2平抛运动
第二讲:平抛运动
第二讲:平抛运动一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动.2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.(1)位移关系(2)速度关系(3)轨迹方程:h =g2v 02x 25.基本应用例题、如图所示,x 轴在水平地面上,y 轴在竖直方向.图中画出了从y 轴上沿x 轴正方向水平抛出的三个小球a 、b 和c 的运动轨迹.不计空气阻力,下列说法正确的是( )A .a 和b 的初速度大小之比为2∶1B .a 和b 在空中运动的时间之比为(1)飞行时间由t =2hg知,时间取决于下落高度h ,与初速度v 0无关.(2)水平射程x =v 0t =v 02hg,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. (3)落地速度v =v x 2+v y 2=v 02+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x=2ghv 0,落地速度与初速度v 0和下落高度h 有关. (4)速度改变量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示.(5)两个重要推论①做平抛运动的物体在任意时刻的瞬时速度的反向延长线一例题、如图甲所示是网球发球机,某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球.假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,若不考虑空气阻力,则( )A.两次发射的初速度大小之比为3∶1定通过此时水平位移的中点,如图所示,即x B =x A2.推导:⎭⎪⎬⎪⎫tan θ=y Ax A -x Btan θ=v yv 0=2y Ax A→x B=x A2①做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导:⎭⎪⎬⎪⎫tan θ=v y v 0=gtv 0tan α=y x =gt 2v 0→tan θ=2tan α二、与斜面结合的平抛运动1.顺着斜面平抛(如图)方法:分解位移.x =v 0t ,y =12gt 2,tan θ=y x,可求得t =2v 0tan θg.2.对着斜面平抛(垂直打到斜面,如图) 方法:分解速度.v x =v 0, v y =gt ,tan θ=v x v y =v 0gt,可求得t =v 0g tan θ.三、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动.例题、某同学在练习投篮时将篮球从同一位置斜向上抛出,其中有两次篮球垂直撞在竖直放置的篮板上,运动轨迹如图所示,不计空气阻力,关于这两次篮球从抛出到撞击篮板的过程( )4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0;做匀速直线运动,v 0x =v 0cos θ,x =v 0tcos θ. (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .做竖直上抛运动,v 0y =v 0sin θ,y =v 0tsin θ-12gt2四、类平抛运动1.类平抛运动物体受到与初速度垂直的恒定的合外力作用时,其轨迹与平抛运动相似,称为类平抛运动.类平抛运动的受力特点是物体所受合力为恒力,且与初速度的方向垂直.2.类平抛运动问题的求解技巧(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性.(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度a 分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向上列方程求解.针对训练题型1:平抛运动性质例题、如图所示的光滑斜面ABCD 是边长为l 的正方形,倾角为30°,一物块(视为质点)沿斜面左上方顶点A 以平行于AB 边的初速度v 0水平射入,到达底边CD 中点E ,则( )A .初速度2glB .初速度4glC .物块由A 点运动到E 点所用的时间2lt g= D .物块由A 点运动到E 点所用的时间lt g=1.关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个直线运动的合运动2.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列图中能表示出速度矢量的演变过程的是()A.B.C.D.题型2:平抛运动规律3.如图所示,从A、B、C三个不同的位置向右分别以v A、v B、v C的水平初速度抛出三个小球A、B、C,其中A、B在同一竖直线上,B、C在同一水平线上,三个小球均同时落在地面上的D点,不计空气阻力。
高中物理必修2-平抛运动
平抛运动知识集结知识元平抛运动知识讲解1.平抛运动的定义将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动.2.平抛运动的条件(1)只受重力作用;(2)有水平方向的初速度.3.平抛运动的性质由于平抛运动的加速度恒为重力加速度g,且速度方向与加速度方向不共线,所以平抛运动是一种匀变速曲线运动.4.运动分解(1)水平方向:以初速度为v0做匀速直线运动,v x=v0,x=v0t,a x=0.(2)竖直方向:自由落体运动,v y=gt,y=21gt2,a y=g.(3)实际运动:轨迹是抛物线,v=y,s=,a=g.5.平抛运动的重要推论(1)做平抛运动的物体的落地速度为v=+2gh2,即落地速度只与初速度v0和下落高度h有关.(2)平抛物体的运动中,任意两个时刻的速度变化量Δv=g·Δt,方向恒为竖直向下,其中v0、Δv、v t三个速度矢量构成的三角形一定是直角三角形,如图所示.(3)平抛运动竖直方向上是自由落体运动,在连续相等的时间t内位移之比为1∶3∶5∶7∶…∶(2n-1),且相邻的后一个t比前一个t内多下落Δy=gt2,而水平方向在连续相等的时间内位移相等例题精讲平抛运动例1.如图所示,在倾角为θ的斜面上A点以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()A.B.C.D.例2.'如图所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,从水平飞出时开始计时,经t=3.0s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg,不计空气阻力.取重力加速度g=10m/s2,sin37°=0.6,co s37°=0.8.求:(1)A点与O点的距离L;(2)运动员离开O点时的速度v1和落到A点时的速度v2的大小.例3.如图所示,在2011年12月17日全国自由式滑雪比赛中,我国某一运动员从弧形雪坡上沿水平方向飞出后,又落回到斜面雪坡上,如图所示,若斜面雪坡的倾角为θ,飞出时的速度大小为v0,不计空气阻力,运动员飞出后在空中的姿势保持不变,重力加速度为g,则()A.如果v0不同,则该运动员落到雪坡时的速度方向也就不同B.不论v0多大,该运动员落到雪坡时的速度方向都是相同的C.运动员落到雪坡时的速度大小是D.运动员在空中经历的时间是实验:研究平抛运动知识讲解一、探究平抛运动物体在竖直方向的运动规律演示实验1:平抛物体和自由落体物体从同一高度同时开始运动,可观察到它们的落地时间相等.一、探究平抛运动物体在竖直方向的运动规律演示实验1:平抛物体和自由落体物体从同一高度同时开始运动,可观察到它们的落地时间相等.演示实验2:2个初速度不同的平抛物体与自由落体同时从同一高度开始运动,可观察到它们的落地时间相等.结论:平抛运动的竖直分运动是自由落体运动,平抛运动的落地时间与它的初速度无关.二、探究平抛运动物体在水平方向的运动规律演示实验:如图所示的装置研究平抛物体的运动.两个相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端与可看作光滑的水平板相切,两轨道上端分别装有电磁铁C、D,调节电磁铁C、D的高度,使AC=BD,从而保证小铁球P、Q在轨道出口处的水平初速度相等.现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两个小铁球能以相同的初速度同时分别从轨道M、N的下端射出,可以看到P、Q两球相碰,只改变弧形轨道M的高度,重复上述实验,仍能观察到相同的现象.结论:在相等的时间间隔内物体在水平方向的位移相等,这说明平抛运动在水平方向做匀速直线运动.三、探究平抛物体运动规律1.实验目的(1)用实验的方法描出平抛运动的轨迹.(2)用实验轨迹求解平抛运动的初速度.2.实验原理使小球做平抛运动,利用描迹法描绘小球的运动轨迹,建立直角坐标系,测出轨迹曲线上某一点的坐标x和y,由公式:x=v0t和y=12gt2,可得v0=xg2y.3.实验器材(以斜槽法为例)斜槽(带小球)、木板及竖直固定支架、白纸、图钉、重垂线、三角板、铅笔、刻度尺.4.实验步骤(1)如图所示安装实验装置,使斜槽末端水平(小球在斜槽末端恰好静止).(2)以水平槽末端端口上小球球心位置为坐标原点O,过O点画出竖直的y轴和水平的x 轴.(3)使小球从斜槽上同一位置由静止滚下,把笔尖放在小球可能经过的位置上,如果小球运动中碰到笔尖,就用铅笔在该位置画上一点.用同样方法,在小球运动路线上描下若干点.(4)将白纸从木板上取下,从O点开始连接画出的若干点描出一条平滑的曲线,如图乙所示.5.实验注意事项(1)固定斜槽时,要保证斜槽末端的切线水平,保证小球的初速度水平.(2)固定木板时,木板必须处在竖直平面内且与小球运动轨迹所在的竖直平面平行,固定时要用重垂线检查坐标纸竖线是否竖直.(3)小球每次从斜槽上的同一位置由静止释放,为此,可在斜槽上某一位置固定一个挡板.(4)要在斜槽上适当高度释放小球,使它以适当的水平初速度抛出,其轨迹由木板左上角到达右下角,这样可以减小测量误差.(5)坐标原点不是槽口的端点,应是小球出槽口时球心在木板上的投影点.(6)计算小球的初速度时,应选距抛出点稍远一些的点为宜,以便于测量和计算.6.判断平抛运动的轨迹是不是抛物线(1)原理:若平抛运动的轨迹是抛物线,则当以抛出点为坐标原点建立直角坐标系后,轨迹上各点的坐标具有y =ax 2的关系,且同一轨迹上a 是一个特定的值.(2)验证方法方法一:代入法用刻度尺测量几个点的x 、y 坐标,分别代入y =ax 2中求出常数a ,看计算得到的a 值在误差范围内是否为一常数.方法二:图像法建立y -x 2坐标系,根据所测量的各个点的x 、y 坐标值分别计算出对应y 值的x 2值,在y -x 2坐标系中描点,连接各点看是否在一条直线上,并求出该直线的斜率即为a 值.7.计算平抛运动的初速度(1)平抛轨迹完整(即含有抛出点)在轨迹上任取一点,测出该点离原点的水平位移x 及竖直位移y ,就可求出初速度v 0.因x =v 0t ,y =12gt 2,故v 0=x g2y .(2)平抛轨迹残缺(即无抛出点)如图所示,在轨迹上任取三点A 、B 、C ,使A 、B 间及B 、C 间的水平距离相等,由平抛运动的规律可知,A 、B 间与B 、C 间所用时间相等,设为t ,则Δh =h BC -h AB =gt 2.所以t =hBC -hAB g ,所以初速度v 0=x t =x ghBC -hAB .演示实验2:2个初速度不同的平抛物体与自由落体同时从同一高度开始运动,可观察到它们的落地时间相等.结论:平抛运动的竖直分运动是自由落体运动,平抛运动的落地时间与它的初速度无关.二、探究平抛运动物体在水平方向的运动规律演示实验:如图所示的装置研究平抛物体的运动.两个相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端与可看作光滑的水平板相切,两轨道上端分别装有电磁铁C、D,调节电磁铁C、D的高度,使AC=BD,从而保证小铁球P、Q在轨道出口处的水平初速度相等.现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两个小铁球能以相同的初速度同时分别从轨道M、N的下端射出,可以看到P、Q两球相碰,只改变弧形轨道M的高度,重复上述实验,仍能观察到相同的现象.结论:在相等的时间间隔内物体在水平方向的位移相等,这说明平抛运动在水平方向做匀速直线运动.三、探究平抛物体运动规律1.实验目的(1)用实验的方法描出平抛运动的轨迹.(2)用实验轨迹求解平抛运动的初速度.2.实验原理使小球做平抛运动,利用描迹法描绘小球的运动轨迹,建立直角坐标系,测出轨迹曲线上某一点的坐标x和y,由公式:x=v0t和y=12gt2,可得v0=xg2y.3.实验器材(以斜槽法为例)斜槽(带小球)、木板及竖直固定支架、白纸、图钉、重垂线、三角板、铅笔、刻度尺.4.实验步骤(1)如图所示安装实验装置,使斜槽末端水平(小球在斜槽末端恰好静止).(2)以水平槽末端端口上小球球心位置为坐标原点O,过O点画出竖直的y轴和水平的x轴.(3)使小球从斜槽上同一位置由静止滚下,把笔尖放在小球可能经过的位置上,如果小球运动中碰到笔尖,就用铅笔在该位置画上一点.用同样方法,在小球运动路线上描下若干点.(4)将白纸从木板上取下,从O点开始连接画出的若干点描出一条平滑的曲线,如图乙所示.5.实验注意事项(1)固定斜槽时,要保证斜槽末端的切线水平,保证小球的初速度水平.(2)固定木板时,木板必须处在竖直平面内且与小球运动轨迹所在的竖直平面平行,固定时要用重垂线检查坐标纸竖线是否竖直.(3)小球每次从斜槽上的同一位置由静止释放,为此,可在斜槽上某一位置固定一个挡板.(4)要在斜槽上适当高度释放小球,使它以适当的水平初速度抛出,其轨迹由木板左上角到达右下角,这样可以减小测量误差.(5)坐标原点不是槽口的端点,应是小球出槽口时球心在木板上的投影点.(6)计算小球的初速度时,应选距抛出点稍远一些的点为宜,以便于测量和计算.6.判断平抛运动的轨迹是不是抛物线(1)原理:若平抛运动的轨迹是抛物线,则当以抛出点为坐标原点建立直角坐标系后,轨迹2的关系,且同一轨迹上a是一个特定的值.上各点的坐标具有y=ax(2)验证方法方法一:代入法2中求出常数a,看计算得到的a值在误差范用刻度尺测量几个点的x、y坐标,分别代入y=ax围内是否为一常数.方法二:图像法2坐标系,根据所测量的各个点的x、y坐标值分别计算出对应y值的x2值,在y-x2建立y-x坐标系中描点,连接各点看是否在一条直线上,并求出该直线的斜率即为a 值.7.计算平抛运动的初速度(1)平抛轨迹完整(即含有抛出点)在轨迹上任取一点,测出该点离原点的水平位移x 及竖直位移y ,就可求出初速度v 0.因x =v 0t ,y =12gt 2,故v 0=x g 2y .(2)平抛轨迹残缺(即无抛出点)如图所示,在轨迹上任取三点A 、B 、C ,使A 、B 间及B 、C 间的水平距离相等,由平抛运动的规律可知,A 、B 间与B 、C 间所用时间相等,设为t ,则Δh =h BC -h AB =gt 2.所以t =hBC -hAB g ,所以初速度v 0=x t =x ghBC -hAB .平抛运动的规律如图所示,以抛出点O 为坐标原点,水平方向为x 轴(正方向与初速度v 0方向相同),以竖直方向为y 轴(正方向向下),经时间t 做平抛运动的质点到达P 位置,速度为v .x 方向y 方向合运动方向受力情况0m g mg 竖直向下加速度0g g 竖直向下初速度v 00v 0水平方向运动类型匀速直线运动自由落体匀变速曲线运动t 时刻速度v x =v 0v y =gt v =2+g2t2tan θ=vy vx =gt v0位移x =v 0t y =12gt 2s =1g2t4tan α=y x =gt 2v0轨迹方程y =20x 2注:平抛运动的速度偏角与位移偏角的关系两偏角关系:tan θ=2tan α例题精讲实验:研究平抛运动例1.图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线________.每次让小球从同一位置由静止释放,是为了每次平抛______________.(2)图乙是正确实验取得的数据,其中O为抛出点,则此小球做平抛运动的初速度为__________m/s.(g=9.8m/s2)(3)在另一次实验中将白纸换成方格纸,每个格的边长L=5cm,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为__________m/s;B点的速度为__________m/s.(g=10m/s2)例2.回答下面有关“研究平抛运动”的实验的问题:(1)在做“研究平抛运动”的实验时,让小球多次沿同一轨道运动,通过描点法画出小球平抛运动的轨迹,为了能较准确地描绘运动轨迹,下面列出一些操作要求,将你认为正确选项的前面字母填在横线上:__________A.通过调节使斜槽的末端保持水平B.每次释放小球的位置必须不同C.每次必须由静止释放小球D.记录小球位置用的木条(或凹槽)每次必须严格地等距离下降E.小球运动时不应与木板上的白纸(或方格纸)相接触F.将球的位置记录在纸上后,取下纸,用直尺将点连成折线(2)在研究平抛物体运动的实验中,用一张印有小方格的纸来记录轨迹,每小格边长均为L=5cm,若小球在平抛运动途中的几个位置如图中ABC所示,由竖直方向可知相邻两位置间的时间间隔表达式为T=____,则小球平抛初速度的表达式为v0=____,小球平抛初速度的大小为v0=__________m/s(g=10m/s2)例3.在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:A.让小球多次从________位置自由滚下,在一张印有小方格的纸记下小球碰到铅笔笔尖的一系列位置,如右图中a、b、c、d所示.B.按图安装好器材,注意调节斜槽末端切线________,记下平抛初位置O点和过O点的竖直线.C.取下白纸以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹.(1)完成上述步骤,将正确的答案填在横线上.(2)上述实验步骤的合理顺序是_____________.(3)已知图中小方格的边长L=1.25cm,则小球平抛的初速度为v0=_____________(用L、g表示),其值是_____________(取g=9.80m/s2),小球在b点的速率_____________(保留三位有效数字).当堂练习单选题练习1.在同一水平直线上的两位置分别沿同水平方向抛出两小球A和B,两球相遇于空中的P点,它们的运动轨迹如图所示.不计空气阻力,下列说法中正确的是()A.在P点,A球的速度大小大于B球的速度大小B.在P点,A球的速度大小小于B球的速度大小C.抛出时,先抛出A球后抛出B球D.抛出时,先抛出B球后抛出A球练习2.如图,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB 与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为()A.B.C.D.练习3.如图所示,在倾角为θ的斜面上A点以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()A.B.C.D.练习4.2010年3月1日,第21届温哥华冬奥会闭幕,中国代表队以5金2银3铜的好成绩挤进前十,在众多比赛项目中,跳台滑雪是非常好看刺激的项目.如图所示是简化后的跳台滑雪的雪道示意图.运动员从助滑雪道AB上由静止开始下滑,到达C点后水平飞出,以后落到F 点.E是运动轨迹上的某一点,在该点运动员的速度方向与轨道CD平行.设运动员从C到E 与从E与F的运动时间分别为t CE和t E F,FG和斜面CD垂直,则()A.t CE大于t EF,C G等于GFB.t CE等于t EF,C G小于GFC.t CE大于t EF,C G小于GFD.t CE等于t EF,C G等于GF练习5.从倾角为θ的足够长的斜面上的A点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v2,球落到斜面上的瞬时速度方向与斜面夹角为α2,若v1>v2,则()A.α1>α2B.α1=α2C.α1<α2D.无法确定练习6.如图所示.一足够长的固定斜面与水平面的夹角为37°,物体A以初速度v1从斜面顶端水平抛出,物体B在斜面上距顶端L=15m处同时以速度v2沿斜面向下匀速运动,经历时间t物体A 和物体B在斜面上相遇,则下列各组速度和时间中满足条件的是(sin37°=0.6,cos37°=0.8,g=10m/s2)()A.v1=16m/s,v2=15m/s,t=3sB.v1=16m/s,v2=16m/s,t=2sC.v1=20m/s,v2=20m/s,t=3sD.v1=20m/s,v2=16m/s,t=2s练习7.如图所示,在研究平抛运动时,小球A沿轨道滑下,离开轨道末端(末端水平)时撞开接触开关S,被电磁铁吸住的小球B同时自由下落,改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两个小球总是同时落地,该实验现象说明了A球在离开轨道后()A.水平方向的分运动是匀速直线运动B.水平方向的分运动是匀加速直线运动C.竖直方向的分运动是自由落体运动D.竖直方向的分运动是匀速直线运动练习8.平抛物体的运动规律可以概括为两点:一是水平方向上做匀速直线运动;二是竖直方向上做自由落体运动.为了研究平抛物体的运动,可做这样的实验:如图所示,用小锤打击弹性金属片,A球水平飞出,同时B球被松开,做自由落体运动.两球同时落到地面.则这个实验()A.只能说明上述规律中的第一条B.只能说明上述规律中的第二条C.不能说明上述规律中的任何一条D.能同时说明上述两条规律练习9.如图所示,研究一平抛运动时,两个完全相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端可看作与光滑的水平板相切,现将小铁球P、Q同时释放,以相同的初速度v0分别从轨道M、N的末端射出.仅改变弧形轨道M的高度,重复上述实验,总能观察到P球击中Q球,则()A.说明P球在离开轨道后水平方向的分运动是匀速直线运动B.说明P球在离开轨道后水平方向的分运动是匀加速直线运动C.说明P球在离开轨道后竖直方向的分运动是自由落体运动D.能同时说明上述选项A、C所述的规律填空题练习1.如图1所示的演示实验中,A、B两球同时落地,说明了平抛运动在竖直方向上是____________________.某同学设计了如图2的实验:将两个质量相等的小钢球,从两个相同斜面的同一高度由静止同时释放,滑道2与光滑水平板稳接,则他将观察到的现象是____________________.这说明平抛运动在水平方向上是____________________.练习2.图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线________.每次让小球从同一位置由静止释放,是为了每次平抛______________.(2)图乙是正确实验取得的数据,其中O为抛出点,则此小球做平抛运动的初速度为__________m/s.(g=9.8m/s2)(3)在另一次实验中将白纸换成方格纸,每个格的边长L=5cm,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为__________m/s;B点的速度为__________m/s.(g=10m/s2)练习3.在研究平抛运动的实验中,用一张印有小方格的纸记录轨迹,小方格的边长L=1.25cm,若小球在平抛运动途中的几个位置如图中a、b、c、d所示,则小球平抛的初速度为v0=_____________(用L、g表示),其值是_______________.(g取9.8m/s2)练习4.回答下面有关“研究平抛运动”的实验的问题:(1)在做“研究平抛运动”的实验时,让小球多次沿同一轨道运动,通过描点法画出小球平抛运动的轨迹,为了能较准确地描绘运动轨迹,下面列出一些操作要求,将你认为正确选项的前面字母填在横线上:__________A.通过调节使斜槽的末端保持水平B.每次释放小球的位置必须不同C.每次必须由静止释放小球D.记录小球位置用的木条(或凹槽)每次必须严格地等距离下降E.小球运动时不应与木板上的白纸(或方格纸)相接触F.将球的位置记录在纸上后,取下纸,用直尺将点连成折线(2)在研究平抛物体运动的实验中,用一张印有小方格的纸来记录轨迹,每小格边长均为L=5cm,若小球在平抛运动途中的几个位置如图中ABC所示,由竖直方向可知相邻两位置间的时间间隔表达式为T=____,则小球平抛初速度的表达式为v0=____,小球平抛初速度的大小为v0=__________m/s(g=10m/s2)解答题练习1.'如图所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,从水平飞出时开始计时,经t=3.0s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg,不计空气阻力.取重力加速度g=10m/s2,sin37°=0.6,co s37°=0.8.求:(1)A点与O点的距离L;(2)运动员离开O点时的速度v1和落到A点时的速度v2的大小.'练习2.'如图所示,倾角为37°的粗糙斜面的底端有一质量m=1kg的凹形小滑块,小滑块与斜面间的动摩擦因数μ=0.25.现小滑块以某一初速度从斜面底端上滑,同时在斜面底端正上方有一小球以v0水平抛出,经过0.4s,小球恰好垂直斜面方向落入凹槽,此时,小滑块还在上滑过程中.(已知sin37°=0.6,cos37°=0.8),g取10m/s2,求:(1)小球水平抛出的速度v0的大小;(2)小滑块的初速度的大小.'。
高中物理必修二 新教材 讲义 专题提升二 平抛运动规律的应用
专题提升二 平抛运动规律的应用[学习目标]1.熟练运用平抛运动的规律解决相关问题。
2.掌握平抛运动与斜面结合问题的解题方法。
3.分析物理情境确定平抛运动的临界条件和极值问题。
提升1 平抛运动的两个重要推论1.推论一:做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过水平位移的中点。
即x OB =12x A 。
推导:如图,从速度的分解来看,速度偏向角的正切值tan θ=v y v x =gtv 0①将速度v 反向延长,速度偏向角的正切值tan θ=y Ax A -x OB =12gt2v 0t -x OB②联立①②式解得x OB =12v 0t =12x A 。
2.推论二:做平抛运动的物体在某时刻,设其速度与水平方向的夹角为θ,位移与水平方向的夹角为α,则tan θ=2tan α。
推导:速度偏向角的正切值tan θ=gtv 0①位移偏向角的正切值 tan α=y A x A =12gt 2v 0t =gt 2v 0②联立①②式可得tan θ=2tan α。
【例1】如图所示,一小球自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,小球与斜面接触时速度方向与水平方向的夹角φ满足()A.tan φ=sin θB.tan φ=cos θC.tan φ=tan θD.tan φ=2tan θ答案D解析如题图所示,接触斜面时位移方向与水平方向的夹角为θ,由平抛运动的推论可知,速度方向与水平方向的夹角φ与θ满足tan φ=2tan θ,D正确。
【训练1】如图所示,薄半球壳ACB的水平直径为AB,C为最低点,半径为R。
一个小球从A点以速度v0水平抛出,不计空气阻力。
则下列判断正确的是()A.只要v0足够大,小球可以击中B点B.v0取值不同时,小球落在球壳上的速度方向和水平方向之间的夹角可以相同C.v0取值适当,可以使小球垂直撞击到半球壳上D.无论v0取何值,小球都不可能垂直撞击到半球壳上答案D解析小球从A点抛出后做平抛运动,在竖直方向上会发生位移,所以无论v0多大,小球不可能到达B点,A错误;小球落在球壳上的速度方向和水平方向之,当v0不同时,小球落在球壳上的速度方向和水平方间的夹角的正切值tan θ=gt v向之间的夹角不会相同,B错误;小球撞击在圆弧左侧时,速度方向斜向右下方,不可能与半球壳垂直;当小球撞击在圆弧右侧时,根据平抛运动的推论:平抛运动速度的反向延长线交水平位移的中点,可知,由于圆心不在水平位移的中点,所以小球撞在半球壳上的速度反向延长线不可能通过圆心,也就不可能垂直撞击半球壳,故C错误,D正确。
鲁科高中物理必修第2册 第2章 抛体运动 第2节 平抛运动
=
0
,因 t 一直增大,所以 tan
θ 变小,则 θ
问题二
平抛运动的研究方法和规律
【情境导引】
用枪水平地射击一个靶子(如图所示),设子弹从枪口水平射出的瞬间,靶子
从静止开始自由下落,忽略空气阻力,子弹能射中靶子吗?为什么?
要点提示 能够射中。子弹做平抛运动,水平方向做匀速直线运动,竖直方
的突破口。
与水平方向的夹角)或 tan
求解问题的突破口。
α=2 (α 是物体位移与水平方向的夹角)列式,作为
0
变式训练2在一次“飞车过黄河”的表演中,摩托车在空中飞经最高点后在
对岸着地。已知摩托车从最高点至着地点经历的时间约为0.8 s,最高点与
着地点间的水平距离约为30 m,忽略空气阻力。(g取10m/s2)则:
2.(多选)关于做平抛运动的物体,以下说法正确的是(
)
A.做平抛运动的物体,速度和加速度都随时间的增加而增大
B.做平抛运动的物体仅受重力作用,所以加速度保持不变
C.平抛运动是匀变速运动
D.平抛运动是变加速运动
解析 做平抛运动的物体,速度随时间不断增大,但由于只受恒定不变的重
力作用,所以加速度是恒定不变的,选项A错误,B正确;平抛运动是加速度恒
v0t ,y= 2 gt 。
2.物体在 t 时刻的速度大小:v= 2 + 2 =
3.方向:tan θ=
=
(θ
0
0 2 + ()2 。
为 v 与 v0 的夹角)。
4.物体在时间 t 内的位移 s:大小 s= 2 + 2 ,与水平方向的夹角为 α,
tan
第02讲 平抛运动
第2讲平抛运动【教学目标】1.知道平抛运动的定义以及条件,知道其运动轨迹是抛物线;2.理解平抛运动是加速度为g的匀变速曲线运动;3.熟练掌握平抛运动的规律,学会用平抛运动的规律解决实际问题的方法;4.理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动,并且这两个运动互不影响.【重、难点】1.平抛运动的特点和规律;2.对平抛运动的两个分运动的理解和运用.如图所示,沿水平方向扔出一块橡皮,或者将一个小球从水平桌面以一定的初速度推离边沿,可以看到它们做曲线运动的轨迹是相似的.本节课我们来学习这一类常见曲线运动的规律.知识点睛一、平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,仅在重力作用下物体所做的运动称为平抛运动.2.由于平抛运动只受重力作用,加速度为g,故平抛运动是匀变速曲线运动.二、平抛运动的研究方法由于平抛运动是匀变速曲线运动,速度、位移的方向时刻发生变化,无法直接应用运动学公式,因此研究平抛运动问题时采用运动分解的方法.那么平抛运动可以看成哪两个分运动的合成呢?做平抛运动的物体,在水平方向上由于不受力,将做匀速直线运动;在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动,加速度等于g.平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体运动.以上是从理论角度去分析得到的结论,我们能否通过实验来验证我们的结论呢?实验探究平抛运动的特点(1)研究平抛运动水平方向分运动的特点①使电磁铁C 和D 分别相对各自轨道出口水平线处于相同高度.把两个钢球分别吸在电磁铁C 、D 上.切断电源,使两个钢球以相同的初速度同时水平射出.②改变电磁铁C 、D 与各自轨道出口水平线的相对高度,并确保高度相等. ③多次重复以上步骤.观察实验现象,并分析平抛运动水平方向分运动的特点. (2)研究平抛运动竖直方向分运动的特点①把两个钢球分别吸在电磁铁C 、E 上,并确保电磁铁E 上的钢球与轨道A 出口处于同一高度,释放轨道A 的钢球.钢球在水平出口处碰撞开关S ,切断电磁铁E 的电源,使钢球从电磁铁E 处释放. ②改变电磁铁E 的位置,让其从N 向M 移动.③多次重复以上步骤.观察实验现象,并分析平抛运动竖直方向分运动的特点.(3)结论:平抛运动在水平方向的分运动是匀速直线运动,在竖直方向的分运动是自由落体运动. 三、平抛运动的规律如图所示,以抛出点O 为坐标原点,水平方向为x 轴(正方向与初速度v 0方向相同),以竖直方向为y 轴(正方向向下),经时间t 做平抛运动的质点到达P 位置,速度为v .1.平抛运动的位置坐标与位移(1)位置坐标⎩⎪⎨⎪⎧x =v 0t y =12gt 2 (2)位移大小s =x 2+y 2=v 20t 2+14g 2t 4(3)位移方向tan α=y x =gt2v 0,其中α为位移与x 轴的夹角2.平抛运动的速度(1)水平分速度v x =v 0 (2)竖直分速度v y =gt (3)合速度大小v =v 20+v 2y =v 20+g 2t 2(4)合速度方向tan θ=v y v x =gtv 0,其中θ为合速度与水平方向的夹角3.平抛运动的轨迹由x =v 0t 与y =12gt 2可得y =g2v 20x 2.因此,平抛运动的轨迹是一条抛物线.考点一 对平抛运动的理解1.物体做平抛运动的条件物体的初速度v 0沿水平方向,只受重力作用,两个条件缺一不可. 2.平抛运动的性质:加速度为g 的匀变速曲线运动. 3.平抛运动的三个特点(1)理想化特点:平抛运动是一种理想化的模型,即把物体看成质点,抛出后只考虑重力作用,忽略空气阻力.(2)匀变速特点:平抛运动的加速度恒定,即始终等于重力加速度.(3)速度变化特点:任意两个相等的时间间隔内速度的变化相同,Δv =g Δt ,方向竖直向下,如图所示.例1.(多选)在空气阻力可忽略的情况下,下列物体的运动可视为平抛运动的是( ) A .沿水平方向扣出的排球 B .沿斜向上方投出的篮球 C .沿水平方向抛出的小石子 D .沿竖直方向向上抛出的橡皮 例2.(多选)关于平抛运动,下列说法中正确的是( ) A .平抛运动是一种非匀变速曲线运动 B .平抛运动是一种匀变速曲线运动 C .平抛运动的速度,加速度都在变化D .平抛运动中某时刻的速度方向为轨迹切线方向例3.从高空水平方向匀速飞行的飞机上,每隔1分钟投一包货物,空气阻力忽略不计,则空中下落的许多包货物和飞机的连线是( ) A .倾斜直线 B .竖直直线 C .平滑曲线 D .抛物线典例精析考点二 平抛运动中运动参量的决定因素 物体从离地高为h 处以初速度v 0水平抛出,则 1.由h =12gt 2,得落地时间t =2hg,故平抛运动的时间仅由下落高度h 决定,跟其他因素无关; 2.落地时的水平位移x= v 0t = v 02hg,故水平位移由初速度v 0和下落高度h 共同决定; 3.v y =gt =2gh ,落地时的速度v =v 20+v 2y =v 20+2gh ,故落地时的速度由初速度v 0和下落高度h共同决定.例4.(多选)如图所示,滑板运动员以速度v 0从离地高度为h 的平台末端水平飞出,落在水平地面上.忽略空气阻力,运动员和滑板可视为质点,下列表述正确的是( )A .v 0越大,运动员在空中运动时间越长B .v 0越大,运动员落地瞬间速度越大C .运动员落地瞬间速度与高度h 有关D .运动员落地位置与v 0大小无关变式1、做平抛运动的物体,在水平方向通过的最大距离取决于( ) A .物体的高度和受到的重力 B .物体受到的重力和初速度 C .物体受到的重力、高度和初速度 D .物体的高度和初速度 考点三 平抛运动的规律应用例5.一架老式飞机在高出地面h =2km 的高度,以v 0=3.6×102km/h 的速度水平飞行,为了使飞机上投下的炸弹落在指定的目标上,应该在与轰炸目标的水平距离为多远的地方投弹?g 取10m/s 2,不计空气阻力.变式2、如图所示,飞机离地面高度为H=500m,水平匀速飞行,速度为v1=100m/s,追击一辆速度为v2=20m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(飞机和汽车均视为质点,不计空气阻力,重力加速度g=10m/s2)变式3、如图所示,在距地面高为H=45 m处,有一小球A以初速度v0=10 m/s水平抛出.与此同时,在A的正下方有一物块B也以相同的初速度v0同方向滑出,B与地面间的动摩擦因数μ=0.5,A、B均可看成质点,空气阻力不计.求:(1)A球从抛出到落地的时间;(2)A球从抛出到落地这段时间内的水平位移;(3)A球落地时,A、B之间的距离.例6.一小球水平抛出时的速度大小为10m/s,落地时的速度大小为20m/s,g取10m/s2.求:(1)在空中的飞行时间t;(2)小球抛出时的高度h;(3)水平位移x.变式4、(多选)以v0的速度水平抛出一个物体,当其竖直分位移与水平分位移相等时,则()A.运动的时间为gv0B.竖直分速度等于水平分速度C.瞬时速度为5v0D.运动的位移是gv2222变式5、(多选)在距离水平地面高为h 处,将一物体以初速度v 0水平抛出(不计空气阻力),落地时速度为v 1,竖直分速度为v y ,落地点与抛出点的水平距离为s ,则能用来计算该物体在空中运动时间的式子有( )A .v 21-v 2gB .2h g C .2hv y D .sv 1例7.如图所示,斜面上a 、b 、c 三点等距,小球从a 点正上方O 点抛出,做初速度为v 0的平抛运动,恰好落在b 点.若小球初速度变为v ,其落点位于c ,则()A .v 0<v <2v 0B .v =2v 0C .2v 0<v <3v 0D .v >3v 0例8.在水平地面上方某一高度处沿水平方向抛出一个小物体,抛出t 1=1s 后物体的速度方向与水平方向的夹角为45°,落地时物体的速度方向与水平方向的夹角为60°,重力加速度g 取10 m/s 2.求: (1)物体平抛时的初速度v 0; (2)抛出点距离地面的竖直高度h ; (3)物体从抛出点到落地点的水平位移x .变式6、如图所示,由倾角为θ的斜面顶端A 处水平抛出一钢球,落到斜面底端B 处,斜面长为L ,重力加速度为g .求抛出时的初速度.研究平抛运动的一般思路1.把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动;2.分别运用两个分运动的运动规律去求分速度、分位移等,再合成得到平抛运动的速度、位移等.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,使问题的解决过程得到简化.考点四 两类与斜面结合的平抛运动 1.模型构建(1)物体从斜面上某一点水平抛出以后又重新落在斜面上,此时平抛运动物体的合位移方向与水平方向的夹角等于斜面的倾角;(2)做平抛运动的物体垂直打在斜面上,此时物体的合速度与竖直方向的夹角等于斜面的倾角.2.求解思路例9.如图所示,斜面倾角为θ=30°,小球从斜面上的P 点以初速度v 0水平抛出,恰好落到斜面上的Q 点.重力加速度为g .求:(1)小球从P 到Q 运动的时间;(2)PQ 的长度.例10.如图所示,以10m/s 的水平速度抛出的物体,飞行一段时间后垂直撞在倾角为θ=30°的斜面上,空气阻力不计,g 取10m/s 2,物体飞行的时间和物体撞在斜面上的速度的大小分别为( )A .3s ,20 m/sB .3s ,15 m/sC .3s ,15 m/sD .3s ,20 m/s变式7、一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A .tan θB .2tan θC .1tan θD .12tan θ考点五 多个物体的平抛问题例11.如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是( )A .t a >t b ,v a <v bB .t a >t b ,v a >v bC .t a <t b ,v a <v bD .t a <t b ,v a >v b 变式8、(多选)如图所示,在同一竖直平面内,距地面不同高度的地方,以不同的水平速度同时抛出两个小球.则两球( )A .一定不能在空中相遇B .抛出到落地的水平距离有可能相等C .落地时间可能相等D .抛出到落地的水平距离一定不相等考点六 平抛运动的两个推论a1.推论一:某时刻速度、位移与初速度方向的夹角α、θ的关系为tan α=2tan θ2.推论二:平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点 例12.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ变式9、如图所示,从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出.第一次初速度为v 1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v 2,球落到斜面上的瞬时速度方向与斜面夹角为α2,则( )A .当v 1>v 2时,α1>α2B .当v 1>v 2时,α1<α2C .α1、α2的关系与斜面倾角θ有关D .无论v 1、v 2关系如何,均有α1=α2变式10、在一斜面顶端,将甲、乙两个小球分别以v 和v2的速度沿同一方向水平抛出,两球都落在该斜面上.甲球落至斜面时的速率是乙球落至斜面时速率的( ) A .2倍 B .4倍 C .6倍 D .8倍 考点七 平抛运动中的临界极值问题 1.特点(1)若题目中有“刚好”“恰好”“正好”等字眼,表明题述过程中存在临界点;(2)若题目中有“最大”“最小”“至多”“至少”“取值范围”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点. 2.求解思路(1)画出临界轨迹,找出临界状态对应的临界条件; (2)分解速度或位移; (3)列方程求解结果.例13.如图所示,水平屋顶高H=5m,围墙高h=3.2 m,围墙到房子的水平距离L=3m,围墙外马路宽x=10m,为使小球从屋顶水平飞出落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取10 m/s2)变式11、一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m.一小球以水平速度v飞出,g取10 m/s2,欲打在第四级台阶上,则v的取值范围是()A. 6 m/s <v≤2 2 m/s B.2 2 m/s <v≤3.5 m/sC. 2 m/s<v< 6 m/s D.2 2 m/s<v< 6 m/s【能力展示】【小试牛刀】1.做平抛运动的物体,每秒的速度增量总是()A.大小相等,方向相同B.大小不等,方向不同C.大小相等,方向不同D.大小不等,方向相同2.在空中将一个小球水平抛出,不计空气阻力作用,则下列说法正确的是()A.不论抛出速度多大,抛出位置越高,飞得一定越远B.不论抛出速度多大,抛出位置越高,其飞行时间一定越长C.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长D.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大3.从同一点O 抛出三个物体A 、B 、C ,做平抛运动的轨迹如图所示,则三个物体做平抛运动对应的初速度v A 、v B 、v C 的关系和三个物体做平抛运动对应的时间t A 、t B 、t C 的关系分别是( )A .v A >vB >vC t A >t B >t C B .v A =v B =v C t A =t B =t CC .v A <v B <v C t A >t B >t CD .v A >v B >v C t A <t B <t C4.(多选)在高度为h 的同一位置上向水平方向同时抛出两个小球甲和乙,若抛出时甲球的初速度大于乙球的初速度,则下列说法正确的是( )A .甲球落地时间小于乙球落地时间B .在空中飞行的任意时刻,甲球的速度总大于乙球的速度C .在飞行过程中的任一段时间内,甲球的水平位移总是大于乙球的水平位移D .若两球在飞行中遇到一堵竖直的墙,甲球击中墙的高度总是大于乙球击中墙的高度5.(多选)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以初速度v 沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列表述正确的是( )A .球的初速度v 等于L g 2HB .球从击出至落地所用时间为2H g C .球从击球点至落地点的位移等于LD .球从击球点至落地点的位移与球的质量有关6.一个物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v ,那么它的运动时间是( )A .v -v 0gB .v +v 0gC .v 2-v 20gD .v 2+v 20gA OBC7.物体做平抛运动时,它的速度方向和水平方向间的夹角θ的正切tan θ随时间t 变化的图象是图中的( )8.如图所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd .从a 点正上方的O 点以速度v 水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A .c 点B .b 与c 之间某一点C .d 点D .c 与d 之间某一点9.战斗机在某一高度匀速飞行,发现目标后在离目标水平距离为s 处投弹,可以准确命中目标,现战斗机飞行高度减半,速度大小减为原来的23,要仍能命中目标,则战斗机投弹时到目标的水平距离应为(不考虑空气阻力)( )A .13sB .23sC .23sD .223s 10.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速运动;(2)竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验:如图所示,用小锤打击弹性金属片,A 球就水平飞出,同时B 球被松开,做自由落体运动,两球同时落到地面,这个实验 ( )A .只能说明上述规律中的第(1)条B .只能说明上述规律中的第(2)条C .不能说明上述规律中的任何一条D .能同时说明上述两条规律tA B tC tD t11.如图所示,以v0=10 m/s 的水平初速度抛出的物体,飞行一段时间后,垂直地撞在倾角θ为45°的斜面上(g取10 m/s2),可知物体完成这段飞行的时间是()3s B. 3 s C.1 s D.2 s 12.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的(g=10 m/s2)()A.1 m/s B.2 m/s C.3 m/s D.4 m/s 【大显身手】13.(多选)甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲、乙在同一条竖直线上,甲、丙在同一条水平线上,水平面上的P点在丙的正下方,在同一时刻甲、乙、丙开始运动,甲以初速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则()A.若甲、乙、丙三球同时相遇,则一定发生在P点B.若甲、丙两球在空中相遇,此时乙球一定在P点C.若只有甲、乙两球在水平面上相遇,此时丙球还未着地D.无论初速度v0大小如何,甲、乙、丙三球一定会同时在P点相遇14.(多选)枪管AB对准小球C,A、B、C在同一水平面上,如图所示,枪管和小球距地面的高度为45m.已知BC=100m,当子弹射出枪口时,C球开始自由下落,若子弹射出枪口时的速度v0=50 m/s,子弹恰好能在C下落20m时击中它.现其他条件不变,只改变子弹射出枪口时的速度v0,不计空气阻力,g取10 m/s2.则()A.v0=60 m/s时,子弹能击中小球B.v0=40 m/s时,子弹能击中小球C.v0=30 m/s时,子弹能击中小球D.以上的三个v0值,子弹可能都不能击中小球15.如图所示,一架在2 000 m高空以200 m/s的速度水平匀速飞行的轰炸机,要用两枚炸弹分别炸山脚和山顶的目标点A、B.已知山高720 m,山脚与山顶的水平距离为1 000 m,若不计空气阻力,g取10 m/s2,则投弹的时间间隔应为()A.4 s B.5 s C.9 s D.16 s 16.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点把两个小球A、B以同样大小的初速度分别向左、向右水平抛出,两个小球最终都落在斜面上.若不计空气阻力,sin 37°=0.6,cos 37°=0.8,sin 53°=0.8,cos 53°=0.6,则该过程中A、B两个小球运动时间之比为()A.1∶1 B.4∶3 C.16∶9 D.9∶16 17.如图所示,在距地面2l高空A处以水平初速度v0=gl投掷飞镖,在与A点水平距离为l的水平地面上的B点有一个气球,选择适当时机让气球以速度v0=gl匀速上升,在升空过程中被飞镖击中.飞镖在飞行过程中受到的空气阻力不计,在计算过程中可将飞镖和气球视为质点,已知重力加速度为g.试求:(1)飞镖是以多大的速度击中气球的?(2)掷飞镖和放气球两个动作之间的时间间隔Δt应为多少?18.如图所示,女排比赛时,排球场总长为18 m,设球网高为2 m,运动员站在网前3 m处正对球网跳起将球水平击出.若击球的高度为2.5 m,为使球既不触网又不越界,求球的速度范围.(不计空气阻力,g取10 m/s2)第2讲 平抛运动答案例1.AC 例2.BD 例3.B 例4.BC 变式1、D例5.2000m 变式2、800m 变式3、(1)3 s (2)30 m (3)20 m 例6.(1) 3 s (2)15m (3)10 3 m 变式4、CD 变式5、ABC例7.A 例8.(1)10 m/s 2)15 m 3)10 3 m 变式6、cos θgL 2sin θ例9.(1)gv 3320(2)g v 3420 例10.A 变式7、D 例11.A 变式8、AB 例12.D 变式9、D 变式10、A 例13.5 m/s≤v ≤13 m/s 变式11、A【能力展示】1.A 2.B 3.C 4.BCD 5.AB 6.C 7.C 8.B 9.C 10.B11.C 12.BC 13.AB 14.AB 15.C 16.D17.答案:(1)2gl (2)12l g解析:(1)飞镖A 被投掷后做平抛运动.从掷出飞镖到击中气球,经过时间t 1=l v 0=l g 此时飞镖在竖直方向上的分速度v y =gt 1=gl故此时飞镖的速度大小v =v 20+v 2y =2gl (2)飞镖从掷出到击中气球过程中下降的高度h 1=12gt 21=l 2气球从被释放到被击中过程中上升的高度h 2=2l -h 1=3l 2气球的上升时间t 2=h 2v 0=3l 2v 0=32l g可见,t 2>t 1,所以应先释放气球.释放气球与掷飞镖之间的时间间隔Δt =t 2-t 1=12l g18.310 m/s<v 0≤122m/s。
人教版高中物理必修二 5.2平抛运动
tan2tan定任通意过时该刻段的时速间度内的水反平向位延移长的线中一点
结论总结
a、运动时间t 2 h g
即运动时间由高度h惟一决定
b、水平射程为 x v 0
2h g
即由v0、h共同决定
c、合速度 v v02 2gh d、速度的变化量 △v=g△t,△t时间内速度改变量相等,
△v方向是竖直向下的.
v0 O
x
α P (x,y)
vx α
y
vy
v
合速度:v vx2vy2 v02(g)t2 速度的偏向角: tan vy gt
vx v0
二、平抛运动规律
2)位移
水平方向:x v 0 t 竖直方向:y 1 gt 2
2
O v0 θ
x
P (x,y)
y
合位移: s x2y2 (v0t)2(1 2g2t)2
v0
vx
30°
vy v
2.跳台滑雪是一种极为壮观的运动.如图所示,运动员从 倾角为30°的山坡顶端的跳台上A点,以v0= 5 3 沿水平方 向飞出,恰好落到山坡底端的水平面上的B点.不计空气 阻力,取g=10 m/s2,求: (1)运动员在空中飞行的时间; (2)AB之间的距离. (3)运动员何时离开斜面的距离最大?
10.小球从空中以某一初速度水平抛出,落地前1s时刻, 速度方向与水平方向夹300角,落地时速度方向与水平方 向夹600角,g=10m/s2,求小球在空中运动时间及抛出的 初速度。
一、平 抛 运 动 定义:水平抛出的物体只在重力作用下的运动 条件:(1)初速度v0水平(2)只受重力作用 运动性质:平抛运动是匀变速曲线运动 研究方法:采用运动的合成和分解 水平方向:匀速直线运动 竖直方向:自由落体运动 运动规律 (1)速度关系
高一物理必修2《平抛运动》知识点总结
由 h 1 gt 2 得: t 2h
2
g
②水平飞行射程由高度和水平初速度共同决定:
x
v0t
v0
2h g
③平抛物体任意时刻瞬时速度 夹角 θ正切值的两倍。
v 与平抛初速度 v0夹角 θa 的正切值为位移 s 与水平位移 x
④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离 都等于水平位移的一半。
证明: tan
gt
1 gt2 2
v0
s
sx 2
⑤平抛运动中, 任意一段时间内速度的变化量 Δv=gΔt,方向恒为竖直向下 (与 g 同向)。 任意相同时间内的 Δv 都相同(包括大小、方向) ,如右图。
V0 V1 △V V2 △V
V3 △V
⑥以不同的初速度,从倾角为 θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速 度与斜面的夹角 a 相同,与初速度无关。 (飞行的时间与速度有关,速度越大时间越长。 )
⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个运动过程中
机械能守恒。
7、平抛运动的实验探究
①如图所示,用小锤打击弹性金属片,金属片把
A球沿水平方向抛出,同时 B球松开,自
由下落, A、 B两球同时开始运动。观察到两球同时落地,多次改变小球距地面的高度和打
击力度, 重复实验, 观察到两球落地, 这说明了小球 A在竖直方向上的运动为自由落体运动。
在初速度 v0 方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速
度 a F合 。处理时和平抛运动类似,但要分析清楚其加速度的大小和方向如何,分别运用 m
两个分运动的直线规律来处理。
合位移(实际位移)的大小: s x 2 y 2
人教版高中物理必修2平抛运动
5-2 平抛运动一平抛运动1.平抛运动的条件:(1)物体具有水平方向的初速度;(2)运动过程中只受重力作用。
2.抛体运动的性质:由于做平抛运动的物体只受重力,由牛顿第二定律知,其加速度恒为g,是匀变速运动;又因重力与速度不在同一直线上,物体做曲线运动,因此平抛运动是匀变速曲线运动。
3.抛体运动速度变化的特点:抛体运动的物体在任意相等的时间内速度的变化量相等,均为△v=g△t。
4.解决平抛运动问题的方法:将其分解为两个简单的直线运动。
最常用的分解方法:水平方向上的匀速直线运动;竖直方向上的自由落体运动。
【例1】在水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动【例2】关于平抛运动的性质,以下说法中正确的是()A.变加速运动B.匀变速运动C.匀速率曲线运动D.不可能是两个匀速直线运动的合运动【例3】我国自行研制的“J-20”战机在四川某地试飞成功,“J-20”战机可对空作战,也可对地攻击。
设“J-20”战机在高空中以300m/s的水平速度匀速飞行,某时刻扔下炸弹A,相隔1s又扔下炸弹B,不计空气阻力,在以后的运动中,关于炸弹A与炸弹B的相对位置关系(两炸弹均未着地之前),正确的是()A.炸弹A在炸弹B的前下方,两炸弹间的距离保持不变B.炸弹A在炸弹B的后下方,两炸弹间的距离逐渐增大C.炸弹A在炸弹B的正下方,两炸弹间的距离保持不变D.炸弹A在炸弹B的正下方,两炸弹间的距离逐渐增大二 平抛运动的速度1.平抛运动的速度平抛运动可以看成是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
以抛出点为原点,取水平方向为x 轴,x 轴的正方向与初速 度v 0的方向相同;竖直方向为y 轴,正方向向下,物体在任一 时刻t 位置坐标P (x ,y )的速度为v t ,如图所示。
高中物理必修二专题02 平抛运动的描述——教师版
专题2 平抛运动的描述(教师版)一、目标要求二、知识点解析1.平抛运动的定义将物体以一定的速度抛出,如果物体只受重力的作用,这时的运动叫做抛体运动;做抛体运动的物体只受到重力作用,既加速度g不变,因此抛体运动一定是是匀变速运动.抛体运动开始时的速度叫做初速度.如果初速度是沿水平方向的,这个运动叫做平抛运动.平抛运动是匀变速曲线运动.平抛运动的特征:①具有水平方向的初速度②只受重力作用2.平抛运动的基本规律(1)水平方向:匀速直线运动.(2)竖直方向:自由落体运动,加速度为g.3.平抛运动的运动规律v的方向相同;竖直方向为y轴,正方向向下;物以抛出点为原点取水平方向为x轴,正方向与初速度(,),下面将就质点任意时刻的速度、位移进行讨论.体在任意时刻t位置坐标为P x yy(1)速度公式:水平方向和竖直方向速度:0x y v v v gt =⎧⎪⎨=⎪⎩因此物体的实际速度为:0y x v v gtv v tan α⎧===⎪⎪⎨⎪==⎪⎩(2)位移公式水平方向和竖直方向位移:0212x v t y gt =⎧⎪⎨=⎪⎩因此实际位移为:02S y gt x v tan θ⎧⎪==⎪⎨⎪==⎪⎩注意:显然,位移和速度的夹角关系为:12tan tan θα=,即v 的反向延长线交于OA 的中点O ’.这一结论在运算中经常用到.(3)轨迹公式 由0x v t =和212y gt =可得2202g y x v =,所以平抛运动的轨迹是一条抛物线. 4.平抛运动的几个重要结论(1)运动时间:t =(2)落地的水平位移:x x v t v ==,即水平方向的位移只与初速度0v 和下落高度h 有关.(3)落地时速度:v =0v 和下落高度h 有关平抛运动 (4)两个重要推论:表示速度矢量v 与水平方向的夹角,故 表示位移矢量与水平方向的夹角,故 ①平抛运动中,某一时刻速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍. ②根据示意图,我们可知,平抛运动中,某一时刻速度的反向延长线与x 轴的交点为水平位移的中点. 5.求解平抛运动飞行时间的四种方法(1)已知物体在空中运动的高度,根据212h gt =,得到t = (2)已知水平射程x 和初速度0v ,也可以求出物体在空中运动的时间0x t v =(3)已知物体在空中某时刻的速度方向与竖直方向的夹角θ与初速度0v 的大小,根据0v gttan θ=可以求得时间.(4)已知平抛运动的位移方向与初速度方向的夹角α及初速度0v 的大小,根据200122gtgt v t v tan α==可求出时间.6.类平抛运动有时物体的运动与平抛运动很相似,也是在某个方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动.对这种运动像平抛又不是平抛,通常称为平抛运动,处理方法与平抛运动一样,只是a 不同而已.如图所示倾角为θ.一物块沿上方顶点P 水平射入,而从右下方顶点Q 离开.xα0tan y xv gt v v α==θ21tan tan 222x x y gt gt x v t v θα====7.斜面上的平抛运动解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,若已知斜面倾角,则相当于间接告诉合速度或者合位移的方 向.这个类问题主要就是将平抛运动规律与几何知识综合起来.①当物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角.一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解.例如:两个相对的斜面,倾角分别为037和053,在顶点把两个小球以相同初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,是求解A 、B 两个小球落到斜面上的时间之比是多少.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,== b :由于物体的位移与水平方向的夹角即为斜面的倾角可知:tan y x θ=,()201tan 2gt v t θ=,0tan v t g θ2=,所以:tan 379tan 5316A B t t ︒==︒ ②当物体的起点在斜面外,落点在斜面上 解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,是垂直打到斜面上,所以水平方向的速度和竖直方向的速度有以下关系:0tan yv v θ=根据这个公式再加上水平方向和竖直方向的位移关系就可以方便的求解.例如:在倾角为37°的斜面底端的正上方H 处平抛一个小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,==,由图可知, 2012tan 37H gt v t-︒=. b :由速度关系得:0tan 37v gt ︒=,解之得:0v = 8.斜抛运动的基本概念(1)定义:斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜抛运动. (2)斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g .(3)斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下 抛运动的合运动. (4)斜抛运动的方程如图所示,斜上抛物体初速度为v ,与水平方向夹角为θ,则速度:x yv v v v gt cos sin θθ=⎧⎪⎨=-⎪⎩位移:212x v t y v t gt cos sin θθ=⎧⎪⎨=-⎪⎩轨迹方程:可得:xt v cos θ=,代入y 可得2222gx y x v tan cos θθ=-可以看出:y =0时 (1)x =0是抛出点位置.(2)22v x gsin θ=是水平方向的最大射程.(3)飞行时间:2v t gsin θ=三、考查方向题型1:平抛运动的基本规律典例一:(多选)关于平抛运动,下列说法中正确的是( ) A .落地时间仅由抛出点高度决定B .抛出点高度一定时,落地时间与初速度大小有关C .初速度一定的情况下,水平飞出的距离与抛出点高度无关D .抛出点高度一定时,水平飞出距离与初速度大小成正比 题型2:平抛运动的计算典例二:(2020江苏·多选)如图所示,小球A 、B 分别从2l 和l 的高度水平抛出后落地,上述过程中A 、B 的水平位移分别为l 和2l 。
物理必修二平抛运动知识点知乎
物理必修二平抛运动知识点知乎平抛运动是物理学中的一个基本运动形式,其特点是物体在水平方向上做匀速直线运动,竖直方向上受到重力的作用而做自由落体运动。
在物理必修二中,我们学习了平抛运动的相关知识,下面我将为大家总结一下平抛运动的几个重要知识点。
一、平抛运动的定义和特点平抛运动是指在水平方向上以一定初速度水平抛出的物体,在竖直方向上受到重力作用而做自由落体运动。
平抛运动的特点是:水平方向上速度恒定,竖直方向上加速度恒定。
二、平抛运动的基本公式平抛运动的基本公式是:水平方向上的位移公式为Sx=Vxt,竖直方向上的位移公式为Sy=Vyt-1/2gt^2,其中Sx和Sy分别表示水平和竖直方向上的位移,Vx和Vy分别表示水平和竖直方向上的速度,g表示重力加速度,t表示时间。
三、平抛运动的轨迹平抛运动的轨迹是一个抛物线。
由于水平方向上速度恒定,所以物体在水平方向上做匀速直线运动;而竖直方向上受到重力的作用,所以物体在竖直方向上做自由落体运动。
这两个运动的合成就是物体的平抛运动,其轨迹为一个抛物线。
四、平抛运动的最大射程和最大高度在平抛运动中,最大射程和最大高度是两个重要的物理量。
最大射程指的是物体在水平方向上所能达到的最远距离,最大高度指的是物体在竖直方向上所能达到的最大高度。
最大射程和最大高度的计算公式可以通过平抛运动的基本公式推导出来。
五、平抛运动的应用平抛运动在现实生活中有着广泛的应用。
例如,投掷物体、射击运动等都可以看作是平抛运动。
在这些运动中,我们可以利用平抛运动的知识来计算物体的运动轨迹、最大射程等物理量,从而提高运动的准确性和效果。
六、平抛运动的影响因素平抛运动的轨迹、最大射程和最大高度都受到一些影响因素的影响。
例如,初速度的大小和方向、重力加速度的大小等都会影响物体的运动轨迹和最终落地点。
在实际问题中,我们需要考虑这些影响因素,从而更准确地描述和计算物体的平抛运动。
总结:通过学习平抛运动的知识,我们可以了解到平抛运动的定义和特点,掌握平抛运动的基本公式,理解平抛运动的轨迹和影响因素,应用平抛运动的知识解决实际问题。
第2讲 平抛运动的规律及应用
解析
考点2 斜面上的平抛运动 斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运 用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同 位移和速度与水平方向夹角的关系,从而使问题得到顺利解决。 1.从斜面上某点水平抛出,又落到斜面上的平抛运动的五个特点 (1)位移方向相同,竖直位移与水平位移之比等于斜面倾斜角的正切 值。 (2)末速度方向平行,竖直分速度与水平分速度(初速度)之比等于斜面 倾斜角正切值的2倍。
答案
解析 小锤打击弹性金属片后,A球做平抛运动,B球做自由落体运 动。A球在竖直方向上的运动情况与B球相同,也做自由落体运动,因此两 球同时落地,B正确;实验时,需A、B两球从同一高度开始运动,对质量 没有要求,应该改变两球的初始高度及击打力度,从而得出普遍结论,故 A错误,C正确;本实验不能说明A球在水平方向上的运动性质,D错误。
知识点 抛体运动的基本规律 Ⅱ 1.平抛运动 (1)研究方法:平抛运动可以分解为水平方向的 01 __匀__速__直__线____运动和 竖直方向的 02 __自__由__落__体____运动。 (2)基本规律(如图所示)
③轨迹方程:y= 10 ____2_gv_20_x_2 ___。
2.斜抛运动 (1)研究方法:斜抛运动可以分解为水平方向的 11 __匀__速__直__线____运动 和竖直方向的竖直上抛或竖直下抛运动。 (2)基本规律(以斜向上抛为例,如图所示) ①水平方向 v0x= 12 ____v_0_c_o_s_θ_____,x=v0tcosθ。 ②竖直方向 v0y= 13 _____v_0_s_in_θ_____,y=v0tsinθ-12gt2。
(3)运动的时间与初速度成正比t=2v0tganθ。 (4)位移与初速度的二次方成正比s=2gvc20toasnθθ。 (5)当速度与斜面平行时,物体到斜面的距离最远,且从抛出到距斜面
高中物理第五章曲线运动5_2平抛运动课件5
1 1·tanθ
=2
2
B.tanθ 1·tanθ 2=2
tanθ D.tanθ
1=2
2
【答案】 B
【解析】 由题意可知:tanθ1=vvyx=gv0t,tanθ2=xy=12vg0tt2=
2v0,所以 gt
tanθ1·tanθ2=2,故
B
项正确.
如图所示,跳台滑雪运 动员经过一段加速滑行后从 O 点水平 飞出,经 3.0 s 落到斜坡上的 A 点.已 知 O 点是斜坡的起点,斜坡与水平面 的夹角 θ=37°,运动员的质量 m=50 kg.不计空气阻力.(取 sin37°=0.60,cos37°=0.80;g 取 10 m/s2)求:
(1)A 点与 O 点的距离 L; (2)运动员离开 O 点时的速度大小.
【答案】 (1)75 m (2)20 m/s 【解析】 (1)运动员在竖直方向做自由落体运动,有 Lsin37 °=12gt2,A 点与 O 点的距离 L=2sing3t27°=75 m. (2)设运动员离开 O 点的速度为 v0,运动员在水平方向做匀 速直线运动,即 Lcos37°=v0t,解得 v0=Lcost37°=20 m/s.
我们以斜上抛为例,建立直角坐标系,如 图所示.
(1)斜上抛运动的位置: 因为 vx0=v0cosθ ,vy0=v0sinθ 所以 x=v0cosθ ·t y=v0sinθ ·t-12gt2
(2)斜上抛运动的速度: 在任意时刻,两个方向的速度分别为 vx=v0cosθ ,vy=v0sin θ -gt,物体的实际速度(即合速度)为 v= vx2+vy2,方向由两个 分速度共同确定.
4.平抛运动的速度偏角与位移偏角的关系,如图所示:
tanα =yx=2gvt02t=2gvt0,tanθ =vvxy=gvt0,结合两式可得:tan θ =2tanα .
物理人教版必修2:第五章 2.平抛运动
球、投出的标枪、射出的导弹、喷射出的水柱等.
匀速直线 3.平抛运动可以分解为水平方向的____________运动和竖 直方向的____________运动;斜抛运动可以看成是水平方向上 自由落体 匀速直线 竖直上抛 的____________ 运动和竖直方向上的__________ 运动的合运 动. 4.设斜抛运动的初速度为 v0,与水平方向的夹角为θ,则
图 5-2-1 讨论: 重力 (1)物体做平抛运动的条件是物体只受____作用,并且在水
平方向上有初速度.图乙中水柱做平抛运动的轨迹是________. 抛物线
(2)飞机空投物资时,降落伞未打开之前,物资只受重力作 空气阻力 用,做________运动;降落伞打开之后,由于________较大, 平抛 不能忽略,所以物资在空中的运动已经不能看成是平抛运动了.
于( C ) A.物体所受的重力和抛出点的高度
B.物体所受的重力和初速度
C.物体的初速度和抛出点的高度
D.物体所受的重力、高度和初速度
解析:根据平抛运动水平位移的公式 s=v0t=v0
2h g 可知,
水平位移与物体的初速度和抛出点的高度有关.
知识点1
平抛运动
2012 年 7 月下旬,河北省部分地区遭受洪涝、风雹灾害,
【例 2】(双选)下列运动是斜抛运动的是( A.在忽略空气阻力的情况下,踢出的足球
)
B.被风吹动斜向上升起的氢气球
C.在忽略空气阻力的情况下,投出的标枪 D.从飞机上投下的炸弹 解析:根据斜抛运动的定义,将物体以一定的初速度沿斜 上方(或斜下方)抛出,仅在重力作用下物体所做的运动就叫做 斜抛运动.被风吹动斜向上升起的氢气球,空气作用力较大不 能忽略;从飞机上投下的炸弹,速度方向水平,不是斜抛运动.
高中物理 第五章 曲线运动 第2节 平抛运动(含解析)
第2节 平抛运动一、 抛体运动1.抛体运动:以一定的速度将物体抛出,物体只受重力作用的运动。
2.平抛运动:初速度沿水平方向的抛体运动。
3.平抛运动的特点: (1)初速度沿水平方向。
(2)只受重力作用。
二、 平抛运动的速度将物体以初速度v 0水平抛出,由于物体只受重力作用,t 时刻的速度为: 1.水平方向:v x =v 0。
2.竖直方向:v y =gt 。
3.合速度⎩⎪⎨⎪⎧大小:v = v x 2+v y 2= v 02+g 2t2方向:tan θ=v y v x=gtvθ为速度方向与x 轴的夹角三、 平抛运动的位移将物体以初速度v 0水平抛出,经时间t 物体的位移为: 1.水平方向:x =v 0t 。
2.竖直方向:y =12gt 2。
1.物体被抛出后仅在重力作用下的运动叫抛体运动, 初速度沿水平方向的抛体运动叫平抛运动。
2.平抛运动一般可以分解为在水平方向上的匀速直线 运动和在竖直方向上的自由落体运动。
3.斜抛运动与平抛运动的处理方法类似,只是竖直方 向上的初速度不为0;斜上抛运动的最高点物体的 瞬时速度沿水平方向。
3.合位移⎩⎪⎨⎪⎧大小:l =x 2+y 2=v 0t2+⎝ ⎛⎭⎪⎫12gt 22方向:tan α=y x =gt2v。
α为位移方向与x 轴的夹角四、一般的抛体运动物体抛出的速度v 0沿斜上方或斜下方时,物体做斜抛运动(设v 0与水平方向夹角为θ)。
(1)水平方向:物体做匀速直线运动,初速度v x =v 0cos_θ。
(2)竖直方向:物体做竖直上抛或竖直下抛运动,初速度v y =v 0sin_θ。
如图所示。
1.自主思考——判一判(1)水平抛出的物体所做的运动就是平抛运动。
(×) (2)平抛运动的物体初速度越大,下落得越快。
(×)(3)做平抛运动的物体下落时,速度与水平方向的夹角θ越来越大。
(√) (4)如果下落时间较长,平抛运动的物体的速度方向变为竖直方向。
物理必修二平抛知识点总结
物理必修二平抛知识点总结1. 平抛运动简介平抛运动是指物体在水平方向上做匀速直线运动的过程。
在平抛运动中,物体沿着水平方向运动,同时在竖直方向上受到重力的影响,导致物体做抛物线运动。
平抛运动是物理学中的一个基础课题,其运动规律和性质在现实生活和科学研究中有着广泛的应用。
2. 平抛运动的基本参数在进行平抛运动的分析时,需要了解以下几个基本参数:(1)初速度(vi):平抛运动开始时物体沿着水平方向的速度。
(2)水平速度(Vx):物体在整个平抛运动过程中,其水平方向上的速度保持不变。
(3)竖直速度(Vy):受重力的影响,物体在竖直方向上的速度会发生变化,最终竖直速度为零。
(4)加速度(a):由于受到重力的作用,物体在竖直方向上有一个恒定的加速度,即重力加速度 g。
(5)高度(h):物体在平抛运动过程中到达的最大高度。
(6)时间(t):物体从平抛运动开始到达最大高度所经历的时间。
(7)飞行时间(T):物体在平抛运动过程中在空中停留的总时间。
3. 平抛运动的基本公式(1)水平速度:物体在平抛运动中的水平速度始终保持不变。
Vx = vi(2)竖直速度:物体在平抛运动中的竖直速度随时间变化。
Vy = vi - gt当物体达到最高点时,竖直速度为零。
0 = vi - gt_max(3)高度:物体的最大高度取决于初速度和重力加速度。
h = (vi^2 * sin^2θ )/ (2g), h_max = (vi^2 * sin^^2θ)/(2g)(4)时间:物体达到最大高度所需的时间是竖直速度达到零时的时间。
t = (vi * sinθ)/g(5)飞行时间:物体从抛出到落地总共经历的时间。
飞行时间是竖直速度变为零的两倍。
T = (2vi * sinθ)/g4. 平抛运动与斜抛运动的区别平抛运动和斜抛运动都是抛体运动的特殊情况,它们有着一些共性,也有着明显的不同之处。
(1)共性:平抛运动和斜抛运动都是在水平方向上做匀速直线运动,在竖直方向上受到重力的作用从而做抛物线运动。
第4章_2平抛运动
错解分析:错解把A点作为平抛运动的起点 来处理问题(列式时作为自由落体运动的起点)是 毫无依据的.这是处理类似问题时关键的一步错 招,以致“一步走错,全盘皆输”. 需要提请注意的是:作出平抛运动的轨迹, 求出平抛的初速度,是研究平抛运动的一个重要 内容,本题即为一个很好的例证.
【正解】小球竖直方向上的分运动为自由落体,如图所示, 有s = s2 - s1 = s3 - s2 = gT 2,其中T 为轨迹上相邻两点间的 运动时间,则D = 2 创 10- 2 m = 0.1m. s 5 D s 0.1 所以T = = s = 0.1s. g 10 1 所以闪光频率f = = 10 Hz. T 再由水平方向上分运动x = v0 t x 4 创 10- 2 5 可得v0 = = m / s = 2m / s T 0.1
1 x=v0tgt 2 h 11 2 2 gx 所以: h 2v0 2 设第二次抛出球后,它运动的时间为t2,则有
x+Δx=v0t2 1 2 h gt2 所以: 2 2 g ( x x) h 比较h、h′得,第二次抛出球的高度为: 2v0 2
x 2 h (1 ) h. x
由①②③得
质量为m的飞机以水平速度v0飞 离跑道后逐渐上升,若飞机在此过程中水平速度 保持不变,同时受到重力和竖直向上的恒定升力 (该升力由其他力的合力提供,不含重力).今测 得当飞机在水平方向的位移为l时,它的上升高度 为h,如图4-2-9所示,求: (1)飞机受到的升力大小; (2)从起飞到上升至h高度的过程中升力所做的 功及在高h处飞机的动能.
点评:题意说“图示为平抛闪光照的一部分”, 并未说明A点是否为平抛起点.A若为平抛起始点, 则应有s1∶s2∶s3=1∶3∶5,但题给数据与此不符, 故A不是平抛的起始点.既然竖直方向上的分运动 为自由落体,而对于一切匀变速运动,都有“相邻 两个相等时间间隔内的位移之差为一常数”的规律, 即s=s2-s1=s3-s2=„=aT2 ,其中a为匀变速直线运动 的加速度,T为所取的相等时间间隔.
高中高一物理必修2平抛运动知识点
高中高一物理必修2平抛运动知识点
平抛运动,是指物体以一定的初速度水平方向抛出,如果物体仅受重力作用时所做的运动,可看作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运动。
小编准备了高一物理必修2平抛运动知识点,希望你喜欢。
1.水平方向速度Vx= Vo
2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot
4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角: tg=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角: tg=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。
(3)与的关系为tg=2tg 。
(4)在平抛运动中时间t是解题关键。
(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
高一物理必修2平抛运动知识点就为大家介绍到这里,希望对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 平抛运动
一、抛体运动
1.定义:以一定的速度将物体抛出,物体只受重力作用的运动. 2.平抛运动:初速度沿水平方向的抛体运动.
3.平抛运动的特点:(1)初速度沿水平方向. (2)只受重力作用. 想一想 抛体运动是匀变速运动吗? 二、平抛运动的速度
研究方法:在水平、竖直两个相互垂直的方向上分别研究. 1.水平方向:不受力,为匀速直线运动,v x =v 0. 2.竖直方向:只受重力,为自由落体运动,v y =gt . 3.合速度:
(1)大小:v =v 2
x +v 2
y
(2)方向:tan θ=v y v x =gt
v 0
(θ是v 与水平方向的夹角). 三、平抛运动的位移 1.水平方向:x =v 0t , 竖直方向:y =12
gt 2
.
2.合位移⎩
⎪⎨⎪
⎧大小:s =x 2+y 2
方向:tan α=y
x (α是位移s 与水平方向的夹角) 3.轨迹:平抛运动的轨迹是一条抛物线. 四、一般的抛体运动
1.定义:初速度沿斜向上或斜向下方向的抛体运动. 2.性质:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下抛运动的合运动.
3.斜上抛运动在两个分方向的运动规律: 水平方向:v x =v 0cos θ,x =v 0t cos θ
竖直方向:v y =v 0sin θ-gt ,y =v 0t sin θ-12
gt 2
.
一、对平抛运动的理解
1.条件:物体的初速度v 0水平,且只受重力. 2.性质:加速度为g 的匀变速曲线运动. 3.特点:
(1)理想化特点:把物体看成质点,抛出后只考虑重力作用,忽略空气阻力.
(2)匀变速特点:平抛运动的加速度恒定,始终等于重力加速度,且重力与速度不共线. (3)速度变化特点:任意两个相等的时间间隔内速度的变化相同,Δv =g Δt ,方向竖直向下,如图5-2-1所示.
图5-2-1
4.平抛运动的轨迹:由x =v 0t ,y =12gt 2得y =g 2v 20x 2
,为抛物线方程,其运动轨迹为抛
物线.
特别提醒 加速度不变的运动为匀变速运动,匀变速运动包括匀变速直线运动和匀变速曲线运动,自由落体和竖直上抛运动为匀变速直线运动,平抛运动和斜抛运动为匀变速曲线运动.
【例1】 关于平抛运动,下列说法中正确的是( ) A .平抛运动是一种变加速运动
B .做平抛运动的物体加速度随时间逐渐增大
C .做平抛运动的物体每秒内速度增量相等
D .做平抛运动的物体每秒内位移增量相等 二、平抛运动的研究方法及规律
1.研究方法:采用运动分解的方法,将平抛运动分解为竖直方向的自由落体运动和水平方向上的匀速直线运动. 2.平抛运动的规律
(1)运动时间:由y =12
gt 2
得t =
2y
g
,可知做平抛运动的物体在空中运动的时间只与下
落的高度有关,与初速度的大小无关. (2)水平位移:由x =v 0t =v 02y
g
知,做平抛运动的物体的水平位移由初速度v 0和下落
的高度y 共同决定.
(3)落地速度的大小:v =v 2
0+v 2
y =v 2
0+2gy ,即落地速度由初速度v 0和下落的高度y 共同决定.
3.平抛运动的两个推论:
(1)平抛运动某一时刻速度与水平方向夹角为θ,位移与水平方向夹角为α,则tan θ=2tan α.
证明:因为tan θ=v y v 0=
gt v 0,tan α=y x =gt
2v 0
,所以tan θ=2tan α (2)做平抛运动的物体在任意时刻瞬时速度的反向延长线一定通过此时水平位移的中点.
图5-2-2
证明:如图5-2-2所示,P 点速度的反向延长线交OB 于A 点.则OB =v 0t ,AB =PB
tan θ
=12gt 2·v 0gt =1
2v 0t . 可见AB =12OB .
【例2】
图5-2-3
如图5-2-3所示,x 轴在水平地面内,y 轴沿竖直方向.图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹,其中b 和c 是从同一点抛出的.不计空气阻力,则( )
A .a 的飞行时间比b 的长
B .b 和c 的飞行时间相同
C .a 的水平速度比b 的小
D .b 的初速度比c 的大
训练3 平抛运动
题组一 平抛运动的理解
1.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则( )
A .垒球落地时瞬时速度的大小仅由初速度决定
B .垒球落地时瞬时速度的方向仅由击球点离地面的高度决定
C .垒球在空中运动的水平位移仅由初速度决定
D .垒球在空中运动的时间仅由击球点离地面的高度决定 2.关于平抛运动,下列说法中正确的是( ) A .平抛运动是一种变加速运动
B .做平抛运动的物体加速度随时间逐渐增大
C .做平抛运动的物体每秒内速度增量相等
D .做平抛运动的物体每秒内位移增量相等
3.从离地面h 高处投出A 、B 、C 三个小球,A 球自由下落,B 球以速度v 水平抛出,C 球以速度2v 水平抛出,则它们落地时间t A 、t B 、t C 的关系是( ) A .t A <t B <t C B .t A >t B >t C C .t A <t B =t C D .t A =t B =t C
4.如图1所示,在光滑的水平面上有一小球A 以初速度v 0运动,同时刻在它的正上方有一小球B 以初速度v 0水平抛出,并落于C 点,忽略空气阻力,则( )
图1
A .小球A 先到达C 点
B .小球B 先到达
C 点 C .两球同时到达C 点
D .无法确定
题组二 平抛运动规律的应用
5.物体在某一高度以初速度v 0水平抛出,落地时速度为v ,则该物体在空中运动的时间为(不计空气阻力)( ) A .(v -v 0)/g B .(v +v 0)/g C.v 2
-v 2
0/g
D.v 2
0+v 2
/g 6.如图2所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点.若不计空气阻力,下列关系式正确的是( )
图2
A .t a >t b ,v a <v b
B .t a >t b ,v a >v b
C .t a <t b ,v a <v b
D .t a <t b ,v a >v b 7.将一个物体以初速度v 0水平抛出,经过时间t 其竖直方向的位移大小与水平方向的位移大小相等,那么t 为( )
A.v 0g
B.2v 0g
C.v 02g
D.2v 0g
8.如图3所示,在网球的网前截击练习中,若练习者在球网正上方距地面H 处,将球以速度v 沿垂直球网的方向击出,球刚好落在底线上.已知底线到网的距离为L ,重力加速度取g ,将球的运动视作平抛运动,下列叙述正确的是( )
图3
A .球的速度v 等于L
g 2H
B .球从击出至落地所用时间为
2H g
C .球从击球点至落地点的位移等于L
D .球从击球点至落地点的位移与球的质量有关 题组三 与斜面结合的平抛运动的问题
9.斜面上有P 、R 、S 、T 四个点,如图4 所示,PR =RS =ST ,从P 点正上方的Q 点以速度v 水平抛出一个物体,物体落于R 点,若从Q 点以速度2v 水平抛出一个物体,不计空气阻力,则物体落在斜面上的( )
图4
A .R 与S 间的某一点
B .S 点
C .S 与T 间某一点
D .T 点
10.如图5所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,
小球均落在斜面上.当抛出的速度为v 1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v 2时,小球到达斜面时速度方向与斜面的夹角为α2,则( )
图5
A .当v 1>v 2时,α1>α2
B .当v 1>v 2时,α1<α2
C .无论v 1、v 2关系如何,均有α1=α2
D .α1、α2的关系与斜面倾角θ有关
11.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图6中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )
图6
A .tan θ
B .2tan θ C.
1tan θ D.1
2tan θ
题组四 综合应用
12.从离地高80 m 处水平抛出一个物体,3 s 末物体的速度大小为50 m/s ,取g =10 m/s 2
.求:
(1)物体抛出时的初速度大小; (2)物体在空中运动的时间; (3)物体落地时的水平位移.
13.如图7所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的斜面
顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,取g =10 m/s 2
.求小球水平抛出的初速度v 0和斜面顶端与平台边缘的水平距离s 各为多少?(sin 53°=0.8,cos 53°=0.6)
图7
14.女排比赛时,某运动员进行了一次跳发球,若击球点恰在发球处底线上方3.04 m高处,击球后排球以25.0 m/s的速度水平飞出,球的初速度方向与底线垂直,排球场的有关尺寸如图8所示,试计算说明:
图8
(1)此球能否过网?
(2)球是落在对方界内,还是界外?(不计空气阻力,g取10 m/s2)。