高考物理(法拉第电磁感应定律提高练习题)压轴题训练含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理(法拉第电磁感应定律提高练习题)压轴题训练含答案
一、法拉第电磁感应定律
1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:
(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .
【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】
(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:
10.02N F BIL ==
可得:
10.02A 0.2A 1.00.1
F I BL =
==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:
Q W =安310.020.1J 2.010J F L -==⨯=⨯
(2) 金属框拉出的过程中产生的热量:
2Q I Rt
=
线框的电阻:
3
22
2.010Ω 1.0Ω0.20.05
Q R I t -⨯===⨯
2.如图所示,垂直于纸面的匀强磁场磁感应强度为B 。
纸面内有一正方形均匀金属线框abcd ,其边长为L ,总电阻为R ,ad 边与磁场边界平行。
从ad 边刚进入磁场直至bc 边刚要进入的过程中,线框在向左的拉力作用下以速度v 匀速运动,求:
(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.
【答案】(1)P=
222
B L v
R
(2)Q=
23
4
B L v
R
【解析】
【详解】
(1)线圈中的感应电动势
E=BLv 感应电流
I=E R
拉力大小等于安培力大小
F=BIL 拉力的功率
P=Fv=
222 B L v R
(2)线圈ab边电阻
R ab=
4
R 运动时间
t=L v
ab边产生的焦耳热
Q=I2R ab t =
23 4
B L v
R
3.如图所示,光滑的长平行金属导轨宽度d=50cm,导轨所在的平面与水平面夹角
θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T.金属棒ab从上端由静止开始下滑,金属棒ab的质量
m=0.1kg.(sin37°=0.6,g=10m/s2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
-
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv
I Rt
-=
4.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:
(1)磁感应强度B 的大小;
(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;
(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.
【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)
203
Q J =
【解析】 【分析】
t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】
(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T
(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:2
24MN PQ
E I A R R ==+
安培力为:F 安=BI 2L =8 N
规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°
代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)
(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,
安培力做功:120
23
MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】
本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.
5.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
求:
(1)金属杆在5s 末的运动速率 (2)第4s 末时外力F 的功率
【答案】(1) 2.5m/s v = (2) 0.18W P = 【解析】(1)由题意,电压表的示数为R
U BLv R r
=⋅+ 5s 末电压表的示数0.2V U = , 所以代入数据可得 2.5m/s v = (2)由R
U BLv R r
=
⋅+及U -t 图像可知,U 随时间均匀变化,导体棒在力F 作用下匀加速运动 ()1R r v U a t R BL t
+∆∆==⋅⋅∆∆
代入数据可得20.5m/s a = 在4s 末,金属杆的切割速度为()1
2m/s R r v U R
BL
⋅'='+=
⋅
此时拉力F 为22B L v F ma R r
-
=+'
所以4s 末拉力F 的功率为0.18W P Fv =='
【点睛】本题是电磁感应与电路、力学知识的综合,由电路的串联关系先求出电动势,再求出速度;由加速度的定义,求出加速度;根据瞬时功率的表达式,求出第5秒末外力F 的功率.
6.如图所示,两根相距d=1m 的足够长的光滑平行金属导轨位于xoy 竖直面内,两金属导轨一端接有阻值为R=2Ω的电阻.在y >0的一侧存在垂直纸面的磁场,磁场大小沿x 轴均匀分布,沿y 轴大小按规律0.5B y =分布。
一质量为m=0.05kg 、阻值r=1Ω的金属直杆与金属导轨垂直,在导轨上滑动时接触良好,当t=0时位于y=0处,速度v 0=4m/s ,方向沿y 轴的正方向。
在运动过程中,有一大小可调节、方向为竖直向上的外力F 作用于金属杆以保持金属杆的加速度恒定,大小为a ,方向沿y 轴的负方向.设导轨电阻忽略不计,空气阻力不计,重力加速度为g 。
求:
(1)当金属直杆的速度大小v=2m/s 时金属直杆两端的电压; (2)当时间分别为t=3s 和t=5s 时外力F 的大小; (3)R 的最大电功率。
【答案】(1)233U V =
(2) 1 1.1N F = ; 20.6N F = (3) 8
9
m P W = 【解析】(1)当金属杆的速度大小为v =2m/s
此时的位移22
3m 2v v y a
-=
=- 此时的磁场0.53T B =
此时的感应电动势0.5312V=3V E Bdv ==⋅ 金属直杆两端的电压2
3V 3
R U E R r =
=+ (2)金属直杆在磁场中运动的时间满足0
24s v t a
<
⋅= 当t =3s 时,金属直杆向上运动,此时速度02m/s v v at =-=-
位移22
3m 2v v y a
-=
=- 所以0.53T B =
由牛顿第二定律得1Bdv
F mg B d ma R r
--=+ 解得1 1.1N F =
当5s 4s t =>时,金属直杆已向上离开磁场区域 由2F mg ma -=
解得: 20.6N F =
(3)设金属直杆的速度为v 时,回路中的电流为I ,R 的电功率为P
Bdv I R r =+
, 2200.52v v B a -= , ()
()
2222222
1672v v B d v
P I R R R r -===+ 当28v =即22v =m/s 时P 最大
89
m P =
W 【点睛】本题是电磁感应与力学的综合题,解决本题的关键抓住金属杆做匀变速运动,运用运动学公式,结合切割产生的感应电动势公式、牛顿第二定律进行求解.
7.如图所示,平等光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L ,A 、C 两点间连接有阻值为R 的电阻,一根质量为m 、电阻也为R 的直导体棒EF 跨在导轨上,两端与导轨接触良好。
在边界ab 和cd 之间(ab 与cd 与导轨垂直)存在垂直导轨平面的匀强磁场,磁场的磁感应强度为B ,现将导体棒EF 从图示位置由静止释放,EF 进入磁场就开始匀速运动,棒穿过磁场过程中棒中产生的热量为Q 。
整个运动的过程中,导体棒EF 与导轨始终垂直且接触良好,其余电阻不计,取重力加速度为g 。
(1)棒释放位置与ab 间的距离x ; (2)求磁场区域的宽度s ;
(3)导体棒穿过磁场区域过程中流过导体横截面的电量。
【答案】(1)
(2)
(3)
【解析】(1)导体棒EF 从图示位置由静止释放,根据牛顿第二定律
EF 进入磁场就开始匀速运动,由受力平衡:
由闭合电路欧姆定律:
导体棒切割磁感线产生电动势:E =BLv 匀加速阶段由运动学公式v 2=2ax
联立以上各式可解得棒释放位置与ab 间的距离为:
(2)EF 进入磁场就开始匀速运动,由能量守恒定律:
A,C两点间电阻R与EF串联,电阻大小相等,则
连立以上两式可解得磁场区域的宽度为:
(3) EF在磁场匀速运动:s=vt
由电流定义流过导体棒横截面的电量q=It
联立解得:
【点睛】此题综合程度较高,由运动分析受力,根据受力情况列方程,两个运动过程要结合分析;在匀速阶段要明确能量转化关系,电量计算往往从电流定义分析求解.
8.如图所示,足够长的水平导体框架的宽度L=0.5m,电阻忽略不计,定值电阻R=2Ω.磁感应强度B=0.8T的匀强磁场方向垂直于导体平面,一根质量为m=0.2kg、有效电阻r=2Ω的导体棒MN垂直跨放在框架上,该导体棒与框架间的动摩擦因数μ=0.5,导体棒在水平恒力F=1.2N的作用下由静止开始沿框架运动到刚开始匀速运动时,通过导体棒截面的电量共为q=2C,求:
(1)导体棒做匀速运动时的速度:
(2)导体种从开始运动到刚开始匀速运动这一过程中,导体棒产生的电热.(g取10m/s2)【答案】(1)v=5m/s (2)Q1=0.75J
【解析】
(1)当物体开始做匀速运动时,有:(1分)
又:(2分)
解得m/s (1分)
(2) 设在此过程中MN运动的位移为x,则
解得:m (1分)
设克服安培力做的功为W,则:
解得:W="1.5J " (2分)
所以电路产生的总电热为1.5J,导体棒产生的电热为0.75J (1分)
9.如图所示,光滑、足够长的平行金属导轨MN、PQ的间距为l,所在平面与水平面成θ角,处于磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中.两导轨的一端接有阻
值为R 的电阻.质量为m 、电阻为r 的金属棒ab 垂直放置于导轨上,且m 由一根轻绳通过一个定滑轮与质量为M 的静止物块相连,物块被释放后,拉动金属棒ab 加速运动H 距离后,金属棒以速度v 匀速运动.求:(导轨电阻不计)
(1)金属棒αb 以速度v 匀速运动时两端的电势差U ab ; (2)物块运动H 距离过程中电阻R 产生的焦耳热Q R . 【答案】1)ab BlvR U R r =+(2)()()21sin 2R Q M m gH M m v R r
θ⎡⎤
=--+⎢⎥+⎣⎦
【解析】
(1)金属棒ab 以速度v 匀速运动时,产生的感应电动势大小为:E =Blv 由闭合电路欧姆定律得: E
I R r
=
+ 金属棒αb 两端的电压大小为:U =IR 解得: BlvR
U R r
=
+ 由右手定则可得金属棒ab 中的电流方向由a 到b , 可知U ab 为负值,故: ab BlvR
U R r
=
+ (2)物块运动H 距离过程中,设整个回路产生的焦耳热为Q , 由能量守恒定律得:2211
sin 22
MgH mgH mv Mv Q θ=+++ 由焦耳定律得:2
()Q I R r t =+
2R Q I Rt =
解得:21[(sin )()]2R
Q M m gH M m v R r
θ=--
++ 【点睛】本题是一道电磁感应与电路、运动学相结合的综合题,分析清楚棒的运动过程、找出电流的房你想、应用能量守恒和功能关系等相关知识,是正确解题的关键.
10.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角30θ=︒,导轨电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面向上.长为的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为
m 、电阻为r R =.两金属导轨的上端连接一个灯泡,灯泡的电阻L R R =,重力加速度为
g .现闭合开关S ,给金属棒施加一个方向垂直于杆且平行于导轨平面向上的、大小为
F mg =的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它
的额定功率.求:
(1)金属棒能达到的最大速度v m ; (2)灯泡的额定功率P L ;
(3)若金属棒上滑距离为L 时速度恰达到最大,求金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q r .
【答案】(1) 22mgR B d ;(2) 2222
4m g R
B d ;(3) 322444m g R mgL B d -
【解析】 【详解】
解:(1)金属棒先做加速度逐渐减小的加速运动,当加速度为零时,金属棒达到最大速度,此后开始做匀速直线运动;设最大速度为m v ,当金属棒达到最大速度时,做匀速直线运动,由平衡条件得:30F BId mgsin =+︒ 又:F mg = 解得:2mg I Bd
= 由2L E E
I R r R
=
=+,m E Bdv = 联立解得:22
m mgR
v B d =
; (2)灯泡的额定功率:2222
22
()24L L mg m g R
P I R R Bd B d
=== (3)金属棒由静止开始上滑4L 的过程中,由能量守恒定律可知:
2
144302
m Q F L mg Lsin mv =•-•︒-
金属棒上产生的电热:322
44
124r m g R Q Q mgL B d ==-
11.固定在匀强磁场中的正方形导线框abcd ,边长为l ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜线.磁场的磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上,如图所示.若PQ 以恒定的速度v 从ad 滑向bc ,当其滑过1
3
l 的距离时,通过aP 段电阻的电流是多大?方向如何?
【答案】
611Blv R
方向由P 到a 【解析】
【分析】 【详解】 PQ 右移切割磁感线,产生感应电动势,相当于电源,外电路由Pa 与Pb 并联而成,PQ 滑过3
l 时的等效电路如图所示,
PQ 切割磁感线产生的感应电动势大小为E=Blv ,方向由Q 指向P .
外电路总电阻为
12233129
33
R R R R R R ⋅==+外 电路总电流为:
92119
E Blv Blv I R R R R R =
==++外 aP 段电流大小为 26311ap Blv I I R =
=, 方向由P 到a .
答:通过aP 段电阻的电流是为611Blv R
方向由P 到a
12.如图所示,导线全部为裸导线,半径为r 的圆内有垂直于平面的匀强磁场,磁感应强
度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上自左向右匀速滑动,电路的固定电阻为R ,其余电阻忽略不计.试求MN 从圆环的左端到右端的过程中电阻R 上的电流强度的平均值及通过的电荷量.
【答案】2Brv R π2B r R π 【解析】
试题分析:由于ΔΦ=B·ΔS =B·πr 2,完成这一变化所用的时间2t=
r v ∆ 故2
Brv E t π∆Φ==∆ 所以电阻R 上的电流强度平均值为2E Brv I R R
π== 通过R 的电荷量为2
·B r q I t R
π∆== 考点:法拉第电磁感应定律;电量
13.如图甲所示,光滑且足够长的平行金属导轨MN 、PQ 固定在同一水平面上,两导轨间距030m .L =.导轨电阻忽略不计,其间连接有固定电阻0.40R =Ω.导轨上停放一质量0.10kg m =、电阻020Ω.r =的金属杆ab ,整个装置处于磁感应强度0.50T B =的匀强磁场中,磁场方向竖直向下.用一外力F 沿水平方向拉金属杆ab ,使之由静止开始做匀加速运动,电压传感器可将R 两端的电压U 即时采集并输入电脑,获得电压U 随时间t 变化的关系如图乙所示.
(1)计算加速度的大小;
(2)求第2s 末外力F 的瞬时功率;
(3)如果水平外力从静止开始拉动杆2s 所做的功035J .W =,求金属杆上产生的焦耳热.
【答案】(1)21m/s (2)0.35W (3)25.010J -⨯
【解析】
【详解】
(1)根据,,R R E Blv v at U E R r ===
+ 结合图乙所示数据,解得:a =1m/s 2.
(2)由图象可知在2s 末,电阻R 两端电压为0.2V
通过金属杆的电流R U I R
= 金属杆受安培力F BIL =安
设2s 末外力大小为F 2,由牛顿第二定律,2安F F ma -= ,
故2s 末时F 的瞬时功率22035W .P F v ==
(3)设回路产生的焦耳热为Q ,由能量守恒定律,2212W Q mv =+
电阻R 与金属杆的电阻r 串联,产生焦耳热与电阻成正比
金属杆上产生的焦耳热r Qr Q R r
=+ 解得:2r 5010J .Q -=⨯ .
14.如图所示,两光滑轨道相距L =0.5m ,固定在倾角为37θ=︒的斜面上,轨道下端接入阻值为R =1.6Ω的定值电阻。
整个轨道处在竖直向上的匀强磁场中,磁感应强度B =1T 。
一质量m =0.1kg 的金属棒MN 从轨道顶端由静止释放,沿轨道下滑,金属棒沿轨道下滑x =3.6m 时恰好达到最大速度(轨道足够长),在该过程中,金属棒始终能保持与轨道良好接触。
(轨道及金属棒的电阻不计,重力加速度g 取10m/s 2, sin37° = 0.6,cos37°= 0.8)求:
(1)金属棒下滑过程中,M 、N 哪端电势高;
(2)求金属棒下滑过程中的最大速度v ;
(3)求该过程回路中产生的焦耳热Q 。
【答案】(1)M 端电势较高 (2)6m/s (3)0.36J
【解析】
【详解】
(1)根据右手定则,可判知M 端电势较高
(2)设金属棒的最大速度为v ,根据法拉第电磁感应定律,回路中的感应电动势
E =BLv cos θ
根据闭合电路欧姆定律,回路中的电流强度
I =E /R
金属棒所受安培力F 为
F =BIL
对金属棒,根据平衡条件列方程
mg sin θ=F cos θ
联立以上方程解得:
v =6m/s
(3)根据能量守恒
21sin 2
mgx mv Q θ=
+ 代入数据解得: 0.36J Q =
【点睛】
本题是力学和电磁学的综合题,综合运用了电磁感应定律、能量守恒定律以及共点力平衡问题,要注意此题中棒不是垂直切割磁感线,产生的感应电动势不是E =BLv .应根据有效
切割速度求解。
15.两根足够长的固定平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨上面垂直放置两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .两导体棒均可沿导轨无摩擦地滑行,开始时cd 棒静止,棒ab 有指向cd 的速度v 0.两导体棒在运动中始终不接触.求:
(1)在运动中产生的最大焦耳热;
(2)当棒ab 的速度变为34
v 0时,棒cd 的加速度. 【答案】(1) 2014mv ;(2) 2204B L v mR
,方向是水平向右 【解析】
【详解】
(1)从初始到两棒速度相等的过程中,两棒总动量守恒,则有:02mv mv =
解得:02
v v = 由能的转化和守恒得:222001211224Q mv mv mv =
⨯=- (2)设ab 棒的速度变为034
v 时,cd 棒的速度为v ',则由动量守恒可知:
0034
mv m v mv =+' 解得:014
v v '= 此时回路中的电动势为: 000311442E BLv BLv BLv =
-= 此时回路中的电流为: 024BLv E I R R
== 此时cd 棒所受的安培力为 :2204B L v F BIL R
== 由牛顿第二定律可得,cd 棒的加速度:2204B L v F a m mR
== cd 棒的加速度大小是2204B L v mR
,方向是水平向右。