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;
(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC 2a ,试写出此时BF 的值.
10.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.
(2)求证:BED CDF △≌△.
(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.
11.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;
(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;
(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.
12.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:
(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”
(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”
请你根据3位同学的提示,分别求出三种情况下AB 的长度.
【参考答案】***试卷处理标记,请不要删除 一、压轴题
1.(1)点C 是点A 、B 的融合点;(2)①2-1y x =;②见详解;③点E 的坐标为:(2,9)或(8,21)
【解析】
【分析】
(1)根据融合点的定义3a c x +=,3
b d y +=,即可求解; (2)①由题意得:分别得到x 与t 、y 与t 的关系,即可求解;
②利用①的函数关系式解答;
③分∠DTH =90°、∠TDH =90°、∠HTD =90°三种情况,分别求解即可.
【详解】
解:(1)x =-17233a c ++==,y =54333
b d ++==, 故点C 是点A 、B 的融合点; (2)①由题意得:x =
433a c t ++=,y =2533b d t ++=,则3-4t x =, 则()23-452-13
x y x +==; ②令x =0,y =-1;令y =0,x =
12,图象如下:
③当∠THD=90°时,
∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.
∴t=1
3
(t+4),
∴t=2,
∴点E(2,9);
当∠TDH=90°时,
∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.
∴4=1
3
(4+t)
∴t=8,
∴点E(8,21);
当∠HTD=90°时,
由于EH与x轴不平行,故∠HTD不可能为90°;
故点E的坐标为:(2,9)或(8,21).
【点睛】
本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.
2.(1)见解析;(2)①见解析;②见解析
【解析】
【分析】
(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;
(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC 即可得证;
②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由
∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.
【详解】
解:(1)∵点M是AC中点,
∴AM=CM,
在△DAM和△BCM中,
∵
AM CM
AMD CMB
DM BM
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△DAM≌△BCM(SAS);
(2)①∵点M是AC中点,点N是BC中点,
∴CM=
1
2
AC,CN=
1
2
BC,
∵△ABC是等腰直角三角形,
∴AC=BC,
∴CM=CN,
在△BCM和△ACN中,
∵
CM CN
C C
BC AC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BCM≌△ACN(SAS);
②证明:取AD中点F,连接EF,
则AD=2AF,
∵△BCM≌△ACN,
∴AN=BM,∠CBM=∠CAN,
∵△DAM≌△BCM,
∴∠CBM=∠ADM,AD=BC=2CN,
∴AF=CN,
∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,
由(1)知,△DAM ≌△BCM ,
∴∠DBC=∠ADB ,
∴AD ∥BC ,
∴∠EAF=∠ANC ,
在△EAF 和△ANC 中,
AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩
,
∴△EAF ≌△ANC (SAS ),
∴∠NAC=∠AEF ,∠C=∠AFE=90°,
∴∠AFE=∠DFE=90°,
∵F 为AD 中点,
∴AF=DF ,
在△AFE 和△DFE 中,
AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩
,
∴△AFE ≌△DFE (SAS ),
∴∠EAD=∠EDA=∠ANC ,
∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,
∴BD ⊥DE .
【点睛】
本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.
3.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125
cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.
【解析】
【分析】
(1)①由“SAS”可证△BPD ≌△CQP ;
②由全等三角形的性质可得BP=PC=
12
BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.
【详解】 解:(1)①△BPD 与△CQP 全等,
理由如下:∵AB =AC =18cm ,AD =2BD ,
∴AD =12cm ,BD =6cm ,∠B =∠C ,
∵经过2s 后,BP =4cm ,CQ =4cm ,
∴BP =CQ ,CP =6cm =BD ,
在△BPD 和△CQP 中,
BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩
,
∴△BPD ≌△CQP (SAS ),
②∵点Q 的运动速度与点P 的运动速度不相等,
∴BP ≠CQ ,
∵△BPD 与△CQP 全等,∠B =∠C ,
∴BP =PC =
12BC =5cm ,BD =CQ =6cm , ∴t =52
, ∴点Q 的运动速度=612552
=cm /s ,
∴当点Q 的运动速度为
125
cm /s 时,能够使△BPD 与△CQP 全等; (2)设经过x 秒,点P 与点Q 第一次相遇, 由题意可得:125
x ﹣2x =36, 解得:x =90, 点P 沿△ABC 跑一圈需要
181810232++=(s ) ∴90﹣23×3=21(s ),
∴经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.
4.(1)点A 坐标为(0,9);(2)△BOC 的面积=18;(3)①当t <8时,d =﹣98t+9,当t >8时,d =98t ﹣9;②12≤t≤1或7617≤t≤8017
. 【解析】
【分析】
(1)将点B 坐标代入解析式可求直线AB 解析式,即可求点A 坐标;
(2)联立方程组可求点C 坐标,即可求解;
(3)由题意列出不等式组,可求解.
【详解】
解:(1)∵直线y
=﹣
3
4
x+m与y轴交于点B(12,0),
∴0=﹣3
4
×12+m,
∴m=9,
∴直线AB的解析式为:y=﹣3
4
x+9,
当x=0时,y=9,
∴点A坐标为(0,9);
(2)由题意可得:
3
8
3
9
4
y x
y x
⎧
=
⎪⎪
⎨
⎪=+
⎪⎩
,
解得:
8
3 x
y
=
⎧
⎨
=
⎩
,
∴点C(8,3),
∴△BOC的面积=1
2
×12×3=18;
(3)①如图,
∵点D的横坐标为t,
∴点D(t,﹣3
4
t+9),点E(t,
3
8
t),
当t<8时,d=﹣3
4
t+9﹣
3
8
t=﹣
9
8
t+9,
当t>8时,d=3
8
t+
3
4
t﹣9=
9
8
t﹣9;
②∵以点H(1
2
,t)、G(1,t)为端点的线段与正方形DEPQ的边只有一个交点,
∴1
2
≤t≤1或
91
9
82
9
91
8
t t
t t
⎧
-+≤-
⎪⎪
⎨
⎪-+≥-
⎪⎩
,
∴1
2
≤t≤1或
76
17
≤t≤
80
17
.
【点睛】
本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.
5.(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取
值范围为﹣3≤m≤﹣
2
m≤3.
【解析】
【分析】
(1)①由矩形的性质即可得出结果;
②由矩形的性质即可得出结果;
(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;
(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=1
2
DE=
1,EF=DF=DE=2,得出OF
OD
①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则
点M的坐标为(﹣
2);得出m的取值范围为﹣3≤m≤﹣
或2
﹣≤m≤1;
②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2
2);得出m的取值范围为2
≤m≤3或2
﹣≤m≤1;即可得出结论.
【详解】
解:(1)①∵b=﹣2,
∴点B的坐标为(﹣2,0),如图2﹣1所示:
∵点A的坐标为(1,2),
∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,
故答案为:6;
②如图2﹣2所示:
由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,
∴|b﹣1|=4,
∴b=5或b=﹣3,
故答案为:5或﹣3;
(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,
当点C在直线x=1右侧时,如图3﹣1所示:
CG=3,
则C(4,﹣1),
设直线AC的表达式为:y=kx+a,
则
2
14
k a
k a
=+
⎧
⎨
-=+
⎩
,
解得;
1
3
k
a
=-
⎧
⎨
=
⎩
,
∴直线AC的表达式为:y=﹣x+3;
当点C在直线x=1左侧时,如图3﹣2所示:CG=3,
则C(﹣2,﹣1),
设直线AC的表达式为:y=k′x+b,
则
2
12
k b
k b
=+
⎧
⎨
-=-+
'
'
⎩
,
解得:
k1 b1
=
⎧
⎨
=
'
⎩
,
∴直线AC的表达式为:y=x+1,
综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;
(3)∵点M的坐标为(m,2),
∴点M在直线y=2上,
∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),
∴OD=OE=1
2
DE=1,EF=DF=DE=2,
∴OF OD
分两种情况:如图4所示:
①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);
若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(﹣2)或(2,2);
∴m的取值范围为﹣3≤m≤﹣2m≤1;
②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);
若点N与F重合,点M,N的“相关矩形”为正方形,
则点M的坐标为(2﹣3,2)或(﹣2+3,2);
∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;
综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.
【点睛】
此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.
6.(1
)①
)
;②B ;(2)3s =;(3)59k ≤≤. 【解析】
【分析】 (1)利用限变点的定义直接解答即可;
(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;
(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;
(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.
【详解】
解:(1
)①∵2a =, ∴11b b ==-=',
∴坐标为:)
,
故答案为:); ②∵对于限变点来说,横坐标保持不变,
∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,
, 限变点(2,1)B 对应的原来点的坐标为:()2,2,
∵()2,2满足2y =,
∴这个点是B ,
故答案为:B ;
(2)∵点C 的坐标为(2,2)--,
∴OC 的关系式为:()0y x x =≤,
∵点D 的坐标为(2,2)-,
∴OD 的关系式为:()0y x x =-≥,
∴点P 满足的关系式为:()(
)00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:
当2x ≥时:1b x '=--,
当02x <<时:b x x '=-=,
当0x ≤时,b x x '==-,
图像如下:
通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,
当2x <时,0b '≥,∴0m =,
∴()033s m n =-=--=;
(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,
,, 把(2,5)E --,(,3)F k k -代入得:253
a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x
b x x x -⎧'=⎨
-=--<⎩, 图象如下:
当x =2时,b ′取最小值,b '=2﹣4=﹣2,
当b '=5时,
x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,
当b ′=1时,
x ﹣4=1,解得:x =5,
∵ 25b '-≤≤,
∴由图象可知,k 的取值范围时:59k ≤≤.
【点睛】
本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.
7.(1)
203;(2)①t =83;②a =185;(3)t =6.4或t =103 【解析】
【分析】
(1)根据时间=路程÷速度即可求得答案;
(2)①由题意得:BM =CN =3t ,则只可以是△CMN ≌△BAM ,AB =CM ,由此列出方程求解即可;
②由题意得:CN ≠BM ,则只可以是△CMN ≌△BMA ,AB =CN =12,CM =BM ,进而可得3t =10,求解即可;
(3)分情况讨论,当△CMN ≌△BPM 时,BP =CM ,若此时P 由A 向B 运动,则12-2t =20-3t ,但t =8不符合实际,舍去,若此时P 由B 向A 运动,则2t -12=20-3t ,求得t =6.4;当△CMN ≌△BMP 时,则BP =CN ,CM =BM ,可得3t =10,t =
103,再将t =103代入分别求得AP ,BP 的长及a 的值验证即可.
【详解】
解:(1)20÷3=
203, 故答案为:203
; (2)∵CD ∥AB ,
∴∠B =∠DCB ,
∵△CNM 与△ABM 全等,
∴△CMN ≌△BAM 或△CMN ≌△BMA ,
①由题意得:BM =CN =3t ,
∴△CMN ≌△BAM
∴AB =CM ,
∴12=20-3t ,
解得:t =83;
②由题意得:CN ≠BM ,
∴△CMN ≌△BMA ,
∴AB =CN =12,CM =BM ,
∴CM =BM =
12
BC , ∴3t =10,
解得:t=10 3
∵CN=at,
∴10
3
a=12
解得:a=18
5
;
(3)存在
∵CD∥AB,
∴∠B=∠DCB,
∵△CNM与△PBM全等,
∴△CMN≌△BPM或△CMN≌△BMP,
当△CMN≌△BPM时,则BP=CM,
若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,
∴12-2t=20-3t,
解得:t=8 (舍去)
若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,
∴2t-12=20-3t,
解得:t=6.4,
当△CMN≌△BMP时,则BP=CN,CM=BM,
∴CM=BM=1
2 BC
∴3t=10,
解得:t=10 3
当t=10
3
时,点P的路程为AP=2t=
20
3
,
此时BP=AB-AP=12-20
3
=
16
3
,
则CN=BP=16 3
即at=16
3
,
∵t=10
3
,
∴a=1.6符合题意
综上所述,满足条件的t的值有:t=6.4或t=10 3
【点睛】
本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.
8.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;
(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出
∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.
【详解】
(1)解:CD和BE始终相等,理由如下:
如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,
∴CE=AD,∠A=∠BCE=60°
在△ACD与△CBE中,
AC=CB,∠A=∠BCE,AD=CE
∴△ACD≌△CBE(SAS),
∴CD=BE,即CD和BE始终相等;
(2)证明:根据题意得:CE=AD,
∵AB=AC,
∴AE=BD,
∴△ABC是等边三角形,
∴AB=BC,∠BAC=∠ACB=60°,
∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,
∴∠EAB=∠DBC,
在△BCD 和△ABE 中,
BC=AB ,∠DBC=∠EAB ,BD=AE ∴△BCD ≌△ABE (SAS ),
∴∠BCD=∠ABE
∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,
∴∠CQE=180°-∠DQB=60°,即CQE=60°;
(3)解:爬行过程中,DF 始终等于EF 是正确的,理由如下:
如图,过点D 作DG ∥BC 交AC 于点G ,
∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,
∴△ADG 为等边三角形,
∴AD=DG=CE ,
在△DGF 和△ECF 中,
∠GFD=∠CFE ,∠GDF=∠E ,DG=EC
∴△DGF ≌△EDF (AAS ),
∴DF=EF.
【点睛】
本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.
9.(1)①详见解析;②
12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,102a
【解析】
【分析】
(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;
②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;
(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,
∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;
(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a =,2OF OC a ==,即可求得BF
【详解】
(1)①连接AD ,如图1.
∵点C与点D关于直线l对称,
∴AC = AD.
∵AB= AC,
∴AB= AC = AD.
∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,
∴∠ADB=∠ABD,∠ADC=∠ACD,
∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,
∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=1
2
α
故答案为:1
2α.
(2连接CE,如图2.
∵∠BAC=60°,AB=AC,
∴△ABC是等边三角形,
∴BC=AC,∠ACB=60°,
∵∠BDC=1
2
α,
∴∠BDC=30°,
∵BD⊥DE,
∴∠CDE=60°,
∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°
∴△CDE是等边三角形,
∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△BCD≌△ACE(SAS)
∴BD=AE ,
(3)如图3,取AC 的中点O ,连接OB ,OF ,BF ,
,
F 是以AC 为直径的圆上一点,设AC 中点为O ,
∵在△BOF 中,BO+OF≥BF ,
当B 、O 、F 三点共线时BF 最长; 如图,过点O 作OH ⊥BC ,
∵∠BAC=90°,2a ,
∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,
∴∠COH=∠HCO=45°,
∴OH=HC , ∴2OC HC =
, ∵点O 是AC 中点,AC 2a ,
∴2OC a =, ∴OH HC a ==,
∴BH=3a ,
∴10BO a =,
∵点C 关于直线l 的对称点为点D ,
∴∠AFC=90°,
∵点O 是AC 中点, ∴2OF OC a ==
,
∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .
【点睛】
本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.
10.(1)90°;(2)证明见解析;(3)变化,234l +≤<.
【解析】
(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求
DAE=∠DEA=30°,由三角形内角和定理可求解;
(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;
(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.
【详解】
解:(1)∵△ABC 是等边三角形,
∴AB=AC=BC=2,∠ABC=∠ACB=60°,
∵AD=DE
∴∠DAE=∠DEA=30°,
∴∠ADB=180°-∠BAD-∠ABD=90°,
故答案为:90°;
(2)∵AD=DE=DF ,
∴∠DAE=∠DEA ,∠DAF=∠DFA ,
∵∠DAE+∠DAF=∠BAC=60°,
∴∠DEA+∠DFA=60°,
∵∠ABC=∠DEA+∠EDB=60°,
∴∠EDB=∠DFA ,
∵∠ACB=∠DFA+∠CDF=60°,
∴∠CDF=∠DEA ,
在△BDE 和△CFD 中
∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△BDE ≌△CFD (ASA )
(3)∵△BDE ≌△CFD ,
∴BE=CD ,
∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,
当D 点在C 或B 点时,
AD=AC=AB=2,
此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;
当D 点在BC 的中点时,
∵AB=AC ,
∴BD=112
BC =
,AD ==
此时22l AD =+=
综上可知24l +≤<.
本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.
11.(1)见解析;(2)见解析;(3)3
【解析】
【分析】
(1)根据等腰三角形的性质和外角的性质即可得到结论;
(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=
12
CF=3. 【详解】
解:(1)∵AB=AC ,
∴∠ABC=∠ACB ,
∵DE=DC ,
∴∠E=∠DCE ,
∴∠ABC-∠E=∠ACB-∠DCB ,
即∠EDB=∠ACD ;
(2)∵△ABC 是等边三角形,
∴∠B=60°,
∴△BEF 是等边三角形,
∴BE=EF ,∠BFE=60°,
∴∠DFE=120°,
∴∠DFE=∠CAD ,
在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△DEF ≌△CAD (AAS ),
∴EF=AD ,
∴AD=BE ;
(3)连接AF,如图3所示:
∵DE=DC,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
在△ABF和△CBF中,
AB BC
ABF CBF
BF BF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
△ABF≌△CBF(SAS),
∴AF=CF,
∴∠FAC=∠ACF=15°,
∴∠AFH=15°+15°=30°,
∵AH⊥CD,
∴AH=
1
2
AF=
1
2
CF=3,
∵∠DEC=∠ABC+∠BDE,
∴∠BDE=75°-60°=15°,
∴∠ADH=15°+30°=45°,
∴∠DAH=∠ADH=45°,
∴DH=AH=3.
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的
性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键. 12.
(1)5;(2)
221;(3)221 【解析】
【分析】
(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;
(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使
∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;
(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.
【详解】
解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,
由题意可得:∠BAC=90°,
∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,
∴∠MAB=∠NCA ,
在△ABM 和△CAN 中, ===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩
,
∴△ABM ≌△CAN (AAS ),
∴AM=CN=2,AN=BM=1,
∴AB=22251=+;
(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,
在l 1上取M ,N 使∠AMB=∠CNA=120°,
∵∠BAC=120°,
∴∠MAB+∠NAC=60°,
∵∠ABM+∠MAB=60°,
∴∠ABM=∠NAC ,
在△AMB和△CNA中,
=
=
=
AMB CNA
ABM NAC
AB AC
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
,
∴△AMB≌△CNA(AAS),
∴CN=AM,
∵∠AMB=∠ANC=120°,
∴∠PMB=∠QNC=60°,
∴PM=
1
2
BM,NQ=
1
2
NC,
∵PB=1,CQ=2,
设PM=a,NQ=b,
∴222
1=4
a a
+,222
2=4
b b
+,
解得:
3
=
a,
23
=
b,
∴CN=AM=
2
2
23
2
3
⎛⎫
+ ⎪
⎪
⎝⎭
=
43
,
∴AB=22
AP BP
+=()22
AM PM BP
++=221;
(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,
∴BC=AC,∠ACB=60°,
∴∠BCN+∠ACM=120°,
∵∠BCN+∠NBC=120°,
∴∠NBC=∠ACM,
在△BCN和△CAM中,
BNC CMA
NBC MAC
BC AC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BCN≌△CAM(AAS),
∴CN=AM ,BN=CM , ∵∠PBN=90°-60°=30°,BP=2,
∴BN=2NP ,
在△BPN 中,222BP NP BN +=,
即22224NP NP +=,
解得:NP=233
, ∵∠AMC=60°,AQ=3,
∴∠MAQ=30°,
∴AM=2QM ,
在△AQM 中,222AQ QM AM +=,
即22234QM QM +=,
解得:QM=3,
∴AM=23=CN ,
∴PC=CN-NP=AM-NP=
43, 在△BPC 中,
BP 2+CP 2=BC 2,
即BC=22224322123BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=221.
【点睛】
本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.。