多级放大电路和运算放大器
几种常见的放大电路原理图解
几种常见的放大电路原理图解展开全文能够把微弱的信号放大的电路叫做放大电路或放大器。
例如助听器里的关键部件就是一个放大器。
放大器有交流放大器和直流放大器。
交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。
此外还有用集成运算放大器和特殊晶体管作器件的放大器。
它是电子电路中最复杂多变的电路。
但初学者经常遇到的也只是少数几种较为典型的放大电路。
读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。
首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。
放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。
在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
下面我们介绍几种常见的放大电路:低频电压放大器低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。
( 1 )共发射极放大电路图 1 ( a )是共发射极放大电路。
C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。
1 、 3 端是输入, 2 、 3 端是输出。
3 端是公共点,通常是接地的,也称“地”端。
静态时的直流通路见图1 ( b ),动态时交流通路见图 1 ( c )。
电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。
( 2 )分压式偏置共发射极放大电路图 2 比图 1 多用 3 个元件。
基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。
发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。
多级放大电路和集成运算放大器-2
+24V
+
Ui
–
RB1 1M
C1
+
T1
RE1 27k
RB 1 82k
RC2 10k
+C3
+C2
RE1
RB 2 43k
RE2 7.5k
T2
510 +CE
+
.
Uo
–
VB 2
UCC RB 1 RB 2
RB2
24 43V 82 43
8.26V
IC2
UB 2-UB E2 RE2 RE 2
8 .26 0 .6 mA
模 拟电子技术
例2 下图是一个输入短路的两级直接耦合放大电路,计算
IBQ1、ICQ1、UCEQ1和IBQ2、ICQ2、UCEQ2的值。设VT1、VT2的β
值分别是β1=50, β2=35,稳压管的稳定电压UZ=4V,
UBEQ1=UBEQ2=0.7V。
+VCC
ICQ2
(+12V)
I1
I3
RC2
RB 95kΩ
模 拟电子技术
Ib1
Ic1
Ib2
Ic2
+
rbe1
Ui
RB1
+
.
_
RE1 U_o1
+ rbe2
RB 1 RB 2
RC2
RE 2
.
Uo
_
r rbe2
200
(1
)
26 IE
200
i2
51
26
0 .96
Ω
1 .58kΩ
ri2 RB 1 // RB 2 // rbe2 (1 )RE 2 14 kΩ
多级放大电路
第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。
多级放大电路内部各级之间的连接方式称为耦合方式。
常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。
1.多级放大电路的耦合方式阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。
图所示电路是典型的两级阻容耦合放大电路。
优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。
直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。
直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。
直接耦合放大电路存在的最突出的问题是零点漂移问题。
所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
变压器耦合变压器耦合放大电路如图所示。
这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。
级间耦合的优、缺点及应用比较耦合方式优点缺点应用直接耦合·可放大直流及缓慢变化的信号,低频响应好。
·便于集成·各级Q不独立,使设计、计算、调试不便。
·有严重的零点漂移问题。
直流或交流放大,分立或集成电路2.直接耦合放大电路的特殊问题——零点漂移零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
产生零点漂移的原因很多。
如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。
模拟电子技术(4.1)--多级放大电路和集成运算放大器
第4章多级放大电路和集成运算放大器例题【例4-1】 已知电路如图4-1所示,V 12CC +=V Ω='100b b r ,6021==ββ,Ω=k 300B1R ,Ω=k 2C1R ,Ω=k 200B2R ,Ω=k 2E R ,Ω=k 2L R ,V 7.0BE =U ,1C 、2C 、3C 对交流看作短路。
(1)估算静态工作点1B I 、1C I 、2B I 、2C I ;(2)计算总的电压放大倍数;(3)求放大电路的输入电阻和输出电阻。
图4-1 例4-1电路【解4-1】 【解题思路】本题是阻容耦合两级放大电路,故前后两级静态工作点独立;第一级为共发射极电路,故输入电阻即第一级放大电路的输入电阻;第二级为共集电极接法的射极跟随器,输出电阻尽管是第二级的输出电阻,但是在计算过程中要考虑前一级放大电路的影响。
【解题过程】(1)静态工作点μA 383003.11B1BEQ1CC 1≈=-=R U V I B 2.3mA μA 3860B11C1≈⨯==I I βμA352612003.11)1(E2B2BEQ2CC B2=⨯+=++-=R R U V I β 2.1mAμA 3560B22C2≈⨯==I I β(2)总的电压放大倍数是各级放大电路电压放大倍数的乘积。
采用教材P127页的方法1:在计算第一级的电压放大倍数时,把第二级的输入电阻作为第一级的负载考虑,然后单独计算第二级的放大倍数。
kΩ8.03.22661100mV 26)1(EQ11b b be1≈⨯+=++='I r r βkΩ8.01.22661100mV 26)1(EQ22b b be2≈⨯+=++='I r r βkΩ47)]2//2(618.0//[200)]//)(1(//[L E 2be2B2i2≈⨯+=++=R R r R R β1440.8)47//2(60)//(be1i2C11.i.o1u1.≈⨯-=-==r R R U U A β99.08.6161)//)(1()//)(1(L E 2be2L E 2.i2.o u2.≈-=+++==R R r R R U U A ββ143u2.u1.u .≈⋅=A A A (3)输入电阻和输出电阻kΩ8.08.0//300//be1B1i1i ≈===r R R R Ω450612//2008.0//21////2C1B2be2o2o ≈+=++==βR R r R R R E 【点 评】本题的难点是输出电阻的计算,由于输出级采用的是射极跟随器,故一方面输出电阻的计算应考虑前一级的影响;另外,在计算过程中,以发射极作为参照基准,在基极回路的电阻要等比缩小21β+倍。
几种运算放大器比较器及电路的简单分析
几种运算放大器比较器及电路的简单分析运算放大器和比较器是两种常见的电子元件,它们在电路中具有不同的功能。
本文将对这两种电子元件进行简单的分析和比较。
一、运算放大器运算放大器是一种用于放大电压信号的电子设备。
它具有高放大倍数和低失真的特点,常被用于放大微弱的输入信号。
运算放大器一般由多级放大电路组成,其中包括差动输入级、差动放大级、共射放大级和输出级。
运算放大器具有以下几个特点:1.高放大倍数:运算放大器通常具有很高的开环放大倍数,可以放大微小的输入信号。
2.低失真:运算放大器的差分输入电阻和输入容量很低,从而减小了输入信号的失真。
3.稳定性好:运算放大器具有很好的直流稳定性和交流稳定性,使其能够在不同的负载条件下稳定工作。
4.大信号驱动能力:运算放大器能够输出较大的电流和电压,可以驱动各种负载。
5.可调增益:运算放大器通常具有可调的增益,可以通过调节电阻、电容或反馈电阻等元件来改变放大倍数。
运算放大器常被应用于放大、滤波、积分、微分和开关等电路中,常见的应用有示波器、滤波器和反馈电路等。
二、比较器比较器是一种用于比较两个电压的电子元件。
它具有高增益和快速响应的特点,常被用于判断输入信号的大小关系。
比较器通常由不同类型的放大电路和判决电路组成,常见的比较器有有限增益比较器、开环比较器和比率比较器等。
比较器具有以下几个特点:1.高增益:比较器通常具有很高的增益,可以放大微小的输入差异。
2.快速响应:比较器的响应时间很短,可以快速判断输入信号的大小关系。
3.可调阈值:比较器可以通过调节电阻、电容或反馈电阻等元件,改变阈值的位置。
4.高输入阻抗:比较器的输入阻抗很高,可以减小输入电路对比较器的影响。
比较器常被应用于开关、报警、触发器和AD转换等电路中,常见的应用有电压比较器、窗口比较器等。
三、运算放大器与比较器的比较虽然运算放大器和比较器都是电路中常用的电子元件,但它们在功能和特性上有一些不同之处。
1.功能:运算放大器的主要功能是放大信号,而比较器的主要功能是比较电压。
运算放大器应用电路的设计与制作
运算放大器应用电路的设计与制作(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反响电路时,可以灵敏地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个局部组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性局部。
如图2所示。
U -对应的端子为“-〞,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+〞,当输入U +单独由该端参加时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益〔开环电压放大倍数〕。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud 〔U +-U -〕,由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短〞。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断〞,这说明运放对其前级汲取电流极小。
上述两个特性是分析理想运放应用电路的根本原那么,可简化运放电路的计算。
3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号参加反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
多级放大电路与差分放大电路
将多级放大电路与差分放大电路相结合,可以进一步提高 信号放大的性能,实现高增益、低噪声、高抗干扰能力的 放大电路。
研究不足与展望
深入研究非线性失真
目前对于多级放大电路和差分放 大电路的研究主要集中在线性范 围内,对于非线性失真的研究相 对较少。未来可以进一步深入研 究非线性失真对电路性能的影响, 并提出相应的优化措施。
感谢您的观看
THANKS
低失真
由于差分放大电路采用对称结构,因此可以减小 信号的失真度,提高信号的保真度。
3
宽频带
差分放大电路的带宽通常比单端放大电路更宽, 因此可以适应更高频率的信号放大。
差分放大电路的应用
仪器仪表
01
在测量和控制系统中,差分放大电路常被用于将微弱的差分信
号放大为可用的标准信号。
通信系统
02
在通信系统中,差分放大电路可用于提高信号的抗干扰能力和
多级放大电路与差分放大电 路
目录
• 引言 • 多级放大电路概述 • 差分放大电路概述 • 多级放大电路与差分放大电路的比较 • 多级放大电路与差分放大电路的优缺点分析 • 多级放大电路与差分放大电路的应用案例 • 结论与展望
01
引言
目的和背景
深入了解多级放大电 路与差分放大电路的 原理和性能。
输入阻抗低
差分放大电路的输入阻抗较低,可能对信号源 产生负载效应。
对称性要求高
差分放大电路要求两个输入端的信号严格对称,否则可能导致性能下降。
06
多级放大电路与差分放大电 路的应用案例
多级放大电路的应用案例
音频放大器
在音频设备中,多级放大电路用于将微弱的音频信号放大到足够的幅度,以驱动扬声器产生声音。通过多级放大,可 以实现高增益和低失真。
运算放大器的结构
I IO 0.4 ~ 0.8 nA d I IO 8 ~ 12 pA/ C dT
高输入阻抗型
用于测量设备及采样保持电路中。 例如: AD549
I I B 0.040 p A
CF155/255/355
Rid 1013
I I B 30 p A
Rid 1012
低功耗型
推挽电路 中间 放大级 偏置电路 恒流源 输 出
差分电路 输 入
输入级
输出级
运算放大器的符号
(a) (b) 模拟集成放大器的符号 (a) 国家标准符号 (b)原符号
运算放大器外形图
§5.2 常用集成运算放大器
通用集成运放741内部结构
集成运放741的简化电路图
输入级 中间级 输出级
集成运放原理图及计算
静态技术指标 动态技术指标
静态技术指标 输入偏置电流IB
运放两个输入端偏置电流的平均值,用于衡量 差分放大对管输入电流的大小。
输入失调电压 Vio
输入电压为零时,将输出电压除以电压增益, 即为折算到输入端的失调电压。是表征运放内 部电路对称性的指标。
输入失调电流Iio
在零输入时,差分输入级的差分对管基极电流 之差,用于表征差分级输入电流不对称的程度。
转换速率S
R
(压摆率)
反映运放对于快速变化的输入信号的响应能力。 转换速率SR的表达式为: d Vo
SR dt
max
等效输入噪声电压Vn
输入端短路时,输出端的噪声电压折算到输入 端的数值。这一数值往往与一定的频带相对应。
理想运算放大器的条件
Avd=,实际上Avd≥80dB即可。 Rid=,实际上Rid比输入端外电路的电阻
第三章 多级放大器
第三章 多级放大器
3.3.2 差分放大器 3.3.5 差分放大器的四种接法
4. 单端输入—单端输出(非平衡输入—平衡输出)
第三章 多级放大器
3.3.2 差分放大器 3.3.5 差分放大器的四种接法
各种输入方式的特点:
1. 双端输入(平衡输入)
第三章 多级放大器
变压器耦合和光电耦合可以实现前后级的地 线隔离;而阻容耦合和变压器耦合则会使得放 大器的低频相应变差。 多级放大器的带宽窄于单级放大器,放大器 的级数越多,则带宽越窄。 直接耦合放大器有一个特殊问题,那就是前 级静态工作点的变动会被后级放大器放大,从 而导致后级放大器静态工作点的较大偏移,乃 至使其无法正常工作,从而引出一种特殊放大 器形式——差分放大器。
将输入信号分成两个互为反相的信号,则可以实现差动输出。 如果电路完全对称,则差动输出就可以克服温漂。 但是依然存在下述缺点
1. 发射级电阻Re的接入使得放大器的增益大大下降。
2. 信号源和基极电源不共地。
第三章 多级放大器
3.3.2 差分放大器 3.3.2 差分放大器的形成3
如果电路完全对称,则发射级电阻Re上的差动电流为零,输 入信号将直接作用到管子的发射结,从而发射级电阻Re对放 大器差动增益的影响消失。 发射级电阻Re对温漂的抑制作用依然有效(即负反馈调节作 用依然存在),所以电路既保留了对温漂的强烈的抑制作用, 又保证了电路的高增益。 但是依然存在下述缺点 1. 信号源和基极电源不共地。
第三章 多级放大器
多级放大器往往要求能够提供合适的输入、输 出阻抗以及足够的电压电流增益,这可以通过 将不同组态的放大器进行级联(共射放大器及 跟随器)来实现。
多级放大电路
第五章多级放大电路第一节多级放大电路在实际工作中,为了放大非常微弱的信号,需要把若干个基本放大电路连接起来,组成多级放大电路,以获得更高的放大倍数和功率输出。
多级放大电路内部各级之间的连接方式称为耦合方式。
常用的耦合方式有三种,即阻容耦合方式、直接耦合方式和变压器耦合方式。
1.多级放大电路的耦合方式1.1阻容耦合通过电容和电阻将信号由一级传输到另一级的方式称为阻容耦合。
图所示电路是典型的两级阻容耦合放大电路。
优点:耦合电容的隔直通交作用,使两级Q相互独立,给设计和调试带来了方便;缺点:放大频率较低的信号将产生较大的衰减,不适合传递变化缓慢的信号,更不能传递直流信号;加之不便于集成化,因而在应用上也就存在一定的局限性。
1.2直接耦合多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。
直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的信号、信号传输效率高等优点,在集成电路中获得了广泛的应用。
直接耦合放大电路存在的最突出的问题是零点漂移问题。
所谓零点漂移是指把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
1.3变压器耦合变压器耦合放大电路如图所示。
这种耦合电路的特点是:级间无直流通路,各级Q独立;变压器具有阻抗变换作用,可获最佳负载;变压器造价高、体积大、不能集成,其应用受到限制。
1.4级间耦合的优、缺点及应用比较2.直接耦合放大电路的特殊问题——零点漂移2.1零点漂移所谓零点漂移是指当把一个直接耦合放大电路的输入端短路时,即输入信号为零时,由于种种原因引起输出电压发生漂移(波动)。
产生零点漂移的原因很多。
如晶体管的参数随温度的年华、电源、电压的波动等,其中,温度的影响是最重要的。
在多级放大电路中,又已第一、第二级的漂移影响最为严重。
因此,抑制零点漂移着重点在第一、第二级。
2.2差分式放大电路(观看视频)在直接耦合多级放大电路中抑制零点漂移最有效的电路结构是差动放大电路。
多级放大电路的放大倍数等于各级放大倍数的乘积
多级放大电路的放大倍数等于各级放大倍数的乘积
摘要:
一、多级放大电路简介
1.多级放大电路的定义
2.多级放大电路的作用
二、多级放大电路的放大倍数计算
1.放大倍数等于各级放大倍数的乘积
2.实际应用中的多级放大电路
三、多级放大电路的优势与局限
1.优势:放大倍数高,信号传输距离远
2.局限:级数过多导致的性能下降
四、多级放大电路在实际应用中的案例
1.通信系统中的应用
2.音频放大器中的应用
正文:
多级放大电路是一种电子电路,通过将多个放大器级联,实现对输入信号的放大。
这种电路具有放大倍数高、信号传输距离远等优点,被广泛应用于通信系统、音频放大器等领域。
多级放大电路的放大倍数计算非常简单,只需将各级放大倍数相乘即可。
这一特性使得多级放大电路在需要高放大倍数的场景中具有显著优势。
然而,需要注意的是,多级放大电路也存在一定的局限性。
当级数过多时,电路的性
能可能会受到影响,导致信号失真等问题。
在实际应用中,多级放大电路有广泛的应用。
例如,在通信系统中,通过多级放大电路可以实现信号在长距离传输过程中的放大。
而在音频放大器中,多级放大电路则可以使得音频信号得到更高的放大倍数,从而提高音质。
总之,多级放大电路是一种具有广泛应用的电路,其放大倍数的计算简单明了,为各种电子设备的信号放大提供了可能。
电工电子技术与技能第3版 第12章 放大电路与集成运算放大器
第12章 放大电路与集成运算放大器
12.1.2 基本共射极放大电路结构
如图12-2所示,共射极放大电路主要由以下部分组成: 流射i结C【【【,正晶基集是向体极电放偏管偏极大压三置负电,极电载路并管阻电核给阻TR心基】b】R元极c起】也件提电称。供R流c偏一将放流个集大电合电作阻适极用,的电,电直流通源流的过V偏变C基置C化通极电转过电流换R流Ib成b为i,B集控三简—制极称射集管偏之电提流间极供的电发 电压变化,这个变化的电压,就是放大器的输出信号,即通过Rc将三极 管的电流放大作用转换为电压放大。
图12-4共射极放大电路动态分析实验电路
I第0 12章 放大电路与集成运算放大器
实验现象:用示波器观察可得到如图13-4所示波形。
图13-4 共射极放大电路动态分析各点波形
实验结论:由实验可以看出输出电压uo比ui大得多,说明共射极放大 电路具有电压放大作用;且uo和ui反相,说明共射放大电路还具有倒相作 用。
数,即放大电路输出电压与输入电
压之比为:
Av
vo vi
除电压放大倍,还有电流放大
图12-6 放大器的方框图
倍数Ai和功率放大倍数Ap, 三者关
系为:
AP
Po Pi
iovo iivi
Ai Av
工程上常用对数来表示放大倍
数,称为增益G,单位为分贝(dB)。
电压增益为:
Gu = 20lgAv(dB)
第12章 放大电路与集成运算放大器
第12章 放大电路与集成运算放大器
12.1.5 放大器的主要性能指标
【放大倍数】放大倍数是描述放大器放大能力的指标,常用A表示。 放入输大电出器压电的和流框输。图入如电图流;12右-6所边示是,输左出边端是,输外入接端负,载外,接u信o、号i源o分,别u为i、输ii分出别电为压输和
模拟电子技术基础-作业答案1
模拟电子技术课程作业第1章 半导体器件1将PN 结加适当的正向电压,则空间电荷区将( b )。
(a)变宽 (b)变窄 (c)不变2半导体二极管的主要特点sdf 是具有( b )。
(a)电流放大作用 (b)单向导电性(c)电压放大作用3二极管导通的条件是加在二极管两端的电压( a )。
(a)正向电压大于PN 结的死区电压 (b)正向电压等于零 (c)必须加反向电压4电路如图1所示,设D 1,D 2均为理想元件,已知输入电压u i =150sin ωt V 如图2所示,试画出电压u O 的波形。
20V100V 0u Iu i V/ωtD 2D 140k Ω40k Ω150u O+- 图1+-图2+-+-答案u i V /ωt150ωt 10060u i V /0100605电路如图1所示,设输入信号u I1,u I2的波形如图2所示,若忽略二极管的正向压降,试画出输出电压u O 的波形,并说明t 1,t 2时间内二极管D 1,D 2的工作状态。
u I2R Lu Ot 1t 2tt2D 1D 2图1图2u I1+-u I1/ V-22-2u I2/ V答案t 1t 2tu O /V -2t 1:D 1导通,D 2截止t 2:D 2导通,D 1截止第2章 基本放大电路1下列电路中能实现交流放大的是图( b )。
++++++++U CCu oU CCU CCU CC()a ()b (c)(d)+-+-+-+-+-+-+-+-u iu iu ou ou iu ou i++++2图示电路,已知晶体管β=60,U BE .V =07,R C k =2 Ω,忽略U BE ,如要将集电极电流I C 调整到1.5mA ,R B 应取( a )。
(a)480k Ω (b)120k Ω (c)240k Ω (d)360k Ω++C 2C 1R BR C u ou i+-+-+12V3固定偏置放大电路中,晶体管的β=50,若将该管调换为β=80的另外一个晶体管,则该电路中晶体管集电极电流IC 将( a )。
运算放大器的工作原理
运算放大器的工作原理运算放大器(Operational Amplifier,简称Op-Amp)是一种用于放大电压信号的集成电路。
它通常被用于各种电子设备中,如放大器、滤波器、比较器等。
运算放大器的工作原理是通过放大输入信号并输出一个放大后的信号,同时还具有一些特殊的性质,如高输入阻抗、低输出阻抗、大增益等。
在本文中,我们将详细介绍运算放大器的工作原理及其应用。
首先,让我们来了解一下运算放大器的基本结构。
一个典型的运算放大器通常由一个差分输入级、一个级联的电压放大器和一个输出级组成。
差分输入级通常由两个输入端和一个差动放大器组成,用于将输入信号进行放大。
电压放大器用于进一步放大信号,并控制放大倍数。
输出级则用于将放大后的信号输出到外部电路中。
运算放大器的工作原理基于反馈机制。
通过将一部分输出信号反馈到输入端,可以控制放大器的增益和性能。
负反馈可以使运算放大器的增益更加稳定,并且可以控制输出信号的精确度。
正反馈则可以用于产生振荡或者比较器等特殊应用。
运算放大器的工作原理可以用一个简单的数学模型来描述。
假设一个运算放大器的输入电压为Vin,输出电压为Vout,放大倍数为A,则有以下关系:Vout = A * (Vin+ - Vin-)其中Vin+和Vin-分别代表运算放大器的正输入端和负输入端的电压。
根据这个数学模型,我们可以看出,当Vin+大于Vin-时,输出电压Vout为正值;当Vin+小于Vin-时,输出电压Vout为负值。
这就是运算放大器的基本工作原理。
在实际应用中,运算放大器可以用于各种电子电路中。
比如,它可以被用作信号放大器,将微弱的信号放大到可以被测量或者控制的范围内。
它也可以被用作比较器,用于比较两个信号的大小。
此外,运算放大器还可以被用作滤波器,通过控制输入信号的频率来实现滤波效果。
总之,运算放大器是一种非常重要的电子器件,它的工作原理基于反馈机制,并且可以被用于各种电子电路中。
通过控制输入信号和反馈信号,可以实现对输出信号的精确控制。
第22讲 第十一章放大电路基础(四)及第十二章线性集成运算放大器和运算电路
(2)并联负反馈使输入电阻减少由于基本放大电路与反馈电路在输入回路中并联,如图所示,由于,在相同的V i作用下,因I f的存在而使I i增加,因此,并联负反馈使输入电阻R if=V i/I i减小。
所以,并联负反馈使输入电阻减小倍。
●负反馈对放大电路输出电阻的影响◆电压负反馈使输出电阻减小电压负反馈取样于输出电压,又能维持输出电压稳定,即是说,输入信号一定时,电压负反馈的输出趋于一恒压源,其输出电阻很小。
有电压负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+ )①。
反馈愈深,R of愈小。
◆电流负反馈使输出电阻增加电流反馈取样于输出电流,能维持输出电流稳定,就是说,输入信号一定时,电流负反馈的输出趋于一恒流源,其输出电阻很大。
有电流负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+ )倍。
反馈愈深,R of愈大11.2.5 深度负反馈放大电路近似计算的一般方法● 近似计算的根据 根据和的定义 ,在 中,若 , 则 即 所以有此式表明,当 时,反馈信号 与输入信号 相差甚微,净输入信号 甚小,因而有对于串联负反馈有 (虚短), ;对于并联负反馈有 、, (虚断)。
利用“虚短”、“虚断”的概念可以以快速方便地估算出负反馈放大电路的闭环增益 或闭环电压增益。
● 近似计算的方法1.判别反馈类型,正确识别并画出反馈网络。
注意电压取样时不要把直接并在输出口的电阻计入反馈网络;电流求和时不要把并在输入口的电阻计入反馈网络。
2.在反馈网络输入口标出反馈信号:电压求和为开路电压fv ,电流求和时为短路电流fi ,再由反馈网络求出反馈系数F 。
要注意标fv 时在反馈网络入口标上正下负;标fi 时必须在反馈网络入口以上端流入为参考方向。
3.求闭环增益 ,注意不同的反馈类型fA 的量纲不同。
4.由fA 求闭环源电压增益vsfA 。
电压取样电压求和时:s f vsf v v A A 0==电压取样电流求和时:00f vsf s s s sA v vA v i R R ===电流取样电压求和时:00L vsf f Ls sv i R A A R v v ''⋅'===电流取样电流求和时:00f L L vsfs s s sA R v i R A v i R R '''⋅===⋅其中:0i '是输出管的管端输出电流,即取样电流。
什么是运算放大器它在电子电路中的作用是什么
什么是运算放大器它在电子电路中的作用是什么运算放大器(Operational Amplifier,简称OP-AMP)是一种集成电路芯片,广泛应用于电子电路中。
它以高增益和宽带宽特性而著称,可以在信号处理、信号放大、滤波和数学运算等方面起到重要的作用。
运算放大器的基本结构包括差分输入级、电压放大级和输出级。
差分输入级负责对输入信号进行差分放大,电压放大级负责对差分放大后的信号进行进一步放大,输出级负责将放大后的信号驱动至负载端。
运算放大器的作用主要体现在以下几个方面:1. 信号放大:运算放大器以其高增益特性,可以对微弱的输入信号进行放大,使其达到可以被后续电路处理的水平。
这在信号传输和处理中非常重要,在各类电子设备中广泛应用。
2. 数学运算:运算放大器可以通过反馈电路实现各种数学运算,如加法、减法、乘法、除法等。
通过合理的电路设计和连接方式,可以将运算放大器构成运算器、积分器、微分器等基本数学模块,方便实现各种复杂的信号处理算法。
3. 滤波器:运算放大器可以与电容、电感和电阻等元件组成电路,实现各种滤波功能。
根据不同的电路连接方式和参数设置,可以设计出低通滤波器、高通滤波器、带通滤波器等不同类型滤波器,对不同频率的信号进行筛选和处理。
4. 线性调节器:运算放大器通常具有高输入和高输出阻抗,可以将输入信号以较低的输出阻抗驱动至后续电路。
这对于电压和电流的线性调节非常有帮助,能够提高信号传输的质量和稳定性。
除了以上几个基本作用,运算放大器还可以用于比较器、振荡器、模数转换器等应用中。
通过改变反馈电路的连接方式和参数设置,可以使运算放大器具备不同的功能,满足不同的电路设计需求。
综上所述,运算放大器作为一种重要的电子元件,具有信号放大、数学运算、滤波和线性调节等多种作用。
它在电子电路中的应用非常广泛,为各类电子设备的正常运行和优化性能提供了有效的支持。
通过合理的使用和设计,可以充分发挥运算放大器的特性,实现更加精确和高效的信号处理。
电子电路基础II_12
第12讲 2014.5.29
1
多级放大器
• 基本放大电路
– 放大倍数大约几十倍 – 如果信号非常微弱,则不能满足放大要求
• 解决办法
– 将多个基本放大器电路连接起来,可以获得更 高的放大倍数 – 多级放大器:其中每个基本放大电路为一级 – 耦合方式:级与级之间的连接方式
• 阻容耦合,直接耦合,变压器耦合,光电耦合
。对比
vo
R2 vin R2ib R1
知
最后一项是由R3引入的。如果满足
R2 R2ib 1 R3ib R 1
i +和i -引起的失调可以抵消。
R3等于R1和R2的并联,反向放大器输出 对比同向放大器的输出
R Vo 1 2 Vin R2 I b I b R1
ib-引起的失调也是R2ib-,与同相放大 器一样,如果“+”端也串入一个电阻 R3,有可能消除失调。如右图所示。 v i R 代入 v k v v o i i R R RR
i b 3 2 1 1 2 vi R R vin R R vo R R ib 1 2 1 2 1 2
33
放大电路的读图方法
• (1)化整为零:按信号流通顺序将N级放 大电路分为N个基本放大电路。 • (2)识别电路:分析每级电路属于哪种基 本电路,有何特点。 • (3)统观总体:分析整个电路的性能特点。 • (4)定量估算:必要时需估算主要动态参 数。
34
例1
动态电阻无穷大
(1)化整为零,识别电路
1
为输入电流提供直流通路,
2 外接失调调整电路(offset adjuasting circuit),将失调 (offset)降到最低。
多级放大电路及集成运算放大器
1.共集-共射极组合电路
如图3.7所示,电路增益主要由共射极电路提供,共集电极电路主要用来提高输入电阻。 输入电阻
3.1.3组合放大电路
根据前面分析:三种基本组态电路的性能各有特点,根据三种组态电路不同的特点,将其中任意两种组态相组合,可以构成不同的放大电路,使其更适合实际电路的需要。下面介绍几种常见的组合放大电路。
变压器耦合 变压器耦合是利用变压器将前级的输出端与后级的输入端连接起来,这种耦合方式称为变压器耦合,如图3.3所示。将V1的输出信号经过变压器T1送到V2的基极和发射极之间。V2的输出信号经T2耦合到负载RL上。Rb11、Rb12和Rb21、Rb22分别为V1管和V2管的偏置电阻,Cb2是Rb21和Rb22的旁路电容,用于防止信号被偏置电阻所衰减。
高频区放大倍数的下降原因是由于三极管结电容和杂散电容的容抗随频率增加而减小所引起。结电容通常为几十到几百皮法,杂散电容也不大,因而频率不高时可视为开路。在高频时输入的电流被分流,使得IC减小,输出电压降低,导致高频区电压增益下降,如图3.10所示。
图3.10 高频通路
通频带 把放大倍数Aum下降到 时对应的频率称为下限频率fL和上限频率fH,夹在上限频率和下限频率之间的频率范围称为通频带fBW。
幅频特性 共射极放大电路的幅频特性如图3.9所示。从幅频特性曲线上可以看出,在一个较宽的频率范围内,曲线平坦,这个频率范围称为中频区。在中频区之外的低频区和高频区,放大倍数都要下降。 引起低频区放大倍数下降的原因是由于耦合电容C1、C2及Ce的容抗随频率下降而增大所引起。
图3.9共射极放大电路的幅频特性 电路; (b)幅频特性
共模抑制比
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路内部结构的特点:
1. 电路元件制作在一个芯片上,元件参数偏差方 向一致,温度均一性好。
2. 电阻元件由硅半导体构成,范围在几十到20千 欧,精度低。高阻值电阻用三极管有源元件代 替或外接。
3. 几十 pF 以下的小电容用PN结的结电容构成、 大电容要外接。
第十章
多级放大电路
多级耦合放大电路
输
第一级
入
放大电路
第二级
……
放大电路
功放级
输 出
第n级 放大电路
第 n-1 级 放大电路
耦合:即信号的传送。 耦合方式:直接耦合;阻容耦合;变压器耦合;光电耦合。
多级放大电路对耦合电路要求:
1. 静态:保证各级Q点设置 2. 动态: 传送信号。
要求:波形不 失真,减少压 降损失。
uo
RC
T2
R1 RB
ui1
ui2
二、 抑制零漂的原理
当 ui1 = ui2 =0 时: uo= uC1 - uC2 = 0 当温度变化时:
uo= (uCபைடு நூலகம் + uC1 ) - (uC2 + uC2 ) = 0
三、 共模电压放大倍数AC
R1 RB
RC T1
uo
RC
T2
ui1
+UCC
R1 RB
ui2
多级放大电路的动态分析
R1
R2 RC2
1M
C2 82k 10k
+UCC (+24V)
C1
RS
20k Ui U S
C3
T1
T2 RL
RE1 R3
RE2
27k 43k 8k
10k Uo
CE
前级
后级
多级阻容耦合放大器的特点:
(1) 由于电容的隔直作用,各级放大器的静态工作 点相互独立,分别估算。
(2) 前一级的输出电压是后一级的输入电压。 (3) 后一级的输入电阻是前一级的交流负载电阻。 (4) 总电压放大倍数=各级放大倍数的乘积。 (5) 总输入电阻 ri 即为第一级的输入电阻ri1 。 (6) 总输出电阻即为最后一级的输出电阻。
直接耦合电路的特殊问题
R1 RC1
RC2
+UCC
R2 T1
RB
ui2
差模输入信号: ui1 =- ui2 =ud (大小相等,极性相反) 设uC1 =UC1 +uC1 , uC2 =UC2 +uC2 。
因ui1 = -ui2, uC1 =-uC2
uo= uC1 - uC2= uC1- uC2 = 2uC1
差模电压放大倍数:
AC
uo ui1 ui2
集成运算放大电路概述
1. 集成电路与集成运算放大器 集成电路是利用半导体制造工艺,将整个电路所含有
的元器件及相互连接导线全部制作在一块半导体基片上, 封装在管壳内,能完成特定功能的电路块。
集成电路按其功能可分为模拟集成电路和数字集成电 路两大类。模拟集成电路品种繁多,主要分为集成运算放 大器、集成功率放大器和集成稳压器等,其中应用最为广 泛的是集成运算放大器。
2.1 集成运放的封装形式与电路符号 1. 集成运放的封装和引脚排列
封装形式: 金属圆形、双列直插式、扁平式 封装材料: 陶瓷、金属、塑料 例: 塑封双列直插式(DIP)CF741 DIP—Dual In-Line Pakage
管键
金属封
凹格标记
片标记
8
14
4
1
7
NC
+UCC Uo
调零+
781
6
ui
T2 uo RE2
有时会将 信号淹没
问题 1 :前后级Q点相互影响。
uo
R2 、RE2 : 用于设置合适的Q点。
问题 2 :零点漂移。
当 ui 等于零时, uo不等于零。 0
t
差动放大电路
基本型结构
R1 RC RB
T1
ui1
uo
RC
T2
R1 RB
ui
2
特点:结构对称。
+UCC
R1 RB
RC T1
集成运放的使用常识
1、集成电路器件命名 1) 国标 GB-3430-82 对集成电路的规定
第一部分 第二部分
字母
字母
符号国标 器件类型
符 号
意符 义号
意义
第三部分 第四部分
2
5 43
调零- - IN
+ IN
-UCC TO - 5
调零- 1 - IN 2 + IN 3
-UCC 4
8 NC 7 +UCC 6 Uo 5 调零+
MIN-DIP
NC
NC 调零-
- IN + IN -UCC NC
1
14
2
13
3
12
4
11
5
10
6
9
7
8
14PIN DIP
NC NC NC +UCC Uo 调零+
共模输入信号: ui1 = ui2 = uC (大小相等,极性相同) 理想情况:ui1 = ui2 uC1 = uC2 uo= 0 但因两侧不完全对称, uo 0
共模电压放大倍数: AC uo uC (很小,<1)
四、差模电压放 大倍数Ad
ui1
R1 RB
RC T1
uo
RC
T2
R1 +UCC
+VCC
8
uid
uid
uo
–VEE
习惯用符号
–VEE
国家标准符号
2.2 集成运放的分类
集成运放种类较多,按性能不同可分为通用型和专用型两 大类。专用型又有高阻型、低温漂型、高速型、低功耗型、高 压大功率型等。
通用型 性能指标比较适中
专用型 某些技术指标 比较突出
• 1. 通用型 • 2. 高速型和宽带型 • 3. 高精度(低漂移型) • 4. 高输入阻抗型 • 5.低功耗型 • 6. 功率型
uo 2ui1
(很大,>1)
五、共模抑制比(CMRR)的定义
CMRR — Common Mode Rejection Ratio
K
= Ad
CMRR
Ac
K (dB) = 20 log Ad (分贝)
CMRR
Ac
例: Ad=-200 Ac=0.1 KCMRR=20 lg (-200)/0.1 =66 dB
4. 二极管一般用三极管的发射结构成。
原理框图:
与uo反相
反相 输入端
u–
同相u+
输入端
与uo同相
T1 T2
输
IS
入
级
+UCC
T4
T3
T5
uo
中
输
间
出
级
级 UEE
对输入级的要求:尽量减小零点漂移,尽量提高 KCMRR , 输入阻抗 ri 尽可能大。
对中间级的要求:足够大的电压放大倍数。
对输出级的要求:主要提高带负载能力,给出足 够的输出电流io 。即输出阻抗 ro小。
NC
集成运放外形结构示意图
运算放大器外形图
2.集成运放的电路符号
集成运放有两个输入端,N端称为反相输入端,用“- ”表示,说明输入信号由此端加入时,由它产生的输出 信号与输入信号相位反相。P端称为同相输入端,用“+” 表示,说明输入信号由此端加入时,由它产生的输出信 号与输入信号相位相同。
+VCC