AD8128ACPZ-R2中文资料

合集下载

ADC0808S125资料

ADC0808S125资料

CLOCK DRIVER
ADC0808S
LATCH
17 26
CCS CCSSEL
IN INN
33 32
TRACK AND HOLD
8
RESISTOR LADDERS
ADC CORE
LATCH
8
D0 to D7 21 OTC
FSIN/ REFSEL
30 U/I LATCH
20
IR
INTERNAL REFERENCE
元器件交易网
ADC0808S125/250
Single 8-bit ADC, up to 125 MHz or 250 MHz
Rev. 02 — 7 October 2008 Product data sheet
1. General description
The ADC0808S is a differential, high-speed, 8-bit Analog-to-Digital Converter (ADC) optimized for telecommunication transmission control systems and tape drive applications. It allows signal sampling frequencies up to 250 MHz. The ADC0808S clock inputs are selectable between 1.8 V Complementary Metal Oxide Semiconductor (CMOS) or Low-Voltage Differential Signals (LVDS). The data output signal levels are 1.8 V CMOS. All static digital inputs (CLKSEL, CCSSEL, CE_N, OTC, DEL0 and DEL1) are 1.8 V CMOS compatible. The ADC0808S offers the most flexible acquisition control system possible due to its programmable Complete Conversion Signal (CCS) which allows the delay time of the acquisition clock and acquisition clock frequency to be adjusted. The ADC0808S is supplied in an HTQFP48 package.

V8A02解决方案用户手册V2.1

V8A02解决方案用户手册V2.1

V8A02解决方案用户手册V2.1目录1. 文档说明 (6)1.1版本说明 (6)1.2专有名词 (6)2. 方案简介 (8)2.1方案概述 (8)2.2 功能特点 (8)2.2.1 支持DVI数据源输入 (8)2.2.2 支持宽屏等多种DVI输入分辨率 (8)2.2.3 发送卡超大带载 (8)2.2.4 功能强大的配套软件 (8)2.2.5 智能在线检测 (8)2.2.6 高刷新频率 (8)2.2.7 高灰度等级 (9)2.2.8 支持各种像素类型 (9)2.2.9 灵活支持各种模组 (9)2.2.10 多样的端口设置功能 (9)2.2.11箱体色度调整 (9)2.2.12 逐点校正功能 (9)2.2.13 集成测试功能 (9)2.2.14 联机配置数据 (9)2.2.15 智能维修 (10)2.2.16 环路备份功能 (10)2.2.17 在线升级固件安全可靠 (10)2.2.18 支持低电压输入 (10)2.2.19 配备指示灯及控制面板接口 (10)2.2.20 支持远距离传输 (10)2.2.21 支持音频传输及电源控制 (10)2.2.22 提供完整的二次开发接口 (10)2.2.24 支持内建PWM恒流 (10)2.2.25 支持低亮度高保真 (10)2.3产品清单 (11)3. 应用概述 (12)3.1 典型应用 (12)3.2 环路备份 (13)3.3 多发送卡 (14)4. 功能详解 (15)4.1 模组支持能力 (15)4.1.1 模组行、列数1~128以内任意 (16)4.1.2 模组数据类型 (16)4.1.3 模组内每扫描串移长度 (17)4.1.4 虚拟模组LED灯点位置多种排列方式 (17)4.2 箱体连接设置 (17)4.2.1 箱体内模组级联方式 (17)4.2.2 端口扩展 (18)4.2.3 端口对开 (19)4.2.4 端口逆序 (20)4.2.5 端口偏移 (20)4.2.6 箱体带载高度、宽度 (20)4.2.7 箱体显示起始的行、列位置 (21)4.2.8 箱体无信号输入时显示内容设置 (21)4.2.9 箱体级联数量 (21)4.2.10 箱体色度调整 (21)4.2.11 箱体逐点色度校正 (22)4.2.12 箱体测试功能 (22)4.3 屏体参数调节 (23)4.3.1 多个LED屏设置 (23)4.3.3 虚拟LED屏的实效果 (24)4.3.4 LED屏亮度调节 (25)4.3.5 LED屏对比度调节 (26)4.3.6 LED屏色温调节 (26)4.3.7 关闭LED屏显示 (27)4.3.8 锁定LED屏内容 (27)4.3.9 LED屏环境监控 (27)4.4 显示性能参数说明 (30)4.4.1 灰度等级 (30)4.4.2 刷新频率 (31)4.4.3 亮度效率 (31)4.4.4 最小OE (31)4.5 发送卡带载 (31)4.6 在线检测 (34)4.7 系统升级 (34)4.8 智能维修 (36)4.8.1 接收卡更换 (36)4.8.2模组替换 (37)5. 使用说明 (39)5.1 连接硬件 (39)5.1.1 发送卡安装方法 (39)5.1.2 接收卡安装方法 (39)5.1.3 多功能卡安装方法 (39)5.2 安装软件 (40)5.2.1 配置要求 (40)5.2.2 安装步骤 (40)5.3 系统设置 (40)5.3.1 显卡设置 (40)5.3.2系统设置 (43)6. 附录 (55)6.1 设备推荐型号 (55)6.1.1 DVI复制器 (55)6.2 选用线缆清单 (55)6.2.1 HDMI转DVI线缆 (55)6.2.2 音频线 (56)6.2.3 双绞线 (56)6.2.4 光纤 (56)1. 文档说明1.1版本说明版本日期说明V2.0 2013-01-09 升级自1.71版本V2.1 2013-07-15 新增接收卡产品1.2专有名词以下是本文中使用的专用术语及解释,便于读者更好的理解文章内容。●软件一系列按照特定顺序组织的计算机数据和指令的集合,本文中特指在计算机上运行的应用软件。

PCL-812PG卡说明

PCL-812PG卡说明

PCL-812PG多功能数据采集卡使用说明书第一章概述这一章介绍PCL-812PG的背景信息包括关键特性、扩展性能、产品说明书1.1绪论PCL-812PG 是IBM PC/XT/AT及其兼容机的高性能、高速、多功能数据采集卡。

整卡的详尽说明书及齐全的第三方卖主的软件支持是PCL-812PG广泛的应用于工业及实验室环境下。

主要应用于数据采集、过程控制、自动检测、工厂自动控制。

1.2关键特性。

16位单端模拟输入通道。

一个工业标准的12位逐位逼近式A/D转换器(HADC574Z)用于转换模拟量输入。

在DMA模式下最大的A/D采样速率为30KHz。

软件可编程模拟输入序列。

双极性电压+/- 5V, +/- 2.5 V, +/- 1.25V +/- 0.625 V +/- 0.3125 V。

三种A/D触发模式。

软件触发器。

可编程步测触发器。

外部脉冲触发器。

程序控制A/D转换器的数据传输,中断处理器或DMA转换。

一个Intel 8253-5可编程定时器/计数器可提供以0.5 MHz-35minutes/pulse步测输出(触发脉冲),定时器的时间基准为2 MHz。

一个16位计数器保留给用户设置应用。

两个12位单集成多极性D/A输出通道。

一路输出可由板内-5V或-10V参考电压产生0-5V 或0-10V范围的输出。

这个参考电压精度来源于A/D转换器的参考电压精度。

外部直流或交流参考电压同样也可以用于产生其它D/A 输出。

16位TTL/DTL兼容数字输入、输出通道1.3 扩展性能为了增强PCL-812PG功能,可以通过以下可选子卡来扩展其功能。

PCLD-789放大器/乘法器卡这个功能强的前置模拟信号调理卡能在一个A/D输入通道中多路传输16路信号。

高级的仪表化的放大器提供开关选择增益,分别为0.5, 1, 2, 10, 50, 100, 200, 1000或任何用户自定义。

PCLD-787八通道同步采样保持前置卡该卡允许在小于30 ns通道间采样时间偏差下进行八通道模拟信号的同步采集。

SM8122A中文资料

SM8122A中文资料

SM8122AWhite LED Driver ICOVERVIEWThe SM8122A is a high efficiency step-up DC/DC converter. Due to high voltage CMOS process realizing 25V output supply as maximum value, 2 to 6 lights of white LED connected in series can be lighted. By con-necting in series, current variation among LED is eliminated. Current value sent to white LED can be set by external resistors. In addition, brightness can also be adjusted by control to FB pin or CE pin. Since the SM8122A has an over voltage protection circuit built-in, it dispenses with the existing external ZD (zener diode). Besides, the switching frequency of the SM8122A is higher (2.0MHz) than the existing product (SM8121A), so that it can respond to lower inductance value.FEATURESI Boost-up control using PWMI 2 to 6 lights of white L ED (connected in series) lightedI Output current value can be set by external resis-tors (51Ω: 9.8mA, 33Ω: 15.2mA, 24Ω: 20.8mA) I Brightness adjustable by control to FB pin or CE pinI Current variation among LED decreased by high precisionI High efficient drive by step-up modelI Over voltage protection circuit built-inI Supply voltage range: 2.3 to 5.5VI Maximum output voltage: 25VI Quiescent current: 820µA (typ)I Standby current: 1.0µA (max)I R ON (Switching MOS-Tr): 2Ω (typ)I Switching frequency: 2.0MHz (typ)I Output current detection accuracy: ± 2%I Package: SOT23-6W (SM8122AH)MSON-6 (SM8122AD) APPLICATIONSI Cellular phoneI PagerI Digital still cameraI Handy terminalI PDAsI Portable gamesI White LED driveI LCD bias supplyI Flash memory supplyORDERING INFORMATION PINOUT (Top view)I SOT23-6W I MSON-6Device Package SM8122AH SOT23-6W SM8122AD MSON-6SWVOUTFB123VDDCE64VSS56431CESWVDD2VOUT5VSSFB元器件交易网SM8122APACKAGE DIMENSIONS(Unit: mm)ISOT23-6WIMSON-6+ 0.1元器件交易网SM8122ABLOCK DIAGRAMPIN DESCRIPTIONNumberName I/O DescriptionSOT23-6WMSON-6 12SW O Coil switching 26VOUT I Output voltage detection34FB I Feed back (Output current detection)43CE Ip 11.Input with built-in pull-down resistorChip enable (High active)55VSS –GND 61VDD–Power supplyCEVDDFB元器件交易网SM8122ASPECIFICATIONSAbsolute Maximum RatingsElectrical CharacteristicsV DD = 3.6V , V SS = 0V , Ta = 25 ° C unless otherwise notedParameterSymbol Rating Unit Supply voltage range V DD − 0.3 to 6.5V Input voltage range V IN V SS – 0.3 to V DD + 0.3V SW output voltage range V SW –0.3 to 30V SW input current I SW 500mA Power dissipationP D 250 (Ta = 25 ° C)mW Operating temperature range T opr –40 to 85 ° C Storage temperature rangeT stg− 55 to 125° CParameterPin Symbol ConditionRatingUnit min typ max Supply voltage VDD V DD 2.3 3.6 5.5V Maximum output voltage SW V OUT ––25V Standby current VDD I STB V CE = 0V –– 1.0 µ A Quiescent current VDD I DD V FB = 1.0V –200400 µ A V FB = 0V–8201600 µ A SW-Tr ON resister SW R ON I SW = 100mA, V DD = 3.6V – 2.0 3.0 Ω SW-Tr leak current SW I LEAK V SW = V DD –– 1.0 µ A Switching frequency SW f OSC V FB = 0V 1.8 2.0 2.2MHz Maximum duty SW Duty V FB = 0V758590%Input voltageCE V IH 2.0––V V IL ––0.6V Input currentCEI CE V CE = 3.6V – 5.010 µ A FB I FB V FB = 0.5V –1.0– 1.0 µ A VOUTI VOUT V OUT = 25V 6082120 µ A Soft-start time SW T SS1 Switching stop time 102070 µ s T SS2 Maximum duty restriction time –500– µ s FB voltage FB V FB 0.490.500.51V Coil inductance SW L SW – 4.710 µ H Over voltage detection VOUTV OV 2530.536V Over voltage detection releaseV OVR2328.5–V元器件交易网SM8122AOPERATION OVERVIEWThe SM8122A basic structure is a step-up DC/DC converter. The booster control employs Pulse Width Modu-lation (PWM) which controls the pulse duty cycle (85% max.) at constant frequency (2.0MHz typ.). The LED current is set by a current-setting resistor R1 connected between pins FB (with stable voltage of 0.5V typ.) and VSS.When the switching transistor SW-Tr is ON, energy is stored in the inductor L. When SW-Tr is rapidly switched OFF, the energy stored in the inductor generates a voltage across the terminals of the inductor. The induced voltage, after being added to the input voltage, turns ON the Schottky barrier diode SBD and the stored energy is transferred to the output capacitor. This sequence of events continues repeatedly, boosting the output voltage.The SM8122A features a built-in soft-start function. The soft-start time is approximately 500 µs from after the chip enable input CE rising edge. During this interval, the maximum duty is restricted.L C V INOUT µF元器件交易网SM8122AOVP (Over Voltage Protection)SM8122A is always monitoring the VOUT terminal voltage in order to protect itself from the stress of V OUT over voltage. If SM8122A detects the V OUT over voltage, it immediately stop the switching of the inductor drive transistor. After the VOUT terminal voltage decreases below the release voltage, SM8122A restarts switching the inductor drive transistor. The over voltage is set as approximately 30.5V , the release voltage is approximately 28.5V .Selecting the Current-setting Resistor (R1)The SM8122A control stabilizes the voltage on pin FB (0.5V typ.). Hence, the current-setting resistor R1 con-nected between FB and VSS sets the LED current I LED , where the resistance R1 is given by the following equation.R1 = 0.5 / ILED30.5V28.5VV O U TLED =0.5/R1元器件交易网SM8122ASelecting the Inductor (L)The inductor DC resistance affects the power efficiency, therefore a low DC resistance inductor is recom-mended. Note also that the peak inductor current I peak should not exceed the inductor maximum current rating. In pulsed current mode control, the peak inductor current I peak is given by the following equation.I peak = (V IN× T ON) / LFor example, if the input voltage V IN is 3.6V, the inductance L is 4.7µH, and the SW-Tr ON time T ON is 2MHz × 85% = 0.425µs, then the peak inductor current I peak is (3.6 × 0.425 × 10-6) / (4.7 × 10-6) = 0.326A = 326mA. Selecting the Capacitors (C IN, C OUT)The recommended capacitances for use with the SM8122A are 4.7µF ceramic input capacitor C IN and 1.0µF ceramic output capacitor C OUT. The capacitor ESR ratings affect the ripple voltage, therefore capacitors with low ESR rating are recommended. The input capacitor should be mounted close to the SM8122A IC. Note that the capacitor voltage ratings should be selected to provide sufficient margin for the applied input and output voltages.For example, if a lithium-ion battery (2.5 to 4.5V) is connected to the input and 3 white LEDs connected in series at the output draw 20mA, then the maximum input voltage is 4.5V and the maximum output voltage is (4.0V × 3 LEDs) + 0.5V = 12.5V. Therefore, the input capacitor should have a voltage rating of 6V, and the output capacitor should have a voltage rating of 16V.Selecting the Rectifier Schottky Barrier Diode (SBD)The rectifier schottky barrier diode forward-direction voltage drop affects the power efficiency, therefore a Schottky barrier diode with low forward-direction voltage drop is recommended. Note that the diode should be selected to provide sufficient margin for the rated current and reverse-direction withstand voltage.Board Layout NotesThe following precautions should be followed for stable device operation.I The inductor L and Schottky barrier diode SBD should be connected close to the pin SW using thick, short circuit wiring.I The input capacitor C IN should be mounted close to the IC.I The IC supply voltage V DD wiring and inductor supply wiring should be isolated, reducing any common impedances.I The ground wiring should be connected at a single point, reducing any common impedances.V IN LED元器件交易网BRIGHTNESS ADJUSTMENT Brightness Adjustment using FB PinThe LED brightness can be adjusted using an input DC control voltage connected through resistor R3 to the FB pin. Alternatively, the brightness can be controlled by a PWM signal by adding a low-pass filter comprising resistor R4 and capacitor C1. The PWM signal frequency range is determined by the low-pass filter coeffi-cients. For example, the recommended values for resistor R4 (50k Ω) and capacitor C1 (0.1µF) provide a PWM signal frequency range of 1kHz to 1MHz.Brightness adjustment using FB pin (DC voltage input)When the brightness is controlled by DC voltage (V DC ) connected to resistor R3, the LED current (I LED ) is given by equation 1.If the values R1 = 30Ω, R2 = 20k Ω, R3 = 100k Ω, V FB = 0.5V , and V DC = 0V are inserted in equation 1, the LED current I LED = 20mA, as shown in equation 2.If the values R1 = 30Ω, R2 = 20k Ω, R3 = 100k Ω, V FB = 0.5V , and V DC = 3V are inserted in equation 1, the LED current I LED = 0mA, as shown in equation 3.Taking the above diagram as an example, inserting the values R1 = 30Ω, R2 = 20k Ω, R3 = 100k Ω, V FB = 0.5V ,and V DC = 0 to 3V into equation 1 gives the maximum LED current I LED of 20mA when V DC = 0V (equation 2) and the minimum LED current I LED of 0mA when V DC = 3V (equation 3).Brightness adjustment circuit using FB pin(DC voltage input)ΩV DC voltage vs. LED current051015200.00.51.01.52.02.53.0DC voltage [V]L E D c u r r e n t [m A ]R1R2 × (V DC − V FB )R3I LED =V FB − (1)20,000 × (0 − 0.5)100,0003030I LED===0.5 −0.620mA (2)20,000 × (3 − 0.5)100,0003030I LED===0.5 −0mA (3)Brightness adjustment using FB pin (PWM signal input)When the brightness is controlled by PWM signal (V PWM × Duty), the LED current (I LED ) is given by equa-tion 4.If the values R1 = 30Ω, R2 = 20k Ω, R3 = 50k Ω, R4 = 50k Ω, V FB = 0.5V , V PWM = 3V , and Duty = 0% are inserted in equation 4, the LED current I LED = 20mA, as shown in equation 5.If the values R1 = 30Ω, R2 = 20k Ω, R3 = 50k Ω, R4 = 50k Ω, V FB = 0.5V , V PWM = 3V , and Duty = 100% are inserted in equation 4, the LED current I LED = 0mA, as shown in equation 6.Taking the above diagram as an example, inserting the values R1 = 30Ω, R2 = 20k Ω, R3 = 50k Ω, R4 = 50k Ω,V FB = 0.5V , V PWM = 3V , and Duty = 0 to 100% into equation 4 gives the maximum LED current I LED of 20mA when Duty = 0% (equation 5) and the minimum LED current I LED of 0mA when Duty = 100% (equa-tion 6).Brightness adjustment circuit using FB pin(PWM signal input)ΩV PWM signal vs. LED current051015200.00.51.01.52.02.53.0V PWM × Duty [V]L E D c u r r e n t [m A ]R2 × (V PWM × Duty − V FB )R3 +R4R1I LED =V FB − (4)3030I LED ===20,000 × (3 × 0 − 0.5)50,000 + 50,0000.5 −0.620mA (5)3030I LED ===20,000 × (3 × 1 − 0.5)50,000 + 50,0000.5 −0mA (6)Brightness Adjustment using CE PinThe LED average current can be adjusted by controlling the duty of a PWM signal input on the CE pin. When CE goes from LOW to HIGH, the soft start function operates (with 500µs constant soft start time) and, there-fore, the LED average current ratio for a given PWM signal duty falls with increasing PWM signal frequency.Taking this into consideration, the recommended PWM control signal has a frequency range of 100 to 400Hz with duty cycle range of 10 to 90%.When adjusting the brightness using the CE pin, a ripple voltage synchronized to the PWM signal is generated across the output capacitor C OUT . The amplitude of the ripple voltage is determined by the number of LEDs and their forward-bias voltage drop characteristics. If a ceramic capacitor is used for the output capacitor C OUT , an audible noise may be generated due to the ceramic capacitor ’s piezoelectric effect. The audible noise level depends on the ceramic capacitor (capacitance, bias dependency, withstand voltage etc.), LEDs (number,forward-bias voltage drop etc.), and mounting board (thickness, mounting conditions etc.), and thus should be veri fied under actual conditions.Brightness adjustment circuit using CE pinΩVPWM signal duty vs. LED average current10200.05.010.015.020.0030405060708090100PWM signal duty [%]A v e r a g e L E D c u r r e n t [mA ]Alternatively, a tantalum capacitor or film capacitor with low piezoelectric effect can be used as the output capacitor C OUT to minimize the noise level, or the brightness can be adjusted using the FB pin as described earlier. The audible noise generated when using the CE pin is not an inherent phenomena of the SM8122A device, but of the brightness adjustment method employed.Output voltage with LEDs ONOutput voltage with LEDsOFFCE input signal and output ripple voltageCurrent Switching using External TransistorsIf only a few brightness steps are required, the LED current can be adjusted by switching the LED current set-ting resistance using external transistors (Tr).ΩV Select signal 2Select signal 1I LEDLow Low 2mALow High 2 + 5 = 7mA HighLow 2 + 12.5 = 14.5mA HighHigh2 + 5 + 12.5 = 19.5mARECOMMEND PATTERN SOT23-6WMSON-6Footprint pattern1.Footprint patternçMetalmask patternNC0323AE2005.05。

AD2S80A中文手册

AD2S80A中文手册

最小值
典型值
150
最大值
30
单位
ns
BUSY3 检测 宽度 负载 DIRECTION3 检测 最大负载 RIPPLE CLOCK3 检测 宽度 复位 负载 数字输入 高电压VIH 低电压VIL 数字输入 高电流IIH 低电流IIL
200
600
ns
LSTTL
3
LSTTL
300 3 2.0 0.8 V V LSTTL
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供 的最新英文版数据手册。
BYTE SELECT 5V DIG GND BUSY DIR INHIBIT
SC1 SC2
ENABLE
AD2S80A
SEGMENT SWITCHING R-2R DAC
SIN I/P SIG GND COS I/P ANALOG GND RIPPLE CLK DATA LOAD +12V –12V
A1
A3 PHASE SENSITIVE DETECTOR VCO DATA TRANSFER LOGIC
100 100
µA
µA
数字输入 低电压VIL 低电流IIL 数字输出 高电压VOH
1.0 –400
V µA
2.4 0.4
V V
低电压VOL
三态泄漏 电流IL
±100 ±100
µA µA
注释 1 指小信号带宽。 2 输出失调取决于R6的值。 3 参考时序图。 规格如有变更恕不另行通知。 所有最小值和最大值规格均保证实现。以粗体显示的规格是最终电气测试时,在所有成品上测得的。

许继操作箱ZFZ-812A

许继操作箱ZFZ-812A

0XJ 463 284第 2 页共 33 页旧底图总号底图总号签字日期1概述1.1装置用途装置作为分相断路器操作的辅助控制回路,适用于220kV及以上具有双跳闸线圈的一台断路器控制操作之用。

1.2 装置综述装置共一层箱,包括十六个插件,均采用插件形式,保证了配置的灵活方便,有电压切换插件及ZJ备用继电器回路插件,TXJ信号回路插件,HHJ、ZHJ、SHJ合闸继电器回路插件,TBJ防跳继电器回路插件,两个三跳继电器回路插件,两个HWJ合位继电器回路插件,TWJ跳位继电器回路插件, YJJ压力监视回路插件。

装置除能正确反映跳、合情况还设有防止跳跃的防跳闭锁继电器TBJ,利用其本身特点和触点不同的回路连接,能防止断路器多次“跳—合”现象。

同时,可实现电压的自动切换,保证双母线(带旁路)接线系统上所连接的电气元件在运行时,其一次系统和二次系统相对应,以免保护及自动装置发生误动或拒动。

为了防止在运行中由于控制跳闸的气(液)压触点接触不良造成气(液)压闭锁环节失灵,压力监视继电器1YJJ、2YJJ 、3YJJ、4YJJ还设有预告信号。

2 技术参数2.1 基本数据2.1.1 额定数据a.直流电压:220V或110V;b.跳闸保持电流:0.25A、0.5A、1A;c.合闸保持电流:0.25A、0.5A、1A。

注:1A及1A以上选用1A规格2.1.2 装置功率消耗在额定直流电压下,直流电压回路功率消耗正常情况下不大于60W。

2.1.3触点性能装置的出口触点,在电压不大于250V,电流不大于0.5A,时间常数为5ms±0.75ms的直流有感负荷电路中,断开容量为50W,长期允许通过电流为5A。

装置的信号触点,在电压不大于250V,电流不大于0.5A,时间常数为5ms±0.75ms的直流有感负荷电路中,断开容量为30W,长期允许通过电流为3A。

2.1.4装置约重20kg。

2.2 绝缘性能2.2.1 绝缘电阻0XJ 463 284第 3 页共 33 页旧底图总号底图总号签字日期 装置所有电路对外壳及电气上无联系的各电路之间的绝缘电阻在正常校验的标准大气条件下,不小于100MΩ。

AD812中文资料

AD812中文资料
Model Conditions OUTPUT CHARACTERISTICS Output Voltage Swing Output Current Short Circuit Current Output Resistance MATCHING CHARACTERISTICS Dynamic Crosstalk Gain Flatness Match DC Input offset Voltage –Input Bias Current POWER SUPPLY Operating Range Quiescent Current G = +2, RF = 715 Ω VIN = 2 V Open-Loop RL = 150 Ω, TMIN –TMAX RL = 1 kΩ, TMIN –TMAX VS ±5 V ± 15 V ±5 V ± 15 V ± 15 V ± 15 V Min 3.5 13.6 30 40 AD812A Typ 3.8 14.0 40 50 100 15 Max Units ±V ±V mA mA mA Ω
元器件交易网
AD812–SPECIFICATIONS
Dual Supply (@ T = +25؇C, R = 150 ⍀, unless otherwise noted)
A L
Model Conditions DYNAMIC PERFORMANCE –3 dB Bandwidth G = +2, No Peaking Gain = +1 G = +2 G = +2, RL = 1 kΩ 20 V Step G = –1, RL = 1 kΩ G = –1, RL = 1 kΩ VO = 3 V Step VO = 10 V Step fC = 1 MHz, RL = 1 kΩ f = 10 kHz f = 10 kHz, +In f = 10 kHz, –In NTSC, G = +2, RL = 150 Ω VS ±5 V ± 15 V ± 15 V ±5 V ± 15 V ±5 V ± 15 V ±5 V ± 15 V ±5 V ± 15 V ± 15 V ± 5 V, ± 15 V ± 5 V, ± 15 V ± 5 V, ± 15 V ±5 V ± 15 V ±5 V ± 15 V ± 5 V, ± 15 V TMIN –TMAX Offset Drift –Input Bias Current TMIN –T MAX +Input Bias Current Open-Loop Voltage Gain TMIN –T MAX VO = ± 2.5 V, RL = 150 Ω TMIN –T MAX VO = ± 10 V, RL = 1 kΩ TMIN –T MAX VO = ± 2.5 V, RL = 150 Ω TMIN –T MAX VO = ± 10 V, RL = 1 kΩ TMIN –T MAX +Input –Input +Input ± 5 V, ± 15 V ± 5 V, ± 15 V ± 5 V, ± 15 V ±5 V ± 15 V ±5 V ± 15 V 68 69 76 75 350 270 450 370 Min 50 75 100 20 25 275 1400

AD8253ARMZ-R7,AD8253ARMZ-R7,AD8253ARMZ-R7,AD8253ARMZ-RL,AD8253ARMZ, 规格书,Datasheet 资料

AD8253ARMZ-R7,AD8253ARMZ-R7,AD8253ARMZ-R7,AD8253ARMZ-RL,AD8253ARMZ, 规格书,Datasheet 资料

10 MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOSProgrammable Gain Instrumentation AmplifierAD8253 Rev. AInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.FEATURESSmall package: 10-lead MSOPProgrammable gains: 1, 10, 100, 1000Digital or pin-programmable gain settingWide supply: ±5 V to ±15 VExcellent dc performanceHigh CMRR: 100 dB (minimum), G = 100Low gain drift: 10 ppm/°C (maximum)Low offset drift: 1.2 μV/°C (maximum), G = 1000 Excellent ac performanceFast settling time: 780 ns to 0.001% (maximum)High slew rate: 20 V/μs (minimum)Low distortion: −110 dB THD at 1 kHz,10 V swingHigh CMRR over frequency: 100 dB to 20 kHz (minimum) Low noise: 10 nV/√Hz, G = 1000 (maximum)Low power: 4 mAAPPLICATIONSData acquisitionBiomedical analysisTest and measurementGENERAL DESCRIPTIONThe AD8253 is an instrumentation amplifier with digitally programmable gains that has gigaohm (GΩ) input impedance, low output noise, and low distortion, making it suitable for interfacing with sensors and driving high sample rate analog-to-digital converters (ADCs).It has a high bandwidth of 10 MHz, low THD of −110 dB, and fast settling time of 780 ns (maximum) to 0.001%. Offset drift and gain drift are guaranteed to 1.2 μV/°C and 10 ppm/°C, respectively, for G = 1000. In addition to its wide input common voltage range, it boasts a high common-mode rejection of 100 dB at G = 1000 from dc to 20 kHz. The combination of precision dc performance coupled with high speed capabilities makes the AD8253 an excellent candidate for data acquisition. Furthermore, this monolithic solution simplifies design and manufacturing and boosts performance of instrumentation by maintaining a tight match of internal resistors and amplifiers.The AD8253 user interface consists of a parallel port that allows users to set the gain in one of two different ways (see Figure 1 for the functional block diagram). A 2-bit word sent via a bus can be latched using the WR input. An alternative is to use transparent gain mode, where the state of logic levels at the gain port determines the gain.FUNCTIONAL BLOCK DIAGRAMS S+IN6983-1Figure 1.8070605040302010–10–201k10k100k1M10M100MFREQUENCY (Hz)GAIN(dB)6983-23Figure 2. Gain vs. FrequencyTable 1. Instrumentation Amplifiers by CategoryGeneralPurposeZeroDriftMilGradeLowPowerHigh SpeedPGAAD82201AD82311AD620AD6271AD8250AD8221AD85531AD621AD6231AD8251AD8222AD85551AD524AD82231AD8253AD82241AD85561AD526AD8228AD85571AD6241 Rail-to-rail output.The AD8253 is available in a 10-lead MSOP package and is specified over the −40°C to +85°C temperature range, making it an excellent solution for applications where size and packing density are important considerations.AD8253Rev. A | Page 2 of 24TABLE OF CONTENTSFeatures .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Timing Diagram ........................................................................... 5 Absolute Maximum Ratings ............................................................ 6 Maximum Power Dissipation ..................................................... 6 ESD Caution .................................................................................. 6 Pin Configuration and Function Descriptions ............................. 7 Typical Performance Characteristics ............................................. 8 Theory of Operation ...................................................................... 16 Gain Selection ............................................................................. 16 Power Supply Regulation and Bypassing ................................ 18 Input Bias Current Return Path ............................................... 18 Input Protection ......................................................................... 18 Reference Terminal .................................................................... 19 Common-Mode Input Voltage Range ..................................... 19 Layout .......................................................................................... 19 RF Interference ........................................................................... 19 Driving an Analog-to-Digital Converter ................................ 20 Applications Information .............................................................. 21 Differential Output .................................................................... 21 Setting Gains with a Microcontroller ...................................... 21 Data Acquisition ......................................................................... 22 Outline Dimensions ....................................................................... 23 Ordering Guide .. (23)REVISION HISTORY8/08—Rev. 0 to Rev. AChanges to Ordering Guide (23)7/08—Revision 0: Initial VersionAD8253SPECIFICATIONS+V S = +15 V, −V S = −15 V, V REF = 0 V @ T A = 25°C, G = 1, R L = 2 kΩ, unless otherwise noted.Table 2.Parameter Conditions Min Typ Max Unit COMMON-MODE REJECTION RATIO (CMRR)CMRR to 60 Hz with 1 kΩ Source Imbalance +IN = −IN = −10 V to +10 VG = 1 80 100 dBG = 10 96 120 dBG = 100 100 120 dBG = 1000 100 120 dB CMRR to 20 kHz1+IN = −IN = −10 V to +10 VG = 1 80 dBG = 10 96 dBG = 100 100 dBG = 1000 100 dB NOISEVoltage Noise, 1 kHz, RTIG = 1 45 nV/√HzG = 10 12 nV/√HzG = 100 11 nV/√HzG = 1000 10 nV/√Hz0.1 Hz to 10 Hz, RTIG = 1 2.5 μV p-pG = 10 1 μV p-pG = 100 0.5 μV p-pG = 1000 0.5 μV p-p Current Noise, 1 kHz 5 pA/√Hz Current Noise, 0.1 Hz to 10 Hz 60 pA p-p VOLTAGE OFFSETOffset RTI V OS G = 1, 10, 100, 1000 ±150 + 900/G μV Over Temperature T = −40°C to +85°C ±210 + 900/G μV Average TC T = −40°C to +85°C ±1.2 + 5/G μV/°C Offset Referred to the Input vs. Supply (PSR) V S = ±5 V to ±15 V ±5 + 25/G μV/V INPUT CURRENTInput Bias Current 5 50 nA Over Temperature2T = −40°C to +85°C 40 60 nA Average TC T = −40°C to +85°C 400 pA/°C Input Offset Current 5 40 nA Over Temperature T = −40°C to +85°C 40 nA Average TC T = −40°C to +85°C 160 pA/°C DYNAMIC RESPONSESmall-Signal −3 dB BandwidthG = 1 10 MHzG = 10 4 MHzG = 100 550 kHzG = 1000 60 kHz Settling Time 0.01% ΔOUT = 10 V stepG = 1 700 nsG = 10 680 nsG = 100 1.5 μsG = 1000 14 μsRev. A | Page 3 of 24AD8253Rev. A | Page 4 of 24AD8253Rev. A | Page 5 of 24Parameter Conditions Min Typ Max UnitPOWER SUPPLY Operating Range±5 ±15 V Quiescent Current, +I S 4.6 5.3 mA Quiescent Current, −I S 4.5 5.3mA Over Temperature T = −40°C to +85°C 6 mA TEMPERATURE RANGE Specified Performance−40 +85 °C1 See Figure 20 for CMRR vs. frequency for more information on typical performance over frequency.2Input bias current over temperature: minimum at hot and maximum at cold. 3See Figure 30 for input voltage limit vs. supply voltage and temperature. 4See Figure 32, Figure 33, and Figure 34 for output voltage swing vs. supply voltage and temperature for various loads. 5Add time for the output to slew and settle to calculate the total time for a gain change.TIMING DIAGRAMA0, A1WR06983-003Figure 3. Timing Diagram for Latched Gain Mode (See the Timing for Latched Gain Mode Section)AD8253Rev. A | Page 6 of 24ABSOLUTE MAXIMUM RATINGSTable 3.Parameter RatingSupply Voltage ±17 VPower Dissipation See Figure 4Output Short-Circuit CurrentIndefinite 1 Common-Mode Input Voltage ±V S Differential Input Voltage ±V S Digital Logic Inputs±V SStorage Temperature Range –65°C to +125°C Operating Temperature Range 2–40°C to +85°C Lead Temperature (Soldering 10 sec) 300°C Junction Temperature140°C θJA (4-Layer JEDEC Standard Board) 112°C/W Package Glass Transition Temperature140°C1 Assumes the load is referenced to midsupply.2Temperature for specified performance is −40°C to +85°C. For performance to +125°C, see the Typical Performance Characteristics section.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.MAXIMUM POWER DISSIPATIONThe maximum safe power dissipation in the AD8253 package is limited by the associated rise in junction temperature (T J ) on the die. The plastic encapsulating the die locally reaches the junction temperature. At approximately 140°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8253. Exceeding a junction temperature of 140°C for an extended period can result in changes in silicon devices, potentially causing failure. The still-air thermal properties of the package and PCB (θJA ), the ambient temperature (T A ), and the total power dissipated in the package (P D ) determine the junction temperature of the die. The junction temperature is calculated as()JA D A J θP T T ×+=The power dissipated in the package (P D ) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V S ) times the quiescent current (I S ). Assuming the load (R L ) is referenced tomidsupply, the total drive power is V S /2 × I OUT , some of which isdissipated in the package and some of which is dissipated in theload (V OUT × I OUT ). The difference between the total drive power and the load power is the drive power dissipated in the package.P D = Quiescent Power + (Total Drive Power − Load Power )()L 2OUT L OUTS S S D R V –R V2V I V P ⎟⎟⎠⎞⎜⎜⎝⎛×+×= In single-supply operation with R L referenced to −V S , the worstcase is V OUT = V S /2.Airflow increases heat dissipation, effectively reducing θJA . In addition, more metal directly in contact with the package leads from metal traces through holes, ground, and power planes reduces the θJA .Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature on a 4-layer JEDEC standard board.2.001.751.501.251.000.750.500.250–40–20120100806040200M A X I M U M P O W E R D I S S I P A T I O N (W )AMBIENT TEMPERATURE (°C)06983-004Figure 4. Maximum Power Dissipation vs. Ambient TemperatureESD CAUTIONAD8253Rev. A | Page 7 of 24PIN CONFIGURATION AND FUNCTION DESCRIPTIONS–IN DGND –V S A0A1+INREF+V S OUT WRAD8253TOP VIEW(Not to Scale)1234510987606983-005Figure 5. 10-Lead MSOP (RM-10) Pin ConfigurationAD8253Rev. A | Page 8 of 24TYPICAL PERFORMANCE CHARACTERISTICST A @ 25°C, +V S = +15 V , −V S = −15 V , R L = 10 kΩ, unless otherwise noted.CMRR (µV/V)21006983-006N U M B E R O F U N I T S180150120906030–60–40–20020INPUT OFFSET CURRENT (nA)240120180601502109030604020006983-009N U M B E R O F U N I T S–60–20–40Figure 6. Typical Distribution of CMRR, G = 1 Figure 9. Typical Distribution of Input Offset CurrentINPUT OFFSET VOLTAGE, V OSI , RTI (µV)180120150200100006983-007N U M B E R O F U N I T S–200–10006983-0101100kFREQUENCY (Hz)N O I S E (n V /√H z )101001k10k8070605040302010Figure 10. Voltage Spectral Density Noise vs. FrequencyFigure 7. Typical Distribution of Offset Voltage, V OSI 06983-011INPUT BIAS CURRENT (nA)30020025015010050906030006983-008N U M B E R O F U N I T S–90–30–60Figure 11. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1Figure 8. Typical Distribution of Input Bias CurrentAD8253Rev. A | Page 9 of 2406983-012Figure 12. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1000 06983-01318011FREQUENCY (Hz)N O I S E (p A /√H z )00k 101001k 10k 161412108642Figure 13. Current Noise Spectral Density vs. Frequency 06983-014Figure 14. 0.1 Hz to 10 Hz Current Noise 201816141210864200.010.1110WARM-UP TIME (Minutes)C H A N G E I N I N P U T O F F S E T V O L T A G E (µV )06983-015Figure 15. Change in Input Offset Voltage vs. Warm-Up Time, G = 10001401201008040600101M06983-016FREQUENCY (Hz)P S R R (d B )1001k 10k 100k 20Figure 16. Positive PSRR vs. Frequency, RTI1401201008040600101M06983-017FREQUENCY (Hz)P S R R (d B )1001k 10k 100k 20Figure 17. Negative PSRR vs. Frequency, RTIAD8253Rev. A | Page 10 of 2420100–10–20–30–40–50–6012.0I B +10.59.07.56.04.53.01.50–15–10–5051015COMMON-MODE VOLTAGE (V)I N P U T B I A S C U R R E N T (n A )I N P U T O F F S E T C U R R E N T (n A )06983-018I B –I OSFigure 18. Input Bias Current and Offset Current vs. Common-Mode Voltage 302520151050–10–5–60–40–20020406080100120140TEMPERATURE (°C)I N P U T B I A S C U R R E N T A N D O F F S E T C U R R E N T (n A )06983-019I B +I B –I OS Figure 19. Input Bias Current and Offset Current vs. Temperature 012010080604020106983-020FREQUENCY (Hz)C M R R (d B )1001k 10k 100k 1MFigure 20. CMRR vs. Frequency120100806040201006983-021FREQUENCY (Hz)C M R R (d B)1001k 10k 100k 1MFigure 21. CMRR vs. Frequency, 1 kΩ Source Imbalance–15–5013006983-022TEMPERATURE (°C)C M R R (µV /V )10155–5–10–30–101030507090110Figure 22. CMRR vs. Temperature, G = 180706050403020100–10–201k10k100k 1M 10M 100MFREQUENCY (Hz)G A I N (d B )006983-023Figure 23. Gain vs. Frequency40302010–10–300–20–40–10–8–6–4–2024681006983-024N O N L I N E A R I T Y (10p p m /D I V )OUTPUT VOLTAGE (V)Figure 24. Gain Nonlinearity, G = 1, R L = 10 kΩ, 2 kΩ, 600 Ω 40302010–10–300–20–40–10–8–6–4–2024681006983-025N O N L I N E A R I T Y (10p p m /D I V )OUTPUT VOLTAGE (V)Figure 25. Gain Nonlinearity, G = 10, R L = 10 kΩ, 2 kΩ, 600 Ω 80604020–20–600–40–80–10–8–6–4–2024681006983-026N O N L I N E A R I T Y (10p p m /D I V )OUTPUT VOLTAGE (V)Figure 26. Gain Nonlinearity, G = 100, R L = 10 kΩ, 2 kΩ, 600 Ω400300200100–100–3000–200–400–10–8–6–4–2024681006983-027N O N L I N E A R I T Y (10 p p m /D I V )OUTPUT VOLTAGE (V)Figure 27. Gain Nonlinearity, G = 1000, R L = 10 kΩ, 2 kΩ, 600 Ω16–1606983-028OUTPUT VOLTAGE (V)I N P U T C O M M O N -M O D E V O L T A G E (V )1284–4–8–12–12–8–44812Figure 28. Input Common-Mode Voltage Range vs. Output Voltage, G = 116–16–161606983-029OUTPUT VOLTAGE (V)I N P U T C O M M O N -M O D E V O L T A G E (V )1284–4–8–12–12–8–44812Figure 29. Input Common-Mode Voltage Range vs. Output Voltage, G = 1000+V S –V S4106983-030SUPPLY VOLTAGE (±V S )I N P U T V O L T A G E (V )R E F E R R E D T O S U P P L Y V O L T A G E S6–1–2+2+168101214Figure 30. Input Voltage Limit vs. Supply Voltage, G = 1, V REF = 0 V, R L = 10 kΩ–1––100m–10–1–100µ–10µ10DIFFERENTIAL INPUT VOLTAGE (V)C U R R E N T (m A )06983-0311001101001Figure 31. Fault Current Draw vs. Input Voltage, G = 1000, R L = 10 kΩ +V S –V S4106983-032SUPPLY VOLTAGE (±V S )OU T P U T V O L T A G E S W I N G (V )R E F E R R E D T O S U P P L Y V O L T A G E S668101214–0.2–0.4–0.6–0.8–1.0–1.2+1.0+1.2+0.8+0.6+0.4+0.2Figure 32. Output Voltage Swing vs. Supply Voltage, G = 1000, R L = 2 kΩ +V S –V S4106983-033SUPPLY VOLTAGE (±V S )O U T P U T V O L T A G E S W I N G (V )R E F E R R E D T O S U P P L Y V O L T A G E S668101214–0.2–0.4–0.6–0.8–1.0+1.0+0.8+0.6+0.4+0.2Figure 33. Output Voltage Swing vs. Supply Voltage, G =1000, R L = 10 kΩ15–1510010k06983-034LOAD RESISTANCE (Ω)1k105–5–10O U T P U T V O L T A G E S W I N G (V )Figure 34. Output Voltage Swing vs. Load Resistance+V S –V S4106983-035OUTPUT CURRENT (mA)668101214–0.4–0.8–1.2–1.6–2.0+2.0+1.6+1.2+0.8+0.4O U T P U T V O L T A G E S W I N G (V )R E F E R R E D T O S U P P L Y V O L T A G E SFigure 35. Output Voltage Swing vs. Output Current06983-036Figure 36. Small-Signal Pulse Response for Various Capacitive Loads, G = 1069TIME (µs)Figure 37. Large-Signal Pulse Response and Settling Time, G = 1, R L= 10 kΩ06983-038TIME (µs)Figure 38. Large-Signal Pulse Response and Settling Time,G = 10, R L= 10 kΩ06983-039TIME (µs)Figure 39. Large-Signal Pulse Response and Settling Time,G = 100, R L= 10 kΩ06983-040TIME (µs)Figure 40. Large-Signal Pulse Response and Settling Time,G = 1000, R L= 10 kΩ06983-041Figure 41. Small-Signal Response,G = 1, R L = 2 kΩ, C L = 10006983-042Figure 42. Small-Signal Response, G = 10, R L = 2 kΩ, C L = 100 pF06983-043Figure 43. Small-Signal Response, G = 100, R L = 2 kΩ, C L = 100 pF06983-044Figure 44. Small-Signal Response, G = 1000, R L = 2 kΩ, C L = 100 pF 06983-045120014000STEP SIZE (V)T I M E (n s )10008006004002004681012141618Figure 45. Settling Time vs. Step Size, G = 1, R L = 10 kΩ06983-04612001400STEP SIZE (V)T I M E (n s )10008006004002004681012141618Figure 46. Settling Time vs. Step Size, G = 10, R L = 10 kΩ06983-04722STEP SIZE (V)T I M E (n s )10008006001800160014004002004681012141618Figure 47. Settling Time vs. Step Size, G = 100, R L = 10 kΩ06983-048STEP SIZE (V)T I M E (µs )1086181614424681012141618Figure 48. Settling Time vs. Step Size, G = 1000, R L = 10 kΩ0–10–20–30–40–50–60–70–80–90–120–110–100101M06983-049FREQUENCY (Hz)T H D + N (d B )1001k 10k 100k Figure 49. Total Harmonic Distortion vs. Frequency,10 Hz to 22 kHz Band-Pass Filter, 2 kΩ Load0–10–20–30–40–50–60–70–80–90–120–110–100101M06983-050FREQUENCY (Hz)T H D + N (d B )1001k 10k 100k Figure 50. Total Harmonic Distortion vs. Frequency, 10 Hz to 500 kHz Band-Pass Filter, 2 kΩ LoadTHEORY OF OPERATIONREFOUTSS 06983-061Figure 51. Simplified SchematicTransparent Gain ModeThe AD8253 is a monolithic instrumentation amplifier based on the classic 3-op-amp topology, as shown in Figure 51. It is fabricated on the Analog Devices, Inc., proprietary i CMOS® process that provides precision linear performance and a robust digital interface. A parallel interface allows users to digitally program gains of 1, 10, 100, and 1000. Gain control is achieved by switching resistors in an internal precision resistor array (as shown in Figure 51).The easiest way to set the gain is to program it directly via a logic high or logic low voltage applied to A0 and A1. Figure 52 shows an example of this gain setting method, referred to through-out the data sheet as transparent gain mode. Tie WR to the negative supply to engage transparent gain mode. In this mode, any change in voltage applied to A0 and A1 from logic low to logic high, or vice versa, immediately results in a gain change. is the truth table for transparent gain mode, and shows the AD8253 configured in transparent gain mode.Table 5Figure 52All internal amplifiers employ distortion cancellation circuitry and achieve high linearity and ultralow THD. Laser-trimmed resistors allow for a maximum gain error of less than 0.03% for G = 1 and a minimum CMRR of 100 dB for G = 1000. A pinout optimized for high CMRR over frequency enables the AD8253 to offer a guaranteed minimum CMRR over frequency of 80 dB at 20 kHz (G = 1). The balanced input reduces the parasitics that in the past had adversely affected CMRR performance.NOTE:1. IN TRANSPARENT GAIN MODE, WR IS TIED TO −V S .THE VOLTAGE LEVELS ON A0 AND A1 DETERMINE THE GAIN. IN THIS EXAMPLE, BOTH A0 AND A1 ARE SET TO LOGIC HIGH, RESULTING IN A GAIN OF 1000.06983-051GAIN SELECTIONThis section describes how to configure the AD8253 for basic operation. Logic low and logic high voltage limits are listed in the Specifications section. Typically, logic low is 0 V and logic high is 5 V; both voltages are measured with respect to DGND. Refer to the specifications table (Table 2) for the permissible voltage range of DGND. The gain of the AD8253 can be set using two methods: transparent gain mode and latched gain mode. Regardless of the mode, pull-up or pull-down resistors should be used to provide a well-defined voltage at the A0 and A1 pins.Figure 52. Transparent Gain Mode, A0 and A1 = High, G = 1000Latched Gain ModeSome applications have multiple programmable devices such as multiplexers or other programmable gain instrumentation amplifiers on the same PCB. In such cases, devices can share a data bus. The gain of the AD8253 can be set using WR as a latch, allowing other devices to share A0 and A1. shows a schematic using this method, known as latched gain mode. The AD8253 is in this mode when Figure 53WR is held at logic high or logic low, typically 5 V and 0 V , respectively. The voltages on A0 and A1 are read on the downward edge of the WR signal as it transitions from logic high to logic low. This latches in the logic levels on A0 and A1, resulting in a gain change. See the truth table listing in for more on these gain changes.Table 6NOTE:FROM LOGIC HIGH TO LOGIC LOW, THE VOLTAGES ON A0AND A1 ARE READ AND LATCHED IN, RESULTING IN AGAIN CHANGE. IN THIS EXAMPLE, THE GAIN SWITCHES TO G = 1000.06983-052Figure 53. Latched Gain Mode, G = 10001X = don’t care.On power-up, the AD8253 defaults to a gain of 1 when inlatched gain mode. In contrast, if the AD8253 is configured in transparent gain mode, it starts at the gain indicated by the voltage levels on A0 and A1 on power-up.Timing for Latched Gain ModeIn latched gain mode, logic levels at A0 and A1 must be held for a minimum setup time, t SU , before the downward edge of WR latches in the gain. Similarly, they must be held for a minimum hold time, t HD , after the downward edge of WR to ensure that the gain is latched in correctly. After t HD , A0 and A1 may change logic levels, but the gain does not change until the next downward edge of WR . The minimum duration that WR can be held high is t -HIGH , and t -LOW is the minimum duration that WR can be held low. Digital timing specifications are listed in The time required for a gain change is dominated by the settling time of the amplifier. A timing diagram is shown in . Table 2.Figure 54When sharing a data bus with other devices, logic levels applied to those devices can potentially feed through to the output of the AD8253. Feedthrough can be minimized by decreasing the edge rate of the logic signals. Furthermore, careful layout of the PCB also reduces coupling between the digital and analog portions of the board.A0, A106983-053Figure 54. Timing Diagram for Latched Gain ModePOWER SUPPLY REGULATION AND BYPASSINGThe AD8253 has high PSRR. However, for optimal performance, a stable dc voltage should be used to power the instrumentation amplifier. Noise on the supply pins can adversely affect per-formance. As in all linear circuits, bypass capacitors must be used to decouple the amplifier.Place a 0.1 μF capacitor close to each supply pin. A 10 μF tantalum capacitor can be used farther away from the part (see Figure 55) and, in most cases, it can be shared by other precision integrated circuits.06983-054Figure 55. Supply Decoupling, REF, and Output Referred to GroundINPUT BIAS CURRENT RETURN PATHThe AD8253 input bias current must have a return path to its local analog ground. When the source, such as a thermocouple, cannot provide a return current path, one should be created (see Figure 56).THERMOCOUPLE+V –V SCAPACITIVELY COUPLED +V SREFCC–V SAD8253TRANSFORMER+V SREF–V SAD8253INCORRECTCAPACITIVELY COUPLEDf HIGH-PASS THERMOCOUPLE+V TRANSFORMER–V SCORRECT06983-055Figure 56. Creating an I BIAS PathINPUT PROTECTIONAll terminals of the AD8253 are protected against ESD. An external resistor should be used in series with each of the inputs to limit current for voltages greater than 0.5 V beyond either supply rail. In such a case, the AD8253 safely handles a continuous 6 mA current at room temperature. For applications where the AD8253 encounters extreme overload voltages, external series resistors and low leakage diode clamps such as BAV199Ls, FJH1100s, or SP720s should be used.REFERENCE TERMINALThe reference terminal, REF, is at one end of a 10 kΩ resistor (see Figure 51). The instrumentation amplifier output is referenced to the voltage on the REF terminal; this is useful when the output signal needs to be offset to voltages other than its local analog ground. For example, a voltage source can be tied to the REF pin to level shift the output so that the AD8253 can interface with a single-supply ADC. The allowable reference voltage range is a function of the gain, common-mode input, and supply voltages. The REF pin should not exceed either +V S or −V S by more than 0.5 V .For best performance, especially in cases where the output is not measured with respect to the REF terminal, source imped-ance to the REF terminal should be kept low because parasiticresistance can adversely affect CMRR and gain accuracy.INCORRECTCORRECT06983-056Figure 57. Driving the Reference PinCOMMON-MODE INPUT VOLTAGE RANGEThe 3-op-amp architecture of the AD8253 applies gain and then removes the common-mode voltage. Therefore, internal nodes in the AD8253 experience a combination of both the gained signal and the common-mode signal. This combined signal can be limited by the voltage supplies even when the individual input and output signals are not. Figure 28 and Figure 29 show the allowable common-mode input voltage ranges for various output voltages, supply voltages, and gains.LAYOUTGroundingIn mixed-signal circuits, low level analog signals need to be isolated from the noisy digital environment. Designing with the AD8253 is no exception. Its supply voltages are referenced to an analog ground. Its digital circuit is referenced to a digital ground. Although it is convenient to tie both grounds to a single ground plane, the current traveling through the ground wires and PC board can cause an error. Therefore, use separate analog and digital ground planes. Only at one point, star ground, should analog and digital ground meet.The output voltage of the AD8253 develops with respect to the potential on the reference terminal. Take care to tie REF to the appropriate local analog ground or to connect it to a voltage that is referenced to the local analog ground.Coupling NoiseTo prevent coupling noise onto the AD8253, follow these guidelines: • Do not run digital lines under the device.• Run the analog ground plane under the AD8253.•Shield fast-switching signals with digital ground to avoid radiating noise to other sections of the board, and never run them near analog signal paths.• Avoid crossover of digital and analog signals.• Connect digital and analog ground at one point only (typically under the ADC).•Power supply lines should use large traces to ensure a low impedance path. Decoupling is necessary; follow the guidelines listed in the Power Supply Regulation and Bypassing section.Common-Mode RejectionThe AD8253 has high CMRR over frequency, giving it greater immunity to disturbances, such as line noise and its associated harmonics, in contrast to typical in amps whose CMRR falls off around 200 Hz. They often need common-mode filters at the inputs to compensate for this shortcoming. The AD8253 is able to reject CMRR over a greater frequency range, reducing the need for input common-mode filtering.Careful board layout maximizes system performance. T o maintain high CMRR over frequency, lay out the input traces symmetrically. Ensure that the traces maintain resistive and capacitive balance; this holds for additional PCB metal layers under the input pins and traces. Source resistance and capacitance should be placed as close to the inputs as possible. Should a trace cross the inputs (from another layer), it should be routed perpendicular to the input traces.RF INTERFERENCERF rectification is often a problem when amplifiers are used in applications where there are strong RF signals. The disturbance can appear as a small dc offset voltage. High frequency signals can be filtered with a low-pass RC network placed at the input of the instrumentation amplifier, as shown in Figure 58. The filter limits the input signal bandwidth according to the following relationship:)C C (R 1FilterFreq C D DIFF +=2π2CCM RC 1FilterFreq π2=where C D ≥ 10 C C .。

12 18W电源芯片VIPer 22A

12  18W电源芯片VIPer 22A

VOUT =
R5 + R6 × 2.5V R6
R3、R4 限制 U2 光耦 PC817B 的电流,避免影响反馈回路。C8 的加入使得系统反馈更加稳定,避免振荡。 � VDD 电压部分 LKVIPER 22A 芯片工作电压范围宽,达到 9V——30V,此特性可以很方便的应用在某些特殊的领域,比如电 池充电器等。 当开关电源启动后, C2 电容上的电压会通过 T2 原边线圈、芯片内部的高压启动 MOS 管向芯片 VDD 电容 C4 充电。当 C4 电容电压达到 16V,内部高压启动 MOS 管关闭,同时 PWM 开启,系统开始工作。 当 C4 电容电压下降到 9V 以下,关闭 PWM 信号,同时芯片将会产生复位信号,使系统重新启动。这就是 欠压保护。
GND
V out out-
1 2 3 4
8 D R A IN 7 D R A IN 6 D R A IN 5 D R A IN
电源
GND FB VDD
LKVIPER 2 2 A
-1-
深圳市钲铭科电子有限公司 内部方框图
VIPer22A 芯片(12-18W) LED 电源方案
DRAI N VDD 内部电源 产生电路 LVDD 基准电路 VREF
ID
VF B =0
ID L IM
IFB = -
0.23V F B IFB S D
从上图可以看出,IFB 电流大,ID 的电流就小;IFB 电流小,ID 的电流就大。当 IFB 的电流大于 IFBSD 时, 芯片会关闭 PWM,此时的 ID 的值大约为 85mA,同时芯片会自动进入突发模式。这对于系统工作在空载或者轻 载至关重要。 � 过压保护
-2-
深圳市钲铭科电子有限公司 极限参数

12位串行ad转换器的原理及应用开发

12位串行ad转换器的原理及应用开发

12位串行A/D转换器的原理及应用开发来源:国外电子元器件-- 设计创新2007-01-04 点击:1491 引言MAXl224/MAXl225系列12位模/数转换器(ADC)具有低功耗、高速、串行输出等特点,其采样速率最高可达1.5Ms/s,在+2.7V至+3.6V的单电源下工作,需要1个外部基准源;可进行真差分输入,较单端输入可提供更好的噪声抑制、失真改善及更宽的动态范围;同时,具有标准SPITM/QSPITM/MI-CROWWIRETM接口提供转换所需的时钟信号,可以方便地与标准数字信号处理器(DSP)的同步串行接口连接。

MAX1224允许单极性模拟输入,MAX1225允许双极性模拟输入。

该系列转换器可运行于局部关断模式和完全关断模式,能够将2次转换之间的电源电流分别降低至1mA(典型值)和1μA(最大值);具有1个独立的电源输入,可直接与+1.8V到VDD的数字逻辑接口。

此外,该系列还具有转换速度高、交流性能好和直流准确度高等特性。

MAX1224/MAX1225的主要特点如下:●1.5Ms/s采样速率;●功耗仅18mW(典型值);●关断电流仅1μA(最大值);●高速、SPI兼容、3线串行接口;●525kHz输入频率下69dB的S/(N+D);●内部真差分采样,保持(T/H);●外部基准源;●无流水线延迟。

2 封装及引脚功能MAXl224/MAXl225采用小巧的12引脚TQFN封装,其引脚排列如表1所示。

各个引脚的功能如表l所示。

3 内部结构及工作原理MAX1224/MAX1225采用输入采样,保持和逐次逼近寄存器(SAR)电路,将模拟输入信号转换为12位数字输出信号。

串行接口仅需要3条连接线(SCLK、CNVST和DOUT),提供了与微处理器(μP)和DSP 的便利连接。

图2给出简化的MAX1224/MAX1225内部结构。

3.1真差分模拟输入采样/保持器MAXl224/MAXl225的输入结构由采样/保持器、比较器及开关型数,模转换器(DAC)构成。

QSC产品资料

QSC产品资料

QSC K系列是一款轻便型有源扬声器系统,开创了有源扬声器新标准。

首先,K系列所有型号扬声器全部采用同一款由Pat Quilter博士设计,全新的1000瓦D类功放模块。

其次,跳出传统扬声器的设计思路,所有型号扬声器,无论尺寸大小,全部采用1.75英寸高频驱动器和同样高品质的低频驱动器。

K系列强大的DSP处理贯穿信号流程的始终,在其轻巧的尺寸和重量下提供更高水平的语言清晰度和输出声压能力。

箱体采用高级材质和先进的内部结构加固处理,多种安装支架和多吊挂点的设计适用于更多种类的流动或固定安装应用。

XLR和1/4英寸TRS一体化输入接口可以接入麦克风和线路电平输入,此外RCA接口可以接入便携式MP3播放器、CD播放器和线路电平混音器。

最多有三路音源可以在内部混音后以一路平衡输出,并以“菊花链级联方式”将信号传输给多只扬声器。

每个通道还配有独立的输出通道,提高了扬声器系统信号分配的灵活性。

箱体背板控制区域提供多种EQ预设开关。

高频预设选项可以使输入信号在中频区域实现更好的人声提升和达到更为精准的覆盖控制;低频预设选项提供标准工作模式、低频扩展专利技术的DEEP™模式、或者低切模式以配合额外的次低频扬声器的应用。

背板的LED开关可以控制K系列箱体前部的LED灯的三种状态,它们分别为当箱体通电时LED长亮、LED关闭和只有当削波失真电路启动时LED灯闪亮选项。

K系列(全频系列)坚固的ABS外壳和专业外观可以符合各类主流厅堂使用要求。

相对于传统扬声器的塑料外壳,K系列的ABS材料可以达到更高的坚固度,同时由于箱体内部采用加强筋设计,保证了声音的清晰度。

K系列拥有符合人体工程学的铝制手柄和高强度箱体网罩更便于运输和搬运保护。

K系列全频型号拥有一个独特的带有支撑孔的垂直角度可调(Tilt-Direct™)部件,这个部件拥有一个向下7.5度垂直角度调整,可以精确的将处于高处的扬声器的声能投射到听音区域,避免过多的不必要的反射。

AD2S80A中文手册

AD2S80A中文手册

产品聚焦
单芯片。单芯片解决方案可减小所需的封装尺寸并提高可 靠性。 分辨率由用户设置。借助两个控制引脚,AD2S80A的分辨 率可以选为10、12、14或16位,因而用户可以选择各种应 用的最优分辨率来使用AD2S80A。 比率跟踪转换。所用转换技术能够连续输出位置数据,且 没有转换延迟,并且对绝对信号电平不敏感。它还可以很 好地抑制噪声,以及基准和输入信号的谐波失真容限。 动态性能由用户设置。通过选择外部电阻和电容值,用户 可以根据系统要求确定转换器的带宽、最大跟踪速率和速 度比例。所需的外部元件全部是低成本的优选值电阻和电 容,且元件值可以轻松地使用给定的简单命令来选择。 速度输出。该器件可以提供与速度成比例的模拟信号,并 且通常百分之一呈线性。在很多应用中,这可以用于取代 速度传感器,通过伺服控制和速度反馈数据提供环路稳 定。 低功耗。典型值仅300 mW。 军用产品。AD2S80A可根据MIL-STD-883B B类标准提供。
Rev. B | Page 3 of 16
AD2S80A
AD2S80A–技术规格
参数
比率乘法器 交流误差输出调整比例
(除非另有说明,否则通常为25°C) 最小值 典型值
177.6 44.4 11.1 2.775
12
条件
10位 12位 14位 16位
最大值
单位
mV/位 mV/位 mV/位 mV/位 mV V rms/V dc V rms/V dc nA MΩ V dB nA/LSB mV nA V MHz kHz/μA kHz/μA %/V %/V %/V %/V mV nA nA/°C V % FSD % FSD % FSD 不对称的%/V
最小值
典型值
150
最大值

伺服驱动器12A8中文资料说明书

伺服驱动器12A8中文资料说明书
Compliant with European CE for both the Class A EMC Directive 89/336/EEC on Electromagnetic Compatibility (specifically EN 61000-6-4:2001, N61000-6-2:2001, EN 61000-3-2:2000, and EN 61000-3-3:1995/A1:2001) andLVD requirements of directive 73/23/EEC (specifically EN 60204-1), a low voltage directive to protect users from electrical shock.
-
外部的
-
电流模式、IR 补偿模式、测速发电机模式、电压模式
-
有刷直流电机、音圈
-
过流、过温、过压、短路(相间和相地)
机械规格
单位

mm(in) 129.3×75.8×2280(9.9)
℃(℉) ℃(℉)
-
0-65 (32-149) -40-85(-40-185) 独立式
路、过压和过温,关掉所有功率开关器件并输出高电平。
无连接(保留)
-
无连接(保留)
-
引脚 1 2 3 4 5
名称 -MOT +MOT POWER GND POWER GND HIGH VOLTAGE
负电机输出 正电机输出
功率接口 P2 描述/注意点
功率地(与信号地相连)
直流电源输入
I/O O O GND GND I
限制电流的最大值,但不影响最大峰值限制电流值。
TTL 电平(+5V)禁止或使能输入。悬空时使能驱动器,接地时禁止驱动器。 I

8位和12位的AD和DA转换器ppt

8位和12位的AD和DA转换器ppt

XFER——D/A转换的控制信号,与WR2配合使用。 WR2——DAC寄存器的写信号,低电平有效。当XFER和 WR2同时有效时,输入寄存器的数据装入DAC寄存器,并启动 一次D/A转换。 IOUT1——D/A转换器输出电流1。 IOUT2——D/A转换器输出电流2。
VCC——电源,其值可在+5+15 V之间选取,典型值取+15 V。 AGND——模拟信号地。 DGND——数字信号地。 RFB——外部放大器的反馈电阻接线端。
RP1
RP1
VOUT
(a)
(b)
DAC0832的电压输出电路 (a) 单极性输出;(b) 双极性输出
通过调整运算放大器的调零电位器,可以对D/A芯片进行零
点补偿。通过调节外接于反馈回路的电位器RP1,可以调整满量
程。
对于双极性输出电路,输出电压的表达式为:
VOUT
D 128 VREF 128
VREF IOUT2 IOUT1 RFB AGND
ILE
9 3
CS WR1
WR 2
VCC DGND
XFER
DAC0832的结构框图
CS WR1 AGND DI 3 DI 2 DI 1 DI 0 VREF RFB DGND
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 DAC0832 15 14 13 12 11
WR2同时有效时,输入寄存器的数据装入DAC寄存器,并同时
启动一次D/A转换。 VCC——芯片电源,其值可在+5+15 V之间选取,典型值 取+15 V。 AGND——模拟信号地。 DGND——数字信号地。 RFB——内部反馈电阻引脚,用来外接D/A转换器输出增益

ADC0832特性及双通道AD电压转换器设计

ADC0832特性及双通道AD电压转换器设计

ADC0832特性及双通道AD电压转换器设计(含源程序)最近用到双通道ADC0832,发现网上的程序很多不能使用,存在各种各样的一些问题。

现提供完整的C程序,供电子爱好者交流使用。

下面是关于ADC0832的一些资料(部分资料来自互联网,但均经检验正确无误,放心使用):ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。

由于它体积小,兼容性,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。

ADC0832 具有以下特点:·8位分辨率;·双通道A/D转换;·输入输出电平与TTL/CMOS相兼容;·5V电源供电时输入电压在0~5V之间;·工作频率为250KHZ,转换时间为32μS;·一般功耗仅为15mW;·8P、14P—DIP(双列直插)、PICC 多种封装;·商用级芯片温宽为0°C to +70°C,工业级芯片温宽为−40°C to +85°C;ADC0832芯片接口说明:·CS_ 片选使能,低电平芯片使能。

·CH0 模拟输入通道0,或作为IN+/-使用。

·CH1 模拟输入通道1,或作为IN+/-使用。

·GND 芯片参考0 电位(地)。

·DI 数据信号输入,选择通道控制。

·DO 数据信号输出,转换数据输出。

·CLK 芯片时钟输入。

·Vcc/REF 电源输入及参考电压输入(复用)。

ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。

其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。

芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。

独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。

8通道12位串行AD转换器MAX1202及其应用

8通道12位串行AD转换器MAX1202及其应用

,-.
送 入 移 位 寄 存 器 后 /)&*$%+%开 始 进 行 一 次 模 数 转
换0
123 内部和外部时钟方式
)&*$%+%可 以 使 用 外 部 串 行 时 钟 或 内 部 时 钟
完 成 模 数 转 换0在 两 种 方 式 中/外 部 时 钟 对
)&*$%+%移 入 数 据 或 读 出 数 据 /当 控 制 字 最 后 三 位
B通道CD位串行 EFG转换器 HEICDJD及其应用
蒋 双 梅 8高 敦 堂 8都 思 丹
?南京大学 电子科学与工程系8江苏 南京 ")##K%@
摘 要! 介绍了L通道)"位串行 MF:转换器 NMO)"#"的功能特点和工作过程8并以 材料表 面喷
涂金属薄膜自动控制系统为例8给出了 NMO)"#"与 MPLKQ"#>)的接口电路及软件设计R
如表&所示2开始一次转换之前必须先由 )?6 端@串 行 数 据 输 入D送 入 一 控 制 字2当 片 选 信 号 为 低 电 平 时4每 次 ;<7= 时 钟 的 上 升 沿 将 )?6 端 数 据 送 入 *’+%&,&的内 部移 位寄存 器中2待#位 控制 字全部
第 !期
蒋双梅等"#通道$%位串行 &’(转换器 )&*$%+%及其应用
图H %,位外部时钟方式工作时序
H )&*$%+%应用实例
,2-2$ 内部时钟 在 内 部 时 钟 方 式 下 7图 ,8/)&*$%+%产 生 内 部
变 换 时 钟/这可 使 微 处 理 器 不 必 为 逐 次 逼 近 寄 存 器 提 供 驱 动 时 钟/并 使 微 处 理 器 能 以 +9 %):;之 间 的 任 意 时 钟 速 率 读 取 转 换 结 果 0<<=>?在 转 换 开 始 时 变 为 低 电 平/转 换 结 束 时 变 为 高 电 平0<<=>?保 持低电平的最长时间为$+@A/转换期间 <BCD 应保 持 为 低 电 平/以 得 到 最 佳 的 噪 声 性 能0在 转 换 过 程 中 /内 部 寄 存 器 存 贮 数 据 /在 转 换 完 成 之 后 的 任 意 时 刻/<BCD 都 可 从 这 个 寄 存 器 中 读 出 数 据/在 <<=>?变 为 高 电 平 之 后/(EF= 端 7串 行 数 据 输 出 8在 下 一 个 时 钟 下 降 沿 输 出 转 换 后 的 最 高 位 7)<?8/然 后 依 次 输 出 其 它 各 位 0一 旦 转 换 开 始 /B< 就不再需要保持低电平 了0把B<接 到 高 电平 将 封 锁 )&*$%+%/并使 (EF=处于三态/但它不会阻止在 内部时钟方式下已经开始的转换0

AD器件一览表

AD器件一览表
沈阳单片机开发网——帮您精确掌握电子器件的使用细节

AD器件一览表
ADI AD 转换器
型号
8 位 ADC AD7574 AD7820
后缀
引脚 数
封装
JN 24
DIP
KN 20
DIP
AD7821
KN 20
DIP
12 位 ADC
AD7874
AN 28 DIP
AD7878
JN 28 DIP
三相电量测量 IC
3
沈阳单片机开发网——帮您精确掌握电子器件的使用细节

TI AD 转换器
器件
后缀
并行输出 AD 转换器
TLC0820A CN
THS1206 THS1408
CDA CPFB
串行输出 AD 转换器
TLC0838 TLV0838 TLC549 TLC549 TLV1544 TLC1549
20 8
8
8
8
8
16 10
8
10
16 10
20 10
16 10
20 10
20 12 20 12
±1.0 20
8
5
12.5 8 位 A/D 转换器
±1.0 37.9 8
3.3
50
低电压
±0.5 40
1
5
Y
12
8 位 A/D 转换器
±0.5 40
1
5
Y
12
8 位 A/D 转换器
±1.0 66
4
3.3
Y
Y
AD7777
AN
28 DIP
AD7861
AP
44 PLCC
AD7853L AN

OCP8122A应用信息 V1.0

OCP8122A应用信息 V1.0

Orient-chip Semiconductor (SH) Co.LtdOCP8122A应用信息V1.0Orient-chip Semiconductor (SH) Co.Ltd描一、描述OCP8122A是一款双通道大功率LED恒流驱动控制器,适合大尺寸LCDTV背光LED驱动。

OCP8122A集成了两个实现最佳效率独产控制的LED驱动器。

驱动器集成了两个实现最佳效率独产控制的驱动器驱动器输出相移180度,使得芯片在大功率应用时有较小的纹波电流。

OCP8122A支持PWM信号对每个通道进行独立的调光,模拟调光同时控制两个通道。

它提供系统灵活设计适合LCDTV局部调光或3D显示模式。

OCP8122A支持配置适合主从操作的多通道应用。

同步实现一个独立单线界面的最小化系统组件。

立单线界面的最小化系统组件OCP8122A有完整的保护功能,例如:MOSFET的过流保护(OCP)、输出对地短路保护(SCP)、输入欠压保护(UVLO)、输出过压保护(OVP)、限流保护。

Orient-chip Semiconductor (SH) Co.Ltd、典型应用原理图(供电)二、典型应用原理图(VCC12VOrient-chip Semiconductor (SH) Co.Ltd典型应用原理图(供电)VCC24VOrient-chip Semiconductor (SH) Co.Ltd三、管脚定义及实现的功能1、UVLS 为VIN电源供应欠压保护脚,当此脚的电压低于2.7V时,IC的VIN欠压保护功能起作用,输出关闭,只有当电压愎复到高于3V时,IC恢复正常输出。

2、VCC为电源供应输入脚,输入电压范围8V~25V。

当此脚电压低于6.8V时,IC的VCC欠压保护功能起作用,输出关闭,只有当VCC电压恢复到高于7V时,IC恢复正常输出。

(注:当供电电压为24V时,用输出关闭只有当电压恢复到高于时恢复正常输出(注当供电电压为时建议在芯片的VCC与供电24V电源之间串一个12V/1W的稳压二极管,以降低升压开关管的VGS耐压的要求,降低系统成本)3、EN为IC的使能脚,通常用两个电阻对VCC电压进行分压,或者额外提供电压2V-5V,IC启动,EN脚电平小于0.4V,IC关闭。

AD8270ACPZ-WP中文资料

AD8270ACPZ-WP中文资料

Precision Dual-Channel,Difference AmplifierAD8270 Rev. 0Information furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.FEATURESWith no external resistorsDifference amplifier: gains of 0.5, 1, or 2Single ended amplifiers: over 40 different gainsSet reference voltage at midsupplyExcellent ac specifications15 MHz bandwidth30 V/μs slew rateHigh accuracy dc performance0.08% maximum gain error10 ppm/°C maximum gain drift80 dB minimum CMRR (G = 2)Two channels in small 4 mm × 4 mm LFCSPSupply current: 2.5 mA per channelSupply range: ±2.5 V to ±18 VAPPLICATIONSInstrumentation amplifier building blocksLevel translatorsAutomatic test equipmentHigh performance audioSine/Cosine encodersGENERAL DESCRIPTIONThe AD8270 is a low distortion, dual-channel amplifier with internal gain setting resistors. With no external components, it can be configured as a high performance difference amplifier with gains of 0.5, 1, or 2. It can also be configured in over 40 single-ended configurations, with gains ranging from −2 to +3.The AD8270 is the first dual-difference amplifier in the small 4 mm × 4 mm LFCSP. It requires the same board area as a typical single-difference amplifier. The smaller package allows a 2× increase in channel density and a lower cost per channel, all with no compromise in performance.The AD8270 operates on both single and dual supplies and requires only 2.5 mA maximum supply current for each ampli-fier. It is specified over the industrial temperature range of−40°C to +85°C and is fully RoHS compliant.FUNCTIONAL BLOCK DIAGRAM1–IN1A2–IN2A3+IN2A4+IN1A11–IN2B12–IN1B10+IN2B9+IN1B5REF1A6REF2A7REF2B8REF1B5OUTA6+VS4OUTB3–VS6979-1_+Figure 1.Table 1. Difference Amplifiers by CategoryHighSpeedHighVoltageSingle-SupplyUnidirectionalSingle-SupplyBidirectional AD8270AD628AD8202AD8205AD8273AD629AD8203AD8206AMP03AD8216AD8270Rev. 0 | Page 2 of 20TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 General Description.........................................................................1 Functional Block Diagram..............................................................1 Revision History...............................................................................2 Specifications.....................................................................................3 Difference Amplifier Configurations........................................3 Absolute Maximum Ratings............................................................5 Thermal Resistance......................................................................5 Maximum Power Dissipation.....................................................5 ESD Caution..................................................................................5 Pin Configuration and Function Descriptions.............................6 Typical Performance Characteristics.............................................7 Theory of Operation......................................................................13 Circuit Information....................................................................13 Driving the AD8270...................................................................13 Package Considerations.............................................................13 Power Supplies............................................................................13 Input Voltage Range...................................................................14 Applications Information..............................................................15 Difference Amplifier Configurations......................................15 Single-Ended Configurations...................................................15 Differential Output....................................................................17 Driving an ADC.........................................................................18 Driving Cabling..........................................................................18 Outline Dimensions.......................................................................19 Ordering Guide.. (19)REVISION HISTORY1/08—Revision 0: Initial VersionAD8270Rev. 0 | Page 3 of 20SPECIFICATIONSDIFFERENCE AMPLIFIER CONFIGURATIONSV S = ±15 V , V REF = 0 V , T A = 25°C, R LOAD = 2 kΩ, specifications referred to input, unless otherwise noted. Table 2.G = 0.5 G = 1 G = 2 Parameter Conditions Min Typ Max Min Typ Max Min Typ Max Unit DYNA M IC PERFOR M ANCE Bandwidth 20 15 10 MHz Slew Rate 30 30 30 V/μs Settling Time to 0.01% 10 V step on output 700 800 700 800 700 800 ns Settling Time to 0.001% 10 V step on output 750 900 750 900 750 900 ns NOISE/DISTORTION Harmonic Distortion f = 1 kHz, V OUT = 10 V p-p, R LOAD = 600 Ω84145 95 dB Voltage Noise 1f = 0.1 Hz to 10 Hz 2 1.5 1 μV p-p f = 1 kHz 52 38 26 nV/√Hz GAIN Gain Error 0.08 0.08 0.08 % Gain Drift T A = −40°C to +85°C 1 10 1 10 1 10 ppm/°C INPUT CHARACTERISTICS Offset 2450 1500 300 1000 225 750 μV Average Temperature Drift T A = −40°C to +85°C3 2 1.5 μV/°C Common-Mode RejectionRatio DC to 1 kHz 70 86 76 92 80 98 dBPower Supply Rejection Ratio 2 10 2 10 2 10 μV/V Input Voltage Range 3−15.4 +15.4 −15.4 +15.4 −15.4 +15.4 V Common-Mode Resistance 47.5 10 7.5 kΩ Bias Current 500 500 500 nA OUTPUT CHARACTERISTICS Output Swing −13.8 +13.8 −13.8 +13.8 −13.8 +13.8 V T A = −40°C to +85°C −13.7 +13.7 −13.7 +13.7 −13.7 +13.7 V Short-Circuit Current Limit Sourcing 100 100 100 mA Sinking 60 60 60 mA POWER SUPPLYSupply Current(per Amplifier) 2.3 2.5 2.3 2.5 2.3 2.5 mA T A = −40°C to +85°C333mA1 Includes amplifier voltage and current noise, as well as noise of internal resistors. 2Includes input bias and offset errors. 3At voltages beyond the rails, internal ESD diodes begin to turn on. In some configurations, the input voltage range may be limited by the internal op amp (see the Input Voltage Range section for details). 4Internal resistors are trimmed to be ratio matched but have ±20% absolute accuracy. Common -mode resistance was calculated with both inputs in parallel. Common-mode impedance at only one input is 2× the resistance listed.AD8270Rev. 0 | Page 4 of 20V S = ±5 V , V REF = 0 V , T A = 25°C, R LOAD = 2 kΩ, specifications referred to input, unless otherwise noted. Table 3.G = 0.5 G = 1 G = 2Parameter Conditions Min Typ Max Min Typ Max Min Typ Max Unit DYNA M IC PERFOR M ANCE Bandwidth 20 15 10 M Hz Slew Rate30 30 30 V/μs Settling Time to 0.01% 5 V step on output 550 650 550 650 550 650 ns Settling Time to 0.001% 5 V step on output 600 750 600 750 600 750 ns NOISE/DISTORTIONHarmonic Distortion f = 1 kHz, V OUT = 5 V p-p, R LOAD = 600 Ω101 141 112 dB Voltage Noise 1 f = 0.1 Hz to 10 Hz 2 1.5 1 μV p-pf = 1 kHz523826nV/√HzGAIN Gain Error0.08 0.08 0.08 % Gain Drift T A = −40°C to +85°C 1 10 1 10 1 10 ppm/°C INPUT CHARACTERISTICS Offset 2450 1500 300 1000 225 750 μV Average Temperature Drift T A = −40°C to +85°C 3 2 1.5 μV/°C Common-Mode Rejection Ratio DC to 1 kHz 70 86 76 92 80 98 dB Power Supply Rejection Ratio 2 10 2 10 2 10 dB Input Voltage Range 3−5.4 +5.4 −5.4 +5.4 −5.4 +5.4 V Common-Mode Resistance 4 7.5 10 7.5 kΩ Bias Current 500 500 500 nA OUTPUT CHARACTERISTICS Output Swing−4 +4 −4 +4 −4 +4 VT A = −40°C to +85°C −3.9 +3.9 −3.9 +3.9 −3.9 +3.9 V Short-Circuit Current Limit Sourcing100 100 100 mASinking 60 60 60 mA POWER SUPPLYSupply Current (per Amplifier)2.3 2.5 2.3 2.5 2.3 2.5 mAT A = −40°C to +85°C3 3 3 mA1 Includes amplifier voltage and current noise, as well as noise of internal resistors. 2Includes input bias and offset errors. 3At voltages beyond the rails, internal ESD diodes begin to turn on. In some configurations, the input voltage range may be limited by the internal op amp (see the Input Voltage Range section for details). 4Internal resistors are trimmed to be ratio matched but have ±20% absolute accuracy. Common -mode resistance was calculated with both inputs in parallel. Common-mode impedance at only one input is 2× the resistance listed.AD8270Rev. 0 | Page 5 of 20ABSOLUTE MAXIMUM RATINGSTable 4.Parameter RatingSupply Voltage ±18 VOutput Short-Circuit Current See deratingcurve in Figure 2Input Voltage Range ±V SStorage Temperature Range −65°C to +130°CSpecified Temperature Range −40°C to +85°CPackage Glass Transition Temperature (T G ) 130°CESD (Human Body Model) 1 kVESD (Charge Device Model) 1 kVESD (Machine Model) 0.1 kVStresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.THERMAL RESISTANCETable 5. Thermal ResistanceThermal PadθJA Unit16-Lead LFCSP with Thermal Pad Soldered to Board57 °C/W 16-Lead LFCSP with Thermal Pad Not Soldered to Board96 °C/WThe θJA values in Table 5 assume a 4-layer JEDEC standard board with zero airflow. If the thermal pad is soldered to the board, it is also assumed it is connected to a plane. θJC at the exposed pad is 9.7°C/W .MAXIMUM POWER DISSIPATIONThe maximum safe power dissipation for the AD8270 is limitedby the associated rise in junction temperature (T J ) on the die. Atapproximately 130°C, which is the glass transition temperature,the plastic changes its properties. Even temporarily exceedingthis temperature limit may change the stresses that the packageexerts on the die, permanently shifting the parametric performanceof the amplifiers. Exceeding a temperature of 130°C for anextended period of time can result in a loss of functionality.The AD8270 has built-in, short-circuit protection that limits the output current to approximately 100 mA (see Figure 19 for more information). While the short-circuit condition itself does not damage the part, the heat generated by the condition can cause the part to exceed its maximum junction temperature, with corresponding negative effects on reliability.06979-0033.22.82.42.01.61.20.80.40–50–250255075100125AMBIENT TEMPERATURE (°C)M A X I M U MP O W E R D I S S I P A T I O N (W )Figure 2. Maximum Power Dissipation vs. Ambient TemperatureESD CAUTIONAD8270Rev. 0 | Page 6 of 20PIN CONFIGURATION AND FUNCTION DESCRIPTIONS1–IN1A 2–IN2A 3+IN2A 4+IN1A 11–IN2B 12–IN1B 10+IN2B 9+IN1B5R E F 1A 6R E F 2A 7R E F 2B 8R E F 1B 15O U T A16+V S14O U T B13–V S06979-002Figure 3. Pin ConfigurationTable 6. Pin Function DescriptionsPin No. Mnemonic Description 1 −IN1A 10 kΩ Resistor Connected to Negative Terminal of Op Amp A. 2 −IN2A 10 kΩ Resistor Connected to Negative Terminal of Op Amp A. 3 +IN2A 10 kΩ Resistor Connected to Positive Terminal of Op Amp A. 4 +IN1A 10 kΩ Resistor Connected to Positive Terminal of Op Amp A. 5 REF1A 20 kΩ Resistor Connected to Positive Terminal of Op Amp A. Most configurations use this pin as a referencevoltage input.6 REF2A 20 kΩ Resistor Connected to Positive Terminal of Op Amp A. Most configurations use this pin as a referencevoltage input.7 REF2B 20 kΩ Resistor Connected to Positive Terminal of Op Amp B. Most configurations use this pin as a referencevoltage input.8 REF1B 20 kΩ Resistor Connected to Positive Terminal of Op Amp B. Most configurations use this pin as a referencevoltage input.9 +IN1B 10 kΩ Resistor Connected to Positive Terminal of Op Amp B. 10 +IN2B 10 kΩ Resistor Connected to Positive Terminal of Op Amp B. 11 −IN2B 10 kΩ Resistor Connected to Negative Terminal of Op Amp B. 12 −IN1B 10 kΩ Resistor Connected to Negative Terminal of Op Amp B. 13 −V S Negative Supply. 14 OUTB Op Amp B Output. 15 OUTA Op Amp A Output. 16 +V S Positive Supply.AD8270Rev. 0 | Page 7 of 20TYPICAL PERFORMANCE CHARACTERISTICSV S = ±15 V , T A = 25°C, difference amplifier configuration, unless otherwise noted.06979-00416014012010080604020–0.9–0.6–0.300.30.60.9SYSTEM OFFSET VOLTAGE (mV)N U M B E R O F U N I T SFigure 4. Typical Distribution of System Offset Voltage, G = 11801501209060300–100–150–5050100150CMRR (µV/V)N U M B E R O F U N I T S06979-005Figure 5. Typical Distribution of CMRR, G = 140035030025020015010050–0.04–0.0200.020.04GAIN ERROR (%)N U M B E R O F U N I T S06979-006Figure 6. Typical Distribution of Gain Error, G = 1–10–5510OUTPUT VOLTAGE (V)C O M M O N -M ODE I N P U T V O L T A G E (V )06979-007Figure 7. Common-Mode Input Voltage vs. Output Voltage,Gain = 0.5, ±15 V Supplies–3–2–10123OUTPUT VOLTAGE (V)C O M M O N -M ODE I N P U T V O L T A G E (V )06979-008Figure 8. Common-Mode Input Voltage vs. Output Voltage,Gain = 0.5, ±5 V and ±2.5 V Supplies201510–5–10–15–20–20–15–10–505101520OUTPUT VOLTAGE (V)C O M M O N -M ODE I N P U T V O L T A G E (V )06979-009Figure 9. Common-Mode Input Voltage vs. Output Voltage,Gain = 1, ±15 V SuppliesAD8270Rev. 0 | Page 8 of 20–5–4–3–2–1012345OUTPUT VOLTAGE (V)C O M M O N -M ODE I N P U T V O L T A G E (V )06979-010Figure 10. Common-Mode Input Voltage vs. Output Voltage,Gain = 1, ±5 V and ±2.5 V Supplies20151050–5–10–15–20–20–15–10–505101520OUTPUT VOLTAGE (V)C O M M O N -M ODE I N P U T V O L T A G E (V )06979-011Figure 11. Common-Mode Input Voltage vs. Output Voltage,Gain = 2, ±15 V Supplies–5–4–3–2–1012345OUTPUT VOLTAGE (V)C O M M O N -M ODE I N P U T V O L T A G E (V )06979-012Figure 12. Common-Mode Input Voltage vs. Output Voltage,Gain = 2, ±5 V and ±2.5 V Supplies101001k 10k 100k 1MFREQUENCY (Hz)P O SI T I V E P S R R (d B )06979-015Figure 13. Positive PSRR vs. Frequency101001k 10k 100k 1MFREQUENCY (Hz)N E G A T I V E P S R R (d B )06979-016Figure 14. Negative PSRR vs. Frequency1001k10k 100k 1M 10MFREQUENCY (Hz)O U T P U T V O L T A G E S W I N G (V p -p )06979-017Figure 15. Output Voltage Swing vs. Large Signal Frequency ResponseAD8270Rev. 0 | Page 9 of 20105–5–10–15–201001k10k 100k 1M10M 100MFREQUENCY (Hz)G A I N (d B )06979-018Figure 16. Gain vs. Frequency101001k10k 100k1M 10MFREQUENCY (Hz)C M R R (d B )06979-019Figure 17. CMRR vs. Frequency–20–40–60–80–100–120–140101001k10k 100kFREQUENCY (Hz)C H A N N E L S E P A R A T I O N (d B )06979-013Figure 18. Channel Separation vs. Frequency 120100806040200–20–40–60–80–100–120–40–20020406080100120S H O R T -C I R C U I T C U R R E N T (m A )TEMPERATURE (°C)06979-021Figure 19. Short-Circuit Current vs. Temperature+V S+V S – 2+V S – 4–V S–V S –V SO U T P U T V O L T A G E S W I N G (V )1k20010k06979-022R LOAD (Ω)Figure 20. Output Voltage Swing vs. RLOAD2040608010–V S + 3–V S–V S + 6+V S – 6+0V S+V S – 306979-023CURRENT (mA)O U T P U T V O L T A G E S W I N G (V )Figure 21. Output Voltage Swing vs. Current (I OUT )AD8270Rev. 0 | Page 10 of 201µs/DIV50m V /D I V06979-024Figure 22. Small Signal Step Response, Gain = 0.5 1µs/DIV50m V /D I V06979-025Figure 23. Small Signal Step Response, Gain = 1 1µs/DIV50m s /D I V06979-026Figure 24. Small Signal Step Response, Gain = 2 160140120100806040200102030405060708090100CAPACITIVE LOAD (pF)O V E R S H O O T (%)06979-030Figure 25. Small Signal Overshoot with Capacitive Load, Gain = 0.550100150200CAPACITIVE LOAD (pF)O V E R S H O O T (%)06979-031Figure 26. Small Signal Overshoot with Capacitive Load, Gain = 125030035040045050100150200CAPACITIVE LOAD (pF)O V E R S H O O T (%)06979-032Figure 27. Small Signal Overshoot with Capacitive Load, Gain = 206979-0331µs/DIV1V /D I VFigure 28. Large Signal Pulse Response Gain = 0.506979-0341µs/DIV2V /D I VFigure 29. Large Signal Pulse Response Gain = 106979-0351µs/DIV5V /D I VFigure 30. Large Signal Pulse Response, Gain = 2–35–151535557595115125–45–25–5525456585105TEMPERATURE (°C)O U T P U T S L E W R A T E (V /µs )06979-036Figure 31. Output Slew Rate vs. Temperature1k100101101001k 10k 100kFREQUENCY (Hz)V O L T A G E N O I S E (n V /√H z )06979-041Figure 32. Voltage Noise Spectral Density vs. Frequency, Referred to Output06979-042Figure 33. 0.1 Hz to 10 Hz Voltage Noise, Referred to Output210180150120–600–400–2000200400600V OSI (µV)N U M B E R O F U N I T S06979-014012345678910TIME (s)O F F S E T (10µV /D I V )06979-044Figure 34. Typical Distribution of Op Amp Voltage OffsetFigure 37. Change in Op Amp Offset Voltage vs. Warm-Up Time06979-028310315320325330335340I BIAS (nA)N U M B E R O F U N I T S06979-020Figure 38. 0.1 Hz to 10 Hz Current Noise of Internal Op AmpFigure 35. Typical Distribution of Op Amp Bias Current1010.11101001k 10k 100kFREQUENCY (Hz)C U R R E N T N O I S E (p A /√H z )06979-029–9–6–3036912I OFFSET (nA)N U M B E R O F U N I T S06979-027Figure 39. Current Noise Spectral Density of Internal Op AmpFigure 36. Typical Distribution of Op Amp Offset CurrentTHEORY OF OPERATION1–IN1A 2–IN2A 3+IN2A 4+IN1A 11–IN2B 12–IN1B 10+IN2B 9+IN1B5R E F 1A 6R E F 2AR E F 2B R E F 1B 5O U T A6+V S4O U T B3–V S06979-059_+Figure 40. Functional Block DiagramCIRCUIT INFORMATIONThe AD8270 has two channels, each consisting of a high precision, low distortion op amp and seven trimmed resistors. These resis-tors can be connected to make a wide variety of amplifier configurations: difference, noninverting, inverting, and more.The resistors on the chip can be connected in parallel for a widerrange of options. Using the on-chip resistors of the AD8270 provides the designer several advantages over a discrete design.DC PerformanceMuch of the dc performance of op amp circuits depends on the accuracy of the surrounding resistors. The resistors on the AD8270 are laid out to be tightly matched. The resistors of each part are laser trimmed and tested for their matching accuracy. Because of this trimming and testing, the AD8270 can guarantee high accuracy for specifications such as gain drift, common-mode rejection, and gain error.AC PerformanceBecause feature size is much smaller in an integrated circuit than on a PCB board, the corresponding parasitics are smaller, as well. The smaller feature size helps the ac performance of the AD8270. For example, the positive and negative input terminals of the AD8270 op amp are not pinned out intentionally. By not connecting these nodes to the traces on the PCB board, the capacitance remains low, resulting in both improved loop stability and common-mode rejection over frequency.Production CostsBecause one part, rather than several, is placed on the PCB board, the board can be built more quickly.SizeThe AD8270 fits two op amps and 14 resistors in a 4 mm × 4 mm package.DRIVING THE AD8270The AD8270 is easy to drive, with all configurations presenting at least several kilohms (kΩ) of input resistance. The AD8270 should be driven with a low impedance source: for example, another amplifier. The gain accuracy and common-mode rejection of the AD8270 depend on the matching of its resistors. Even source resistance of a few ohms can have a substantial effect on these specifications.PACKAGE CONSIDERATIONSThe AD8270 is packaged in a 4 mm × 4 mm LFCSP . Beware of blindly copying the footprint from another 4 mm × 4 mm LFCSP part; it may not have the same thermal pad size and leads. Refer to the Outline Dimensions section to verify that the PCB symbol has the correct dimensions.The 4 mm × 4 mm LFCSP of the AD8270 comes with a thermal pad. This pad is connected internally to −V S . Connecting to this pad is not necessary for electrical performance; the pad can be left unconnected or can be connected to the negative supply rail. Connecting the pad to the negative supply rail is recommended in high vibration applications or when good heat dissipation is required (for example, with high ambient temperatures or when driving heavy loads). For best heat dissipation performance, the negative supply rail should be a plane in the board. See the Absolute Maximum Ratings section for thermal coefficients with and without the pad soldered.Space between the leads and thermal pad should be as wide as possible to minimize the risk of contaminants affecting perform-ance. A thorough washing of the board is recommended after the soldering process, especially if high accuracy performance is required at high temperatures.POWER SUPPLIESA stable dc voltage should be used to power the AD8270. Noise on the supply pins can adversely affect performance. A bypass capacitor of 0.1 μF should be placed between each supply pin and ground, as close as possible to each supply pin. A tantalum capacitor of 10 μF should also be used between each supply and ground. It can be farther away from the supply pins and, typically, it can be shared by other precision integrated circuits.The AD8270 is specified at ±15 V and ±5 V , but it can be used with unbalanced supplies, as well. For example, −V S = 0 V , +V S = 20 V . The difference between the two supplies must be kept below 36 V .INPUT VOLTAGE RANGEThe AD8270 has a true rail-to-rail input range for the majority of applications. Because most AD8270 configurations divide down the voltage before they reach the internal op amp, the op amp sees only a fraction of the input voltage. Figure 41 shows an example of how the voltage division works in the difference amplifier configuration.06979-061R2(V +IN)R2(V +IN)Figure 41. Voltage Division in the Difference Amplifier ConfigurationThe internal op amp voltage range may be relevant in the following applications, and calculating the voltage at the internal op amp is advised. • Difference amplifier configurations using supply voltages of less than ±4.5 V• Difference amplifier configurations with a reference voltage near the rail•Single-ended amplifier configurationsFor correct operation, the input voltages at the internal op amp must stay within 1.5 V of either supply rail.Voltages beyond the supply rails should not be applied to the part. The part contains ESD diodes at the input pins, which conduct if voltages beyond the rails are applied. Currents greater than 5 mA can damage these diodes and the part. For a similar part that can operate with voltages beyond the rails, see the AD8273 data sheet.APPLICATIONS INFORMATIONDIFFERENCE AMPLIFIER CONFIGURATIONSThe AD8270 can be placed in difference amplifier configurations with gains of 0.5, 1, and 2. Figure 42 through Figure 44 show the difference amplifier configurations, referenced to ground. The AD8270 can also be referred to a combination of reference voltages. For example, the reference could be set at 2.5 V , using just 5 V and GND. Some of the possible configurations are shown in Figure 45 through Figure 47.The layout for Channel A is shown in Figure 42 through Figure 47. The layout for Channel B is symmetrical. Table 7 shows the pin connections for Channel A and Channel B.SINGLE-ENDED CONFIGURATIONSThe AD8270 can be configured for a wide variety of single- ended configurations with gains ranging from −2 to +3. Table 8 shows a subset of the possible configurations.Many signal gains have more than one configuration choice, which allows freedom in choosing the op amp closed-loop gain. In general, for designs that need to be stable with a large capacitive load on the output, choose a configuration with high loop gain. Otherwise, choose a configuration with low loop gain, because these configurations typically have lower noise, lower offset, and higher bandwidth.–IN +IN06979-053Figure 42. Gain = 0.5 Difference Amplifier, Referenced to Ground–IN +INNC = NO CONNECT06979-054Figure 43. Gain = 1 Difference Amplifier, Referenced to Ground–IN06979-055Figure 44. Gain = 2 Difference Amplifier, Referenced to GroundS S2–IN+INSS–IN +IN06979-056Figure 45. Gain = 0.5 Difference Amplifier, Referenced to MidsupplyS S2–IN +INS SNC = NO CONNECT06979-057Figure 46. Gain = 1 Difference Amplifier, Referenced to Midsupply–IN S S2S S06979-058Figure 47. Gain = 2 Difference Amplifier, Referenced to MidsupplyTable 7. Pin Connections for Difference Amplifier ConfigurationsChannel A Channel BGain and ReferencePin 1 Pin 2 Pin 3 Pin 4 Pin 5Pin 6 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7Gain of 0.5, Referenced to Ground OUT −IN +IN GND GND GND OUT −IN +IN GND GND GND Gain of 0.5, Referenced to Midsupply OUT −IN +IN −V S +V S +V S OUT −IN +IN −V S +V S +V S Gain of 1, Referenced to Ground −IN NC NC +IN GND GND −IN NC NC +IN GND GND Gain of 1, Referenced to Midsupply −IN NC NC +IN −V S +V S −IN NC NC +IN −V S +V S Gain of 2, Referenced to Ground −IN −IN +IN +IN GND GND −IN −IN +IN +IN GND GND Gain of 2, Referenced to Midsupply−IN−IN+IN +IN−V S+V S−IN −IN +IN +IN −V S+V STable 8. Selected Single-Ended ConfigurationsElectrical Performance Pin ConnectionsSignal Gain Op AmpClosed-Loop GainInputResistance10 kΩ −Pin 110 kΩ −Pin 210 kΩ +Pin 310 kΩ +Pin 420 kΩ +Pin 520 kΩ +Pin 6−2 3 5kΩ IN IN GND GND GND GND −1.5 3 4.8kΩ IN IN GND GND GND IN−1.4 3 5kΩ IN IN GND GND NC IN−1.25 3 5.333kΩ IN IN GND NC GND IN−1 3 5kΩ IN IN GND GND IN IN−0.8 3 5.556kΩ IN IN IN GNDNC GND −0.667 2 8kΩ IN NC GND GND GND IN−0.6 2 8.333kΩ IN NC GND GND NC IN−0.5 2 8.889kΩ IN NC GND NC GND IN−0.333 2 7.5kΩ IN NC GND GND IN IN−0.25 1.5 8kΩ OUT IN GND GND GND IN−0.2 1.5 8.333kΩ OUT IN GND GND NC IN−0.125 1.5 8.889kΩ OUT IN GND NC GND IN+0.1 1.5 8.333kΩ OUT IN IN GNDNC GND +0.2 2 10kΩ IN NC GND IN NC IN+0.25 1.5 24kΩ OUT GND GND GND GND IN+0.3 1.5 25kΩ OUT GND GND GND NC IN+0.333 2 24kΩ GND NC GND GND GND IN+0.375 1.5 26.67kΩ OUT GND GND NC GND IN+0.4 2 25kΩ GND NC GND GND NC IN+0.5 3 24kΩ GND GND GND GND GND IN+0.5 1.5 15kΩ OUT GND GND GND IN IN+0.6 3 25kΩ GND GND GND GND NC IN+0.6 1.5 16.67kΩ OUT GND IN GND NC GND +0.625 1.5 16kΩ OUT IN NC IN IN GND +0.667 2 15kΩ GND NC GND GND IN IN+0.7 1.5 16.67kΩ OUT IN IN IN NC GND +0.75 3 26.67kΩ GND GND GND NC GND IN+0.75 1.5 13.33kΩ OUT GND GND IN GND IN+0.8 2 16.67kΩ GND NC IN GND NC GND +0.9 1.5 16.67kΩ OUT GND GND IN NC IN+1 1.5 15kΩ OUT GNDIN IN GNDGND +1 1.5 >1GΩ OUT IN IN IN IN IN +1 3 >1GΩ IN IN IN IN IN IN +1.125 1.5 26.67kΩ OUT GNDNC IN IN GND +1.2 3 16.67kΩ GND GND IN GND NC GND +1.2 1.5 25kΩ OUT GNDIN IN NC GND +1.25 1.5 24kΩ OUT GNDIN IN IN GND +1.333 2 15kΩ GNDNC IN IN GNDGND +1.5 3 13.33kΩ GND GND GND IN GND IN+1.5 1.5 >1GΩ OUT GNDIN IN IN IN +1.6 2 25kΩ GNDNC IN IN NC GND +1.667 2 24kΩ GNDNC IN IN IN GND +1.8 3 16.67kΩ GND GND GND IN NC IN+2 2 >1GΩ GNDNC IN IN IN IN +2.25 3 26.67kΩ GNDGNDNC IN IN GND +2.4 3 25kΩ GNDGNDIN IN NC GND +2.5 3 24kΩ GNDGNDIN IN IN GND +3 3 >1GΩ GNDGNDIN IN IN IN。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CAT-5 Receiver withAdjustable Line EqualizationAD8128 Rev. 0Information furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, M A 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.FEATURESTuned to compensate for Category-5 (CAT-5) cable lossesUp to 100 meters @ 120 MHz2 voltage-controlled frequency response adjustment pins High frequency peaking adjustmentBroadband gain adjustment2700 V/μs slew rateLow output noise1.5 mV rms integrated noise (1 GHz) @ 100 metersequalized bandwidthDC output offset adjustLow offset voltage error: 7 mV typEqualized pass-band ripple ±1 dB to 70 MHzInput: differential or single endedSupply current: 24 mA on ±5 VSmall 8-lead 3 mm × 3 mm LFCSPAPPLICATIONSKeyboard-video-mouse (KVM)RGB video over unshielded twisted pair (UTP) cable receivers Professional video projection and distributionSecurity videoFUNCTIONAL BLOCK DIAGRAMOFFSETGAINPEAKV OUT V IN+V IN–5699-1Figure 1.GENERAL DESCRIPTIONThe AD8128 is a high speed, differential receiver/equalizer that compensates for the transmission losses of unshielded twisted pair (UTP) CAT-5 cables. Various frequency dependent gain stages are summed together to best approximate the inverse frequency response of CAT-5/CAT-5e cable. An equalized bandwidth of 120 MHz can be achieved for 100 meters of cable. The AD8128 can be used as a standalone receiver/equalizer or in conjunction with the AD8143, triple differential receiver, to provide a complete low cost solution for receiving RGB over UTP cable in such applications as KVM.The AD8128 has three control pins for optimal CAT-5/CAT-5e compensation. The equalized cable length is directly proportional to the voltage applied to the V PEAK pin, which controls the amount of high frequency peaking. V GAIN adjusts the broadband gain from 0 dB to 3 dB, compensating for the resistive cable loss. V OFFSET allows the output to be shifted by ±2.5 V, adding flexibility for dc-coupled systems. Low integrated output noise and offset voltage adjust make the AD8128 an excellent choice for dc-coupled wideband RGB-over-CAT-5 applications. For systems where the UTP cable is longer than 100 meters, two AD8128s can be cascaded to compensate for up to 200 meters of CAT-5/CAT-5e.The AD8128 is available in a 3 mm × 3 mm 8-lead LFCSP and is rated to operate over the extended temperature range of−40°C to +85°C.AD8128Rev. 0 | Page 2 of 12TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 Functional Block Diagram..............................................................1 General Description.........................................................................1 Revision History...............................................................................2 Specifications.....................................................................................3 Absolute Maximum Ratings............................................................4 Thermal Resistance......................................................................4 ESD Caution..................................................................................4 Pin Configuration and Function Descriptions.............................5 Typical Performance Characteristics.............................................6 Test Circuit....................................................................................8 Theory of Operation.........................................................................9 Input Common-Mode Voltage Range Considerations............9 Applications.....................................................................................10 KVM Applications.....................................................................10 DC Control Pins.........................................................................10 Cascaded Applications...............................................................11 Exposed Pad (EP).......................................................................11 Layout and Power Supply Decoupling Considerations.........11 Evaluation Boards......................................................................11 Outline Dimensions.......................................................................12 Ordering Guide.. (12)REVISION HISTORY10/05—Revision 0: Initial VersionAD8128Rev. 0 | Page 3 of 12SPECIFICATIONST A = 25°C, V S = ±5 V , R L = 150 Ω, Belden Cable, V OFFSET = 0 V , V GAIN and V PEAK set to optimized settings (see Figure 4), unless otherwise noted. Table 1.Parameter Conditions M in Typ M ax Unit DYNAMIC PERFORMANCE –3 dB Large Signal Bandwidth V OUT = 2 V p-p, 100 meter CAT-5 120 MHz ±1 dB Equalized Bandwidth Flatness V OUT = 2 V p-p 70 MHz Rise/Fall Time V OUT = 2 V step, 50 meter CAT-5 2 ns Rise/Fall Time V OUT = 2 V step, 100 meter CAT-5 3.6 ns Settling Time to 2% V OUT = 2 V step, 50 meter CAT-5 26 ns Settling Time to 2% V OUT = 2 V step, 100 meter CAT-5 36.4 ns Integrated Output Voltage Noise V PEAK = 0.9 V, V GAIN = 225 mV, BW = 1 GHz 1.5 mV rms DC PERFORMANCE Input Bias Current 15.5 24 μA V OFFSET Pin Current 1.7 8.2 μA V GAIN Pin Current 2 3.4 μA V PEAK Pin Current 4.2 6.8 μA INPUT CHARACTERISTICS Input Differential Voltage ±2.8 V Input Common-Mode Voltage ±3.0 V Input Resistance Common mode 380 kΩ Differential 675 kΩ Input Capacitance 1.7 pFCommon-Mode Rejection Ratio (CMRR) 200 kHz, ΔV OUT /ΔV IN, cm−63 −74 dB ADJUSTMENT PINS V PEAK Input Voltage Relative to ground 0 1 V Maximum Peak Gain @ 120 MHz, V PEAK = 1 V 20 dB V GAIN Input Relative to ground 0 1 V Maximum Broadband Gain V GAIN = 1 V 3 dB V OFFSET Input Range Relative to ground ±2.5 V V OFFSET to V OUT Gain 1 V/V OUTPUT CHARACTERISTICS Output Voltage Swing −2.55 +2.7 V Output Offset Voltage V OFFSET = 0 V, RTO −10.9 +7 +18.7 mV Output Offset Voltage Drift −5.5 μV/°C Short-Circuit Output Current 100 mA POWER SUPPLY Operating Voltage Range ±4.5 ±5.5 V Quiescent Supply Current, I CC /I EE @ ±5 V +24/−21 +31/−27 mA Supply Current Drift, I CC /I EE +86/−77 μA/°C +Power Supply Rejection Ratio (PSRR) RTO −48 −59 dB −Power Supply Rejection Ratio (PSRR) RTO −48 −61 dB TEMPERATURE RANGE −40 +85 °CAD8128Rev. 0 | Page 4 of 12ABSOLUTE MAXIMUM RATINGSTable 2.Parameter RatingSupply Voltage ±5.5 VInput Voltage ±V SV PEAK and V GAIN Control Pins −3 V to +V SV OFFSET Control Pins ±V SOperating Temperature Range −40°C to +85°C Storage Temperature Range−65°C to +125°C Lead Temperature (Soldering 10 sec) 300°C Junction Temperature150°CStresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.THERMAL RESISTANCEθJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 3. Thermal ResistancePackage Type θJA θJC Unit 8-Lead LFCSP7714 °C/WMaximum Power DissipationThe maximum safe power dissipation in the AD8128 package is limited by the associated rise in junction temperature (T J ) on the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Eventemporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8128. Exceeding a junction temperature of 150°C for an extended period can result in changes in the silicon devices potentially causing failure. The power dissipated in the package (P D ) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for the output. The quiescentpower is the voltage between the supply pins (V S ) times thequiescent current (I S ). The power dissipated due to the loaddrive depends upon the particular application. For each output,the power due to load drive is calculated by multiplying the loadcurrent by the associated voltage drop across theAirflow increases heat dissipation, effectively reducing θJA . Also, more metal directly in contact with the package leads from metal traces, through-holes, ground, and power planes reduces the θJA . The exposed paddle on the underside of the package must be soldered to a pad on the PCB surface, which isthermally connected to a copper plane to achieve the specified θJA . Figure 2 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 8-lead LFCSP (48.5°C/W) on a JEDEC standard 4-layer board with theunderside paddle soldered to a pad that is thermally connected to a PCB plane. Extra thermal relief is required for operation at high supply voltages.3.0–30–40–10–20100302050407060908011010013012005699-020AMBIENT TEMPERATURE (°C)M A X I M U M P O W E R D I S S I P A T I O N (W )2.52.01.51.00.5Figure 2. Maximum Power Dissipation vs. TemperatureESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.AD8128Rev. 0 | Page 5 of 12PIN CONFIGURATION AND FUNCTION DESCRIPTIONS1V IN+2V IN–3V GAIN 4V PEAK 7V OFFSET 8VS+6V OUT 5VS–05699-002Figure 3. Pin ConfigurationTable 4. Pin Function DescriptionsPin No. Mnemonic Description 1 V IN+Positive Equalizer Input 2 V IN−Negative Equalizer Input 3 V GAIN 0 V to 1 V Broadband Gain Control 4 V PEAK 0 V to 1 V High Frequency Gain Control 5 VS− Negative Power Supply 6 V OUT Equalizer Output 7 V OFFSET DC Offset Adjust 8 VS+ Positive Power Supply EP GND Ground Reference and Thermal Pad (see Exposed Pad (EP) section).AD8128Rev. 0 | Page 6 of 12TYPICAL PERFORMANCE CHARACTERISTICST A = 25°C, V S = ±5 V , R L = 150 Ω, Belden Cable, V OFFSET = 0 V , unless otherwise noted.10005699-003CABLE LENGTH (M)O P T I M I Z E D V P E A K A N D V G A I N (V )102030405060708090Figure 4. V PEAK and V GAIN Settings vs. Cable Length102030–7005699-014FREQUENCY (MHz)M A G N I T U D E (d B )0–10–20–30–40–50–600.11101001k3kFigure 5. Frequency Response for Various V PEAK Settings Without Cable10–7005699-013FREQUENCY (MHz)M A G N I T U D E (d B )–10–20–30–40–50–600.11101001k 3kFigure 6. Frequency Response for Various V GAIN Settings Without Cable2–100.105699-012FREQUENCY (MHz)M A G N I T U D E (d B )10–1–2–3–4–5–6–7–8–9110100300Figure 7. Equalized Frequency Response for 50 M Cable2–100.105699-011FREQUENCY (MHz)M A G N I T U D E (d B )10–1–2–3–4–5–6–7–8–9110100300Figure 8. Equalized Frequency Response for 100 M Cable1.5–1.5020005699-010TIME (ns)O U T P U T (V )1.00.5–0.5–1.020406080100120140160180Figure 9. Equalized Pulse Response for 50 M of CableAD8128Rev. 0 | Page 7 of 121.5–1.5020005699-009TIME (ns)O U T P U T (V )1.00.5–0.5–1.020406080100120140160180Figure 10. Equalized Pulse Response for 100 M of Cable40–40–4405699-008V IN,CM (V)V O U T (m V )3020100–10–20–30–3–2–10123Figure 11. Output Voltage vs. Common-Mode Input Voltage100100.11k05699-007FREQUENCY (MHz)V O L T A G E N O I S E (nV H z )110100Figure 12. Voltage Noise vs. Frequency1.800 1.005699-006V PEAK (V)I N T E G R A T E D V O L T A G E N O I S E F R O M100k H z T O 1G H z (m V )1.61.41.21.00.80.60.40.20.10.20.30.40.50.60.70.80.9Figure 13. Integrated Voltage Noise vs. V PEAK6–6050005699-005TIME (ns)V O L T A G E(V )42–2–450100150200250300350400450Figure 14. Overdrive Recovery Time20–800.11k05699-004FREQUENCY (MHz)C O M M O N -M ODE R E J E C TI O N (d B )110100100–10–20–30–40–50–60–70Figure 15. Common-Mode Rejection vs. FrequencyAD8128Rev. 0 | Page 8 of 1210–700.0011k05699-015FREQUENCY (MHz)P O W E R S U P P L Y R E J E C T I O N (d B )0.010.1110100–10–20–30–40–50–60Figure 16. Power Supply Rejection vs. FrequencyTEST CIRCUIT05699-021Figure 17.AD8128Rev. 0 | Page 9 of 12THEORY OF OPERATIONThe AD8128 is a high speed, low noise analog line equalizer that compensates for losses in CAT-5/CAT-5e cables up to 100 meters with ±1 dB flatness in the pass band out to 70 MHz (see Figure 8). Two continuously adjustable control voltages alter the frequency response to add flexibility to the system by allowing for the compensation of various cable lengths as well as for variations in the cable itself. The dc control voltage pin V GAIN adjusts ac broadband gain from 0 dB to 3 dB (see Figure 6) to account for dc resistive losses present in the cable. A second dc control voltage pin V PEAK adjusts the amount of high frequency peaking (see Figure 5) from 0 dB to 20 dB. This compensates for the high frequency loss due to the skin effect of the cable. The AD8128 has a high impedance differential input that allows it to receive dc-coupled signals directly from the cable. For systems with very high CMRR specifications, the AD8128 can also be used with a dedicated receiver, such as the AD8130 or AD8143, placed in front of it. The output of the AD8128 is low impedance and is capable of driving a 150 Ω load resistor and up to 20 pF of load capacitance at its output. For systems with high parasitic capacitances at the output, it is recommended that a small series resistor be placed between the output and capacitive load to reduce ringing in the pulse response. The AD8128 is designed to be used in medium-length systems that have stringent low noise requirements as well as longer-length systems that can tolerate more noise. For the medium-length requirements, a single AD8128 is able to compensate up to 100 meters of cable with only 1.5 mV rms of output noise. For longer-length applications that require equalization of up to 200 meters of cable, two AD8128s can be cascaded together to achieve the desired equalization, while keeping approximately the same pass-band bandwidth, but with a slight degradation in settling time and slew rate.The frequency response of the AD8128 approximates theinverse frequency response of a lossy transmission line, which is given by()()fj kl e f H +=1 (1)where:f is the frequency. l is the length.k is the line constant. The AD8128 approximates the magnitude response of Equation 1 by summing multiple zero-poles pairs offset at different frequencies. Equalization adjustment due to varying line lengths is done by changing the weighting factors of each of the zero-pole pairs.INPUT COMMON-MODE VOLTAGE RANGE CONSIDERATIONSWhen using the AD8128 as a receiver, it is important to ensure that the input common-mode (CM) voltage range of the AD8128 stays within the specified range. The input CM level can be easily calculated by adding the CM level of the driver, the amplitude of any sync pulses, and the other possible induced common-mode signals from power lines and fluorescent lights.V ICM = V CM + V SYNC + V OTHER(2)For example, when using a single 5 V supply on the drive side, the CM voltage of the line typically becomes the midsupply voltage, V CM = 2.5 V . Furthermore, an addition of a sync signal, V SYNC = 0.5 V , on to the common mode puts the peak CMvoltage at 3 V . Assuming that both the driver and receiver have exactly the same ground potential, the signal is marginallybelow the upper end of the common-mode input range of 3.1 V . Other CM signals that can be picked up by the CAT-5 cable result in exceeding the CM input range of the AD8128. The most effective way of not exceeding the CM level of the AD8128 is to lower the CM level on the driver. In the previous example, this was the primary contributor to the CM input level. If this is not possible, a dedicated receiver with a wider CM input range, such as the AD8130 or AD8143, should be used.AD8128Rev. 0 | Page 10 of 12APPLICATIONSKVM APPLICATIONSIn KVM applications, cable equalization typically occurs at the root of the KVM network. In a star configuration, a driver is located at each of the end nodes and a receiver/equalizer is located at the single root node. In a daisy-chain configuration, each of the end nodes are connected to one another, and one of them is connected to the root. Similarly, the drivers are placed on the nodes, and the receivers/equalizers are placed at the root. In both of these aforementioned configurations, three AD8128 receiver/equalizers can be used at the root node to equalize the transmitted red (R), green (G), and blue (B) channels for up to 100 meters of cable. Since the skew between two pairs of cables in CAT-5 is less than 1%, the control pins can be tied together and used as a single set of controls.If the common-mode levels of the inputs permit using the AD8128 as a receiver (see the Input Common-Mode Voltage Range Considerations section), the input signal should be terminated by a 100 Ω shunt resistor between the pairs, or by two 50 Ω shunt resistors with a common-mode tap in the middle. This CM tap can be used to extract the sync information from the signal if sync-on-common-mode is used.OFFSETGAINPEAK OUTCMDIFF CM DIFFCAT-55699-016Figure 18. Single Receiver Configuration for CAT-5 EqualizerDC CONTROL PINSThe AD8128 uses two control pins (V GAIN and V PEAK ) to adjust the equalization based on the length of the cable and one pin (V OFFSET ) to adjust the dc output offset. V GAIN is a user-adjustable 0 V to 1 V broadband gain control pin, and V PEAK is a 0 V to 1 V adjustable high frequency gain pin to equalize for the skin effect in CAT-5 cable. The values of both V PEAK and V GAIN are linearly correlated to the length of the cable to be equalized. A simple formula can be used to approximate the desired values for both of these pins.425m/V)(m length V GAIN =(3)110m/V)(m length V PEAK =(4)While these equations give a close approximation of the desired value for each pin, to achieve optimal performance, it may be necessary to adjust these values slightly.Figure 19 and Figure 20 illustrate circuits used to adjust the control pins on the AD8128. In Figure 19, a 1 kΩ potentiometer is used to adjust the control pin voltage between the specified range of 0 V to 1 V . In Figure 20, a 2 kΩ potentiometer is used to control the offset pin from −2.5 V to +2.5 V . For both of these configurations, a ±5V supply is assumed.CONTROL PIN V GAIN OR V PEAK4k 1k 05699-017Figure 19. Circuit to Control V GAIN and V PEAK (0 V to 1 V)OFFSET 1k 1k 2k 05699-018Figure 20. Circuit to Control V OFFSET (±2.5 V)AD8128Rev. 0 | Page 11 of 12OFFSET GAIN PEAK05699-019Figure 21. Cascaded AD8128 ConfigurationCASCADED APPLICATIONSTo equalize distances longer than the specified 100 meters, the AD8128 can be cascaded to provide equalization for longer distances. When combining two AD8128s in series, it is possible to link the control pins together and use them like a single control pin for up to 200 meters of equalization.In this configuration, it is important to note that some keyvideo specifications can be slightly degraded. By combining two equalizers in series, specifications such as rise time and settling time both increase while 3 dB bandwidth decreases slightly. Also, integrated noise is increased because the second equalizer adds gain. Subjective testing should be done to determine the appropriate setting for the three control pins for optimum equalization.EXPOSED PAD (EP)The 8-lead LFCSP has an exposed paddle on the underside of its body. To achieve the specified thermal resistance, it must have a good thermal connection to one of the PCB planes. The exposed paddle must be soldered to a pad on top of the board connected to an inner plane with several thermal vias. For the AD8128, this pad must also be electrically connected to ground to provide a ground reference to the part. LAYOUT AND POWER SUPPLY DECOUPLING CONSIDERATIONSStandard high speed PCB layout practices should be adhered to when designing with the AD8128. A solid ground plane is recommended and good wideband power supply decoupling networks should be placed as close as possible to the supply pins and control pins. Small surface-mount ceramic capacitors are recommended for these networks, and tantalum capacitors are recommended for bulk supply decoupling.EVALUATION BOARDSThere are two evaluation boards available for easy characterization of the AD8128. A general-purpose evaluation board consisting of a single AD8128, with an option of also using a dedicated receiver, is available for simple characterization of the part. Additionally, a KVM application specific evaluation board is available. This evaluation board consists of six AD8128s to equalize each of the RGB channels up to 200 meters, a 16-pin 26C32 comparator for sync-on-common-mode extract and a triple op amp to provide additional gain if necessary.AD8128Rev. 0 | Page 12 of 12OUTLINE DIMENSIONS0.90 MAX 0.85 NOMFigure 22. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]3 mm × 3 mm Body, Very Thin, Dual Lead(CP-8-2)Dimensions shown in millimetersORDERING GUIDEModelTemperature Range Package DescriptionPackage Option Branding AD8128ACPZ-R21–40°C to +85°C 8-Lead Lead Frame Chip Scale Package (LFCSP_VD) CP-8-2 HZB AD8128ACPZ-RL 1–40°C to +85°C 8-Lead Lead Frame Chip Scale Package (LFCSP_VD) CP-8-2 HZB AD8128ACPZ-R71–40°C to +85°C 8-Lead Lead Frame Chip Scale Package (LFCSP_VD) CP-8-2 HZB1Z = Pb-free part.© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05699-0-10/05(0)。

相关文档
最新文档