【附5套中考模拟试卷】河南省驻马店市2019-2020学年中考数学三模试卷含解析

合集下载

【附5套中考模拟试卷】河南省驻马店市2019-2020学年中考数学模拟试题(2)含解析

【附5套中考模拟试卷】河南省驻马店市2019-2020学年中考数学模拟试题(2)含解析

河南省驻马店市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H2.下列四个图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根 B .0一定不是关于x 的方程x 2+bx+a=0的根 C .1和﹣1都是关于x 的方程x 2+bx+a=0的根 D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根4.如图,直线y =kx+b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <05.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm6.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( )A .1k <B .1k ³C .1k >D .1k <7.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )A .513B .512C .1213D .1258.方程3701x x -=+的解是( ). A .14x =B .34x =C .43x =D .1x =-9.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)10.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .11.在以下四个图案中,是轴对称图形的是( )A .B .C .D .12.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,点A 为函数y=9x (x >0)图象上一点,连结OA ,交函数y=4x(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△OBC 的面积为____.14.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.15.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.16.一组数据10,10,9,8,x 的平均数是9,则这列数据的极差是_____. 17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.18.关于x 的不等式组3515-12x x a ->⎧⎨≤⎩有2个整数解,则a 的取值范围是____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:131|13|2sin 60(2016)83π-︒︒⎛⎫+--+-- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =-. 20.(6分)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,BC 的延长线于过点A 的直线相交于点E ,且∠B=∠EAC .(1)求证:AE 是⊙O 的切线;(2)过点C 作CG ⊥AD ,垂足为F ,与AB 交于点G ,若AG•AB=36,tanB=22,求DF 的值21.(6分)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).22.(8分)先化简,再求值:2441x x x +++÷(31x +﹣x+1),其中x=sin30°+2﹣14. 23.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整). 类别 分数段 A 50.5~60.5 B 60.5~70.5 C 70.5~80.5 D 80.5~90.5 E90.5~100.5请你根据上面的信息,解答下列问题.(1)若A 组的频数比B 组小24,求频数直方图中的a ,b 的值;(2)在扇形统计图中,D 部分所对的圆心角为n°,求n 的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?24.(10分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.25.(10分)计算:4cos30°+|3﹣12|﹣(12)﹣1+(π﹣2018)0 26.(12分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.27.(12分)如图,AC 是⊙O 的直径,点P 在线段AC 的延长线上,且PC=CO ,点B 在⊙O 上,且∠CAB=30°. (1)求证:PB 是⊙O 的切线;(2)若D 为圆O 上任一动点,⊙O 的半径为5cm 时,当弧CD 长为 时,四边形ADPB 为菱形,当弧CD 长为 时,四边形ADCB 为矩形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据被开方数越大算术平方根越大,可得答案. 【详解】∴3<4, ∵, ∴3<a <4, 故选:C . 【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键. 2.D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,也是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.D 【解析】 【分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根. 【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+V ==,∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x的方程x2+bx+a=0的根.故选D.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.4.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.5.B【解析】【分析】首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.【详解】解:如图,连接OC,AO,∵大圆的一条弦AB与小圆相切,∴OC⊥AB,∵OA=6,OC=3,∴OA=2OC,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB的长=1206180π⨯⨯=4π,故选B.【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.6.B【解析】【分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.7.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8.B 【解析】 【分析】直接解分式方程,注意要验根. 【详解】 解:371x x -+=0, 方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0, 解这个一元一次方程,得:x=34, 经检验,x=34是原方程的解. 故选B. 【点睛】本题考查了解分式方程,解分式方程不要忘记验根. 9.A 【解析】 【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标. 【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2, ∴点C 的坐标为:(4,4) 故选A . 【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键. 10.B 【解析】 【详解】 由题意可知, 当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时,ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+;当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确. 【点睛】考点:1.动点问题的函数图象;2.三角形的面积. 11.A 【解析】 【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解. 【详解】A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误. 故选:A . 【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 12.D 【解析】 【分析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得. 【详解】∵ED 是BC 的垂直平分线,∴DB=DC , ∴∠C=∠DBC ,∵BD 是△ABC 的角平分线, ∴∠ABD=∠DBC ,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°, ∴∠C=∠DBC=∠ABD=30°, ∴BD=2AD=6, ∴CD=6,∴故选D .【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】根据题意可以分别设出点A 、点B 的坐标,根据点O 、A 、B 在同一条直线上可以得到A 、B 的坐标之间的关系,由AO=AC 可知点C 的横坐标是点A 的横坐标的2倍,从而可以得到△OBC 的面积.【详解】设点A 的坐标为(a,9a),点B 的坐标为(b,4b ), ∵点C 是x 轴上一点,且AO=AC ,∴点C 的坐标是(2a,0),设过点O(0,0),A(a, 9a)的直线的解析式为:y=kx , ∴9a=k ⋅a , 解得k=29a , 又∵点B(b,4b )在y=29a x 上, ∴4b =29a ⋅b,解得,a b =32或a b =−32(舍去), ∴S △OBC =422a b=6.故答案为:6.【点睛】本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例函数的图象以及三角形的面积公式.14.16【解析】【分析】设小长方形的宽为a ,长为b ,根据大长方形的性质可得5a=3b ,m=a+b= a+53a =83a ,再根据m 的取值范围即可求出a 的取值范围,又因为小长方形的边长为整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=53a,m=a+b= a+53a=83a,因为1020m<<,所以10<83a<20,解得:154<a<152,又因为小长方形的边长为整数,a=4、5、6、7,因为b=53a,所以5a是3的倍数,即a=6,b=53a=10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.15.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.16.1【解析】【分析】先根据平均数求出x,再根据极差定义可得答案.【详解】由题意知101098x5++++=9,解得:x=8,∴这列数据的极差是10-8=1,故答案为1.【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.17.18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.18.8⩽a<13;【解析】【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1;(2)-1.【解析】【分析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置. 【详解】(1)原式1﹣2×2+1﹣1+1﹣2=1.(2)原式=[31x+﹣(1)(1)1x xx+-+]•21(2)xx++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当﹣2时,原式-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.20.(1)见解析;(2)【解析】分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;(2)由△ACD∽△CFD,可得DF CDCD AD=,想办法求出CD、AD即可解决问题.详解:(1)证明:连接CD.∵∠B=∠D,AD是直径,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切线.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B ,∴∠3=∠B ,∵∠CAG=∠CAB ,∴△ABC ∽△ACG , ∴AC AB AG AC =, ∴AC 2=AG•AB=36,∴AC=6,∵tanD=tanB=2, 在Rt △ACD 中,tanD=AC CD =22CD=2=62,AD=()22662+=63,∵∠D=∠D ,∠ACD=∠CFD=90°,∴△ACD ∽△CFD ,∴DF CD CD AD=, ∴3点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.21.(1)135BAD ∠=︒;(2)212ABC ADC ABCD S S S ∆∆=+=四边形 【解析】【分析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【详解】解:(1)连接AC ,如图所示:∵AB=BC=1,∠B=90°∴22112+=又∵AD=1,3∴ AD2+AC2=3 CD232=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×12+1×2×12=1222+.【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.-5【解析】【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【详解】当x=sin30°+2﹣14时,∴x=12+12+2=3,原式=2(x2)x1++÷24xx1-+=x2x2+--=﹣5.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(1)40(2)126°,1(3)940名【解析】【分析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×70200=126°.C组的人数是:200×25%=1.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(1)见解析;(2)1 3 .【解析】【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.25.134-【解析】【分析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案. 【详解】原式=1×+2﹣3﹣2+1 =2+2﹣1 =1﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26. (1)证明见解析;(2)2m =或4m =.【解析】【分析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯-V 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.27.(1)证明见解析(2)53πcm ,103πcm 【解析】【分析】(1)连接OB ,要证明PB 是切线,只需证明OB ⊥PB 即可;(2)利用菱形、矩形的性质,求出圆心角∠COD 即可解决问题.【详解】(1)如图连接OB 、BC ,∵OA=OB ,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC ,∴△OBC 是等边三角形,∴BC=OC ,∵PC=OA=OC ,∴BC=CO=CP ,∴∠PBO=90°,∴OB ⊥PB ,∴PB 是⊙O 的切线;(2)①»CD 的长为53πcm 时,四边形ADPB 是菱形,∵四边形ADPB 是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴»CD 的长=60?·551803ππ=cm ;②当四边形ADCB是矩形时,易知∠COD=120°,∴»CD的长=120?·5101803ππ=cm,故答案为:53πcm,103πcm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点,若∠DAB=50°,则∠ABC 的大小是( )A .55°B .60°C .65°D .70°2.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④3.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .26±B .6±C .2或3D .2或34.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了5.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤6.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A .15°B .55°C .65°D .75°7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,2C .1,1,3D .1,2,38.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对9.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( ) A .(a+b )元 B .(3a+2b )元 C .(2a+3b )元 D .5(a+b )元10.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .B .C .D .11.在函数y =1x x 中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠112.某车间需加工一批零件,车间20名工人每天加工零件数如表所示: 每天加工零件数45 6 7 8人数 3 6 5 4 2 每天加工零件数的中位数和众数为( )A .6,5B .6,6C .5,5D .5,6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是__.14.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.15.若23a b =,则a b b +=_____. 16.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.17.若正六边形的边长为2,则此正六边形的边心距为______.18.如图,在3×3的正方形网格中,点A ,B ,C ,D ,E ,F ,G 都是格点,从C ,D ,E ,F ,G 五个点中任意取一点,以所取点及AB 为顶点画三角形,所画三角形时等腰三角形的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 31,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?20.(6分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =10t ﹣5t 1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t 在什么范围时,飞行高度不低于15m ?21.(6分)在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .求证.DF AB =若30FDC ∠=︒,且4AB =,求AD .22.(8分)已知:如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF .()1求证:BCE DCF ≅V V ;()2当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.23.(8分)为上标保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A 港口的物资为x 吨,求总运费y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;求出最低费用,并说明费用最低时的调配方案.24.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25.(10分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.26.(12分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).27.(12分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.2.B【解析】【分析】由条件设3,AB=2x,就可以表示出3,23x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设3x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴3,CD=2x∵CP:BP=1:2∴CP=33,BP=33x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC3tan∠EBC=ECBC3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·EF=433x·322AD2=2×3)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=3 3x∵tan ∠PAB=PB AB ∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,,PO=3x∴4AO·x·3x=4x 2又EF·x·3x=4x 2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.3.A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=±故选A .【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键. 4.A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.5.A【解析】【分析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <2,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2,∴a ﹣(﹣2a )+c=3a+c <2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于2.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(2,c ).。

河南省驻马店市2019-2020学年中考第三次适应性考试数学试题含解析

河南省驻马店市2019-2020学年中考第三次适应性考试数学试题含解析

河南省驻马店市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知抛物线y=ax 2+bx+c 与x 轴交于点A 和点B ,顶点为P ,若△ABP 组成的三角形恰为等腰直角三角形,则b 2﹣4ac 的值为( ) A .1B .4C .8D .122.如图,已知△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A .2-2B .32C .3-1D .13.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .4.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15B .12C .9D .65.内角和为540°的多边形是( )A .B .C .D .6.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯7.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A .B .C .D .8.如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B′处,此时,点A 的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )A .∠BCB′=∠ACA′B .∠ACB=2∠BC .∠B′CA=∠B′ACD .B′C 平分∠BB ′A′9.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表: 文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( ) A .众数是20B .中位数是17C .平均数是12D .方差是2610.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--11.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A.B.C.D.12.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算a3÷a2•a的结果等于_____.14.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.15.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.16.二次根式2x在实数范围内有意义,x的取值范围是_____.17.如图,点A的坐标为(3,7),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.18.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.20.(6分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?21.(6分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=34,求线段CD的长.22.(8分)已知:如图,在Rt △ABO 中,∠B=90°,∠OAB=10°,OA=1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.23.(8分)如图,△ABC 的顶点坐标分别为A (1,3)、B (4,1)、C (1,1).在图中以点O 为位似中心在原点的另一侧画出△ABC 放大1倍后得到的△A 1B 1C 1,并写出A 1的坐标;请在图中画出△ABC 绕点O 逆时针旋转90°后得到的△A 1B 1C 1.24.(10分)(8分)如图,在平面直角坐标系中,O 为原点,直线AB 分别与x 轴、y 轴交于B 和A ,与反比例函数的图象交于C 、D ,CE ⊥x 轴于点E ,tan ∠ABO=12,OB=4,OE=1.(1)求直线AB 和反比例函数的解析式; (1)求△OCD 的面积.25.(10分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.26.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A :菜包、B :面包、C :鸡蛋、D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”); (2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.27.(12分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点,(1)求证:△ACE ≌△BCD ;(2)若DE=13,BD=12,求线段AB 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),利用二次函数的性质得到P (-2b a ,244ac b a-),利用x 1、x 2为方程ax 2+bx+c=0的两根得到x 1+x 2=-b a ,x 1•x 2=ca,则利用完全平方公式变形得到AB=|x 1-x 2|=24b ac a - ,接着根据等腰直角三角形的性质得到|244ac b a-|=12•24b aca -,然后进行化简可得到b 2-1ac 的值. 【详解】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),顶点P 的坐标为(-2b a ,244ac b a-),则x 1、x 2为方程ax 2+bx+c=0的两根, ∴x 1+x 2=-b a ,x 1•x 2=ca, ∴AB=|x 1-x 2|=212()x x -=21212()4x x x x +-=2()4b ca a--⋅=24b ac a -,∵△ABP 组成的三角形恰为等腰直角三角形,∴|244ac b a -|=12•24b ac a -,222(4)16b ac a -=2244b ac a-, ∴b 2-1ac=1. 故选B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质. 2.C 【解析】 【分析】延长BC′交AB′于D ,根据等边三角形的性质可得BD ⊥AB′,利用勾股定理列式求出AB ,然后根据等边三角形的性质和等腰直角三角形的性质求出BD 、C′D ,然后根据BC′=BD -C′D 计算即可得解. 【详解】解:延长BC′交AB′于D ,连接BB ',如图,在Rt△AC′B′中,AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴∴BC′=BD-.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键. 3.A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.4.A【解析】【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A5.C【解析】试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.考点:多边形内角与外角.6.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.详解:将360000000用科学记数法表示为:3.6×1. 故选:B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 7.D 【解析】 【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中. 【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形. 故选A . 【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大. 8.C 【解析】 【分析】根据旋转的性质求解即可. 【详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确; B:CB CB ='Q ,B BB C ∴∠=∠', 又A CB B BB C ∠=∠+∠'''Q2A CB B ''∴∠=∠, ACB A CB ∠=∠''Q 2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠Q ,A B C BB C ∴∠=∠'''∴B′C 平分∠BB′A′,故D 正确.无法得出C 中结论, 故答案:C. 【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件 9.C【解析】【分析】根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.10.A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选A.11.B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.12.A【解析】∵∆=12-4×1×(-2)=9>0,∴方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a 1【解析】【分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a 3﹣1+1=a 1.故答案为a 1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.14.()2 1.8250x x ++=【解析】【分析】河北四库来水量为x 亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x 亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.15.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.16.x≤1【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,1﹣x≥0,解得,x≤1,故答案为x≤1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.17.(212,372)【解析】【分析】作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=7、BC=OC=3,从而知tan∠ABC=ACBC=73,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO='O DBD=7,设O′D=7x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.【详解】如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(3, 7),∴7,∵OB=6,∴BC=OC=3,则tan∠ABC=ACBC=73,由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,∴'O DBD=ACBC=73,设O′D=7x,BD=3x,由O′D2+BD2=O′B2可得(7x)2+(3x)2=62,解得:x=32或x=−32(舍),则BD=3x=92,O′D=7x=327,∴OD=OB+BD=6+92=212,∴点O′的坐标为(212,372).【点睛】本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.18.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1【解析】【分析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.20.(1)详见解析;(2)40%;(3)105;(4)5 16.【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151******** +++==.答:正好抽到参加“器乐”活动项目的女生的概率为5 16.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)DE与⊙O相切;理由见解析;(2)92.【解析】【分析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.【详解】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE与⊙O相切;(2)∵R=5,∴AB=10,在Rt △ABC 中∵tanA=34BC AB = ∴BC=AB•tanA=10×31542=, ∴252==, ∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD ∽△ACB ∴CD CB CB CA= ∴CD=2215()922522CB CA ==. 【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.22.【发现】(3)MN n 的长度为π3;(2)重叠部分的面积为8;【探究】:点P 的坐标为10(,);或 03()或 0-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析. 【解析】【分析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ ,即可用面积公式得出结论;探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】[发现](3)∵P (2,0),∴OP=2.∵OA=3,∴AP=3,∴·MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r=2﹣3=3,当t=2时,如图3,点N 与点A 重合,∴PA=r=3,设MP 与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQ12=PA12=,∴AQ=AP×cos30°32=,∴S重叠部分=S△APQ12=PQ×AQ38=.即重叠部分的面积为38.[探究]①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴点P的坐标为(3,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPDPDOP=,∴OP123303cos==︒,∴点P的坐标为(233,0);③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP233 =;∴点P的坐标为(23-,0);[拓展]t的取值范围是2<t≤3,2≤t<4,理由:如图4,当点N运动到与点A重合时,·MN与Rt△ABO的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t411-==3,·MN与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,·MN与Rt△ABO的边有两个公共点,此时t=2;直到⊙P运动到点N与点O重合时,·MN与Rt△ABO的边有一个公共点,此时t=4;∴2≤t <4,即:t 的取值范围是2<t≤3,2≤t <4.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.23.(1)A (﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,△A 1B 1C 1为所作,A (﹣1,﹣6);(1)如图,△A 1B 1C 1为所作.24.(1)122y x =-+,6y x=-;(1)2. 【解析】 试题分析:(1)先求出A 、B 、C 点坐标,用待定系数法求出直线AB 和反比例的函数解析式;(1)联立一次函数的解析式和反比例的函数解析式可得交点D 的坐标,从而根据三角形面积公式求解. 试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE ⊥x 轴于点E ,tan ∠ABO=AO CE BO BE ==12,∴OA=1,CE=3,∴点A 的坐标为(0,1)、点B 的坐标为C (4,0)、点C 的坐标为(﹣1,3),设直线AB 的解析式为y kx b =+,则240b k b =⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,故直线AB 的解析式为122y x =-+,设反比例函数的解析式为m y x =(0m ≠),将点C 的坐标代入,得3=2m -,∴m=﹣3.∴该反比例函数的解析式为6y x=-;(1)联立反比例函数的解析式和直线AB的解析式可得6 122yxy x⎧=-⎪⎪⎨⎪=-+⎪⎩,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)AC=3;【解析】【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,AC=223AD CD-=.【点睛】考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.26.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.27.(3)证明见解析; (3)AB=3.【解析】【分析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS 推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=22=5,1312∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.。

河南省驻马店市2019-2020学年中考数学第三次押题试卷含解析

河南省驻马店市2019-2020学年中考数学第三次押题试卷含解析

河南省驻马店市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的一元二次方程x (x+2)=m 总有两个不相等的实数根,则( )A .m <﹣1B .m >1C .m >﹣1D .m <12.以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( )A .b≥1.25B .b≥1或b≤﹣1C .b≥2D .1≤b≤23.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③4.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 5.下列计算正确的是( )A .(﹣2a )2=2a 2B .a 6÷a 3=a 2C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 26.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,12C .1,13D .1,237.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是( )A .180个,160个B .170个,160个C .170个,180个D .160个,200个8.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 29.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C .中位数D .平均数10.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为( )A .55×105B .5.5×104C .0.55×105D .5.5×10511.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC V 的面积为( )A .40B .46C .48D .5012.已知a,b 为两个连续的整数,且a<11<b,则a+b 的值为( )A .7B .8C .9D .10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是____. 14.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)15.已知:正方形 ABCD .求作:正方形 ABCD 的外接圆.作法:如图,(1)分别连接 AC ,BD ,交于点 O ;(2)以点 O 为圆心,OA 长为半径作⊙O ,⊙O 即为所求作的圆.请回答:该作图的依据是__________________________________.16.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为_____.17.分解因式:3m 2﹣6mn+3n 2=_____.18.关于x 的一元二次方程x 2-2x +m -1=0有两个相等的实数根,则m 的值为_________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读(1)阅读理解:如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD ,再连接BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB ,AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.中线AD 的取值范围是________;(2)问题解决:如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE+CF >EF ;(3)问题拓展:如图③,在四边形ABCD 中,∠B+∠D=180°,CB=CD ,∠BCD=140°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E ,F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明. 20.(6分)已知:如图,△MNQ 中,MQ≠NQ .(1)请你以MN 为一边,在MN 的同侧构造一个与△MNQ 全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .21.(6分)先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1. 22.(8分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)23.(8分)化简:(x +7)(x -6)-(x -2)(x +1)24.(10分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.25.(10分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的中点,O e 的半径为2,求AB 的长.26.(12分)如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.求证:DP 是⊙O 的切线;若⊙O 的半径为3cm ,求图中阴影部分的面积.27.(12分)如图,菱形ABCD 中,已知∠BAD=120°,∠EGF=60°, ∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于E 、F .(1)如图甲,当顶点G 运动到与点A 重合时,求证:EC+CF=BC ;(2)知识探究:①如图乙,当顶点G 运动到AC 的中点时,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);②如图丙,在顶点G 运动的过程中,若AC t GC=,探究线段EC 、CF 与BC 的数量关系; (3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t >2时,求EC 的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围.【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m +-=,Δ=4+4m > 0,解得m>﹣1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.2.A【解析】∵二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,a =1>0,∴Δ≤0或抛物线与x 轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b -2)]2-4(b 2-1)≤0,解得b≥.当抛物线与x 轴的交点的横坐标均大于等于0时,设抛物线与x 轴的交点的横坐标分别为x 1,x 2,则x 1+x 2=2(b -2)>0,Δ=[-2(b -2)]2-4(b 2-1)>0,无解,∴此种情况不存在.∴b≥.3.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m ,∴甲的速度为8/2=4m/ s .∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s .∵a 秒后甲乙相遇,∴a =8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m ,∴b =500-408=92 m . 因此②正确. ∵甲走到终点一共需耗时500/4=125 s ,,∴c =125-2=1 s . 因此③正确.终上所述,①②③结论皆正确.故选A .4.A【解析】【分析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.5.C【解析】【详解】解:选项A ,原式=24a ;选项B ,原式=a 3;选项C ,原式=-2a+2=2-2a ;选项D , 原式=3a故选C6.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B 、∵12+12)2,是等腰直角三角形,故选项错误;C =12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D .7.B【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.9.C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.10.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF ,又∵AB =AC ,∴△ABD ≌△ACF ,∴AD=AF ,∵AB=AC ,D 为AC 中点,∴AB=AC=2AD=2AF ,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S △FBC =12 ×BF×AC=12×12×8=48,故选C . 12.A【解析】∵9<11<16,<<,即34<<,∵a ,b 为两个连续的整数,且a b <<,∴a=3,b=4,∴a+b=7,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1a b- 【解析】原式=()()()()1·b a b a b a b a b a b a b a b a b b a b +-+÷==+-++-- , 故答案为1a b -. 14.y=x 2等【解析】分析:根据二次函数的图象开口向上知道a >1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a >1,c=1即可.详解:∵二次函数的图象开口向上,∴a >1.∵二次函数的图象过原点,∴c=1.故解析式满足a >1,c=1即可,如y=x 2.故答案为y=x 2(答案不唯一).点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.15.正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【解析】【分析】利用正方形的性质得到OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O 上,从而得到⊙O 为正方形的外接圆.【详解】∵四边形ABCD 为正方形,∴OA=OB=OC=OD,∴⊙O 为正方形的外接圆.故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16.3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:90π42π180⨯=,转动第二次的路线长是:90π55π1802⨯=,转动第三次的路线长是:90π33π1802⨯=,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键. 17.3(m-n)2。

河南省驻马店市2019-2020学年中考三诊数学试题含解析

河南省驻马店市2019-2020学年中考三诊数学试题含解析

河南省驻马店市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.2.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为()A.3.65×103B.3.65×104C.3.65×105D.3.65×1063.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A.35.578×103B.3.5578×104C.3.5578×105D.0.35578×1054.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是56.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.7.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的1 5D.据此估计全校1000名八年级同学,选择科目B的有140人8.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.69.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,3,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A .B .C .D .10.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯11.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( ) A .2sin AB A = B .2cos AB A = C .2tan BC A =D .2cot BC A =12.如图,在△ABC 中,∠C=90°,∠B=10°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线; ②∠ADC=60°;③点D 在AB 的中垂线上; ④S △ACD :S △ACB =1:1. 其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B ,C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α=,有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.15.若一个多边形的内角和为1080°,则这个多边形的边数为__________.16.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.18.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.(1)求证:;(2)当AC=2,CD=1时,求⊙O的面积.20.(6分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20my m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.21.(6分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x 元,商场一天可获利润y 元.求出y 与x 之间的函数关系式,并求当x 取何值时,商场获利润最大?22.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表: 售价x/(元/千克) 50 60 70 销售量y/千克1008060(1)求y 与x 之间的函数表达式;设商品每天的总利润为W(元),求W 与x 之间的函数表达式(利润=收入-成本);试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?23.(8分)已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.24.(10分)如图1,在四边形ABCD 中,AB=AD .∠B+∠ADC=180°,点E ,F 分别在四边形ABCD 的边BC ,CD 上,∠EAF=12∠BAD ,连接EF ,试猜想EF ,BE ,DF 之间的数量关系.图1 图2 图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为.25.(10分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.26.(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.求y与x之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.27.(12分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频2.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将365000这个数用科学记数法表示为3.65×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】【分析】科学计数法是a×10n ,且110a ≤<,n 为原数的整数位数减一.【详解】解:35578= 3.5578×410, 故选B . 【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键. 4.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分, 故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 5.D 【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案 平均数为(12+5+9+5+14)÷5=9,故选项A 正确; 重新排列为5,5,9,12,14,∴中位数为9,故选项B 正确; 5出现了2次,最多,∴众数是5,故选项C 正确; 极差为:14﹣5=9,故选项D 错误. 故选D 6.D 【解析】 【详解】解:①∵ABCD 为菱形,∴AB=AD .∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=3CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.7.B【解析】【分析】A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用A科目人数总人数×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是1650×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的15,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×75=140人,故D选项正确;故选B.【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.8.A【解析】【分析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.A【解析】∵∠C=90°,BC=2cm,∠A=30°,。

河南省驻马店市2019-2020学年中考数学模拟试题(3)含解析

河南省驻马店市2019-2020学年中考数学模拟试题(3)含解析

河南省驻马店市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣12x+2 C.y=﹣3x﹣2 D.y=﹣x+22.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-63.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸4.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()A.B.C.D.5.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.36.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A .12B .14C .16D .1127.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .8.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是09.若代数式23x -有意义,则实数x 的取值范围是( ) A .x=0B .x=3C .x≠0D .x≠310.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣111.下列运算正确的是( ) A .a 3•a 2=a 6B .(x 3)3=x 6C .x 5+x 5=x 10D .﹣a 8÷a 4=﹣a 412.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.14.某校广播台要招聘一批小主持人,对A 、B 两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示: 应聘者专业素质创新能力外语水平应变能力A 73 85 78 85B 81 82 80 75如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)15.一辆汽车在坡度为12.4:的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米. 16.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m 的值是______.17.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD=_____.18.64的立方根是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.20.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.21.(6分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.22.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.23.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.24.(10分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.25.(10分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局. (1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.26.(12分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.27.(12分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y 与自变量x 之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D 的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=⎧⎨=⎩,解得:12kb=-⎧⎨=⎩.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.2.B【解析】【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-1,∴p=1,q=-1.故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.3.C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可. 详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题4.C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.5.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.6.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.7.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.8.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B 正确; (﹣3)﹣(﹣5)=﹣3+5=2,C 正确;﹣11,0,4这三个数中最小的数是﹣11,D 错误, 故选D .考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法. 9.D 【解析】分析:根据分式有意义的条件进行求解即可. 详解:由题意得,x ﹣3≠0, 解得,x≠3, 故选D .点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零. 10.B 【解析】 【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围. 【详解】解:∵x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解, ∴整数解为1,0,-1, ∴-2≤a <-1. 故选B. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分. 11.D 【解析】 【分析】各项计算得到结果,即可作出判断. 【详解】A 、原式=a 5,不符合题意;B 、原式=x 9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 9【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是49,故答案为4 9 .【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案. 14.A A的平均成绩高于B平均成绩【解析】【分析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A 的平均数是80.25,B 的平均数是79.5, ∴A 比B 更优秀,∴如果只招一名主持人,该选用A ;依据是A 的平均成绩高于B 平均成绩. 【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键. 15.50. 【解析】 【分析】根据坡度的定义可以求得AC 、BC 的比值,根据AC 、BC 的比值和AB 的长度即可求得AC 的值,即可解题. 【详解】解:如图,130AB =米ACtan 1:2.4BCB ==, 设AC x =,则 2.4BC x =,则2222.4130x x +()=,解得50x =, 故答案为:50. 【点睛】本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题. 16.258或5或1. 【解析】 【分析】根据以点A ,D ,E 为顶点的三角形是等腰三角形分类讨论即可. 【详解】解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位: 则AN=3,AC=223(m-4)+,AD=m , 得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性. 17.65【解析】 【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE 中利用三角函数的定义求解. 【详解】如图,延长AD 、BC 相交于点E ,∵∠B=90°, ∴4tan 3BE A AB ==, ∴BE=443AB ⋅=, ∴CE=BE-BC=2,225AB BE +=,∴3sin 5AB E AE ==, 又∵∠CDE=∠CDA=90°,∴在Rt △CDE 中,sin CDE CE =, ∴CD=36sin 255CE E ⋅=⨯=.18.4. 【解析】 【分析】根据立方根的定义即可求解.【详解】 ∵43=64, ∴64的立方根是4 故答案为4 【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.这栋楼的高度BC 是4003米. 【解析】试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长. 试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100,∴在Rt ABD V 中,1003tan BD AD BAD ⋅∠= 在Rt ACD V 中,tan 1003CD AD CAD ⋅∠==.∴4003BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系. 20.(1)41(2)15%(3)16【解析】 【分析】(1)用散文的频数除以其频率即可求得样本总数; (2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率. 【详解】(1)∵喜欢散文的有11人,频率为1.25, ∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种, ∴P (丙和乙)=212=16. 21.(1)83,81;(2)26=甲s ,推荐甲去参加比赛.【解析】 【分析】(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得. 【详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分, 故答案为:83分、81分; (2)()17982838586835=⨯++++=甲x , ∴()()22222214312065⎡⎤=⨯-++-++=⎣⎦甲s .∵x x =甲乙,22s s <甲乙, ∴推荐甲去参加比赛. 【点睛】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 22.S 1,S 3,S 4,S 5,1 【解析】 【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.故答案为S1,S3,S4,S5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.23.(1)14;(2)112.【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为1 12.24.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【解析】【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【详解】(Ⅰ)年份2014 2015 2016 2017 2018动车组发送旅客量a 亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述, 故答案为折线图;(Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%. 【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.25.(1),13(2)29【解析】解:(1)画树状图得:∵总共有9种等可能情况,每人获胜的情形都是3种, ∴两人获胜的概率都是13. (2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.任选其中一人的情形可画树状图得:∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生, ∴两局游戏能确定赢家的概率为:29. (1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案.(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案. 26.(1)2-1y x =;(2)3x >-. 【解析】 【分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x+2,解不等式即得结果. 【详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+, ∵直线2y x b =+过点M (4,7), ∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y=2x -1, 又∵点Q 在直线32y x =+的下方,如图, ∴2x -1<3x+2, 解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.27. (1)① 30;(2)y 1=0.1x +30,y 2=0.2x ;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样. 【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少; (2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可; (3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,∴k1=0.1,500k2=100,∴k2=0.2故所求的解析式为y1=0.1x+30;y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.。

河南省驻马店市2019-2020学年中考数学模拟试题含解析

河南省驻马店市2019-2020学年中考数学模拟试题含解析

河南省驻马店市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个B.3个C.2个D.1个2.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣343.在-3,12,0,-2这四个数中,最小的数是( )A.3B.12C.0 D.-24.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC.x(140%)30%+⨯D.()()130%140%x+﹣5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45o B.60o C.120o D.135o6.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=907.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则().A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为168.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,69.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .410.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×10611.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .12.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y=36x x +- 中,自变量x 的取值范围为_____. 14.已知一个斜坡的坡度3i =______.15.分式方程231x x =+的解为x=_____. 16.在△ABC 中,∠C=90°,若tanA=12,则sinB=______. 17.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________. 18.分解因式:8a 3﹣8a 2+2a=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,经过C 作CD ⊥AB 于点D ,CF 是⊙O 的切线,过点A 作AE ⊥CF 于E ,连接AC .(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.20.(6分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.21.(6分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.22.(8分)如图,在△ABC中,AB AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.23.(8分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE24.(10分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).25.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D 两点.点P是x轴上的一个动点.求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.26.(12分)已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小27.(12分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;故选B.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.2.B【分析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32. 故答案选B .3.D【解析】【分析】 根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】12,0,﹣1这四个数中,﹣10<12, 故最小的数为:﹣1.故选D .【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.4.D【解析】【分析】根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.【详解】由题意可得,去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=()()130%140%x +﹣, 故选:D .本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.5.A【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.7.D【解析】【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.①当三边为3、4、1时,其周长为3+4+1=13;②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D.【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.8.C【解析】【分析】【详解】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C.【点睛】本题考查众数;算术平均数;中位数.9.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.10.D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.11.A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A .12.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C .考点:等腰三角形的性质;三角形三边关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠1.【解析】【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x 的范围.【详解】根据题意得:x−1≠0,解得:x≠1.故答案为x≠1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.14.30°【解析】【分析】坡度=坡角的正切值,据此直接解答.【详解】解:∵3tan α==,∴坡角=30°.【点睛】此题主要考查学生对坡度及坡角的理解及掌握.15.2【解析】根据分式方程的解法,先去分母化为整式方程为2(x+1)=3x,解得x=2,检验可知x=2是原分式方程的解.故答案为2.16.25【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.详解:如图所示:∵∠C=90°,tanA=12,∴设BC=x,则AC=2x,故5,则sinB=255ACAB x==.25.点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.17.2【解析】【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.18.2a(2a﹣1)2【解析】【分析】提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.【详解】原式=2a(4a2-4a+1)=2a(2a﹣1)2.【点睛】本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)25 3【解析】【分析】(1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【详解】(1)证明:连接OC,如图所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圆O的切线,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:连接CB,如图所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根据勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB为直径,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【点睛】本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.20.(1)作图见解析;;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.考点:1轴对称;2勾股定理.21.(1)证明见解析;(2)25°.【解析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC -∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD 是矩形∴∠A=∠B=90°,AD=BC∴AOD BOC ∆≅∆∴AO=OB(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A ,∴PA ⊥AB ,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC ,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB , ∴1252B OCB AOP ∠=∠=∠=︒. 22.(1)证明见解析;(2)32;(3)1. 【解析】【分析】(1)连接OM ,如图1,先证明OM ∥BC ,再根据等腰三角形的性质判断AE ⊥BC ,则OM ⊥AE ,然后根据切线的判定定理得到AE 为⊙O 的切线;(2)设⊙O 的半径为r ,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM ∽△ABE ,则利用相似比得到626r r -=,然后解关于r 的方程即可; (3)作OH ⊥BE 于H ,如图,易得四边形OHEM 为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1. 【详解】解:(1)证明:连接OM ,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=12BC=2,∵OM∥BE,∴△AOM∽△ABE,∴OM AOBE AB=,即626r r-=,解得r=32,即设⊙O的半径为32;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=32,∴BH=BE﹣HE=2﹣32=12,∵OH⊥BG,∴BH=HG=12,∴BG=2BH=1.23.证明见解析.【解析】证明:∵AC//DF ∴在和中∴△ABC≌△DEF(SAS)24.(1)60;(2)302106【解析】(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;(2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=302,解Rt△ACD,得出CD=106,根据BC=BD+CD即可求解.解:(1)如图所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案为60;(2)如图,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴.在Rt △ACD 中,∵∠C=60°,,∴tanC=AD CD,∴,∴.答:该船与B 港口之间的距离CB 的长为()海里.25. (1)y=﹣(x ﹣1)2+4;(2)C (﹣1,0),D (3,0);6;(3)P (1+2,32),或P (1﹣2,32) 【解析】【分析】(1)设抛物线顶点式解析式y=a (x-1)2+4,然后把点B 的坐标代入求出a 的值,即可得解; (2)令y=0,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P 的坐标,求出点P 的纵坐标,代入抛物线解析式即可求出点P 的坐标.【详解】解:(1)、∵抛物线的顶点为A (1,4),∴设抛物线的解析式y=a (x ﹣1)2+4,把点B (0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x ﹣1)2+4;令y=0,则0=﹣(x ﹣1)2+4,∴x=﹣1或x=3, ∴C (﹣1,0),D (3,0);∴CD=4, ∴S △BCD =12CD×|y B |=12×4×3=6; (3)由(2)知,S △BCD =12CD×|y B |=12×4×3=6;CD=4, ∵S △PCD =12S △BCD , ∴S △PCD =12CD×|y P |=12×4×|y P |=3,∴|y P |= 32, ∵点P 在x 轴上方的抛物线上,∴y P >0,∴y P = 32, ∵抛物线的解析式为y=﹣(x ﹣1)2+4; ∴32=﹣(x ﹣1)2+4,∴x=1±2,∴P (1+2, 32),或P (1﹣2,32). 【点睛】 本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.26.(1)∠P=50°;(2)∠P =45°. 【解析】【分析】(1)连接OB ,根据切线长定理得到PA=PB ,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可; (2)连接AB 、AD ,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB ⊥PA ,根据等腰直角三角形的性质解答.【详解】解:(1)如图①,连接OB .∵PA 、PB 与⊙O 相切于A 、B 点,∴PA =PB ,∴∠PAO =∠PBO =90°∴∠PAB =∠PBA ,∵∠BAC =25°,∴∠PBA =∠PAB =90°一∠BAC =65°∴∠P =180°-∠PAB -∠PBA =50°;(2)如图②,连接AB 、AD ,∵∠ACB =90°,∴AB 是的直径,∠ADB =90·∵PD =DB ,∴PA =AB .∵PA与⊙O相切于A点∴AB⊥PA,∴∠P=∠ABP=45°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.27.(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【解析】【分析】(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.【详解】(1)由题意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y与x的函数关系式为y=﹣50x+10500;(2)由题意可得,()()10050301005030200x xx x⎧≥-⎪⎨--≥⎪⎩,得x343≥,∵x是整数,y=﹣50x+10500,∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.。

河南省驻马店市2019-2020学年第三次中考模拟考试数学试卷含解析

河南省驻马店市2019-2020学年第三次中考模拟考试数学试卷含解析

河南省驻马店市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形纸片ABCD 中,已知AB =3,BC =1,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿直线AE 折叠,得到多边形AFGE ,点B 、C 的对应点分别为点F 、G .在点E 从点C 移动到点D 的过程中,则点F 运动的路径长为( )A .πB .3πC .33πD .233π 2.数据3、6、7、1、7、2、9的中位数和众数分别是( )A .1和7B .1和9C .6和7D .6和9 3.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)4.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个 5.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( )A .1m >B .1m <C .m 1≥D .1m £6.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则»AE 的弧长为( )A .2πB .πC .32πD .37.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④ 8.如图,矩形ABCD 内接于⊙O ,点P 是»AD 上一点,连接PB 、PC ,若AD=2AB ,则cos ∠BPC 的值为( )A 5B .25C .32D .35109.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )A .()16.516.50.5x 125%x +=+B .()16.516.50.5x 1-25%x +=C .()16.516.5-0.5x 125%x =+D .()16.516.5-0.5x 1-25%x =10.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB 的示意图中,记照板“内芯”的高度为EF ,观测者的眼睛(图中用点C 表示)与BF 在同一水平线上,则下列结论中,正确的是( )A.EF CFAB FB=B.EF CFAB CB=C.CE CFCA FB=D.CE CFEA CB=11.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=23,则图中阴影部分的面积为A.43-43πB.23-23πC.43-23πD.23-π12.如图,在Y ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.14.比较大小:.(填“>”,“<”或“=”)15.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.16.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.17.在△ABC中,∠C=90°,若tanA=12,则sinB=______.18.如果23ab=,那么b aa b-+=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:230120.12520041 2-⎛⎫-⨯++- ⎪⎝⎭20.(6分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21.(6分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.22.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?23.(8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.24.(10分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)如图1,若BC=3,AB=5,则ctanB=_____;(2)ctan60°=_____;(3)如图2,已知:△ABC中,∠B是锐角,ctan C=2,AB=10,BC=20,试求∠B的余弦cosB的值.25.(10分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.26.(12分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.27.(12分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m 个单位长度后恰好落在直线BE上的点G处.(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:①当点G与点D重合时,求平移距离m的值;②用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP 与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=333BCAB==,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长120323π⨯=.故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.2.C【解析】【分析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C .【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.3.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.4.C【解析】【分析】利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△APE ≌△CPF (ASA ),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,∴△EFP 是等腰直角三角形,故③错误;∵△APE ≌△CPF ,∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .故④正确, 故选C .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点. 5.C【解析】【详解】解:∵关于x 的一元二次方程()2220x x m +--=有实数根, ∴△=24b ac -=2241[(2)]m -⨯⨯--,解得m≥1,故选C .【点睛】本题考查一元二次方程根的判别式.6.B【解析】∵四边形AECD 是平行四边形,∴AE=CD ,∵AB=BE=CD=3,∴AB=BE=AE ,∴△ABE 是等边三角形,∴∠B=60°,∴AE u u u r 的弧长=6023360ππ⨯⨯=.故选B.7.D【解析】【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.8.A【解析】【分析】连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC 为2x ,根据勾股定理可得BD=5x ,再根据cos ∠BDC=DC BD=5x =5,即可得出结论.【详解】 连接BD ,∵四边形ABCD 为矩形, ∴BD 过圆心O ,∵∠BDC=∠BPC (圆周角定理) ∴cos ∠BDC=cos ∠BPC ∵BD 为直径, ∴∠BCD=90°, ∵DC BC =12, ∴设DC 为x , 则BC 为2x ,∴BD=22DC BC +=()222x x +=5x , ∴cos ∠BDC=DC BD=5x =5,∵cos ∠BDC=cos ∠BPC , ∴cos ∠BPC=5. 故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用. 9.B 【解析】分析:根据数量=钱数单价,可知第一次买了16.5x 千克,第二次买了()16.501250x -,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,()16.516.50.501250x x+=-.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系. 10.B 【解析】分析:由平行得出相似,由相似得出比例,即可作出判断. 详解: ∵EF ∥AB, ∴△CEF ∽△CAB, ∴EF CF CEAB CB CA==,故选B. 点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键. 11.B 【解析】 【分析】由S 阴影=S △OAE -S 扇形OAF ,分别求出S △OAE 、S 扇形OAF 即可; 【详解】 连接OA ,OD∵OF ⊥AD , ∴3,在Rt △OAC 中,由tan ∠3知,∠AOC=60°, 则∠DOA=120°,OA=2,∴Rt △OAE 中,∠AOE=60°,OA=2 ∴3S 阴影=S △OAE -S 扇形OAF =12×2×3-26022233603ππ⨯⨯=. 故选B. 【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.12.D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=A B•tan60°,∴PC=2×=km),故答案为【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.14.>【解析】试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.考点:二次根式的大小比较15.6【解析】【分析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=12AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=12AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=12CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB ,∴AD=BD=CD=12 AB,∵AP2-PB2=48 ,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48, ∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=12CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一16.1 2 3【解析】原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−13,即x2−2x+1=−13+1,所以(x−1)2=23.故答案为:1,23. 17.25【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案. 详解:如图所示:∵∠C=90°,tanA=12, ∴设BC=x ,则AC=2x ,故5,则sinB=255AC AB x==. 25. 点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键. 18.15【解析】 试题解析:2,3a b =Q设a=2t ,b=3t ,321.235b a t t a b t t --∴==++ 故答案为:1.5三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.5 【解析】 【分析】本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【详解】原式=4-8×0.125+1+1=4-1+2=5 【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算.20.(1)120,补图见解析;(2)96;(3)960人.【解析】【分析】(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;(3)求出达标占的百分比,乘以1200即可得到结果.【详解】(1)根据题意得:24÷20%=120(人),则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为36120×100%=30%,补全统计图,如图所示:(2)根据题意得:36+60=96(人),则达标的人数为96人;(3)根据题意得:96120×1200=960(人),则全校达标的学生有960人.故答案为(1)120;(2)96人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯o即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人).()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=o o 22.(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品1件 【解析】 【分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可. 【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得 20(1000﹣a )+30a≤210, 解得:a≤1.答:最多购买B 型学习用品1件23. (1)证明见解析;(2)四边形BDCF 是矩形,理由见解析. 【解析】(1)证明:∵CF ∥AB ,∴∠DAE =∠CFE .又∵DE =CE ,∠AED =∠FEC ,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.24.(1);(2);(3).【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如图2,在Rt△ACH中,ctanC==2,设AH=x,则CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考点:解直角三角形.25.(1)(3,3);(2)顶点 N 坐标为(2n ,24n );(3)详见解析;(4)72<n <113 .【解析】 【分析】(1)由正方形的性质及A 、B 、D 三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n ,0)代入y=-x 2+bx+c 求得b=n 、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N 的坐标代入y=x 2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y >3,当x=3时y <2,据此列出关于n 的不等式组,解之可得. 【详解】(1)∵A (2,2),B (3,2),D (2,3), ∴AD =BC =1, 则点 C (3,3), 故答案为:(3,3);(2)把(0,0)(n ,0)代入 y =﹣x2+bx+c 得:20c n bn c =⎧⎨-++=⎩, 解得:0b nc =⎧⎨=⎩,∴抛物线解析式为 y =﹣x 2+nx =﹣(x ﹣2n )2+24n,∴顶点 N 坐标为(2n ,24n );(3)由(2)把 x =2n 代入 y =x 2=(2n )2= 24n ,∴抛物线的顶点在函数 y =x 2的图象上运动;(4)根据题意,得:当 x =2 时 y >3,当 x =3 时 y <2, 即423932n n -+⎧⎨-+⎩><,解得:72<n<113. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.26.(1)10;(2)87;(3)9环 【解析】 【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案. (2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数. 【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10; (2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10, 原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5, 当第8次射击成绩小于10时,得到8次成绩的中位数均为9, 因此第8次的射击成绩的最大环数为9环. 【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.27.(3)(﹣4,﹣6);(3-3;②4;(2)F 的坐标为(﹣3,03,92). 【解析】 【分析】(3)先将A (﹣3,0),B (4,0),代入y=ax 3+bx+2求出a ,b 的值即可求出抛物线的表达式,再将E 点坐标代入表达式求出y 的值即可;(3)①设直线BD 的表达式为y=kx+b ,将B (4,0),E (﹣4,﹣6)代入求出k ,b 的值,再将x=0代入表达式求出D 点坐标,当点G 与点D 重合时,可得G 点坐标,GF ∥x 轴,故可得F 的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F 的坐标,再根据m=FG 即可得m 的值;②设点F 与点G 的坐标,根据m=FG 列出方程化简可得出m 的二次函数关系式,再根据二次函数的图象可得m 的取值范围;(2)分别分析当点F 在x 轴的左侧时与右侧时的两种情况,根据△FDP 与△FDG 的面积比为3:3,故PD :DG=3:3.已知FP ∥HD ,则FH :HG=3:3.再分别设出F,G 点的坐标,再根据两点关系列出等式化简求解即可得F 的坐标.【详解】解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:4230 16430 a ba b-+=⎧⎨++=⎩,解得:3834ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为y=﹣38x3+34x+2,把E(﹣4,y)代入得:y=﹣6,∴点E的坐标为(﹣4,﹣6).(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:4046 k bk b+=⎧⎨-+=-⎩,解得:3k4b3⎧=⎪⎨⎪=-⎩,∴直线BD的表达式为y=34x﹣2.把x=0代入y=34x﹣2得:y=﹣2,∴D(0,﹣2).当点G与点D重合时,G的坐标为(0,﹣2).∵GF∥x轴,∴F的纵坐标为﹣2.将y=﹣2代入抛物线的解析式得:﹣38x3+34x+2=﹣2,解得:+3或x=+3.∵﹣4<x<4,∴点F,﹣2).∴3.②设点F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(x+m,34(x+m)﹣2),∴﹣38x3+34x+2=34(x+m)﹣2,化简得,m=﹣12x3+4,∵﹣12<0,∴m有最大值,当x=0时,m的最大值为4.(2)当点F在x轴的左侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(﹣3x,﹣32x﹣2),∴﹣38x3+34x+2=﹣32x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴点F的坐标为(﹣3,0).当点F在x轴的右侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(3x,32x﹣2),∴﹣38x3+34x+2=32x﹣2,整理得:x3+3x﹣36=0,解得:﹣3或x=﹣3(舍去),∴点F﹣3.综上所述,点F的坐标为(﹣3,0﹣3.【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.。

河南省驻马店市2019-2020学年中考数学第三次调研试卷含解析

河南省驻马店市2019-2020学年中考数学第三次调研试卷含解析

河南省驻马店市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.22.下列实数0,23,3,π,其中,无理数共有()A.1个B.2个C.3个D.4个3.计算(x-l)(x-2)的结果为()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+24.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥5.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径¼'AA的长为()A.πB.2πC.4πD.8π6.实数21-的相反数是()A.21-B.21+C.21--D.12-7.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()8.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定9.下列事件中,属于不确定事件的是( )A .科学实验,前100次实验都失败了,第101次实验会成功B .投掷一枚骰子,朝上面出现的点数是7点C .太阳从西边升起来了D .用长度分别是3cm ,4cm ,5cm 的细木条首尾顺次相连可组成一个直角三角形10.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 11.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( )A .k >-1B .k≥-1C .k <-1D .k≤-1 12.已知x+1x =3,则x 2+21x =( ) A .7 B .9 C .11 D .8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是»AD 的中点,CE ⊥AB 于点E ,过点D的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,关于下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心,其中结论正确的是________(只需填写序号).14.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为_____.15.当x = __________时,二次函数226y x x =-+ 有最小值___________.16.如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为_____.17.若-2a m b 4与5a 2b n+7是同类项,则m+n= .18.把16a 3﹣ab 2因式分解_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平行四边形ABCD 中,连接AC ,做△ABC 的外接圆⊙O ,延长EC 交⊙O 于点D ,连接BD 、AD ,BC 与AD 交于点F 分,∠ABC=∠ADB 。

河南省驻马店市2019-2020学年中考数学三月模拟试卷含解析

河南省驻马店市2019-2020学年中考数学三月模拟试卷含解析

河南省驻马店市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >02.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,则甲的射击成绩较稳定 C .“明天降雨的概率为12”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式3.如图,将△ABC 沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A .42B .96C .84D .484.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=50°,∠3=120°,则∠2的度数为( )A .80°B .70°C .60°D .50°5.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×10106.下列由左边到右边的变形,属于因式分解的是( ). A .(x +1)(x -1)=x 2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)7.下列四个实数中,比5小的是( )A.30-1B.27C.37-1D.17+18.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.3C.3D.239.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D10.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=111.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm12.如图所示的几何体,上下部分均为圆柱体,其左视图是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACB=__________°.14.若分式的值为0,则a 的值是 .15.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06,由此可知:________(填甲或乙)机床性能好. 16.如图,在梯形ABCD 中,AB ∥CD ,∠C=90°,BC=CD=4,AD=25 ,若,AD a DC b ==u u u ru u ur rr ,用a r 、b r 表示DB u u u r=_____.17.如图,已知在△ABC 中,∠A=40°,剪去∠A 后成四边形,∠1+∠2=______°.18.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=a (x+3)(x ﹣1)(a≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y=﹣x+b 与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?20.(6分)2000-+-.tan604tan60422sin4521.(6分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.22.(8分)已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.23.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总10 20 30 60 90 120 180 240 330 450次数“和为8”出2 10 13 24 30 37 58 82 110 150现的频数“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x的值可以为7吗?为什么?24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(10分)先化简再求值:(a﹣22ab ba-)÷22a ba-,其中a=1+2,b=1﹣2.26.(12分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.27.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p 与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.2.B【解析】【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【详解】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.3.D【解析】【分析】【详解】由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)•BE=12(10+6)×6=1.故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.4.B【解析】【分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.5.C科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.C【解析】【分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.7.A【解析】【分析】首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.【详解】解:A、∵56,∴5﹣11<6﹣1,1<5,故此选项正确;B、∵=>>,故此选项错误;∴5C、∵6<7,∴5﹣1<6,故此选项错误;D 、∵4<17<5,∴51716<+<,故此选项错误; 故选A . 【点睛】考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法. 8.C 【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°. ∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°. 又∵点E 为BC 的中点,∠AED=90°,∴AB=AC . ∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半23.∴∠BOE=∠EOD=60°,∴»BE和弦BE 围成的部分的面积=»DE 和弦DE 围成的部分的面积. ∴阴影部分的面积=EDC 1S =23=32∆⋅C . 9.D 【解析】 【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可. 【详解】由题意得,2x+y=10, 所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.10.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.11.C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.12.C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.14.1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.15.甲.【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故答案为甲.考点:1.方差;2.算术平均数.16.12b ar r【解析】【分析】过点A作AE⊥DC,利用向量知识解题. 【详解】解:过点A作AE⊥DC于E,∵AE ⊥DC ,BC ⊥DC ,∴AE ∥BC ,又∵AB ∥CD ,∴四边形AECB 是矩形,∴AB =EC ,AE =BC =4,∴DE=22AD AE -=()22254-=2,∴AB=EC=2=12DC , ∵DC b =u u u r r , ∴12AB b =u u u r r , ∵AD a =u u u r r ,∴DA a =-u u u r r ,∴12DB DA AB a b =+=-+u u u r u u u r u u u r r r ,故答案为12b a -r r . 【点睛】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习. 17.220.【解析】试题分析:△ABC 中,∠A =40°,18040B C ∠+∠=-o o =140o ;如图,剪去∠A 后成四边形∠1+∠2+B C ∠+∠=360o ;∠1+∠2=220°考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键18.-23≤y≤2【解析】【分析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【详解】解:∵a=-1,∴抛物线的开口向下,故有最大值,∵对称轴x=-3,∴当x=-3时y最大为2,当x=2时y最小为-23,∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).【解析】试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.试题解析:(1)∵y=a(x+3)(x﹣1),∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x轴于H,设点P的坐标为(m,n),当△BPA∽△ABC时,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合题意,舍去),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC•PB,∴42=•,解得,a1=(不合题意,舍去),a2=﹣,则n=5a=﹣,∴点P的坐标为(﹣4,﹣);当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合题意,舍去),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得,a1=(不合题意,舍去),a2=﹣,则点P的坐标为(﹣6,﹣),综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,E(1,﹣4).考点:二次函数综合题.20.5﹣43【解析】【分析】根据特殊角的三角函数值进行计算即可.【详解】原式=22(3)434222--=3﹣43﹣2=5﹣43【点睛】本题考查了特殊角的三角函数值,是基础题目比较简单.21.(1)见解析(2)见解析【解析】【分析】(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连结BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∴BH⊥FG,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.22.(1)5;(2)1或﹣1.【解析】【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+2×4=17,据此进一步计算可得.【详解】(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=1或﹣1.【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.23.(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【解析】【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x 的值不能为7.理由:假设x =7,则P(和为9)=16≠13,所以x 的值不能为7. 【点睛】 此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.24.(1)见解析(2)见解析【解析】【分析】(1)根据AAS 证△AFE ≌△DBE ,推出AF=BD ,即可得出答案.(2)得出四边形ADCF 是平行四边形,根据直角三角形斜边上中线性质得出CD=AD ,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE .∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD .在△AFE 和△DBE 中,∵∠AFE=∠DBE ,∠FEA=∠BED , AE=DE ,∴△AFE ≌△DBE (AAS )∴AF=BD .∴AF=DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF=DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD=DC .∴平行四边形ADCF 是菱形25.原式=2a b a b-=+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a a a b a b -+- =a b a b-+, 当a=1+2,b=1﹣2时,原式=12121212+-+++-=2. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.26. (1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,P (抽到1男1女)35=. 【解析】试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试题解析:(1)80,135°; 条形统计图如图所示(2)该校对安全知识达到“良”程度的人数:30251200=82580+⨯(人) (3)解法一:列表如下: 所有等可能的结果为20种,其中抽到一男一女的为12种,所以P (抽到1男1女)123205==.女1 女2 女3 男1 男2 女1 --- 女2女1 女3女1 男1女1 男2女1女2女1女2--- 女3女2男1女2男2女2女3女1女3女2女3--- 男1女3男2女3男1女1男1女2男1女3男1--- 男2男1男2女1男2女2男2女3男2男1男2---解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以P(抽到1男1女)123205==.27.(1)W=216260(11020520(1015x x x xx x x⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】【分析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p与x之间的函数关系式为p=kx+b,则有7.538.5k bk b+=⎧⎨+=⎩,解得,0.57kb=⎧⎨=⎩,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x16260(11020520(1015x x xx x x⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省驻马店市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .2.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++ D .222a ab a b-- 3.如图,Rt △ABC 中,∠C=90°,AC=4,BC=43,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( )A .2πB .4πC .6πD .8π4.方程x 2﹣kx+1=0有两个相等的实数根,则k 的值是( ) A .2B .﹣2C .±2D .05.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( )A .30°B .36°C .54°D .72°6.据调查,某班20为女同学所穿鞋子的尺码如表所示, 尺码(码) 34 35 36 37 38 人数251021则鞋子尺码的众数和中位数分别是( ) A .35码,35码B .35码,36码C .36码,35码D .36码,36码7.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( ) A .0.69×10﹣6B .6.9×10﹣7C .69×10﹣8D .6.9×1078.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙9.如图,是反比例函数4y (x 0)x=>图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内(不包括边界)的整数点个数是k ,则抛物线2y (x 2)2=---向上平移k 个单位后形成的图象是()A .B .C .D .10. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( ) A .567×103 B .56.7×104 C .5.67×105 D .0.567×10611.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A .0.96×107 B .9.6×106C .96×105D .9.6×10212.化简a 1a 11a+--的结果为( ) A .﹣1B .1C .a 1a 1+- D .a 11a+- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的二次函数y =ax 2+a 2的最小值为4,则a 的值为______.14.如果将“概率”的英文单词 probability 中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b 的概率是________.15.计算:63﹣27=_____16.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________. 17.在函数y =中,自变量x 的取值范围是_____.18.若代数式315x -的值不小于代数式156x-的值,则x 的取值范围是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°; (2)先化简,再求值:(1111a a --+)+2421a a +-,其中a=﹣2+2. 20.(6分)已知:如图.D 是ABC V 的边AB 上一点,//CN AB ,DN 交AC 于点M ,MA MC =. (1)求证:CD AN =;(2)若2AMD MCD ∠=∠,试判断四边形ADCN 的形状,并说明理由.21.(6分)如图,在Rt △ABC 中∠ABC=90°,AC 的垂直平分线交BC 于D 点,交AC 于E 点,OC=OD . (1)若3sin 4A =,DC=4,求AB 的长; (2)连接BE ,若BE 是△DEC 的外接圆的切线,求∠C 的度数.22.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”23x x +=的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.23.(8分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.24.(10分)如图,一次函数y=kx+b的图象与反比例函数ayx=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数ayx=的图象于点N,若NM=NP,求n的值.25.(10分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.26.(12分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6y/cm 6.9 5.3 4.0 3.3 4.5 6(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.27.(12分)先化简,再求值:22()11x x xxx x+÷-++,其中2.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 ∵a <0,∴抛物线的开口方向向下, 故第三个选项错误; ∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上, 故第一个选项错误; ∵a <0、b >0,对称轴为x=2ba->0, ∴对称轴在y 轴右侧, 故第四个选项错误. 故选B . 2.C 【解析】 解:A .22233a a b ab=,故本选项错误; B .2133a a a a =--,故本选项错误;C .22a ba b++,不能约分,故本选项正确; D .222()()()a ab a a b aa b a b a b a b--==-+-+,故本选项错误.故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.3.B【解析】【分析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14.【详解】在△ABC中,依据勾股定理可知AB=22AC BC+=8,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.4.C【解析】【分析】根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.【详解】∵方程x2﹣kx+1=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故选C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac >0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.5.B【解析】【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=15×(5-2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=12(180°-108°)=36°.故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.6.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.7.B【解析】试题解析:0.00 000 069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.8.B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC 全等,甲与△ABC 不全等. 详解:乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS , 所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS , 所以丙和△ABC 全等; 不能判定甲与△ABC 全等; 故选B .点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 9.A 【解析】 【分析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线2y (x 2)2=---向上平移5个单位后形成的图象. 【详解】解:如图,反比例函数4y (x 0)x=>图象与坐标轴围成的区域内(不包括边界)的整数点个数是5个,即k 5=,∴抛物线2y (x 2)2=---向上平移5个单位后可得:2y (x 2)3=--+,即2y x 4x 1=-+-, ∴形成的图象是A 选项.故选A . 【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.10.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.12.B【解析】【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:a1a1a11 a11a a1a1a1-+=-==-----.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】根据二次函数的性质列出不等式和等式,计算即可.【详解】解:∵关于x的二次函数y=ax1+a1的最小值为4,∴a1=4,a>0,解得,a=1,故答案为1.【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.14.2 11【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为2 11.故答案为2 11.点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.15.33【解析】【分析】按照二次根式的运算法则进行运算即可.【详解】6327633333-=-=【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.16.2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.17.x≥4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.18.x≥1143【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】 解:根据题意,得:311556x x --≥, 6(3x ﹣1)≥5(1﹣5x ),18x ﹣6≥5﹣25x ,18x+25x≥5+6,43x≥11, x≥1143, 故答案为x≥1143. 【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)-1;(2)【解析】【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +-当a=﹣时,原式=267+-. 【点睛】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(1)证明见解析;(2)四边形ADCN 是矩形,理由见解析.【解析】【分析】(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN 是平行四边形即可;(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.【详解】证明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;(2)解:四边形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四边形ADCN是平行四边形,∴MD=MN=MA=MC,∴AC=DN,∴四边形ADCN是矩形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.21.(1);(2)30°2【解析】【分析】(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=34,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.【详解】解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=3sin4A=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴=∴AC=6,∴AB::4,∴AB=2;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中点,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等边三角形,∴∠EDC=60°,∴∠C=30°.【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE ,构造直角三角形.22. (1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(223x x +=,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-23111x +==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.23.(1)A'到BD 的距离是1.2m ;(2)A'到地面的距离是1m .【解析】【分析】(1)如图2,作A'F ⊥BD ,垂足为F .根据同角的余角相等证得∠2=∠3;再利用AAS 证明△ACB ≌△BFA',根据全等三角形的性质即可得A'F=BC ,根据BC=BD ﹣CD 求得BC 的长,即可得A'F 的长,从而求得A'到BD 的距离;(2)作A'H ⊥DE ,垂足为H ,可证得A'H=FD ,根据A'H=BD ﹣BF 求得A'H 的长,从而求得A'到地面的距离.【详解】(1)如图2,作A'F ⊥BD ,垂足为F .∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距离是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足为H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.【点睛】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键.24.20(1)y=2x-5, y=12x;(2)n=-4或n=1【解析】【分析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.【详解】解:(1)∵点A的坐标为(4,3),∴OA=5,∵OA=OB,∴OB=5,∵点B在y轴的负半轴上,∴点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=ax中,∴反比例函数解析式为y=12x,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,∴一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),∵NP=NM,∴点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1.【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.25.(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.试题解析:(1)证明:∵,∴.∵CD平分,BC=BD,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理26.(1)见解析;(1)3.5;(3)见解析;(4)3.1【解析】【分析】根据题意作图测量即可.【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF 为等边三角形是,EF=DE ,由∠B=45°,射线DE ⊥BC 于点E ,则BE=EF .即y=x 所以,当(1)中图象与直线y=x 相交时,交点横坐标即为BE 的长,由作图、测量可知x 约为3.1.【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究. 27.2【解析】【分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x ++=⋅+2.x x+=当x 时,原式1= 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。

相关文档
最新文档