正压密相气力输送基本计算2

合集下载

气力输送系统基本参数计算知识

气力输送系统基本参数计算知识

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

正压输送计算书

正压输送计算书

正压输送系统的设计计算压送系统的压力损失总H 可以分解成由下列各部分压损组成:总H =气H +供H +料H +辅H式中:气H —鼓风机出口至供料器之间风管的压损,即输送净空气管道的压损 供H —供料器的压损料H —从供料器至料仓之间的输料管的压损辅H —卸料器、选配阀、尾气净化等设备的压损,一般可按5~10kPa 计算。

(1)供料器的计算供料器采用密封较严、精度较高的叶轮式闭风器,其转速n ≈40r/min 。

其容积视输送量大小按下式计算:输送粉料:770/G V =输送细颗粒物料:400/G V =式中:V —供料器3m 的容积,G —物料输送量(h t /)供料器在工作时有一定的漏风,其大小除与供料器尺寸和叶轮与机壳间的间隙有关外,还与其出口处的压力有关,供料器出口处的压力取决于其后输料管的阻力以及卸料器配料阀和尾气处理的阻力有关。

在一般情况下,供料器的漏风量按下式计算:漏Q =0.02(料H +辅H )式中:漏Q —供料器的设计漏风量,min /3m供料器的压损按照下式计算: 1083.01-+=GV H 供供料器的传动功率:)辅料供供H H H V N +++=(075.035.0(2)输料管的计算①输料管的压损斜料L H ⨯∆=式中:斜L —料管的长度(m),包括水平段、垂直段和弯头展开长度; ∆—料管每米的压损,其值为:输送粉料:∆=0.65×μ79.02-10平V输送细颗粒物料:∆=0.185×3.179.02-10μ平V输送颗粒物料:∆=0.178×15.196.02-10μ平V式中:μ—输送浓度,一般为10~30;平V —料管中的平均风速,m/s ,即料管中起端处的风速1V 与料管末端处的风速2V 的平均值,221V V V +=平。

1V 通常取8~11m/s ,而2V 可按气体状态方程(等温过程)计算,即: 21210)100(-⨯++=输料H H V V (m/s )②输料管中的风量μ2.17.16G Q =料 式中:料Q —按鼓风机进口处空气状态计算的料管中的风量,min /3mG —物料输送量(h t /)μ—输送浓度③输料管的直径2147.0V Q D 料料= 式中:料Q —按鼓风机进口处空气状态计算的料管中的风量,min /3m2V —输料管末端的风速,m/s(三)鼓风机的风量鼓风机的风量应是料管中的风量与供料器的漏风量之和,即:风机Q =料Q +漏Q (min /3m )式中:风机Q —鼓风机的风量,min /3m料Q —按鼓风机进口处空气状态计算的料管中的风量,min /3m漏Q —供料器的漏风量,min /3m(四)风管的计算。

正压密相气力输送基本计算2

正压密相气力输送基本计算2

正压密相气力输送基本计算2
正压密相系统基本参数计算
1.正压密相输送管径D计算
正压密相输送管径D=(m)
Qa--------输送耗气量(m³/min)
Va--------输送风速(m/s)
当输送风速为4m/s,输送量为16t/h,混合比为30时管径是多少呢?
Qa=16000/30/60/1.2=7.4m³/min
D==0.039m
2.物料透气性和持气性
当物料具有足够的透气性,就可以作栓流密相输送。

若物料具有足够的持气能力,就可以作运动床密相气力输送。

当物料没有足够的透气性又无持气能力,只能作稀相气力输送。

物料透气性和特气测定:
将物料置于圆筒状容器中,通过器底的多孔板向料层(层高h)供气,并改变供气量来测出料层的气体压力降,从面得出气体速度与压降的关系曲线,就可以判断出物料透气性和持气性了。

气力输送计算公式

气力输送计算公式

上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径)φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。

气力输送的计算

气力输送的计算

气力输送的计算
举例:
已知数据:1、淀粉输送量:9.73T/h;输送距离水平:135m,高度:25 m
2、90度弯头:R=1.5DN 4个(输风)
R=800mm 9个(输送淀粉)
45度弯头:R=1.5DN 1个(送风)
3、堆积比重:650KG/M3;淀粉管径:DN150
计算过程:
1、假设输送速度为: =20m/s
输送量: =162.2Kg/min;输送管径D=0.15m;空气密度 =1.2 kg/m³ 物料比计算:m= =6.4;输送风量: = = =21.12 m³/min 大气压 =101325Pa
2、起始风速:V= = =19.9m/s
3、进气口压损: = . =119Pa 过滤器压损: =300Pa
4、供料装置压损: =(c+m) =(2+6.4) =1995.9 Pa
5、定常输送压损:L= +K +nδD(θ/90)=175.265m = =1.17 kg/m³ = =20.4
m/s =0.03125* * =8888.9 Pa
= =(1+0.4*6.4) =31644.5 Pa
6、出口压损: =1200 Pa
7、总的气源所需压力为:P=1.2( + + + + )=42311.28 Pa 所需风量: =1.2 =38.89 m³/min 备注:整个管路出口处不设除尘器的情况下可按以上公式计算的数据,如加除尘器等附件需加相应的压力损失。

8、在已知风机出口风压、流量后可选出对应风机、电机型号、功率。

气力输送计算

气力输送计算
为此,在设计工艺流程时,应该结合具体条件,尽量采用先进工艺 和先进设备。要在保证成品质量的前提下,简化流程,防止回路。,要优 先选用生产效率高和有多种作用的组合设备,以减少设备数量,减少提升 次数和物料的总提升量。这些都是降低风运电耗的基础。
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定
50 0.7 1.0
10
风管直径(毫米)
80
100
125
1.0 2.0
1.3 2.8
2.0 3.5
15
20
30
150 2.3 4.0
35
第四节 气力输送网络的设计与计算
5、压送系统辅助部分的压损 压送系统中其他辅助部分的压损,包括卸料器及选配阀 等可取其等于5~10千帕。 在上述公式中,不少数值是H料的函数,如υ2、Q漏等。 所以压送系统的计算方法,可先在一定范围内予定若干个 (三个以上)料管压损H料之值,并分别计算出相应的H总和Q 总,从而作出该输送管网的特性曲线,绘制在同一座标的风机 系列性能曲线图中。根据管网特性曲线与各个风机的性能曲 线的相交点,从中选择一合适的风机,然后最终确定各项参 数。
三、正压输送系统的设计计算
(一)设计的原则和要求
1.根据面粉厂配粉的工艺要求,以及被输送物料的品种、数量、大小 和排列形式,尽量做到合理利用,布置紧凑。
2.在此基础上,运用一点进料,多点卸料,交替输送,一机多用的 原则,在满足工艺要求的前提下,合理组合输送面粉先复筛后进仓,然后 打包发放的程序,就可考虑设计复式输送系统。
在一般情况下,对于常用的供料器的设计漏风量可按下式计算:
式中:
Q漏=0.02(H供+H料+H辅) 或 :Q漏+0.02(H总+H气)

气力输送自动计算公式

气力输送自动计算公式

气力输送自动计算公式气力输送是一种常用的物料输送方式,它利用气体的压力将物料从一个地方输送到另一个地方。

在工业生产中,气力输送被广泛应用于粉状物料、颗粒物料和颗粒状物料的输送。

为了实现高效、稳定的气力输送,需要对输送系统进行合理的设计和计算。

其中,气力输送自动计算公式是气力输送系统设计的重要组成部分。

气力输送自动计算公式是根据气力输送的基本原理和输送系统的参数来推导和确定的。

通过这些公式,可以计算出气力输送系统所需的气体流量、管道尺寸、压力损失等参数,从而实现对输送系统的合理设计和优化。

下面将简要介绍气力输送自动计算公式的推导和应用。

首先,我们需要了解气力输送的基本原理。

气力输送是利用气体流动的动能将物料从一个地方输送到另一个地方。

在气力输送过程中,气体通过管道流动,带动物料一起运动。

为了实现有效的气力输送,需要满足以下几个基本条件:1. 确定输送物料的性质和流动特性,包括物料的密度、粒度、流动性等参数。

2. 确定输送距离和高度,以及输送系统的布置方式。

3. 确定输送系统所需的气体流量、压力和速度等参数。

在实际应用中,为了简化计算和设计,通常会采用一些经验公式和计算方法来确定气力输送系统的参数。

下面将介绍一些常用的气力输送自动计算公式:1. 气体流量计算公式。

气体流量是气力输送系统设计的关键参数之一。

它直接影响着输送系统的能耗和输送能力。

通常情况下,可以使用以下公式来计算气体流量:Q = A V。

其中,Q表示气体流量,单位为立方米/小时;A表示管道的横截面积,单位为平方米;V表示气体的流速,单位为米/秒。

通过这个公式,可以根据输送物料的性质和流动特性,确定所需的气体流量。

2. 管道尺寸计算公式。

管道尺寸是气力输送系统设计的另一个重要参数。

合理的管道尺寸可以保证气体流动的稳定和物料的顺利输送。

通常情况下,可以使用以下公式来计算管道尺寸:D = (4 Q) / (π V)。

其中,D表示管道的直径,单位为米;Q表示气体流量,单位为立方米/小时;V表示气体的流速,单位为米/秒。

气力输送计算

气力输送计算

精心整理
气力输送计算
一、设计依据和主要参数确定
1、输送量(G )
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料。

所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值。

一般输送粮粒的风速为20-25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5.我们根据实际情况取υ=4
4、风量(Q ) 根据公式y G Q υ==2
.1410203⨯⨯=4.17×103 m 3/h y —空气的比重取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1.1×4.17×103=4.58×103 m 3/h
5、输料管直径D 根据公式=⨯==22
1058.48.188.183V Q D 271.1
精心整理
我们进行取整,得输料管直径D=300mm。

6、压力损失(P)。

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全)

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)] (kg/kg) (5-20)Gh=ψγhνp (t/仓) (5-21)式中 Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa= Gm/μ (kg/min) (5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算 tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中 Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

气力输送系统基本参数计算知识

气力输送系统基本参数计算知识

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

正压密相气力输送基本计算1

正压密相气力输送基本计算1

正压密相气力输送基本计算1
正压密相系统基本参数计算
1.输灰管道当量长度Leq
输灰管道的总当量长度为
Leq=L+εH+nND(m)
Leq-----水平管当量长度(把垂直管及弯管换算成水平管当量长度)ε------垂直管相对于水平管的当量系数(一般选择为1.5,具体需实验测得)
H-------垂直管总长度
N-------弯管相当水平管的当量系数(一般选择为2 ,具体需实验测得)
n-------弯管数量
D-------弯管直径
2.管道压力损失△p1
输送管道的压力损失应为水平、垂直、倾斜管道以及管道附件压力损失的总和。

为简化计算,一般可将各部分折合成当量长度的水平管道,则得计算公式如下
△p1={[pe2+19.6 peλa(Lcq/D)(γeνe2/2g)]1/2-pe}(1+Kμ) (Pa)
式中
pe—计算管段终端的绝对压力,Pa,对于最后一段管道,pe即为入库接口处的压力;
λa—计算管段的空气摩擦阻力系数,按式(5-9)计算Leq—计算管段的当量长度,m;
D—计算管段的管道内径,m;
γe—计算管段的终端的空气重度,kgf/m3
νe—计算管段的终端流速,m/s;
μ—灰气混合比,kg(灰)/kg (气);
K—两相流系数,一般可通过试验求得。

从公式我们可以得出:
1.管道直径越大压损越小
2.管道长度越长压损越大
3.输送速度越快压损越大
4.混合比越大压损也越大。

气力输送计算

气力输送计算

气力输送计算
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
气力输送计算
一、设计依据和主要参数确定
1、输送量(G )
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速
度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料。

所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值。

一般输送粮粒的风速为20-25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5.我们根据实际情况取υ=4
4、风量(Q ) 根据公式y G Q υ==2
.1410203⨯⨯=4.17×103 m 3/h y —空气的比重取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1.1×4.17×103=4.58×103 m 3/h
5、输料管直径D 根据公式=⨯==221058.48.188.183V Q D 271.1
我们进行取整,得输料管直径
D=300mm 。

6、压力损失(P )。

气力输送计算

气力输送计算

垂直管压力损失 分离器压力损失 管道出口压力损失
m3= ΔPv= H= Kv= ΔPsp= ζ= Ui= ΔPcx=

发送设备压力损失
ΔPp= C= Kp=
10 水平面内弯头数量 745 垂直管压力损失,Pa
5 垂直管有效高度,m 1.100
310 分离器压力损失,Pa,旋风分离器 10.6 阻力系数,表内选取-->>
P2=
300000 空压机供气绝对压力,Pa
η=
0.65 等温全效率,0.55-0.75
R/D 0.5 1 2 3 9 20
n
0.75 0.94 1.22 1.67 2.04 3
0.016 气体的摩擦系数,无因次系数 1 光滑管:e=1;新焊接管:e=1.3;旧管:e=1.6
19.000 气流平均速度,m/s 0.637 3975 水平转向垂直向上弯头阻力 0.75 理论冲击次数,按表选取-->> 10 水平转向垂直向上弯头数量 2783 垂直转向水平弯头阻力 10 垂直转向水平弯头数量 3299 水平面内弯头阻力
气力输送系统设计计算(黄底部分输入数据)
参数名称
代号 数值
备注
一、空气消耗量
Q=
114 Q=1000G/60μρa,空气消耗量,m3/min
G=
50 物料输送量,t/h
ρa=
0.91 按温度海拔换算当地自由空气的密度,kg/m3
T=
30 当地温度,℃
P=
0.8456 当地气压,大气压,查表
μ=
8 低压小于49kPa取小于10;高压按表选取->
8 入口气流速度,m/s
1333
28525 100 直管吸嘴:C=1-10,Kp=1 螺旋泵:C=100,Kp=7 7 仓式泵:C=100-200,Kp=7

正压气力输送的基本参数计算公式

正压气力输送的基本参数计算公式

正压气力输送的基本参数计算公式正压气力输送系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr(m)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[Qmγa(t2+t3)](kg/kg)Gh=ψγhνp(t/仓)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)质量流量Ga=Qaγa=16.67Gm/μ(kg/min)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=(Gmchth+Gacata)/(Gmch+Gaca)(℃)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃),按公式计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃;因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb=10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25m/s。

正压气力输送系统的快速经验计算

正压气力输送系统的快速经验计算

2019年第4期现代小麦制粉企业中,正压气力输送系统由于占地空间小,便于安装和维护、使用灵活、无残留、不受安装环境的限制,得到了广泛地应用。

尽管正压气力输送系统使用的罗茨风机噪音较大(三叶罗茨风机的噪音在7080dB )、动力消耗也大(与同类物料采用机械输送相同产量和距离相比,是它们动耗的11.5倍),但因其在空间、输送线路、加料点、卸料点等受限的环境下更加方便、灵活,更利于生产线升级改造,所以目前在小麦制粉工业得到了非常广泛的应用。

本人在多年工作实践中,对压运过程关键因素进行对比分析、研究,找出小麦制粉压运系统设计计算过程的关键因素,使小麦制粉压运系统设计计算过程简化,今就此问题做一介绍,供同行进行参考。

1正压气力输送的工艺与设备(1)正压气力输送系统工艺流程见图1在该系统配套设备中,为了确保工艺秤计量精度,一般都在工艺秤下端配有旋转喂料器(笔者称之为旋转喂料器)。

在配有旋转喂料器的正压输送系统中,在投资条件允许的条件下,正压关风器的输送量可以适当配大一些,以确保系统正常运行。

(2)旋转喂料器配套叶轮见图2这种形式叶轮是开放式的,装配间隙而贯通,空气易排出,所以具有盛满率和卸净率基本保持不变、物料供给连续性好的优点。

在旋转喂料器选配过程中应注意以下几点:a.旋转喂料器供料目标产能略大于实际产能;b.旋转喂料器转速不易太高,控制在30~50rpm以内;c.根据旋转喂料器供料目标产能选配合适的转速。

(3)正压关风器配套叶轮见图3收稿日期:2019-04-29作者简介:王前明(1955—),男,高级工程师,主要从事面粉加工技术与管理工作。

正压气力输送系统的快速经验计算王前明新疆天山面粉(集团)有限责任公司乌鲁木齐830002摘要分析小麦制粉车间正压气力输送系统,把握重要环节,对压运过程关键因素进行对比分析、研究,找出小麦制粉压运系统设计计算过程的关键因素,使小麦制粉压运系统设计计算过程简化。

关键词正压气力输送快速计算中图分类号:TS 210.3文献标识码:B文章编号:1674-5280(2019)04-0011-03图1正压气力输送系统工艺流程图图2旋转喂料器配套叶轮生产设备现代面粉工业Modern Flour Milling Industry112019年第4期这种叶轮为“斗式”,上料在有料的情况下,叶轮在盛料和卸料时分别处在正压和负压状态,所以盛满率和卸净率变化较大、物料供给连续稳定性较差,不适合配做旋转喂料器叶轮。

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全) System Basic Parameter nThe following paragraphs discuss the ___.1.Equivalent Length of Ash Pipeline (Leg)___ total equivalent length of the ash ___ ___:Leg = L + H + ∑nLr (m) (5-19)2.Ash-to-Air。

(μ)___ using the following formula。

based on the selected air compressor capacity and the output of the storage pump:μ = φGhX103/[Qmγa(t2+t3)](kg/kg) (5-20)Gh = ψγhνp (t/storage) (5-21)The ash-to-air。

depends on the length of the ___。

the μvalue is generally een 7-20kg/kg。

When the distance of n is short。

the upper limit value is used。

when the distance is long。

thelower limit value is used.3.Required Air Volume for Conveying SystemSince both single and double storage pumps work intermittently。

the required air volume for the system should be based on the air n required for each working cycle of the storage pump。

正压气力输送的基本参数计算公式

正压气力输送的基本参数计算公式

正压气力输送的基本参数计算公式正压气力输送系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr(m)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[Qmγa(t2+t3)](kg/kg)Gh=ψγhνp(t/仓)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)质量流量Ga=Qaγa=16.67Gm/μ(kg/min)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=(Gmchth+Gacata)/(Gmch+Gaca)(℃)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃),按公式计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃;因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb=10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25m/s。

气力输送计算excel

气力输送计算excel

气力输送计算excel
摘要:
一、气力输送计算介绍
1.气力输送计算的定义
2.气力输送计算的重要性
二、气力输送计算的方法
1.基本概念与原理
2.计算步骤与公式
三、气力输送计算在工程中的应用
1.实际工程案例
2.结果分析与讨论
四、气力输送计算的局限性与展望
1.现有方法的局限性
2.未来研究方向
正文:
气力输送计算是一种通过计算流体在管道内的流动情况,来确定气力输送过程中所需的各种参数的方法。

这种方法在工业生产、环境保护等领域有着广泛的应用。

气力输送计算的方法主要包括基本概念与原理的学习、计算步骤与公式的应用等。

在学习过程中,需要掌握相关的物理知识和数学知识,例如流体力学、气体力学等。

在实际工程中,气力输送计算可以帮助工程师们优化设计,提高输送效率,降低能耗。

例如,在某实际工程案例中,通过气力输送计算,工程师们成功地提高了输送速度,降低了能耗,取得了显著的经济效益。

然而,气力输送计算也存在一些局限性,例如对于复杂多变的输送环境,现有的计算方法可能无法准确预测实际的输送情况。

因此,未来的研究方向将主要包括提高计算方法的准确性和适应性,以及探索新的计算方法。

气力输送计算

气力输送计算
(一)设计依据及对工艺设计的要求 作为设计依据的条件主要有: 1.生产规模及工作制度。 2.原粮的性质及其成品的种类和等级。 3.厂房结构形式,以及仓库和附属车间的结合情况。 4.工艺流程和作业机的布置情况。 5.技术经济指标和环境保护要求。 6.操作管理条件和技术措施的可能性。 7..远景发展规划。
5.在压送系统的设计过程中,必须同时考虑仓顶或卸料器尾气的收集 处理,包括供料器;漏风的收集。这些都可按一般的通风除尘系统进行设 计。
总之,设计过程中需要考虑的因素是很多的,应该在坚持基本原则的 基础上,灵活掌握,不能生搬硬套,以免顾此失彼,必要时可列出多种方 案,论证对比,择善而从。
第四节 气力输送网络的设计与计算
3.在确定各条输送管路的位置和走向时,应尽量缩短长度减少弯头, 并使选配阀的数量最少。一般情况下,选配阀可优先考虑双路阀(特别是 旋塞式双路阀),因其结构简单,体积小,维护方便,价格较低。
在管道由水平转向垂直时,其弯头下方应设置排堵门。其作用是以备清 除因突然停机(如停电、电器跳闸)所引起的垂直管中正在输送的物料相 继下落而形成的堵塞,防止鼓风机再次起动的困难或超载。
第四章 气力输送技术
第四节 气力输送网络的设计与计算
第四节 气力输送网络的设计与计算
气力输送网路的设计与计算的任务是,根据规定的条件设计确定网路的 组合形式以及各输料管和风运设备的规格尺寸,计算网路所需要的风量和压 力损失,从而正确选用合适的风机和电动机,以保证网路既经济,又能可靠 地工作。
一、设计依据和主要参数的确定
(二)主要参数的确定
输送量、输送风速和输送浓度是风运网路计算的主要参数。这些参 数,对网路中各个设备的尺寸大小,整个网路所需动力的多少,以及网 路工作的稳定可靠,起着决定性的作用。因此,正确而合理地确定这些 参数,对气力输送有效地和经济地工作是十分重要的。

气力输送计算

气力输送计算
G算 =aG
G算——计算输送量 G——设计输送量,根据工艺流量平衡表或其他要求确定。必要时应通 过测定,以求准确 a——储备系数,考虑到工艺上的原因,如原料品质的变化,水分含量 的高低,操作指标的改变等可能引起流量变化的因素而附加的系数
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定
2.输送风速
我国面粉厂的气力输送浓度,中小型厂,麦间为μ=2~4,粉间为 μ=5~3。大型厂,麦间为μ=4~6,粉间为μ=2~5。米厂输送稻谷、谷糙混 合物和糙米,μ=3~5;输送米糠,μ=5~2。码头及移动式气力输送装置, 当采用高压离心风机时,μ=8~14。
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定
(二)主要参数的确定
输送量、输送风速和输送浓度是风运网路计算的主要参数。这些参 数,对网路中各个设备的尺寸大小,整个网路所需动力的多少,以及网 路工作的稳定可靠,起着决定性的作用。因此,正确而合理地确定这些 参数,对气力输送有效地和经济地工作是十分重要的。
1.输送量 输料管在正常工作中的最大物料量为:
粮粒 : 粉类物料:
ν=20~25米/秒 ν= 16~20米/秒
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定 3.输送浓度
输送浓度μ,系指输料管中所输送的物料量与空气量之比,
或称混合比或浓度比,即每千克空气所能输送的物料的千克数。
μ=
G物 G气
式中: G物——单位时间所输送的物料重量(千克/时) G气——单位时间内通过输料管的空气重量(千克/时)
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定
气力输送对工艺设计的要求
粮食加工厂的气力输送是为工艺服务的。但是气力输送本身也直接或 间接地担负着一定的工艺任务,所以为了更好地发挥各自的作用,并最终 地改善工艺效果,两者之间应该相互兼顾,紧密配合。一方面,风运设计 要尽量满足工艺的要求;另一方面,工艺上的安排也应该考虑风运的合理 性,进行必要的调整。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正压密相气力输送基本计算2
正压密相系统基本参数计算
1.正压密相输送管径D计算
正压密相输送管径D=(m)
Qa--------输送耗气量(m³/min)
Va--------输送风速(m/s)
当输送风速为4m/s,输送量为16t/h,混合比为30时管径是多少呢?
Qa=16000/30/60/1.2=7.4m³/min
D==0.039m
2.物料透气性和持气性
当物料具有足够的透气性,就可以作栓流密相输送。

若物料具有足够的持气能力,就可以作运动床密相气力输送。

当物料没有足够的透气性又无持气能力,只能作稀相气力输送。

物料透气性和特气测定:
将物料置于圆筒状容器中,通过器底的多孔板向料层(层高h)供气,并改变供气量来测出料层的气体压力降,从面得出气体速度与压降的关系曲线,就可以判断出物料透气性和持气性了。

相关文档
最新文档