外国语学校2012年中考二模数学试题及答案

合集下载

2012届中考模拟考试数学试题

2012届中考模拟考试数学试题
2012 届中考模拟考试
数学试卷
(满分 120 分,120 分钟完卷)
注意:不允许使用科学计算器进行运算,凡无精确度要求的题目,结果均保留 准确值,解答题应写出演算过程、推理步骤或文字说明。
A 卷(共 100 分)
第Ⅰ卷(选择题,共 36 分)
一、选择题:本大题共 12 个小题,每小题 3 分,共 36 分)
900 得到 ABO ,若 A 的坐标为(-2,4),B 点坐标为(-3,0); ① 在图中画 出 ABO 和 ABO (3 分) ②直接写出 A和A 点的坐标;(2 分) ③ ABO的顶点 A 在变换过程中所经过 的路径长为多少( 3 分)
22、如图,水坝的横断面是梯形,背水坡 AB 的坡角∠BAD=600,坡长 AB=20 3 m,为加强水坝强度,将坝底从 A 处向后水平延伸到 F 处,使新的背水 坡的坡角∠F=450,求 AF 的长度(结果精确到 1 米,参考数据, 2 1.414 , 3 1.732 )
EF⊥AE,则 CF 等于( )
(A)1
(B)2
(C) 2 3
(D) 3 2
12、如图,反比例函数
y1
k1 x
和正比例函数
y2
பைடு நூலகம்
k2x

图像交于 A(—1,—3)、B(1,3)两点,若 y1 y2 ,
则 x 的取值范围是( )
(A) 1 x 0
(B) 1 x 1
(C) x 1或0 x 1
②求 sin OEF 的值(3 分) ③若直线 EF 与线段 AD、BC 分别相交 于点 G、H,求 AB CD 的值(3 分)
GH
二、本大题一个小题共 11 分 26 、 如 图 , 在 平 面 直 角 坐 标 系 中 , 抛 物 线 y x2 mx n 经过 A(3,0),B(0,-3)两点,

2012年中考第二次模拟试卷数学试题及答案

2012年中考第二次模拟试卷数学试题及答案

11.若分式
2
| x | 1 的值为零,则 x 的值等于 x 1
.
12.方程 x =x 的解是
1 2
B.
1 2
C. 2
D.2 ( D.x≤4 ( ) )
13.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量 较稳定的是棉农 .(填“甲”或“乙”) 棉农甲 棉农乙 14.若 x 1 68 69 70 71 72 71 69 69 71 70
21.(本题满分 8 分) 已知:如图,在平行四边形 ABCD 中,E 是 CA 延长线上的点,F 是 AC 延长线上的点,且 AE=CF.试判断 BE 与 DF 之间有何关系,并说明理由.
E A D
24. (本题满分 10 分)如图,线段 AB 的端点在边长为 1 的 小正方形网格的格点上,现将线段 AB 绕点 A 按逆时 针方向旋转 90° 得到线段 AC. ⑴请你在所给的网格中画出线段 及点 经过的路径 ; ..AC . . ..B . ..... ⑵若将此网格放在一平面直角坐标系中,已知点 A 的坐 标为(1,3),点 B 的坐标为(-2,-1),则点 C 的坐标 为 域的面积为 ; ; .
第 24 题
⑶线段 AB 在旋转到线段 AC 的过程中,线段 AB 扫过的区 ⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何 体底面圆的半径长为 25.(本题满分 10 分) 如图,在△ ABC 中,AB=AC,∠B=30° ,O 是 BC 上一点,以点 O 为圆心,OB 长为半径作圆,恰好经过点 A,并与 BC 交于点 D. (1)判断直线 CA 与⊙O 的位置关系,并说明理由; (2)若 AB=2 3 ,求图中阴影部分的面积(结果保留 π) . C

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。

2012年中考数学模拟试卷(2)及答案.doc

2012年中考数学模拟试卷(2)及答案.doc

OABC112题图2012年中考数学模拟试卷二一、选择题(本题有10小题,每小题3分,共30分)1. 3的倒数是( )A .13B .— 13C .3D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a=4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。

用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( ) A.相交B.内切C.外切D.内含6.如图,直线l 1//l 2,则α为( )A .150°B .140°C .130°D .120° 7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B.若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:ma+mb = . 12.如图,O 为直线AB 上一点,∠COB=30°,则∠1= . 13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图3三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)l 1l 2 50° 70° α 24y x = 12y x= ACD(第15题)19.(本题6分)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.(本题8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(本题10分)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.(本题10分)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB=4,OA=3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.2012年中考数学模拟试卷二参考答案题次 12345678 9 10 答案A C DB B DCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m(a+b);12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CM BC CM =,∴CM=15cm .∵sin60°=BA BF ,∴23=40BF,解得BF=203,∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .19.(本题6分)解:(1)y =x 2+2x +m=(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P22.(本题10分)解:(1)设安排x人采“炒青”,20x;5(30-x).(2)设安排x人采“炒青”,y人采“毛尖”则30205(30)10245x yx x+=⎧⎪-⎨+=⎪⎩,解得:1812xy=⎧⎨=⎩,即安排18人采“炒青”,12人采“毛尖”.(3)设安排x人采“炒青”,205(30)11045205(30)10045x xx x-⎧+≤⎪⎪⎨-⎪+≥⎪⎩解得:17.5≤x≤20①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.23.(本题10分)解:(1)正确画出分割线CD(如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线,若画成直线不扣分)理由:∵∠B = ∠B,∠CDB=∠ACB=90°∴△BCD ∽△ACB(2)①△DEF 经N阶分割所得的小三角形的个数为n41∴S =n41000,当n =3时,S3 =31000S≈15.62当n = 4时,S4 =41000S≈3.91 ∴当n= 4时,3 <S4<4②S 2 = S 1-n × S 1+n ,S 1-n = 4 S, S= 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2kx ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2,∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形 ∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ ,∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE=78. ∴存在符合条件的点E ,它的坐标为(78,3).。

2012年九年级模拟考试(二)

2012年九年级模拟考试(二)

2012年九年级模拟考试(二) 数学参考答案及评分标准一、选择题:题号12 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 CBBDCCBBCBAACCB二、填空题:16.-1 17.-3 18.1 19.2 5 20.(121n --, 12n -)三、解答题 21.(1)原式1351622=++-= …………………………………………4分 (2)解 化简:0762=+-x x ………………………………………………2分得:231+=x ,232-=x ………………………………………4分22.作图题答案:23.猜想:BE=EC ,BE ⊥EC 2分 证明: ∵AC=2AB ,点D 是AC 的中点∴AB=AD=CD∵∠EAD=∠EDA=45° ∴∠EAB=∠EDC=135° ∵EA=ED∴△EAB ≌△EDC 5分 ∴∠AEB=∠DEC ,EB=EC ∴∠BEC=∠AED=90°∴BE=EC ,BE ⊥EC 8分24.(本题8分)解: ⑴ 2 ┄┄1分⑵ 64 ┄┄2分⑶依题得第四组的频数是2,第五组的频数也是2,设第四的2名学生分别为1A 、2A 第五组的2名学生为1B 、2B ,列表(或画树状图)如下,A1 A2 B1B2A1--A1、A2 A1、B1 A1、B2A2 A2、A1--A2、B1 A2、B2 B1 B1、A1 B1、A2--B1、B2┄┄6分由上表可知共有12种结果,其中两个都是90分以上的有两种结果,所以恰好都是在90分以上的概率为61┄┄8分 25.解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5解得a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………………………………4分(2)∵-(-2)2-2×(-2)+3=-4+4+3=3∴点P (-2,3)在这个二次函数的图象上…………………………6分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………7分 S △P AB =12 ×4×3=6 …………………………………………………8分26.(本题满分9分)(1)解:(1)△P 1OA 1的面积将逐渐减小. …………………………………2分 (2)作P 1C⊥OA 1,垂足为C ,因为△P 1O A 1为等边三角形,所以OC=1,P 1C=3,所以P 1)3,1(. ……………………………………3分代入xky =,得k=3,所以反比例函数的解析式为x y 3=. ……………4分作P 2D ⊥A 1 A 2,垂足为D 、设A 1D=a ,则OD=2+a ,P 2D=3a ,所以P 2)3,2(a a +.……………………………………………………………6分代入xy 3=,得33)2(=⋅+a a ,化简得0122=-+a a 解的:a= -1±2 ……………………………………………7分B2 B2、A1 B2、A2 B2、B1 --∵a >0 ∴21+-=a ………………………………8分所以点A 2的坐标为﹙22,0﹚ ………………………………………………9分27.(本题满分10分)证明:(1)连接OD . ························ 1分D Q 是劣弧»AB 的中点,120AOB ∠=° 60AOD DOB ∴∠=∠=° ···················· 2分 又∵OA=OD ,OD=OB∴△AOD 和△DOB 都是等边三角形 ········ 4分 ∴AD=AO=OB=BD ∴四边形AOBD 是菱形 ························· 5分 (2)连接AC . ∵BP =3OB ,OA=OC=OB ∴PC=OC=OA ··················································································· 6分12060AOB AOC ∠=∴∠=Q °°OAC ∴△为等边三角形∴PC=AC=OC ··················································································· 7分 ∴∠CAP =∠CP A又∠ACO =∠CP A +∠CAP 30CAP ∴∠=°90PAO OAC CAP ∴∠=∠+∠=° ······················································· 9分 又OA Q 是半径AP ∴是O ⊙的切线··········································································· 10分28.(1)2;4; 2分 (2) 当0<t ≤611时(如图),求S 与t 的函数关系式是:S=EFGH S 矩形=(2t )2=4t 2; 4分 AB CH GP E F当611<t ≤65时(如图),求S 与t 的函数关系式是: S=EFGH S 矩形-S △HMN =4t 2-12×43×[2t-34(2-t )] 2=2524-t 2+112t -32; 6分当65<t ≤2时(如图),求S 与t 的函数关系式是: S= S △ARF -S △AQE =12×34(2+t ) 2 - 12×34(2-t ) 2=3t . 8分第27题图题(3)由(2)知:若0<t≤611,则当t=611时S最大,其最大值S=144121;9分若611<t≤65,则当t=65时S最大,其最大值S=185;10分若65<t≤2,则当t=2时S最大,其最大值S=6.11分综上所述,当t=2时S最大,最大面积是6.12分。

2012年中考数学二模25题

2012年中考数学二模25题

25.(本题满分14分,第(1)、(2)小题各3分,第(3)、(4)小题各4分) 已知:正方形ABCD 的边长为1,射线AE 与射线BC 交于点E ,射线AF 与射线CD 交于点F ,∠EAF=45°.(1)如图1,当点E 在线段BC 上时,试猜想线段EF 、BE 、DF 有怎样的数量关系?并证明你的猜想.(延长线呢)(2)设BE=x ,DF=y ,当点E 在线段BC 上运动时(不包括点B 、C ),如图1,求y 关于x 的函数解析式,并指出x 的取值范围.(3)当点E 在BC 延长线上时,设AE 与CD 交于点G ,如图2.问⊿EGF 与⊿EF A 能否相似,若能相似,求出BE 的值,若不可能相似,请说明理由.图2图1GFE D C B A 45°45°F E D C B A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,△ABC 中,∠ABC =90°,AB =BC =4,点O 为AB 边的中点,点M 是BC 边上一动点(不与点B 、C 重合),AD ⊥AB ,垂足为点A .联结MO ,将△BOM 沿直线MO 翻折,点B 落在点B 1处,直线M B 1与AC 、AD 分别交于点F 、N ..(1)当∠CMF =120°时,求BM 的长;(2)设BM x =,CMF y ANF ∆=∆的周长的周长,求y 关于x 的函数关系式,并写出自变量x 的取 值范围;(3)联结NO ,与AC 边交于点E ,当△FMC ∽△AEO 时,求BM 的长.O ABCMDN B 1F第25题图25.(本题满分14分,第(1) 、(2)小题满分各5分,第(3)小题满分4分)已知△ABC 中,︒=∠90ACB (如图8),点P 到ACB ∠两边的距离相等,且PA =PB . (1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长和面积;(3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BCCDAC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.ABC (图 )8 A BC (备用图)25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图,ABC ∆中,5==BC AB ,6=AC ,过点A 作AD ∥BC ,点P 、Q 分别是射线AD 、线段BA 上的动点,且BQ AP =,过点P 作PE ∥AC 交线段AQ 于点O ,联接PQ ,设POQ ∆面积为y ,x AP =.(1)用x 的代数式表示PO ;(2)求y 与x 的函数关系式,并写出定义域;(3)联接QE ,若PQE ∆与POQ ∆相似,求AP 的长.BPDQ CAO E已知,90ACB ∠=,CD 是ACB ∠的平分线,点P 在CD 上,2CP =.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.备用图ABCPD图9ABCEGPDF如图,在△ABC 中,10==AC AB ,53cos =B ,点D 在AB 边上(点D 与点A ,B 不重合),DE ∥BC 交AC 边于点E ,点F 在线段EC 上,且AE EF 41=,以DE 、EF 为邻边作平行四边形DEFG ,联结BG . (1)当EF =FC 时,求△ADE 的面积;(2)设AE =x ,△DBG 的面积为y ,求y 与x 的函数关系式,并写出x 的取值范围; (3)如果△DBG 是以DB 为腰的等腰三角形,求AD 的值.GE D CBAF(第25题图)24.在ABC Rt △中,4==BC AB ,90=∠B ,将一直角三角板的直角顶点放在斜边AC 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边BC AB ,或其延长线上交于E D ,两点(假设三角板的两直角边足够长),如图1,图2,表示三角板旋转过程中的两种情形.(1)直角三角板绕点P 旋转过程中,当=BE 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图1的情形时,求证:PE PD =;(3)如图3,若将直角三角板的直角顶点放在斜边AC 的点M 处,设n m MC AM ::=(n m ,为正数),试判断ME MD ,的数量关系。

2012二模数学试卷

2012二模数学试卷

BCAD 银川外国语实验学校2012届初三年级第二次模拟考试数 学 试 卷考试时间:120分钟 总分:120分 命题教师:沈春灵一、选择题(每题3分,共24分) 1. 下列运算正确的是( )A. 1331=÷-B. a a =2C. ππ-=-14.3|14.3|D. 26234121b a b a =⎪⎭⎫⎝⎛2. 下列说法正确的是( )A. 抽样调查选取样本时,所选样本可按自己爱好抽取B. 某工厂质检员检测某批次灯泡的使用寿命采用普查法C. 想准确了解某班学生某次数学测验成绩,采用抽样调查,但需抽取的样本容量较大D. 检测某城市的空气质量,采用抽样调查 3. 如图,图中圆与圆之间不同的位置关系有( )A. 2种B. 3种C. 4种D. 5种4. 如图所示,正方形ABCD 的边长为2,动点P 从C 出发,在正方形的 边上沿着C →B →A 的方向运动(点P 与A 不重合)。

设点P 的运动路程为x , 则下列图象中表示△ADP 的面积y 关于x 的函数关系的是( )A B C D5. 如图,直线l 和双曲线)0(>=k xky 交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为S 1,△BOD 的面积为S 2,△POE 的面积为S 3,则( )A. S 1<S 2<S 3,B. S 1>S 2>S 3,C. S 1=S 2>S 3D. S 1=S 2<S 36. 如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于( )A. 25°B. 30°C. 45°D. 60°7. 如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( ) A. 40°B. 30°C. 45°D. 50°8. 如图,在平面直角坐标系中,Rt △ABO 的顶点A 的坐标是(3,1)。

2012年中考数学模拟试卷(二)及答案

2012年中考数学模拟试卷(二)及答案

2012年中考数学模拟试卷二态度决定一切,细节决定成败!一、选择题(本题共10小题,每小题3分,共30分) 1.-3的相反数是( ▲ )A .3B . -3C .31D .31-2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ▲ )A.30°B. 40°C. 60°D. 70°3.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )4.若反比例函数ky x=的图象经过点(1,3),则此反比例函数的图象在( ▲ ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.计算2(2)3a a -⋅的结果是( ▲ )A. 26a - B. 36a - C. 312a D. 36a6.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )元A .3,3B .2,3C .2,2D .3,5 7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( ▲ )平方米(接缝不计) A . π3 B .π4 C .π5 D .π4258.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ▲ )A .2(1)y x =- B . 2(1)y x =+ C .21y x =- D .21y x =+ 9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒AC BD E(第2题图)(第9题图)10.如图,在直角梯形ABCD中,AD∥BC,90C∠= ,cmBC10=,6cmCD=,2cmAD=,动点P、Q同时从点B出发,点P沿BA、AD、DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为(s)t,BPQ△的面积为y2(cm).下图中能正确表示整个运动中y关于t的函数关系的大致图象是(▲)A. B. C. D.二、填空题(本题共6小题,每小题4分,共24分)11.比较大小:1-▲31(填“>”、“=”或“<”).12.若二次根式12-x有意义,则x的取值范围是▲.13.一元二次方程(3)0x x+=的解为▲.14.已知CBA,,是⊙O上不同的三个点,︒=∠60AOB,则=∠ACB▲15.已知双曲线2yx=,kyx=的部分图象如图所示,P是y轴正半轴上过点P作AB∥x轴,分别交两个图象于点,A B.若2PB PA=,则=k▲.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是▲。

2012年中考数学模拟试题(含答案)

2012年中考数学模拟试题(含答案)

2012年中考数学模拟试题考试时间:120分钟,满分150分一、选择题(每题2分,共30分)1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a2、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于()A.2cm2B.1cm2C.1/2cm2D.1/4cm2第2题第3题3、如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于().4、一元二次方程,中,c<0.该方程的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5、如图,△ABC中,AB、AC边上的高CE、BD相交于P点,图中所有的相似三角形共有()A.4对B.5对C.6对D.7对6、等边△A1B1C1内接于等边△ABC的内切圆,则的值为()A. B. C. D.7、当45°<<90°时,下列各式中正确的是()A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan8、如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(,)B.()C.(,)D.()第8题第9题9、已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10、在同一坐标系中一次函数和二次函数的图象可能为()11、若,,三点都在函数的图象上,则的大小关系是()A. B. C. D.12、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()13、如图,正三角形内接于圆,动点在圆周的劣弧上,且不与重合,则等于()A. B. C. D.第13题第14题第15题14、如图,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A. B. C. D.15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm二、填空题(每题3分,共36分)16、已知,则的值为___________.17、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________.第17题第18题18、如图,在中,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.则该圆环的面积为__________.19、已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是__________.20、方程有实数根,则锐角的取值范围是______.21、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是__________.第21题第22题22、如图,一张长方形纸片ABCD,其长AD=a,宽AB=b(a>b),在BC边上选取一点M,将ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则a/b的值是_____________.23、已知二次函数的部分图象如图所示,则关于的一元二次方程的解为___________.第23题第24题24、如图所示的抛物线是二次函数的图象,那么的值是___________.25、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于__________.26、如图,要使输出值大于100,则输入的最小正整数是____________.27、有5张写有数字的卡片(如左图所示),它们的背面都相同,现将它们背面朝上(如右图所示),从中翻开任意一张是数字2的概率为_________.三、解答题(每题5分,共20分)28、已知y=的定义域为R ,求实数a 的取值范围.29、计算:0.25×⎝⎛⎭⎫12-2+(3.14-π)0-2sin60°.30、先化简,再求值:⎝⎛⎭⎫a a -1-1÷a a2-2a +1,其中a = 2.31、解不等式组:()②①⎪⎩⎪⎨⎧-+≤+321234xxxx四、综合题(共64分)32、(本题满分9分)“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润(元)与每吨降价(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.DEA M NCB如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)求证:△ACE≌△DCB;(2)请你判断△ACM与△DPM的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.35、(本题满分10分)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.(1)试证明直线AC是⊙O的切线;(2)当AE=4,AD=2时,求⊙O的半径及BC的长.(第35题)已知:如图,直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.(1)求A、C两点的坐标;(2)求出抛物线的函数关系式;(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;(4)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3,若存在,试求出点M的坐标;若不存在,试说明理由.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案选择题答案:D答案:B答案:D答案:B答案:C答案:A答案:C答案:A答案:C答案:A答案:A答案:C答案:B答案:A答案:A二、填空题16、答案:-3.17、答案:-1,0,1,218、答案:19、答案:a>120、答案:0°<≤30°.21、答案:22、答案:23、答案:,24、答案:-125、答案:226、答案:2127. 答案:三、解答题28、确定a的取值范围,使之对任意实数x都有ax2+4ax+3≠0.解:当a=0时,ax2+4ax+3=3≠0对任意x∈R都成立;当a≠0时,要使二次三项式ax2+4ax+3对任意实数x恒不为零,必须满足:其判别式,于是,0<a <.综上,.29. 原式=14×4+1-2×32(4分)=2- 3.(8分)30. 原式=a -a +1a -1·-a (3分)=a -1a .(6分)当a =2时,原式=2-12=2-22.(8分)31.解:由 ① 得 23≤-x x , 1-≥x由 ② 得 ()x x 213 - ,323 x x -, 3 x∴ 31 x ≤-四、综合题32.(1)依题意,得……………………………………3分 (2)依题意,得………………………………………… 4分 解得…………………………………………1分…………………………………………1分答:每吨水泥的实际售价应定为元时,每天的销售利润平均可达720元. 1分34. (1)连接OE.[来源:学科网ZXXK]∵BE是∠ABC的平分线,∴∠1=∠2.∵OE=OB,∴∠1=∠3.∴∠2=∠3.∴O E∥AC.又∠C=90°,∴ ∠AEO =90°.[来源:学科网]∴ AC 是⊙O 的切线.(6分)(2)设⊙O 的半径为r ,在Rt △AEO 中,由勾股定理可得OA2=OE2+AE2.∵ AE =4,AD =2,∴ (2+r)2=r2+42.∴ r =3.∵ OE ∥AC ,∴ AO AB =OE BC .∴ 2+32+6=3BC. ∴ BC =245.(10分)35 .① A(-6,0),C(0,6) ………………………………………………………2分② …………………………………………………………………3分 ③相切,BD=6 ………………………………………………………………………3分 ④存在这样的点M ,M()或() ……………3分36 .解:(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5 ……………………………… 3分(2)连结O ′D在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE ,∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. ……………………………………………………………………4分(3)不同意.理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P1和P4两点过P1点作P1H ⊥OA 于点H ,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH=1 求得点P1(1,3) 同理可得:P4(9,3) ……………3分 ②当OA=OP 时,同上可求得:P2(4,3),P3(4,3) …………………………2分因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. ……………………1分。

2012.05.21二模数学答案

2012.05.21二模数学答案

九年级阶段性质量检测数学试题答案一、 选择题(本题满分24分,共有8小题,每小题3分)二、填空题(本题满分18分,共有6小题,每小题3分)三、作图题:(本题满分6分)15、用圆规和直尺作图,不写作法,但要保留作图痕迹 解:(1)正确作图……………………………………………………………………………3分结论……………………………………………………………………………… 1分四、解答题(本题满分72分,共有9小题,本题所有题目须有必要的解答过程) 16、解:法一:(1)x-y=1,①2x+y=2.②由①,得x =y +1,代入②,得2(y +1)+y =2.解得y =0.……………… ……………… 2分 将y =0代入①,得x =1.∴原方程组的解集是x=1,y=0.……………… 4分法二:①+②,得3x =3,∴x =1.……………………………………… 2分 将x =1代入①,得1-y =1, ∴y =0.∴原方程组的解是x=1,y=0.……………………4分(2)原式= 222311a a a a a +-⨯- …………………………………………………… 2 分= 23a aa+= 3a + …………………………………………………………4分17、( 本小题满分6分)解:(1)100;…………………………………………………………………………………1分 (2)15(人).画图正确……………………3分(3)C 所占圆心角度数360(125%60%)54=⨯--=°°. ············ 4分 (4)20000(25%60%)17000⨯+=(名) ·················· 5分答:估计该区初中生中大约有17000名学生学习态度达标.……… 6分18、( 本小题满分6分) 解:(1) P (摸到白球的概率)=21……………………………………………………………2分 (2)∵ P (获得100元奖券的概率)=101P (获得50元奖券的概率)=203P (获得20元奖券的概率)=41∴平均每次摸球获得购物券为: 101·100+203·50+41·20=22.5 (元) ………5分∵ 22.5<25答:直接获得购物券合算. …………………………………………………………6分 19、(本小题满分6分) 解:(1)设该公司组装A 型器材x 套,则组装B 型器材(40-x)套,依题意,得 ……………………………………3分解得25≤x ≤30.由于x 为正整数,∴x=25,26,27,28,29或30. ……………………………5分 答:组装A 、B 两种型号的健身器材组装方案如下 A 种型号25套,B 种型号15套; A 种型号26套,B 种型号14套; A 种型号27套,B 种型号13套; A 种型号28套,B 种型号12套; A 种型号29套,B 种型号11套;A 种型号30套,B 种型号10套。

2012年中考模拟试卷__数学卷(含参考答案)

2012年中考模拟试卷__数学卷(含参考答案)
4.如图,AB∥CD,下列结论中正确的是( )
A.∠A+∠E+∠C=180°B.∠A+∠E+∠C=360°
C.∠A+∠C=2∠E D.∠A+∠C=∠E
5.下列调查适合作抽样调查的是
A.了解浙江卫视“我爱记歌词”节目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
22.(本小题满分10分)
台风是形成于热带海洋上的强大而深厚的热带气旋,主要发生在7至10月,我市也是遭受台风自然灾害较为频繁的地区。山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)。已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m。
若m、n是任意正实数,r是任意正整数,且m>n;或m、n、r是任意正实数,且m>n,
则 .------------------------------------------------------------4’
18. (本题6分)
解:(1)由图象可知,函数 ( )的图象经过点 ,
可得 .------------------------------1’
连结第三个顶点,即可得
结论:(略)-------------------------------------------------6’
20. (本题8分)
解:(1) ∥BD
∴∠E=∠BDC
∵BD平分∠ADC
∴∠ADC=2∠BDC=2∠E
∵∠C=2∠E
∴∠ADC=∠C
∴梯形ABCD是等腰梯形--------------------------4’

(完整)常州市外国语初中2012年中考数学模拟试卷及答案,推荐文档

(完整)常州市外国语初中2012年中考数学模拟试卷及答案,推荐文档

常州市外国语初中2012年中考数学模拟试卷及答案一 .选择题(本大题共 10个小题,每小题 4分,共40分)在每小题给出的四个选项中,只 有一个选项符合题意,把所选项前的标号填在题后的括号内 1 . —2的相反数是 A . 1/2 B .' 2 . x-(2x-y)的运算结果: A . — x+y3 .“神舟”五号载 学 ) - A . 59.02 X 104km 4. 下列多项式中,能用提公因式法分解因式的是 A . x 2-y B . X 2+2X C . X 2+y 2 D . x 2-xy+y 2 5. 方程X 2-3X +仁0的根的情况是 A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .只有一个实数根 6 .如图,扇子的圆心角为 xo ,余下扇形的圆心角是 yo , 这样的扇子外形较美观。

若取黄金比为 0.6,则x 为 —1/2 是 B . -x-y C . x-y 人飞船,绕地球飞行了 刃 数 B . 0.5902 X 106k D . 2 ■ £.1 D ..力X-y J4圈,共飞行约5 //法⑺表 匕m C . 5.902 X 105£1 90200km :这个飞行距离用/ / / 示 km D . 5.902 X :°l04k m (计, x 与y 的比通常按黄金比来设( )(华东版第8题图)y=kx , 牙膏盒, A . k B . k/3 &如图,某种牙膏上部圆的直径为 以下列数据作为正方形边长制作牙膏盒, C . k-1 D . (k-1)/3 3cm,下部底边的长度为 牙膏盒的上面是正方形。

4.8cm 。

现要制作长方体的 既节省材料又方 1.4 ( ) A . &如图,0是正六边形 ABCDE 的中心,下列图形中可由△ OBC 平移得到的是 版教材实验区试题) A . △ OCD B . △ OAB C . △ OAF D . OEF9.圆心都在x 轴上的两圆有一个公共点(1, 2),那么这两圆的公切线有 (A . 1条B . 2条C . 3条D . 4条10 .“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡 了一觉。

2012年二模 数学中考

2012年二模   数学中考

数学试卷 第1页 (共8页)2012年中考网阅适应性测试数学试卷注 意 事 项考生在答题前请认真阅读本注意事项1.本试卷共8页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1. -3的倒数是A .13- B . 3C .13 D .-32. 下列运算正确的是A .236a a a =B .236()a a =C .236a a a +=D .32a a a -=3. 如图,下列条件不能判断....直线a ∥b 的是 A .∠1=∠4B .∠3=∠5C .∠2+∠5=180°D .∠2+∠4=180°4. 用科学记数法表示0.000012,结果是 A .1.2×10-4 B .1.2×10-5C .0.12×10-4D .12×10-65. 两圆的半径分别为1和2,圆心距为3,则两圆的位置关系为 A .内切B .相交C .外切D .外离6. 下面四个几何体中,左视图是四边形的几何体共有A .1个B .2个C .3个 D.4个1234 5 a b(第3题)圆柱 圆锥 球 正方体数学试卷 第2页 (共8页)ABCDM NO (第9题)7. 2012年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是A.31,31B.31,32C.32,31D.32,358. 如果关于x 的一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是A .3a <B .3a >C .3a ≤D .3a ≥ 9. 如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为 A .22 B .12C .32D .3310.如图,直线y =-2x -4与x 轴交于点A ,与y 轴交于点B ,将线段 AB 绕着平面内的某个点旋转180°后,得到线段CD ,点C 、D 恰好落在反比例函数ky x=的图象上,且D 、C 两点横坐标之比为 3 : 1,则k 的值为 A .3 B .4C .5D .6 二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11. 已知∠A =40°,则∠A 的余角等于 ▲ °. 12. 分解因式:2ax ax -= ▲ .13. 一个圆锥的母线长为4cm ,底面圆半径为2cm ,则这个圆锥的侧面积是 ▲ cm 2. 14. 如图,△ABC 与△DEF 是位似图形,位似比为2∶3,已知AB =4,则DE 的长为 ▲ . 15. 从-2,-1,3这三个数中任取两个不同的数,作为平面直角坐标系中点的坐标,该点在第二象限的概率是 ▲ .16. 若一元二次方程2(1)0x a x a -++=的两个实数根分别是2、b ,则a +b = ▲ . 17. 如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需 ▲ 个五边形.18. 如图,分别过点P i (i ,0)(i =1,2,…,n )作x 轴的垂线,交212y x =的图象于点A i ,交12y x =- 的图象于点B i .则1122111n n A B A B A B +++= ▲ . AOy xBDC (第10题)数学试卷 第3页 (共8页)三、解答题:本大题共10小题,共计96分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤. 19.(本题满分10分)计算:(1)2031()(π3)2|5|4--+----; (2)2196234x x x x +-.20.(本题满分8分)解方程22011x x x -=+-.21.(本题满分8分)一家公司招考员工,每位考生要在A 、B 、C 、D 、E 这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生只会答A 、B 两题,请你用画树形图的方法,求出这位考生合格的概率.(第14题)(第17题) (第18题) Ox yA iB i P i数学试卷 第4页 (共8页)22.(本题满分8分)如图,AB 、AC 为⊙O 的弦,连接CO 、BO 并延长分别交弦AB 、AC 于点E 、F , ∠B =∠C . 求证:CE =BF .23.(本题满分8分)吸烟有害健康!我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学在一社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人? (2)请你把统计图补充完整;(3)假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式.F EOCBA(第22题)(第23题)替代品 戒烟药物戒烟警示戒烟强制戒烟戒烟方式人数1206030O15%10%强制戒烟警示戒烟替代品戒烟药物戒烟数学试卷 第5页 (共8页)24.(本题满分8分)如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和外角∠BAF 的平分线,BE ⊥AE . (1)求证:DA ⊥AE ;(2)试判断AB 与DE 是否相等?并证明你的结论.25.(本题满分8分)某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB 可绕点A 旋转,在点C 处安装一根可旋转的支撑臂CD ,AC =30cm .(1)如图2,当∠BAC =24°时,CD 垂直于AB ,垂足为D .求支撑臂CD 的长; (2)如图3,当∠BAC =12°时,求AD 的长(精确到1 cm ).(参考数据: sin24°≈0.40,cos24°≈0.91,tan24°≈0.46, sin12°≈0.20,cos12°≈0.982 1.41≈,3 1.73≈,5 2.24≈,6 2.45≈)图1CBAD CBAD图2图3CBA· (第25题)AB CD EF(第24题)数学试卷 第6页 (共8页)26.(本题满分12分)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设快车行驶的时间为x (h ),两车之间的距离为........y (km ),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.请根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 ▲ km ;图中点B 的实际意义是 ▲ ; 图象理解(2)已知两车相遇时快车比慢车多行驶40 km ,若快车从甲地到达乙地所需时间为t h ,求t 的值; 问题解决(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图象(温馨提示:请画在答题卡相对应的图上).(第26题)OB CAx (h )y (km ) 2280数学试卷 第7页 (共8页)27.(本题满分12分)如图,在△ABC 中,AB =AC =5,BC =6,点M 为AB 边上的一动点(M 不与A 、B 重合),过M 作MN ∥BC ,交AC 于点N .把△AMN 沿直线MN 折叠,点A 落在点P 处.连结BP ,设AM =x ,△AMN 的边MN 上的高为y . (1)求出y 与x 的函数关系式;(2)若以点P 、B 、M 为顶点的三角形与△ABC 相似,求x 的值; (3)当x 取何值时,△PMB 是直角三角形.A BC MxP(第27题)N ABC(第27题备用图)数学试卷 第8页 (共8页)28.(本题满分14分)如图,已知直线122y x =+分别交x 轴、y 轴于A 、B 两点,将△OAB 绕坐标原点O 顺时针旋转90°得到△OCD .抛物线2y ax bx c =++经过A 、C 、D 三点. (1)求这条抛物线的解析式;(2)若将该抛物线向下平移m (m >0)个单位长度,使得顶点落在△OAB 内部(不包含△OAB的各条边)时,求m 的取值范围;(3)设直线AB 与该抛物线的另一个交点为Q ,若在x 轴上方的抛物线上存在相异的两点P 1、P 2,使△P 1AQ 与△P 2AQ 的面积相等,且等于t ,求t 的取值范围.yxOC A BD (第28题)Q。

2012年中考二模数学试题及答案

2012年中考二模数学试题及答案

2012年初中升学考试模拟测试(二)数学试卷一、选择题(每小题3分.共计30分) 1.-5的相反数是( ). (A)15 (B)15- (C)5 (D)-5 2.下列运算中,正确的是( ).(A)224347a a a += (B 55534a a a -=-(C)2364312a a a ∙= (D)(33a )2÷43a =234a 3.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( ).4.下列四个点,不在函数y=12x图像上的点是( ). (A)(2,6) (B)(-2,-6) (C)(3,4) (D)(-3,4)5.在一次中学生田径运动会上,参加男子跳高的l5名运动员的成绩如下表所示:成绩/m 1.55 1.60 1.65 1.70 1.75 1.80 人数23234l则这些运动员成绩的中位数是( ).(A)1.80 (8)1.75 (C)1.70 (D)1.65 6.如图所示的几何体的主视图是( ).7.如果正五边形绕着它的中心旋转a 角后与它本身重合。

那么a 角的大小可以是( ). (A)36 (B)45 (C)720 (D)9008.关于x 的一元二次方程x 2+bx-7=0的根的情况是( ). (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)由于不知道b 的值,不能确定根的情况 9.已知菱形的周长为40,一条对角线长为l2,那么这个菱形的面积是( ). (A)96 (B)72 (C)48 (D)40.1 0.从A 地向B 地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元, 若通话时间为x(单位:分,x ≥3且x 为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( ).(A)y=0.8x(x≥3且x 为整数) (B)y=2.4+x(x≥3且x 为整数) (C)y=x-0.6(x≥3且x 为整数) (D)y=x(x≥3且x 为整数)二、填空题(每小题3分,共计30分)11.据报道,哈西路桥建设叉一重要工程一哈西和谐大道跨线桥开工建设.总投资250 000 000 元将250 000 000用科学记数法表示为 . 12.在函数y=12x -中,自变量x 的取值范围是 .13.把多项式3a b ab -分解因式的结果为14.如图,AB ∥CD ,CF 交AB 于点E ,∠C=520,则∠AEF= 度. 15.不等式组{x+1≤3,2x-1>0 的解集是——.16.用一个圆心角为l200,半径为6的扇形作—个圆锥的侧面,则这个 圆锥的底面圆的半径为 .17.如图,AB 是⊙0的直径,CB 是⊙0的切线,B 为切点,0C ⊥BD ,点E 为 垂足,若BD=45,EC=5,则直径AB 的长为 .18.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m) 之间的关系是: y=-21251233x x ++,那么这个男生推出铅球的距离是 m . 19.已知AABC 中,AB=1,AC=3,∠BCA=300,则∠BAC 的度数是 度.20.如图,△ABC 中,AB=10,∠B=2∠C ,AD 是高线,AE 是中线,则线段DE 的长为三、解答题(21-24题各6分.25-26题各8分。

2012年历年初三数学中考模拟试卷二及答案

2012年历年初三数学中考模拟试卷二及答案

2012年数学中考模拟试卷一、选择题(每小题2分,共16分) 1.下列计算正确的是( )A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )·(2a )2=6aD .3a -a =3 2.在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月时间就有107000人报名,将107000用科学记数法表示为 ( ) A .4107.10⨯B .51007.1⨯C .60.10710⨯D .61.0710⨯3.将左图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )A .B .C .D .4.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,9,10,10,8,8,这组数据的众数与中位数分别为( ) A .9与8B .8与9C .8与8.5D .8.5与95.在平面直角坐标系xoy 中,点P 的坐标是(2,-m 2-1),其中m 表示任意实数,则点P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知函数c x x y +-=22(c 为常数)的图象上有两点),(11y x A ,),(22y x B ,若211x x <<且221>+x x ,则1y 与2y 的大小关系是( )A.21y y >B. 21y y <C. 21y y =D. 1y 与2y 的大小不确定 7.如图,正方形ABCD 内接于⊙O ,点E 为DC 的中点,直线BE 交⊙O 于点F ,如果⊙O 的半径为2,则点O 到BE 的距离OM 是( ) A .21 B .52C .65 D .558.如右图,在平面直角坐标系xOy中,点A的坐标为(3-,1),点B是x轴上的一动点,以AB为边作等边三角形ABC. 当),(yxC在第一象限内时,下列图象中,可以表示y与x的函数关系的是()A. B. C. D.二、填空题(本大题第9小题4分,其余每小题2分,共20分)9.计算:____51=⎪⎭⎫⎝⎛--;____51=-;___510=⎪⎭⎫⎝⎛-;____511=⎪⎭⎫⎝⎛--.10.分解因式:24ax a-=;函数12+=xy中自变量x的取值范围是.11.方程4)4(-=-xxx的解是=1x,=2x.12.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是53,则盒子中黄球的个数是.13.已知圆锥的底面半径为5 cm,侧面积为60πcm2,则这个圆锥的母线长为cm,它的侧面展开图的圆心角是°.14.如图,弦AB和CD相交于点P,︒=∠30B,︒=∠80APC,则BAD∠的度数为°.15. 已知一个直角三角形的周长是264+,斜边上的中线长是2,则这个三角形的面积是 .Oyx1-1-11CABPDCBA16.如图直线l 交y 轴于点C ,与双曲线()0<=k xky 交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、P 、Q (Q 在直线l 上)分别向x 轴作垂线,垂足分别为D 、E 、F ,连接OA 、OP 、OQ ,设△AOD 的面积为S 1,△POE 的面积为S 2,△QOF 的面积为S 3,则S 1、S 2、S 3的大小关系为 .(用“<”连接) 17. 在平面直角坐标系xOy 中,正方形O C B A 111、1222B C B A 、2333B C B A ,…,按右图所示的方式放置.点1A 、2A 、3A ,…和点1B 、2B 、3B ,…分别在直线b kx y +=和x 轴上.已知1C (1,1-),2C (27,23-),则点3A 的坐标是 ,点n A 的坐标是_______________. 三、解答题(共18)18.(本题满分8分)(1)计算:()1260tan 112012-︒-+-(2)化简:1b -a-a -b a ÷a 2-2ab +b 2 a19(本小题10分)(1)解不等式组⎩⎪⎨⎪⎧6-2x 3 ≥0,2x >x +1, (2)解分式方程: 32121=-+--x x x .四、解答题(共15分)20.(本小题7分)2012年我市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表 消费者打算购买住房面积统计图请你根据以上信息,回答下列问题:(1)统计表中的a = ,并补全统计图; (2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为 ; (3)求被调查的消费者平均每人年收入为多少万元?第17题l CS 3S 2S 1 yxOQ PFE DBAO A 1 A 2A 3B 1 B 2 B 3C 1 C 2C 3xyy=kx+b年收入(万元)4.8 69 12 24 被调查的消费者数(人) 10a30 91第20题21.(本小题8分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的数字记为y ,从而确定点P 的坐标为P (x ,y ). (1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标; (2)计算点P 在函数y=6x 图象上的概率.五、解答题(共12分) 22.(本小题5分)已知:如图,△ABC 中,点E 在AB 上,∠ACE=∠B ,AF 平分∠CAB 交CE 于F ,过F 作FD ∥BC 交AB 于D . 求证:AC=AD .23.(本小题7分)已知:如图,在梯形ABCD 中,AD∥BC,AB=AD ,∠BAD 的平分线AE 交BC 于点E ,连接DE .求证:四边形ABED 是菱形;1 32 4 6 A B 5 7 (第21题)六.探究与画图(共13分) 24.(本题满分5分)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4), 矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则满足条件的k 的值可以是 .(只须写两个.....)CB A D图3P EF DA B C 图1 P EF DA B C 图2图4备用25.(本题满分8分)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形. (1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由; (2)在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt △ABC 是奇异三角形,求a :b :c ; (3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合),D 是半圆弧ADB 的中点,C 、D 在直径AB 的两侧,若在⊙O 内存在点E ,使AE =AD ,CB =CE .试说明△ACE 是奇异三角形.七、解答题(共3小题,共26分)26.(本题满分7)如图,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线 43-=x y 经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线xk y =也经过A 点.(1) 求点A 的坐标和k 的值;(2)若点P 为x 轴上一动点.在双曲线上是否存在一点Q ,使得△P AQ 是以点A 为直角顶点的等腰三角形.若存在,求出点Q 的坐标,若不存在,请说明理由.AB O PC yxAB O·Pyx备用图27.(本小题9)将右图所示的长方体石块(a > b > c )放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图1 ~ 图3所示.在这三种情况下,水槽内的水深h cm 与注水时间 t s 的函数关系如图4 ~ 图6所示.根据图象完成下列问题:(1)请分别写出三种放置方式的示意图和与之相对应的函数关系图象(只须填序号):图1与图 ,图2与图 ,图3与图 ;(2)水槽的高= cm ;石块的长a = cm ;宽b = cm ;高c = cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .s图4图5图6图2图1图328.(本题满分10)如图,二次函数452+-=x x y 的图象与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C ,有一个动点E 从点B 出发以每秒一个单位向点A 运动,过E 作y 轴的平行线,交ABC ∆的边BC 或AC 于点F ,以EF 为边在EF 右侧作正方形EFGH ,设正方形EFGH 与ABC ∆重叠部分面积为S ,E 点运动时间为t 秒.(1)求顶点C 的坐标和直线AC 的解析式;(2)求当点F 在AC 边上,点G 在BC 边上时t 的值;(3)写出点E 从点B 向点A 运动过程中,S 关于t 的函数关系式及相应t 的取值范围.备用图1备用图22012年数学中考模拟试卷参考答案一、选择题(本大题共8小题,每小题2分,共16分) 题号 1 2 3 4 5 6 7 8 答案ABCCDBDA二、填空题(每题2分,共20分)9.51,51,1,-5; 10.)12)(12(-+x x a ,1-≠x ; 11.=1x 1,=2x 4; 12.6; 13.12,150; 14.50; 15.25; 16.S 3<S 1<S 2; 17.()1129933(,);5()4,()4422n n --⨯-18.(本小题满分8分)(1)解:原式32-1-31+= ……3分 3-= ……………4分 (2)解:原式=1b -a -a -b a ·a(a -b )2………2分=1b -a -1a -b ………………………3分=-2a -b .……………………………4分19.(本小题满分10分)(1)解:解不等式①,得x ≤3.……………………2分解不等式②,得x >1.……………………4分 所以不等式组的解集是1<x ≤3. ………5分(2)解:去分母得 x-1+1=3(x-2)……………2分解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3.………………5分 20.(本小题满分7分)解:(1)a =50…1分,如图;…2分(2)52%;…4分 (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5(万元)故被调查的消费者平均每人年收入为7.5万元. …7分 21. (本小题满分8分)解:(1树状图参照给分,若有个别错误,酌情扣分………………………4分 (2)共有12个等可能的结果,其中在函数y =6x图象上(记为事件A )的结果有2个:(1,6),(3,2).…………………………………………6分 ∴P (A )=212=16……………………………………………………8分22. (本题满分5分)证明:∵FD ∥BC ,∴∠B=∠ADF ……1分∵∠B=∠ACE ,∴∠ACE=∠ADF ……2分∵AF 平分∠CAB ,∴∠CAF=∠DAF ,……3分∵在△ACF 和△ADF 中∠ACE=∠ADF ,∠ACE=∠ADF ,AF=AF ∴△ACF ≌△ADF ,……4分 ∴AC=AD .……5分23.(本小题满分7分)证明:∵AE 平分∠BAD ,∴∠BAE=∠DAE ,……1分∵AB=AD ,AE=AE ,∴△BAE ≌△DAE ,……2分 ∴BE=DE ,……3分∵AD ∥BC ,∴∠DAE=∠AEB ,……4分 ∴∠BAE=∠AEB ,∴AB=BE ,……5分 ∴AB=BE=DE=AD ,……6分∴四边形ABED 是菱形.……7分24.(本小题满分5分) 解:(1)如右图;……2分 (2)23458 k .……5分 (写出58得1分,另一个得2分)F EDABCMP25.(本小题满分8分)解:(1)设等边三角形的一边为a,则a2+a2=2a2,∴符合“奇异三角形”的定义.∴是真命题;……2分(2)∵∠C=90°,∴a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=2a,c=3a,∴a:b:c=1:2:3……5分(3)∵①AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AC2+BC2=AB2,在Rt△ADB中,AD2+BD2=AB2,∵点D是半圆弧ADB的中点,∴弧AD=弧DB,∴AD=BD,∴AB2=AD2+BD2=2AD2,∴AC2+CB2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2,∴△ACE是奇异三角形; (8)分26.(本小题满分7分)(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AM=AN.设点A的坐标为(a,a),点A在直线y=3x-4上,∴a=3a-4,解得a=2,则点A的坐标为(2,2)……2分,∴k = 4 ……3分(2)假设双曲线上存在一点Q,使得△P AQ是等腰直角三角形.过B作BQ⊥x轴交双曲线于Q点,连接AQ,过A点作AP⊥AQ交x轴于P点,则△APQ为所求作的等腰直角三角形.…4分理由:在△AOP与△ABQ中,∠OAB-∠P AB=∠P AQ-∠P AB,∴∠OAP=∠BAQ,AO=BA,∠AOP=∠ABQ=45°,∴△AOP≌△ABQ(ASA),…5分∴AP=AQ,∴△APQ是所求的等腰直角三角形.∵B(4,0),∴Q(4,1)…6分经检验,在双曲线上存在一点Q(4,1),使得△P AQ是以点A为直角顶点的等腰三角形.…7分说明:应有4种情况,其他3种情况不符合27.(本小题满分9分) (1)图4;图6;图5…………………2分(对2个得1分,全对得2分)(2)水槽的高= 10 cm ;石块的长a = 10 cm ;宽b = 9 cm ;高c = 6 cm ;………4分(每对2个得1分)(3)由题意可知C 点的坐标为(45,9),D 点的坐标为(53,10)设直线CD 的函数关系式为y kx b =+,∴945,1053.k b k b =+⎧⎨=+⎩ 解得1,827.8k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线CD 的函数关系式为127.88y x =+ …………………………6分 (4)石块的体积为abc =540 cm 3,根据图4和图6可得:10540(106)535321S S --=-, 解得S=160 cm 2.………………………………………………9分28.(本小题满分10分)(1)452+-=x x y =49)25(2--x ,顶点C 的坐标为(49,25-)…1分452+-=x x y =)4)(1(--x x ,故点A (1,0)B (4,0) …2分。

重庆实验外国语学校初2012年初三第二次模拟考试数学试题

重庆实验外国语学校初2012年初三第二次模拟考试数学试题

OCBA 重庆实验外国语学校初2012年初三第二次模拟考试数学试题一、选择题〔本大题共10个小题,每题4分,共40分.)1.在-5,0,2,7这四个数中,最小的数是〔〕A.-5 B.0 C.2D. 72.计算23)2(x-的结果是〔〕 A.52x- B.64x- C.54x D.64x3.以下图形中,是轴对称图形的是〔〕AB C D4.如以下图,Rt ABC△中,90ACB DE∠=°,过点C,且DE AB∥,假设50ACD∠=°,则B∠的度数是〔〕A.50°B.40°C.30°D.25°5.以下调查中,适宜采用普查方式的是〔〕A.调查全国中学生的视力情况. B.调查重庆新闻节目”天天630”的收视率.C.调查“神九”航天飞船各零部件的质量.D.调查重庆市民对生活质量的满意程度.6.如图,⊙O是△ABC的外接圆,∠OCB=350,则∠A的度数等于〔〕A.55° B. 50° C.45° D.40°7. 已知:当2=x时,代数式13++bxax的值为3,则当2-=x时,代数式13++bxax的值为( )A.3- B.1- C.1 D.38.王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图,是王芳离家的距离与时间的函数图象.假设点M表示王芳家的位置,则王芳走的路线可能是〔〕A. B. C. D.9.以下图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依次规律,拼搭第8个图案需小木棒根.10.已知二次函数错误!嵌入对象无效。

的图象如下图,以下结论中正确的结论是〔〕A. 错误!嵌入对象无效。

B. 错误!嵌入对象无效。

,〔错误!嵌入对象无效。

的实数〕 C. 错误!嵌入对象无效。

D. 错误!嵌入对象无效。

二、填空题〔本大题共6个小题,每题4分,共24分〕11.某电视台报道,截止到2012年5月5日,红十字会已接受爱心人士的捐款15510000元.将第1个第2个第4个第3个15510000用科学记数法表示为12.初三〔一〕班6个女同学的跳远成绩分别为:2.13〔m 〕,1.95〔m 〕, 1.90(m), 2.25(m),1.93(m), 1.89〔m 〕,其中这些数据的中位数为13. 已知△ABC 与△DEF 相似且对应高的比为2︰5,则△ABC 与△DEF 的面积比为_______ π2,半径为3,则扇形的圆心角大小为_______15. 五张分别写有数字-1,0,1,2,3的卡片反面完全相同.现把它们洗匀后反面向上摆放在桌面上,从中任取一张,所得的数字作为一个点的横坐标,再从剩下的卡片中抽取一张所得的数字作为这个点的纵坐标,则这个点落在以原点为圆心,半径为3的圆内的概率为________________16. 星光时代广场有一部自动扶梯匀速由下而上运动,甲、乙两人在乘扶梯的同时匀速登梯,甲登了30级后到达楼上,乙登梯的速度是甲的2倍〔单位时间内乙登楼级数是甲的2倍〕,他登了36级后到达楼上,那么由楼下到楼上自动扶梯级数为 . 三、解答题:〔本大题4个小题,每个小题6分,共24分〕 17、()()2201131313272π-⎛⎫-+-⨯--+ ⎪⎝⎭18、解分式方程:11312=++--x x x19、已知:如图, AB=DE ,且BE CF =,B ∠=DEF ∠;证明:D A ∠=∠20、在ABC ∆中,AD ⊥BC ,︒=∠30B , AB=4,AC=5,求ABC ∆的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外国语学校2012年中考二模数学试题及答案班级____________姓名_____________成绩___________一. 选择题。

(每小题2分,共20分)1.点P (-1,4)关于x 轴对称的点P′的坐标是( ) (A )(-1,-4) (B )(—1,4) (C )(1,-4) (D )(1,4)2.方程0442=++x x 的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )有一个实数根 (D )没有实数根3. 某蓄水池的横断面示意图如下图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面的图象能大致表示水的最大深度h 和时间t 之间的关系的是( )4. 下列结论正确的个数是( )(1)一个多边形的内角和是外角和的3倍,则这个多边形是六边形(2)如果一个三角形的三边长分别为6、8、10,则最长边上的中线长为5 ()若,相似比为:,则3ABC DEF 14∆∆∆∆~:S S ABC DEF ==14 (4)若等腰三角形有一个角为80°,则底角为80°或50°A. 1B. 2C. 3D. 4 5. 如图,若弦BC 经过圆O 的半径OA 的中点P ,且PB=3,PC=4,则圆O 的直径为( ) (A )7 (B )8 (C )9 (D )10 6. 某市2002年国内生产总值达1493亿元,比2001年增长11.8%, 下列说法:(1)2001年国内生产总值为1493(1-11.8%)亿元;()年国内生产总值为亿元;2200114931118%-. ()年国内生产总值为亿元;3200114931118%+.(4)若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元。

其中正确的是( ) A. (3)(4) B. (2)(4) C. (1)(4) D. (1)(2)(3) AB PC O7. 如下图,在⊙O 中,A 、B 、C 、D 是⊙O 上的点,图中有( )对相似三角形。

A. 1对B. 2对C. 3对D. 4对 (第8题图)8、二次函数c bx ax y ++=2图象如图所示,则下列a 、b 、c 关系判断正确的是( ) (A )ab<0 (B) bc<0 (C) a+b+c>0 (D) a -b+c<0 9、如图,A、B是⊙O1和⊙O2的公共点,AC 是⊙O2切线,AD 是⊙O1的切线,若BC=4,AB=6,则BD 的长为()(A )8 (B )9 (C )10 (D )1210、如图,A 、B 是反比例函数x ky =(k>0)上的两个点,A C ⊥x轴于点C ,BD ⊥y 轴于点D ,连结AD 、BC ,则△ADB 与△ACB 的面积 (第9题图) 大小关系是( ) (A ) S △ADB >S △ACB (B )S △ADB <S △ACB(C )S △ADB =S △ACB (D )不能确定 二. 填空题。

(每小题3分,共18分)11. 观察下列一组图形,根据其变化规律求得第10个图形中三角形的个数为__________,第n 个图形中三角形的个数是___________。

12. A 、B 两点被池塘隔开(如下图),在AB 外选一点C ,连结AC 和BC 并分别找出其中点M 、N ,若测得MN =20m ,则A 、B 两点的距离为___________。

13. 高6m 的旗杆在水平地面上的影长为9m ,此时测得附近一个建筑物的影长为30m ,则该建筑物的高度为___________。

x·O 1 ·O 1A CB D14. 在一块空旷的草地上有一根柱子,柱子上拴着一条长3m 的绳子,绳子的另一端拴着一只狗,这只狗的最大活动区域为___________。

15. 如下图,某同学从A 点出发前进10米,向右转18°,再前进10米,又向右转18°,这样下去,他第一次回到出发点A 时,一共走了___________米。

16. 下面是某班学生(20人)一次外语测验受污染的成绩分配表:若成绩平均分为73分,则70分有___________人,80分有___________人。

三. 作图题。

(5分)17. 一辆汽车在直线型的公路AB 上由A 向B 行驶M 、N 分别是位于公路AB 两侧的村庄,汽车行驶到哪一点时,与村庄M 、N 的距离相等?请在图上找到这一点。

(不写作法,保留作图痕迹)四. 解答题。

(6分)18. 阅读下列计算过程:()()x x x x x x x A ----=-+---3131311312()()()()()()=-+--++-x x x x x x B 3113111()()=--+x x C 331()=--26x D ()(1) 上述计算过程从哪步开始出现错误。

(2)写出正确的计算过程。

19. 甲、乙两个商厦搞有奖酬宾活动,购物满200元可以掷两次骰子,根据两次骰子的总点数决定送礼券多少。

如果让你去购物,你选择去哪一个商厦?说明理由。

20. 根据下列表格回答问题。

沿海主要港口货物吞吐量(1)我国沿海主要港口货物吞吐总量的发展趋势如何?近年来在秦皇岛、青岛、上海、广州、海口这几个城市中哪个城市吞吐量增长最为迅速?你是怎样知道的?你能用一个图来说明自己的观点吗?(2)哪个城市吞吐总量出现负增长?你能尝试解释其中的原因吗?21. 公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m,假设拖拉机行驶时,周围100m以内会受到噪声的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由。

22. 现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的车厢共40节,如果每节A型车厢最多可以装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两节车厢的节数,那么共有几种安排车厢的方案?23. 如图O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?证明你的结论。

24. 某批发市场欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别是60千米/时、100千米/时,两货运公司的收费项目及收费标准如下表所示:(注:元/吨·千米表示每吨货物每千米的运费;元/吨·小时表示每吨货物每小时冷藏费)(1)设批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),分别写出y1、y2与x的关系式。

(3)若该批发商待运的海产品不少于30吨,为节省运费,他应选哪个货运公司承担运输业务?25. 如下图,等边△ABC以2m/s的速度沿直线l向菱形DCEF移动,直到AB与CD重合,其中∠DCF=60°,设x s时,三角形与菱形重叠部分的面积为y m2。

(1)写出y与x的关系表达式。

(2)当x=0.5,1时,y分别是多少。

(3)当重叠部分的面积是菱形面积一半时,三角形移动了多长时间?A D F10 10l26. 如下图,在直径为AB的半圆内,划出一块三角形区域使三角形的一边为AB,顶点C在半圆上,其他两边分别为6和8。

现在建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图的设计方案是使AC=8,BC=6。

(1)求△ABC中AB边上的高h。

(2)设DN=x,当x为何值时,水池DEFN的面积最大?(3)实施施工时,发现在AB上距B点1.85的M处有一棵大树,这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开这棵大树。

【试题答案】一. 选择题。

1. C 2. B 3. A 4. B5.B6. A7. B 8.D 9.B 10.C二. 填空题。

11. 37,43n - 12. 40m 13. 20m14. 92πm 15. 20016. 5,8三. 作图题。

17. 连结MN ,作MN 的垂直平分线与AB 的交点即为所求。

四. 解答题。

18. (1)A 步()()()2x x x x x x x ----=-+-+-3131311312()()()()()()()()()=-+-+++-=++++-=++-x x x x x x x x x x x x x 311311133311461119. 选择去乙商厦因为在甲商厦获得元礼券的概率为,而在乙商厦获得元礼券的概120136120率为。

1620. (1)上海,可用折线统计图说明 (2)三亚 湛江 理由合理即可。

21. 作AB ⊥MN在Rt △ABP 中∵∠ABP =90°,∠APB =30°,AP =160∴==AB AP 1280∵点A 到MN 的距离小于100m ∴这所中学将受到噪音的影响22. 设安排A 型车厢x 节,则B 型车厢(40-x )节()()3525401240153540880x x x x +-≥+-≥⎧⎨⎪⎩⎪解得:2426≤≤x方案1:A 型车厢24节,B 型车厢16节 方案2:A 型车厢25节,B 型车厢15节 方案3:A 型车厢26节,B 型车厢14节 23. 是 提示:∵DE ∥AC ,CE ∥BD ∴四边形OCED 是平行四边形 ∵∠ODE =90°∴平行四边形OCED 是矩形24.()1y x x x 12002120512060150200=+⨯+⨯=+y x x x 216001812051201002221600=+⨯+⨯=+.(2)当x >50时,y 1>y 2; 当x =50时,y 1=y 2; 当x <50时,y 1<y 2。

∴所运海产品不少于30吨且不足50吨,应选汽车货运公司。

所运海产品刚好50吨;可选任意一家。

所运海产品多于50吨,应选铁路货运公司。

25. ()1y x =32()当时,;当时,2x y x y ====053413.()菱形3S =503 (4)5S26. (1)作CH ⊥AB 于H 交NF 于G ,则CH =h∵∠ACB =90°∴=⨯⨯=⨯S h ABC ∆12681210∴=h 48.(2)设矩形面积为S ∵△CNF ∽△CAB ∴=NF AB CG CH。

相关文档
最新文档