2021军考复习资料高中毕业生士兵考军校-数学综合测试卷及答案解析

合集下载

军队院校生长军(警)官招生考试:2021高中数学真题模拟及答案(1)

军队院校生长军(警)官招生考试:2021高中数学真题模拟及答案(1)

军队院校生长军(警)官招生考试:2021高中数学真题模拟及答案(1)共598道题1、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C.在实施时必须相邻,则实验顺序的编排共有()种方法.(单选题)A. 34B. 48C. 96D. 144试题答案:C2、关于x的不等式x2-2ax-8a2<0(a>0)的解:集为(x1,x2),且x2-x1=15,则A等于().(单选题)A.B.C.D.试题答案:A3、若函数f(x)在定义域{x|x∈R且x≠0}上是偶函数,且在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有().(单选题)A. 一个B. 两个C. 至少两个D. 无法判断试题答案:B4、函数的反函数为().(单选题)A. y=x+1(x∈R)B. y=x-1(x∈R)C.D.试题答案:D5、设集合A={1,2,3},B={2,3},C={1,3,4},则(A∩B)∪C等于().(单选题)A. {1,2,3}B. {1,2,4}C. {1,3,4}D. {1,2,3,4}试题答案:D6、直线Ax-2y-1=0和直线6x-4y+C=0平行,那么().(单选题)A. A=3,且C=-2B. A=3,C≠-2C. A≠3,C=-2D. A≠3,C≠-2试题答案:B7、向量a=(0,1,0)与夹角的余弦值为().(单选题)A.B.C.试题答案:C8、已知,则=().(单选题)A.B.C. 0D.试题答案:B9、10名学生中要选出3名代表,一共有()种不同的选法.(单选题)A. 120B. 240C. 600D. 720试题答案:A10、已知角α的终边通过点P(3,4),则=().(单选题)A.B.C.D.试题答案:D11、由0,1,2,3可组成没有重复数字的三位整数有()个.(单选题)A. 12B. 24C. 256试题答案:D12、要得到的图像,只需将函数y=sin2x的图像().(单选题)A. 向右平行移动B. 向左平行移动C. 向右平行移动D. 向左平行移动试题答案:D13、=().(单选题)A. 0B. -1C. 1D. 2试题答案:C14、已知a,b都是正实数,那么().(单选题)A. 可大于也可等于2B.C. 可小于也可等于2D.试题答案:A15、三对夫妻坐成一排照相,每对夫妻要坐在一起,不同的坐法有()种.(单选题)A. 12B. 24D. 64试题答案:C16、直线x cosθ+ysinθ+a=0与直线xsinθ-ycosθ+b=0的位置关系是().(单选题)A. 平行B. 垂直C. 相交但不垂直D. 无法确定,与θ,a,b的取值有关试题答案:B17、已知正六棱柱最长的对角线是13cm,侧面积是180cm2,这个正六棱柱的体积是().(单选题)A. 780cm3B. 360cm3C. cm3或cm3D. cm3试题答案:C18、集合A是不等式3x+1≥0的解集,集合B={x|x<1},则集合A∩B=().(单选题)A. {x%7c-1≤x<1}B.C. {x%7c-1<x≤1}D.试题答案:B19、已知,则().(单选题)B. 2aC. -2bD. -2a试题答案:B20、的展开式中x3项的系数是().(单选题)A. 36B. -36C. 84D. -84试题答案:D21、在△ABC中,三个角满足2A=B+C,且最大边长与最小边长分别是方程3x2-27x +32=0的两根,则△ABC的外接圆半径是().(单选题)A.B. 14C.D.试题答案:C22、三对夫妻坐成一排照相,每对夫妻要坐在一起,不同的坐法有()种.(单选题)A. 12B. 24C. 48D. 64试题答案:C23、由平面直角坐标系中坐标轴上的点所组成的集合是().(单选题)A.B.C.D.试题答案:D24、抛物线y2=-4x的准线方程为().(单选题)A. x=-1B. x=1C. y=1D. y=-1试题答案:B25、函数的最小正周期是().(单选题)A.B. πC. 2πD. 4π试题答案:B26、已知集合A有5个元素,它的所有非空子集的个数是().(单选题)A. 32B. 31C. 30D. 25试题答案:B27、某铁路线上一共有40个大小车站,铁路局要为这条线准备()种不同的车票,售出车票共有()种票价.(单选题)A. 40B. 80C. 780D. 1560试题答案:D28、已知a=(3,x),b=(7,12),并且a⊥b,则x=().(单选题)A.B.C.D.试题答案:A29、已知曲线的方程是2x3-y2-3x+5=0,那么在这条曲线上的点是().(单选题)A.B.C.D.试题答案:A30、设甲:x=1,乙:x2=1,则().(单选题)A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分必要条件C. 甲是乙的充分条件,但不是乙的必要条件D. 甲既不是乙的充分条件,也不是乙的必要条件试题答案:C31、由大于-3且小于11的偶数所组成的集合是().(单选题)A.B.C.D.试题答案:D32、=().(单选题)A.B.C.D.试题答案:D33、已知抛物线与双曲线(a>0,b>0)有一个相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为().(单选题)A.B.C.D.试题答案:D34、下列函数中,满足“对任意,当x1<x2时,都有的是().(单选题)A.B.C.D.试题答案:A35、若函数与的周期相同,其中与4m同号,则().(单选题)A. m=2或m=3B. m=-3或m=-2C. m=2或m=-3D. m=-2或m=3试题答案:C36、已知方程kx=y2+4k表示的曲线经过点P(2,1),则k的值是().(单选题)A. 2B. -2C.D.试题答案:D37、已知A,B是抛物线y2=8x上两点,且此抛物线的焦点在线段AB上,若A,B两点的横坐标之和为10,则|AB|=().(单选题)A. 18B. 14C. 12D. 10试题答案:B38、已知a=(-,-1),b=(1,),则<a,b>=().(单选题)A. 30oB. 60oC. 120oD. 150o试题答案:D39、已知正三棱锥P-ABC的体积为3,底面边长为,则该三棱锥的高为().(单选题)A. 3B.C.D.试题答案:B40、已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的().(单选题)A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件试题答案:C41、函数f(x)=2sin(3x+π)+1的最大值为().(单选题)A. -1B. 1C. 2D. 3试题答案:D42、如果a<0,-1<b<0,那么().(单选题)A. a>ab>ab2B. ab2>ab>aC. ab>a>ab2D. ab>ab2>a试题答案:D43、甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁公司各承包2项,则承包方式共有()种.(单选题)A.B.C.D.试题答案:B44、函数().(单选题)A. 是奇函数B. 是偶函数C. 既非奇函数,也非偶函数D. 既是奇函数,也是偶函数试题答案:B45、=().(单选题)A. 1B. -1C. 0D. 2试题答案:C46、向量a=(1,2),b=(-2,1),则a与b的夹角为().(单选题)A. 30oB. 45oC. 60oD. 90o试题答案:D47、若θ为第一象限角,且sinθ-cosθ=0,则sinθ+cosθ=().(单选题)A.B.C.D.试题答案:A48、在等比数列{a n}中,a2=1,a4=4,则a7=()(单选题)A. 30B. 31C. 32D. 33试题答案:C49、直线的倾斜角的取值范围是().(单选题)A.B.C.D.试题答案:B50、已知a=(3,-1),b=(-2,5),则3a-2b=().(单选题)A. (2,7)B. (13,-7)C. (2,-7)D. (13,13)试题答案:B51、已知双曲线kx2-y2=1的一条渐近线与直线2x+y+2=0垂直,则该双曲线的离心率是().(单选题)A.B.C.D.试题答案:A52、函数y=sin2x的最小正周期是().(单选题)A. 6πB. 2πC. πD.试题答案:C53、的定义域为().(单选题)A. (-∞,5)B. (-∞,+∞)C. (5,+∞)D. (-∞,5)∪(5,+∞)试题答案:D54、下列函数为奇函数的是().(单选题)A.B.C.D.试题答案:B55、已知抛物线与双曲线(a>0,b>0)有一个相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为().(单选题)A.B.C.D.试题答案:D56、已知空间直角坐标系中三点A(0,1,0),,O为坐标原点,则直线OA与MN所成角的余弦值为().(单选题)A.B.C.D. 0试题答案:C57、下列函数为奇函数的是().(单选题)A.B.C.试题答案:B58、在矩形ABCD中,的长度等于().(单选题)A. 2B. 2C. 3D. 4试题答案:D59、已知=(5,-3),点C的坐标为(-1,3),,则点D的坐标为().(单选题)A. (11,9)B. (4,0)C. (9,3)D. (9,-3)试题答案:D60、的反函数是().(单选题)A.B.C.D.试题答案:C61、设集合则集合().(单选题)A.B.D.试题答案:C62、已知向量a,b不共线,c=ka+b(k∈R),d=a-b.如果c//d,那么().(单选题)A. k=1且c与d同向B. k=1且c与d反向C. k=-1且c与d同向D. k=-1且c与d反向试题答案:D63、直线3x+y-2=0经过().(单选题)A. 第一、二、四象限B. 第一、二、三象限C. 第二、三、四象限D. 第一、三、四象限试题答案:A64、=().(单选题)A. 1B. -1C. 0D. 2试题答案:C65、设a,b随机取自集合{1,2,3},则直线ax+by+3=0与圆有公共点的概率是().(单选题)A.C.D.试题答案:B66、的展开式中的常数项为().(单选题)A. 3B. 2C. -2D. -3试题答案:D67、正六边形中,由任意三个顶点连线构成的三角形的个数为().(单选题)A. 6B. 20C. 120D. 720试题答案:B68、AB是过抛物线x2=y的焦点的弦,且|AB|=4,则AB的中点到直线y+1=0的距离是().(单选题)A.B.C. 2D. 3试题答案:D69、曲线在点(-1,-1)处的切线方程为().(单选题)A. y=2x+1B. y=2x-1C. y=-2x-3D. y=-2x-2试题答案:A70、的展开式中的常数项为().(单选题)A. 3B. 2C. -2D. -3试题答案:D71、已知a≠1,那么().(单选题)A.B. 可大于也可等于1C. 可小于也可等于1D.试题答案:D72、当时,函数的最小值为().(单选题)A. 2B.C. 4D.试题答案:C73、已知,=().(单选题)A.B.C.D.试题答案:A74、已知椭圆C:的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若.则C的离心率为().(单选题)A.B.C.D.试题答案:B75、函数的定义域是().(单选题)A. (-∞,0]B. [0,2]C. [-2,2]D. (-∞,-2]∪[2,+∞)试题答案:C76、设函数f(x)在R上可导,其导函数为f(x),且函数f(x)在x=-2处取得极小值,则函数的图像可能是().(单选题)A. AB. BC. CD. D试题答案:C77、函数的反函数为().(单选题)A. y=x+1(x∈R)B. y=x-1(x∈R)C.D.试题答案:D78、已知y=f(x)是奇函数,当x∈(0,2)时,,当x∈(-2,0)时f(x)的最小值为1,则a=().(单选题)A.B.C.D. 1试题答案:D79、设S n是等比数列{a n}的前n项和,若a2·a3=2a1,且a4与2a7的等差中项为,则S =().(单选题)A. 35B. 33C. 29D. 31试题答案:D80、七人排队照相,甲、乙两人不能排在一起,一共有()种不同的排法.(单选题)A.B. -C.试题答案:B81、长方体同一顶点处三条棱长的和是a,它的一条对角线长是b,这个长方体的全面积是().(单选题)A. (a+b)(a-b)B. (a+b)2C. (a-b)2D. a2-ab+b2试题答案:A82、某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中的学生甲被抽到的概率为().(单选题)A.B.C.D.试题答案:A83、某校进行足球单循环比赛,有8个队参加,共要比赛()场.(单选题)A. 16B. 28C. 56D. 64试题答案:B84、6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有()种站法.(单选题)B. 576C. 480D. 840试题答案:C85、函数的反函数为().(单选题)A.B.C.D.试题答案:B86、垂直于直线y=x+1且与圆相切于第一象限的直线方程是().(单选题)A.B.C.D.试题答案:A87、某小组共10名学生,其中女生3名,现选举2人当代表,至少有1名女生当选,则不同的选法共有().(单选题)A. 21种B. 24种C. 27种D. 63种试题答案:B88、下列函数中,在其定义域上为减函数的是().(单选题)A.B. y=2xC.D. y=x²试题答案:C89、已知R为圆的半径,则弧长为的圆弧所对的圆心角等于().(单选题)A. 135°B.C. 145°D.试题答案:B90、若a,b,c为实数,且a≠0.设甲:,乙:有实数根,则().(单选题)A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分条件,但不是乙的必要条件C. 甲既不是乙的充分条件,也不是乙的必要条件D. 甲是乙的充分必要条件试题答案:D91、的值是().(单选题)A. 2B. -1C. -2D. 1试题答案:B92、已知等差数列的前n项和为,则数列{a n}的公差是().(单选题)A.B. 4C. -4D. -3试题答案:B93、已知,那么tan α的值等于().(单选题)A.B.C.D.试题答案:A94、=().(单选题)A. 0B. 2C. -3D. 3试题答案:C95、条件,条件,则p是q的().(单选题)A. 充分不必要条件B. 必要不充分C. 充要条件D. 既不充分也不必要条件试题答案:A96、已知,=().(单选题)A.B.C.D.试题答案:A97、若tanα=,,则=().(单选题)A.B.C.D.试题答案:D98、已知轴L,,L的正方向与a的夹角为120o,则a在L上的投影为().(单选题)A. 3B.C. 2D. -3试题答案:D99、的反函数是().(单选题)A.B.C.D.试题答案:C(单100、已知点在函数f(x)=acosx的图像上,则该函数图像在处的切线方程是().选题)A.B.C.D.试题答案:A101、一个火车站一共有8道铁轨,现有三列火车停靠在此车站,要求三列火车要并排靠在一起排放,则一共有()种不同的排法.(单选题)A.B.C.D.试题答案:C102、用0,1,2,3这四个数字,组成的没有重复数字的四位数共有().(单选题)A. 24个B. 18个C. 12个D. 10个试题答案:B103、函数的最大值是().(单选题)A. 2B.D.试题答案:B104、a<0是方程至少有一个负根的().(单选题)A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件试题答案:B105、下列各组平行线中,距离等于2的是().(单选题)A. 2x-7y+8=0与2x-7y-6=0B. 2x+3y-8=0与2x+3y+18=0C. 3x+4y=10与3x+4y=0D. y=x与3y-3x+5=0试题答案:C106、已知的三个顶点分别为A(-3,4),B(-2,1),C(1,6),那么顶点D的坐标是().(单选题)A. (0,-9)B. (-9,0)C. (0,9)D. (9,0)试题答案:C107、l为正方体的一条棱所在的直线,则该正方体各条棱所在的直线中,与l异面的共有().(单选题)A. 2条C. 4条D. 5条试题答案:C108、一个火车站一共有8道铁轨,现有三列火车停靠在此车站,要求三列火车要并排靠在一起排放,则一共有()种不同的排法.(单选题)A.B.C.D.试题答案:C109、函数的定义域是().(单选题)A. (-∞,-4]∪[4,+∞)B. (-∞,-2]∪[2,+∞]C. [-4,4]D. [-2,2]试题答案:C110、设集合M={-1,0,1,2,8},N={x|x≤2},则M∩N=().(单选题)A. {0,1,2}B. {-1,0,1}C. {-1,0,1,2}D. {0,1}试题答案:C111、一箱子中装有5个相同的球,分别标以号码1,2,3,4,5,从中一次任取2个球,则这2个球的号码都大于2的概率为().(单选题)A.B.C.D.试题答案:D112、己知∣a∣=10,∣b∣=12,且,则向量a与b的夹角是().(单选题)A. 60°B. 105°C. 120°D. 135°试题答案:C113、若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为().(单选题)A.B.C.D.试题答案:B114、一名儿童做加法游戏,在一个红口袋中装着20张分别标有数1,2,…,19,20的红卡片,从中任抽一张,把上面的数作为一个加数;在另一个黄口袋中装着10张分别标有数1,2,…,9,10的黄卡片,从中任取一张,把上面的数作为另一个加数,这名儿童一共可以列出加法式子().(单选题)A. 30个B. 190个C. 200个试题答案:C115、若函数f(x)在定义域{x|x∈R且x≠0}上是偶函数,且在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有().(单选题)A. 一个B. 两个C. 至少两个D. 无法判断试题答案:B116、已知△ABC中,,那么a:b:c等于().(单选题)A. 1:2:3B. 3:2:1C. 1::2D. 2::1试题答案:C117、已知的展开式中各项系数的和等于512,那么n=().(单选题)A. 10B. 9C. 8D. 7试题答案:B118、已知R为圆的半径,则弧长为的圆弧所对的圆心角等于().(单选题)A. 135°B.D.试题答案:B119、已知的展开式中各项系数的和等于512,那么n=().(单选题)A. 10B. 9C. 8D. 7试题答案:B120、设甲:,乙:sinx=1,则().(单选题)A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分条件,但不是乙的必要条件C. 甲不是乙的充分条件,也不是乙的必要条件D. 甲是乙的充分必要条件试题答案:B121、某人要翻越一座山,已知上山有3条路,下山有4条路,都可以直通山上,则此人翻越此山可供选择的方法共有()种.(单选题)A. 12B. 24C. 48D. 49试题答案:A122、若,=().(单选题)A. 1C. 2D. -2试题答案:C123、一个正三棱锥,高为1,底面三角形边长为3,则这个正三棱锥的体积为().(单选题)A.B.C.D.试题答案:A124、设a=sin14°+cos14°,,,则a、b、c的大小关系是().(单选题)A. a<b<cB. a<c<bC. b<c<aD. b<a<c试题答案:B125、已知轴L,,L的正方向与a的夹角为120o,则a在L上的投影为().(单选题)A. 3B.C. 2D. -3试题答案:D126、由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有().(单选题)A. 60B. 48C. 36D. 24试题答案:C127、设函数的图象过点(0,0),其反函数的图象过点(1,2),则a+b等于().(单选题)A. 6B. 5C. 4D. 3试题答案:C128、若直线ax+2by-2=0(ab>o)始终平分圆的周长,则的最小值为().(单选题)A.B.C.D.试题答案:D129、用列举法可以把集合表示为().(单选题)A. 1B. 2C. 1,2D. {1,2}试题答案:D130、由大于-3且小于11的偶数所组成的集合是().(单选题)A.B.C.D.试题答案:D131、设等差数列的公差d=-2,若.则等于().(单选题)A. -182B. -78C. -148D. -82试题答案:D132、设则=().(单选题)A.B. a+bC. 2abD. ab试题答案:D133、在长方体ABCD-A1B1C1D1中,AB=BC=1,CC1=2,则AC1=().(单选题)A.B. 2C.试题答案:D134、函数的周期是()(单选题)A.B.C.D.试题答案:C135、已知a>0,a≠1,则().(单选题)A. aB. 2C. 1D. 0试题答案:B136、以二面角α-AB-β的棱上一点A为端点,在β内作一条射线AC,它与棱AB组成45°的角、和α所成的角是30°,则二面角α-AB-β的度数是().(单选题)A. 30°B. 45°C. 60°D. 90°试题答案:B137、().(单选题)A.B.D.试题答案:C138、从4种蔬菜品种中选出3种,分别种植在不耐土质的3块土地上进行试验,种植方法共有().(单选题)A. 4种B. 24种C. 64种D. 81种试题答案:B139、设f(x)=x(2014+lnx),若f(x0)=2015,则x0=().(单选题)A. e2B. 1C. ln2D. e试题答案:B140、已知数列,那么它的第5项的值等于().(单选题)A.B.C.D.试题答案:D141、已知,则().(单选题)A.C.D.试题答案:B142、若,给出下列不等式:其中正确的不等式是().(单选题)A. ①④B. ②③C. ①③D. ②④试题答案:C143、下列各组平行线中,距离等于2的是().(单选题)A. 2x-7y+8=0与2x-7y-6=0B. 2x+3y-8=0与2x+3y+18=0C. 3x+4y=10与3x+4y=0D. y=x与3y-3x+5=0试题答案:C144、已知函数在点x=2处连续,则常数a的值是().(单选题)A. 2B. 3C. 4D. 5试题答案:B145、若O为坐标原点,过点P(rcosα,rsinα)(r≠0),且垂直于OP的直线方程为().(单选题)A. ycosα+xsinα+r=0B. ysinα+xcosα+r=0C. ysin-xcosα-r=0D. ysinα+xcosα-r=0试题答案:D146、函数的反函数是().(单选题)A.B.C.D.试题答案:B147、若函数f(x)的反函数f-1(x)=1+x2(x<0),则f(2)的值为()(单选题)A. 1B. -1C. 1或-1D. 5试题答案:B148、已知向量a=(2,4),b=(m,-1),且a⊥b,则实数m=().(单选题)A. 2B. 1C. -1D. -2试题答案:A149、函数的定义域是().(单选题)A. {x%7cx>1}B. {x%7cx≤2}C. {x%7c1<x<2}D. {x%7c1<x≤2}试题答案:D150、曲线在点(-1,-1)处的切线方程为().(单选题)A. y=2x+1B. y=2x-1C. y=-2x-3D. y=-2x-2试题答案:A151、下列函数中,为减函数的是().(单选题)A. y=x3B. y=sinxC. y=-x3D. y=cosx试题答案:C152、已知-个等差数列的首项为1,公差为3,那么该数列的前5项和为().(单选题)A. 35B. 30C. 20D. 10153、已知函数,则的值为().(单选题)A. 1B. -1C.D.试题答案:A154、函数的定义域是().(单选题)A. (-∞,-1]∪[1,+∞)B. (-1,1)C. (-∞,-1)∪(1,+∞)D. [-1,1]试题答案:C155、=().(单选题)A. 0B.C. 1D. 2试题答案:A156、数列的一个通项公式为().(单选题)A.B.C.D.157、曲线C的方程为x2-xy+2y+1=0,下列各点中,在曲线C上的点是().(单选题)A. (-1,2)B. (1,-2)C. (2,-3)D. (3,6)试题答案:B158、=().(单选题)A.B.C.D.试题答案:A159、设a>b>1,则().(单选题)A.B.C.D.试题答案:C160、设S n是等差数列{a n}的前n项和,若,则=().(单选题)A.B. 2C. -1试题答案:D161、若a,b,c为实数,且a≠0.设甲:,乙:有实数根,则().(单选题)A. 甲是乙的必要条件,但不是乙的充分条件B. 甲是乙的充分条件,但不是乙的必要条件C. 甲既不是乙的充分条件,也不是乙的必要条件D. 甲是乙的充分必要条件试题答案:D162、若过点A(4,0)的直线f与曲线有公共点,则直线f的斜率的取值范围为().(单选题)A.B.C.D.试题答案:C163、0<x<5是不等式|x-2|<4成立的().(单选题)A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件试题答案:A164、圆x2+y2-4x+6y-3=0上到x轴距离等于1的点有().(单选题)A. 1个B. 2个D. 4个试题答案:C165、如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则直线AB1与直线C1D1所成角的正弦值为().(单选题)A.B.C.D.试题答案:C166、函数的定义域是().(单选题)A.B.C.D. (其中)试题答案:C167、已知,则的最大值和最小值分别为().(单选题)A. 8,0B. 5,0C. 8,5D. 8,2试题答案:D168、若圆C的半径为l,圆心在第一象限,且与直线4x-3y=0和x轴相切,则该圆的标准方程是().(单选题)A.C.D.试题答案:B169、已知a=(10,5),b=(5,x),且a∥b,则x的值是().(单选题)A. 2.5B. 2C. 5D. 0.5试题答案:A170、已知一个球的体积为,则它的表面积为().(单选题)A. 4πB. 8πC. 16πD. 24π试题答案:C171、函数y=x4-2x2+5在区间[-2,2]上的().(单选题)A. 最大值为13,最小值为4B. 最大值为5,最小值为4C. 最大值为13,最小值为5D. 最大值是最小值的3倍试题答案:A172、已知,则等于().(单选题)A.C.D.试题答案:B173、在△ABC中,已知,那么cos C等于().(单选题)A.B.C.D.试题答案:C174、函数的定义域是().(单选题)A.B.C.D.试题答案:D175、己知点(a,2)(a>0)到直线f:x-y+3=0的距离为1,则a等于().(单选题)A.B.C.D.试题答案:A176、已知a=(3,x),b=(7,12),并且a⊥b,则x=().(单选题)B.C.D.试题答案:A177、函数().(单选题)A. 在整个定义域内是增函数B. 在区间内为增函数,在区间内为减函数C. 在区间内为减函数,在区间内为增函数D. 在整个定义域内为减函数试题答案:C178、设等比数列的前n项和为,若,则=().(单选题)A. 2B.C.D. 3试题答案:B179、若直线Ax+By+C=0过第一、二、三象限,则().(单选题)A. AB<0,BC<0B. AB>0,BC>0C. A=0,BC<0D. C=0,AB>0试题答案:A180、函数f(x)=1+cos x的最小正周期是().(单选题)B. πC.D. 2π试题答案:D181、函数的定义域是().(单选题)A.B.C.D. (其中)试题答案:C182、若α是第二象限的角,则=().(单选题)A. 1B.C.D. -1试题答案:D183、设函数f(x)在R上可导,其导函数为f(x),且函数f(x)在x=-2处取得极小值,则函数的图像可能是().(单选题)A. AB. BC. CD. D试题答案:C184、已知点O(0,0),A(0,b),B(a,a3).若△OAB为直角三角形,则必有().(单选题)A. b=3B.C.D.试题答案:C185、若曲线在点处的切线与两个坐标轴围成的三角形的面积为18,则a=().(单选题)A. 8B. 16C. 32D. 64试题答案:D186、在等比数列{},已知;那么,的值等于().(单选题)A. 10B. 25C. 50D. 75试题答案:B187、在△ABC中,如果,那么A等于().(单选题)A. 60oB. 75oC. 90oD. 105o试题答案:D188、函数f(x)=1+cos x的最小正周期是().(单选题)A.B. πC.D. 2π试题答案:D189、如果,那么().(单选题)A. a<b<cB. a<c<bC. b<a<cD. c<a<b试题答案:A190、5n+13n除以3的余数是().(单选题)A. 0B. 0或1C. 0或2D. 2试题答案:C191、以二面角α-AB-β的棱上一点A为端点,在β内作一条射线AC,它与棱AB组成45°的角、和α所成的角是30°,则二面角α-AB-β的度数是().(单选题)A. 30°B. 45°C. 60°。

2021年军考高中学历士兵考军校数学专项练习试卷及答案

2021年军考高中学历士兵考军校数学专项练习试卷及答案

2021年军考-高中学历士兵考军校-数学专项测试卷双曲线、抛物线1.已知双曲线的焦点在y 轴上,焦距为4,且一条渐近线方程为y =,则双曲线的标准方程是()A .2213x y -=B .2213y x -=C .2213y x -=D .2213x y -=2.已知双曲线的中心在原点,焦点在x 轴上,焦距为8,离心率为2,则该双曲线的方程为()A .221204x y -=B .221412x y -=C .2211648x y -=D .2216416x y -=3.已知双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为34y x =±,且其一个焦点为(5,0),则双曲线C 的方程为()A .221916x y -=B .221169x y -=C .22134x y -=D .22143x y -=4.已知双曲线C 的一个焦点为(0,5),且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为()A .2214y x -=B .2214x y -=C .221205x y -=D .221520y x -=5.已知双曲线的实轴长为2,焦点为(4,0)-,(4,0),则该双曲线的标准方程为()A .221124x y -=B .221412x y -=C .22115y x -=D .22115y x -=6.在平面直角坐标系xOy 中,双曲线22128x y -=的渐近线方程为()A .2y x =±B .12y x=±C .2y x =D .y =7.抛物线22y x =的准线方程是()A .12x =B .12y =C .12x =-D .12y =-8.抛物线2y ax =的准线方程是2y =-,则a 的值为()A .4B .8C .18D .149.抛物线的准线为4x =-,则抛物线的方程为()A .216x y=B .28x y=C .216y x =D .28y x=10.抛物线212x y =的准线方程为()A .3y =-B .3x =-C .6y =-D .6x =-11.已知抛物线的焦点坐标是(0,3)-,则抛物线的标准方程是()A .212x y=-B .212x y=C .212y x =-D .212y x=12.已知抛物线的准线方程12x =,则抛物线的标准方程为()A .22x y=B .22x y=-C .2y x =D .22y x=-13.抛物线212x y =-的焦点坐标是()A .1(0,)4-B .1(0,)8-C .1(0,)8D .1(0,414.抛物线24y x =的准线方程是()A .1y =B .1y =-C .116y =D .116y =-15.抛物线218y x =-的准线方程是()A .132x =B .132y =C .2y =D .2y =-16.抛物线24x y =的准线方程是()A .12y =B .1y =-C .116x =-D .18x =17.以(0,1)F 为焦点的抛物线的标准方程是()A .24x y=B .22x y=C .24y x=D .22y x=18.焦点是(0,1)F 的抛物线的标准方程是()A .24x y=B .24y x=C .24x y =-D .24y x=-19,且与椭圆22184x y +=有相同的焦点,则该双曲线的标准方程为.20.焦点在y 轴上,虚轴长为8,焦距为10的双曲线的标准方程是.参考答案与详解1.【解答】解:由题意可知:设双曲线的标准方程为22221(0,0)y x a b a b-=>>,由24c =,则2c =,渐近线方程为y =,即ab=由222c a b =+,解得:1b =,a =∴双曲线的标准方程为:2213y x -=.故选:B .2.【解答】解:由题意可设双曲线的标准方程为22221x y a b-=,因为双曲线的焦距为8,则28c =,所以4c =,又双曲线的离心率为2c a=,所以2a =,则22216412b c a =-=-=,所以双曲线的标准方程为221412x y -=,故选:B .3.【解答】解:由双曲线的方程及渐近线的方程可得:34b a=,即34a b =,又由题意可得5c =,且222c a b =+,所以解得216a =,29b =,所以双曲线的方程为:221169x y -=,故选:B .4.【解答】解:双曲线2214x y -=的渐近线方程为:12y x =±,由题意设双曲线C 的方程为:22221y x a b-=,由焦点坐标(0,5)可得2225a b +=,①渐近线的方程为:ay xb =±再由C 与双曲线2214x y -=的渐近线相同,所以12a b =,②,由①②可得25a =,220b =,所以双曲线C 的方程为:221520y x -=,故选:D .5.【解答】解:由题意可设双曲线方程为22221(0,0)x y a b a b-=>>,且22a =,4c =,则1a =,22216115b c a =-=-=.∴双曲线的标准方程为22115y x -=.故选:C .6.【解答】解:双曲线22128x y -=的渐近线方程:2y x =±.故选:A .7.【解答】解:由抛物线22y x =,可得准线方程24x =-,即12x =-.故选:C .8.【解答】解:由抛物线2y ax =,得21x y a=,由其准线方程为2y =-,可知抛物线开口向上,则0a >.12p a ∴=,则124p a=.∴124a -=-,得18a =.故选:C .9.【解答】解: 抛物线的准线为4x =-,∴可知抛物线是开口向右的抛物线,设方程为22(0)y px p =>.则42p=,8p =.抛物线方程为216y x =.故选:C .10.【解答】解:抛物线212x y =的焦点在y 轴正半轴上,且212p =,则6p =,32p=.∴抛物线212x y =的准线方程为3y =-.故选:A .11.【解答】解:依题意可知焦点在y 轴,设抛物线方程为22x py= 焦点坐标是(0,3)F -,∴132p =-,6p =-,故抛物线方程为212x y =-.故选:A .12.【解答】解: 抛物线的准线方程12x =,可知抛物线为焦点在x 轴上,且开口向左的抛物线,且122p =,则1p =.∴抛物线方程为22y x =-.故选:D .13.【解答】解:由题意,抛物线的焦点在y 上,开口向下,且122p =,∴128p =.∴抛物线212x y =-的焦点坐标是1(0,8-.故选:B .14.【解答】解:抛物线24y x =化成标准方程,可得214x y =,∴抛物线焦点在y 轴上且124p =,得1216p =,因此抛物线的焦点坐标为1(0,16,准线方程为116y =-.故选:D .15.【解答】解:整理抛物线方程得28x y =-,4p ∴=,抛物线方程开口向下,∴准线方程是2y =,故选:C .16.【解答】解:124p = ,18p ∴=,开口向右,∴准线方程是116x =-.故选:C .17.【解答】解:因为抛物线的焦点坐标是(0,1),所以抛物线开口向上,且2p =,则抛物线的标准方程24x y =,故选:A .18.【解答】解:焦点是(0,1)F 的抛物线的标准方程是24x y =.故选:A .19.【解答】解:椭圆22184x y +=的焦点为(2,0)-和(2,0),可设双曲线的方程为22221(,0)x y a b a b-=>,由题意可得2c =,即224a b +=,又ce a==,解得a =,b =,则双曲线的标准方程为22122x y -=.故答案是:22122x y -=.20.【解答】解:由题意,设方程为22221(0,0)y x a b a b-=>>,则虚轴长为8,焦距为104b ∴=,3a ==∴双曲线的标准方程是221916y x -=故答案为:221916y x -=。

军考数学高中士兵考军校综合测试卷及答案

军考数学高中士兵考军校综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷一.选择题(共9小题)1.设集合2{|}M x x x ==,{|0}N x lgx =,则(M N =)A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]2.函数221(2x y -=的单调递减区间为()A .(-∞,0]B.[0,)+∞C .(-∞D .,)+∞3.设02x π<<,则“2cos x x <”是“cos x x <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知1t >,2log x t =,3log y t =,5log z t =,则()A .235x y z<<B .523z x y<<C .352y z x <<D .325y x z<<5.若关于x 的不等式3410x ax +-对任意[1x ∈-,1]都成立,则实数a 的取值范围是()A .[4-,3]-B .{3}-C .{3}D .[3,4]6.已知数列{}n a 为等差数列,n S 为其前n 项和,312S =,且1a ,2a ,6a 成等比数列,则10(a =)A .33B .28C .4D .4或287.一段1米长的绳子,将其截为3段,问这三段可以组成三角形的概率是()A .14B .12C .18D .138.2251lim 25n n n n →∞--+的值为()A .15-B .52-C .15D .529.已知圆22:(1)1M x y -+=,圆22:(1)1N x y ++=,直线1l ,2l 分别过圆心M ,N ,且1l 与圆M 相交于A ,B 两点,2l 与圆N 相交于C ,D 两点,点P 是椭圆22149x y +=上任意一点,则PA PB PC PD +的最小值为()A .7B .8C .9D .10二.填空题(共8小题)10.49log 43log 2547lg lg ++=.11.已知22sin 3α=,1cos()3αβ+=-,且α,(0,)2πβ∈,则sin β=.12.若函数3()2()f x x ax a R =--∈在(,0)-∞内有且只有一个零点,则()f x 在[1-,2]上的最小值为.13.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.14.73(1)(1)x x -+的展开式中x 的系数是.15.设数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,且11a =,则n a =.16.已知函数()f x 对任意的x R ∈,都有11()()22f x f x +=-,函数(1)f x +是奇函数,当1122x-时,()2f x x =,则方程1()2f x =-在区间[3-,5]内的所有零点之和为.17.已知点O 为坐标原点,圆22:(1)1M x y -+=,圆22:(2)4N x y ++=,A ,B 分别为圆M 和圆N 上的动点,OAB ∆面积的最大值为.参考答案与解析一.选择题(共9小题)1.【解答】解:由2{|}{0M x x x ===,1},{|0}(0N x lgx ==,1],得{0MN =,1}(0⋃,1][0=,1].故选:A .2.【解答】解:令22t x =-,则1()2t y =,即有y 在t R ∈上递减,由于t 在[0x ∈,)+∞上递增,则由复合函数的单调性,可知,函数y 的单调减区间为:[0,)+∞.故选:B .3.【解答】解:由2x x =得0x =或1x =,作出函数cos y x =和2y x =和y x =的图象如图,则由图象可知当2cos x x <时,2B x x π<<,当cos x x <时,2A x x π<<,AB x x <,∴“2cos x x <”是“cos x x <”的充分不必要条件,故选:A .4.【解答】解:1t >,0lgt ∴>.又0235lg lg lg <<<,2202lgt x lg ∴=>,3303lgt y lg =>,505lgtz lg =>,∴5321225z lg x lg =>,可得52z x >.29138x lg y lg =>.可得23x y >.综上可得:325y x z <<.故选:D .5.【解答】解:令3()41f x x ax =+-,[1x ∈-,1].不等式3410x ax +-对任意[1x ∈-,1]都成立,即()0f x 对任意[1x ∈-,1]都成立,取4a =-,则3()441f x x x =--,此时11()022f -=>,排除A .取3a =,则3()431f x x x =+-,此时1()102f =>,排除CD .故选:B .6.【解答】解:设数列{}n a 为公差为d 的等差数列,当0d =时,312S =,即1312a =,即有1014a a ==;当0d ≠时,1a ,2a ,6a 成等比数列,可得2216a a a =,即2111()(5)a d a a d +=+,化为13d a =,311331212S a d a ∴=+==,11a ∴=,3d =,1019328a ∴=+⨯=.综上可得104a =或28.故选:D .7.【解答】解:设三段长分别为x ,y ,1x y --,则总样本空间为010101x y x y <<⎧⎪<<⎨⎪<+<⎩.其面积为12,能构成三角形的事件的空间为111x y x y x x y y y x y x +>--⎧⎪+-->⎨⎪+-->⎩,其面积为18,则这三段可以组成三角形的概率是118142p ==.故选:A.8.【解答】解:222215515limlim 152522n n n n n n n n→∞→∞--==-+-+.9.【解答】解:圆22:(1)1M x y -+=的圆心(1,0)M ,半径为1M r =;圆22:(1)1N x y ++=的圆心为(1,0)N -,半径为1N r =;所以22()()()1PA PB PM MA PM MB PM PM MA MB MA MB PM =++=+++=-,22()()()1PC PD PN NC PN ND PN PN NC ND NC ND PN =++=+++=-,P 为椭圆22149x y +=上的点,∴222221022()89y PA PB PC PD PM PN x y +=+-=+=+;由题意可知,33y -,21088189y ∴+,即PA PB PC PD +的最小值为8.故选:B .二.填空题(共8小题)10.【解答】解:原式71243115310072244log log lg -=++=-++=.故答案为:154.11.【解答】解:22sin 3α=,(0,2πα∈,1cos 3α∴==,α∴,(0,2πβ∈,(0,)αβπ∴+∈,又1cos()3αβ+=-,sin()3αβ∴+=.则11sin sin[()]sin()cos cos()sin ()33βαβααβααβα=+-=+-+=--⨯.故答案为:429.12.【解答】解:3()2()f x x ax a R =--∈,2()3(0)f x x a x ∴'=-<,①当0a 时,2()30f x x a '=->,函数()f x 在(,0)-∞上单调递增,又(0)20f =-<,()f x ∴在(,0)-∞上没有零点;②当0a >时,由2()30f x x a '=->,解得33x <或33x >(舍).()f x ∴在(,)3-∞上单调递增,在(3,0)上单调递减,而(0)20f =-<,要使()f x 在(,0)-∞内有且只有一个零点,3(()()20333f a ∴-=--⨯--=,解得3a =,3()32f x x x =--,2()333(1)(1)f x x x x '=-=+-,[1x ∈-,2],当(1,1)x ∈-时,()0f x '<,()f x 单调递减,当(1,2)x ∈时,()0f x '>,()f x 单调递增.又(1)0f -=,f (1)4=-,f (2)0=,()min f x f ∴=(1)4=-.故答案为:4-.13.【解答】解:根据题意,可得排法共有112654180C C C =种.故答案为:180.14.【解答】解:73(1)(1)x x -+的展开式中x 的系数可这样求得:第一个括号7(1)x -中提供x 时,第二个括号3(1)x +只能提供常数,此时展开式中x 的系数是:1637(1)17C -=;同理可求,第一个括号7(1)x -中提供常数时,第二个括号3(1)x +只能提供x ,此时展开式中x 的系数是7123(1)13C -=-,所以展开式中x 的系数是16371273(1)1(1)14C C -+-=.故答案为:4.15.【解答】解:数列{}n a 的前n 项和n S 满足11(*)n n n n S S S S n N ++-=∈,可得1111n n S S +-=,所以1{}n S 是等差数列,首项为1,公差为1,所以11(1)1nn n S =+-=,1n S n =,1111(1)n a n n n n -=-=--,2n ,(*)n N ∈,所以1,11,2(1)n n a n n n =⎧⎪=-⎨⎪-⎩,故答案为:1,11,2(1)n n n n =⎧⎪-⎨⎪-⎩.16.【解答】解:根据题意,因为函数(1)f x +是奇函数,所以函数(1)f x +的图象关于点(0,0)对称,把函数(1)f x +的图象向右平移1个单位可得函数()f x 的图象,即函数()f x 的图象关于点(1,0))对称,则(2)()f x f x -=-,又因为11()()22f x f x +=-,所以(1)()f x f x -=,从而(2)(1)f x f x -=--,再用x 替换1x -可得(1)()f x f x +=-,所以(2)(1)()f x f x f x +=-+=,即函数()f x 的周期为2,且图象关于直线12x =对称,如图所示,函数()f x 在区间[3-,5]内有8个零点,所有零点之和为12442⨯⨯=.故答案为:4.17.【解答】解:如图以OM 为直径画圆,延长BO 交新圆于E ,AO 交新圆于F 点,连接FE ,NF ,MF ,则MF 与OA 垂直,又MA MO =,F 为AO 的中点,由对称性可得OF OB =,由1sin 2ABO S OA OB AOB ∆=∠,1sin()2EAO S OE OB AOB π∆=-∠1sin 2OE OB AOB =∠,可得2ABO EAO EFO S S S ∆∆∆==,当EFO S ∆最大时,ABO S ∆最大,故转化为在半径为1的圆内接三角形OEF 的面积的最大值,由圆内接三角形A B C '''的面积1sin 2S a b C '''=,2sin a A ''=,2sin b B ''=,3sin sin sin 2sin sin sin 2()3A B C S A B C '+'+''''=,由()sin f x x =,[0x ∈,]π,为凸函数,可得sin sin sin 3sinsin 3332A B C A B C π'+'+''+'+'==,当且仅当3A B C π'''===时,取得等号,可得3sin sin sin 2()23A B C '+'+'=.即三角形OEF 的面积的最大值为.进而得到ABO S ∆最大值为3333242⨯=,故答案为:332。

2021军考复习资料高中毕业生士兵考军校-数学综合测试卷及答案解析

2021军考复习资料高中毕业生士兵考军校-数学综合测试卷及答案解析

高中学历士兵考军校-数学综合测试卷(选择填空)关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。

一.选择题(共9小题)1.已知集合{0A =,1,2,3,4},2{|30}B x x x =->,则集合A B 的子集个数为()A .2B .3C .4D .82.若函数2()log (2)(0a f x x x a =->,且1)a ≠在区间1(2,1)内恒有()0f x >,则函数()f x 的单调递增区间是()A .(,0)-∞B .1(,)4-∞C .1(,)2+∞D .1(,)4+∞3.若“1x >”是“不等式2x a x >-成立”的必要不充分条件,则实数a 的取值范围是()A .3a >B .3a <C .4a >D .4a <4.已知322a -=,32()5b =,31()2c =,则a ,b ,c 的大小顺序正确的是()A .c a b >>B .a b c >>C .b a c >>D .a c b>>5.若函数3232y x x a =-+在[1-,1]上有最大值3,则该函数在[1-,1]上的最小值是()A .12-B .0C .12D .16.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于()A .13B .26C .8D .1627.2log (2)log log a a a M N M N -=+,则MN的值为()A .14B .4C .1D .4或18.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A .105B .210C .240D .6309.若向量a,b 满足||a = ||2b = ,()a a b ⊥- ,则a与b 的夹角为()A .4πB .34πC .6πD .56π二.填空题(共8小题)10.已知2sin()43πα+=,则sin 2α=.11.使2log ()1x x -<+成立的x 的取值范围是.12.在ABC ∆中,M 是BC 的中点,||1AM = ,2AP PM = ,则()PA PB PC +=.13.过点(1,2)P 与双曲线22:22C x y -=有且只有一个公共点的直线共条.14.2123limn nn →∞+++⋯+=.15.设a R ∈,若51()(1)a x x++展开式中2x 的系数为20,则a =.16.已知函数29,3()6,3x f x x x x ⎧=⎨-+<⎩,则不等式2(2)(34)f x x f x -<-的解集是.17.若对于任意[1x ∈,4],不等式2044ax bx a x ++恒成立,|||25|a a b +++的范围为.参考答案与试题解析一.选择题(共9小题)1.【详解】{0A = ,1,2,3,4},{|03}B x x =<<,{1A B ∴= ,2},故其子集的个数是224=.故选:C .2.【详解】当1(2x ∈,1)时,22(0,1)x x -∈,若()0f x >,则01a <<,则log a y t =为减函数,2()log (2)a f x x x =- 的定义域为(-∞,10)(2⋃,)+∞,故22t x x =-在(,0)-∞上递减,在1(2,)+∞上递增,根据复合函数“同增异减”的原则,可得()f x 的单调递增区间是(,0)-∞,故选:A .3.【详解】若2x a x >-,即2x x a +>;设()2x f x x =+,该函数为增函数;根据题意“不等式2x x a +>成立,即()f x a >成立”能得到“1x >”,并且反之不成立;1x > 时,()3f x >;3a ∴>.故选:A .4.【详解】333222(2a -== ,又3y x =在R 上是增函数,因为12225>>,所以a c b >>,故选:D .5.【详解】函数的导数2()333(1)f x x x x x '=-=-,由()0f x '>得1x >或0x <,此时函数递增,由()0f x '<得01x <<,此时函数递减,故0x =时,函数()f x 取得极大值,同时也是在[1-,1]上的最大值,即(0)3f a ==,f (1)351322=-+=.31(1)1322f -=--+=,(1)f f ∴-<(1),即函数在[1-,1]上的最小值是12,故选:C .6.【详解】在等差数列{}n a 中若m n k l +=+则m n k l a a a a +=+因为35102()24a a a ++=所以由等差数列上述性质得:4101132a a a a +=+=.所以1131313()132a a S ⨯+==.故选:A .7.【详解】2log (2)log log a a a M N M N -=+,化为2(2)M N MN -=(20)M N >>可得22540M MN N -+=即:2()540M M N N -+=解得4M N =,故选:B .8.【详解】分三类:①选三个女教师,全排列即可,有35120A =种;②选两个女教师,一个男教师,男教师先挑位置,有11232560A A = ð种;③选一个女教师,两个男教师,女教师固定,有125330A = ð种.故不同的安排方案种数共有:1206030210++=种;故选:B .9.【详解】因为||a =||2b = ,()a a b ⊥- ,∴2()0a a b a a b -=-=,即20a b -= ,∴2a b =.∴cos 2||||a b a b θ==,又因为[0θ∈,]π,∴4πθ=.故选:A .二.填空题(共8小题)10.【详解】22sin(cos )423πααα+=+=∴两边平方得,2212(2cos sin )29sin cos αααα++=52sin cos 9αα∴=-故5sin 29α=-,故答案为:59-11.【详解】利用作图法可以判断2()log ()f x x =-和()1g x x =+,相交于(1,0)-前者是单调递减,后者是单调递增.所以只有10x -<<时,2log ()1x x -<+成立,故答案为:(1,0)-.12.【详解】如图所示,ABC ∆中,M 是BC 的中点,||1AM = ,2AP PM =,∴()22PA PB PC PM PM+=- 24PM=-⨯ 214(||)3AM =-⨯49=-.故答案为:49-.13.【详解】 双曲线22:22C x y -=;即2212y x -=.1a ∴=,b =.当直线的斜率不存在时,直线的方程为1x =,满足题意;因为1a =,b =,所以双曲线的渐近线方程为y =,则过P 分别作出两条与渐近线平行的直线即与双曲线只有一个交点;过点P 还可以作一条与左支相切的直线,故满足条件的直线共有4条.故答案为:4.14.【详解】2123lim n n n →∞+++⋯+2(1)12lim lim 2n n n n n n n →∞→∞++==111lim(222n n →∞=+=,故答案为:1215.【详解】由已知得:55511()(1)(1)a x a x x x x++=+++⋯⋯①对于5(1)x +,其通项为15k k k T C x +=,分别令2k =,3代入①式,可得2x 项的系数为:2355101020aC C a +=+=,解得1a =.故答案为:1.16.【详解】当3x <时,22()6(3)9f x x x x =-+=--+,即有()f x 递增;故()f x 在R 上单调递增.由2(2)(34)f x x f x -<-,可得2234343x x x x ⎧-<-⎨-⎩或223343x x x ⎧-<⎨->⎩,解得1473x x <<⎧⎪⎨⎪⎩或1373x x -<<⎧⎪⎨>⎪⎩,即为713x<或733x <<,即13x <<.即有解集为(1,3).故答案为:(1,3).17.【详解】对于任意[1x ∈,4],不等式2044ax bx a x ++恒成立,可得当[1x ∈,4]时,不等式4(4b a x b x-+-恒成立,设4()f x x x=+,[1x ∈,4];可得[1x ∈,2]时()f x 递减,[2x ∈,4]时()f x 递增,可得f (2)时取得最小值4,f (1)f =(4)时取得最大值5,所以()f x 的值域为[4,5];所以原不等式恒成立,等价于4454b a bb a b --⎧⎨--⎩,(()y af x =为()f x 的一次函数,最大值与最小值都在端点处)即044054a b a b +⎧⎨+⎩,设45a b x a b y +=⎧⎨+=⎩,则0405x y ⎧⎨⎩,所以54a x y b x y =-+⎧⎨=-⎩,所以目标函数|||25||||4325|||4325z a a b y x x y y x x y =+++=-+++=-+++,画出不等式组表示的平面区域,如图所示;当y x 时,目标函数3425z x y =++,所以0x =,0y =时25min z =,4x =,5y =时57max z =;当y x <时,目标函数5225z x y =++,所以0x =,0y =时为临界值25min z =,4x =,4y =时53max z =;综上可得,|||25|a a b +++的范围是[25,57].故答案为:[25,57].。

2021年高中学历士兵考军校军考数学专项复习测试卷及答案

2021年高中学历士兵考军校军考数学专项复习测试卷及答案

第 4页(共 7页)
故选:B.
6.【解答】解:A.f(x)=sinx 在(0,+∞)上不是单调函数,不满足条件. B.f(﹣x)=e﹣x+ex=f(x),函数 f(x)为偶函数,不满足条件. C.f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),则函数 f(x)是奇函数,当 x>0 时,f(x) =x3+x 是增函数,满足条件.
一.选择题(共 11 小题)
1.下列函数是偶函数,且在[0,+∞)上单调递增的是( )
A. 셰ٗ䬨 ٙ 赘ٕ 셰 ٗ 㘷䬨 ‵ ٗ
B.f(x)=|x|﹣2cosx
ٗ C. 셰ٗ䬨 ٙ
㘷 ٗ
,ٗ
, ٗٙ
D.f(x)=10|lgx|
‵ٗ ‵ 㘷,ٗ
2.函数 셰ٗ䬨 ٙ 㘷
,满足 f(x)>1 的 x 的取值范围( )
第 6页(共 7页)
即(x1﹣x2)•(x1+x2)>0∴f(x1)﹣f(x2)>0, 即 f(x)在(﹣∞,0]上是减函数; (2)证明:函数 f(x)的定义域为 R,对于任意的 x∈R,都有 f(﹣x)=2(﹣x)2﹣1=2x2 ﹣1=f(x), ∴f(x)是偶函数, (3)解:f(x)在[﹣1,0]上是减函数,在[0,2]上是增函数 ∴x=0 时,函数取得最小值为﹣1;x=2 时,函数取得最大值为 7.
则需内层函数 t=x2﹣4x﹣5 在(a,+∞)上单调递增且恒大于 0,
则(a,+∞)⊆(5,+∞),即 a≥5.
∴a 的取值范围是[5,+∞).
故选:D.
11.【解答】解:∵函数 셰ٗ䬨 ٙ 赘ٕ 噠 셰ٗ 知ٗ 知䬨在区间(﹣∞,﹣2)上单调递增,

2021年军考部队战士考军校数学综合复习测试练习试卷及答案

2021年军考部队战士考军校数学综合复习测试练习试卷及答案

综合题1.在ABC ∆中,已知32sin4cos 2B B +=,且B 为锐角.(1)求sin B ;(2)若(4(sin sin )B AC A C +=+ ,且ABC ∆的面积为,求ABC ∆的周长.2.已知集合{|||4}A x x a =-<,2{|3(1)2(31)0}B x x a x a =-+++<(其中)a R ∈.(1)若1a =,求A B ;(2)求使A B ⊆的a 的取值范围.3.数列{}n a 的前n 项和n S ,112a =,且120(2)n n n a S S n -+= .(1)证明数列1{}nS 为等差数列;(2)数列{}n a 的通项公式;(3)若2(1)n n b n a =-,(2,*)n n N ∈,求证:2334451212n n b b b b b b b b +++++⋯+<.4.甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.5.设()f x lnx =,()()()g x f x af x =+'.(1)求函数()f x 的图象在点(,1)e 处的切线方程;(2)求()g x 的单调区间;(3)当1a =时,求实数m 的取值范围,使得1()()g m g x m-<对任意0x >恒成立.6.已知(0,1)-是椭圆C 的一个顶点,焦点在x 轴上,其右焦点到直线y x =+3.(1)求椭圆C 的标准方程;(2)过点1(1,)2P 的直线l 与椭圆C 交于M 、N 两点,若P 为MN 中点,求直线l 方程.7.如图,在直三棱柱111A B C ABC -中,1AB AC AA ==,BC =,点D 是BC 的中点.(Ⅰ)求证:AD ⊥平面11BCC B ;(Ⅱ)求证:1//A B 平面1ADC ;(Ⅲ)求二面角1A A B D --的余弦值.参考答案与试题解析1.【详解】(1)ABC ∆中,232sin 4cos 24(12sin )B B B +==-.解得1sin 4B =或1sin 2B =-;又B 为锐角,∴1sin 4B =;(2)设内角A ,B ,C 所对的边分别为a ,b ,c ,(4(sin sin )B AC A C =+ ,∴(4()b b a c =+ ,∴4a c +=+又ABC ∆ 的面积为152,∴111sin 2242ac B ac =⨯=,∴ac =;B 为锐角,cos B =由余弦定理得22222cos ()221b a c ac B a c ac ac =+-=+--⨯,解得1b =,ABC ∴∆的周长为5+.2.【详解】(1)由于1a =,则集合{||1|4}{|414}{|35}A x x x x x x =-<=-<-<=-<<,2{|680}{|24}B x x x x x =-+<=<<,故{|24}A B x x =<< ;(2)由于集合{|||4}}{|44}{|44}A x x a x x a x a x a =-<==-<-<=-<<+,2{|3(1)2(31)0}{|[(31)](2)0}B x x a x a x x a x =-+++<=-+-<①当312a +>,即13a >时,(2,31)B a =+由于A B ⊆,则1342431a a a a ⎧>⎪⎪-⎨⎪++⎪⎩解得6a ;②当312a +<,即13a <时,(31,2)B a =+由于A B ⊆,则1343142a a a a ⎧<⎪⎪-+⎨⎪+⎪⎩解得52a -;③当312a +=,即13a =时,B =∅由于不满足A B ⊆,则13a ≠综上可知,使A B ⊆的a 的取值范围为5(,][62-∞- ,)+∞.3.【详解】(1)由120(2)n n n a S S n -+= .得112n n n n S S S S ---=- ,(2)n .∴1112n n S S --=,(2)n ,故数列1{}nS 为公差为2的等差数列.(2)由(1)知数列1{}n S 的首项为112a =,公差2d =,则数列122(1)2n n n S =+-=,即12n S n =,111122(1)2(1)n n n a S S n n n n -=-=-=---,2n ,则1,121,22(1)n n a n n n ⎧=⎪⎪=⎨⎪-⎪-⎩.(3)若2(1)n n b n a =-,(2,*)n n N ∈,则112(1)2(1)[]2(1)n n b n a n n n n =-=--=- ,2n ,则1211111212n n b b n n n n ++==-++++ ,则23344512111111111233412222n n b b b b b b b b n n n +++++⋯+=-+-+⋯+-=-<+++成立.4.【详解】(1)从甲箱中任取2个产品的事件数为2887282C ⨯==,这2个产品都是次品的事件数为233C =.∴这2个产品都是次品的概率为328.(2)设事件A 为“从乙箱中取出的一个产品是正品”,事件1B 为“从甲箱中取出2个产品都是正品”,事件2B 为“从甲箱中取出1个正品1个次品”,事件3B 为“从甲箱中取出2个产品都是次品”,则事件1B 、事件2B 、事件3B 彼此互斥.251285()14C P B C ==,115322815()28C C P B C ==,233283()28C P B C ==,12(|)3P A B =,25(|)9P A B =,34(|)9P A B =,P ∴(A )112233()(|)()(|)()(|)P B P A B P B P A B P B P A B =++.5215534714328928912=⨯+⨯+⨯=.5.【详解】(1)()f x lnx =的导数为1()f x x '=,即有()f x 在点(,1)e 处的切线斜率为1k e=,则()f x 在点(,1)e 处的切线方程为11()y x e e-=-,即为0x ey -=;(2)()()()a g x f x af x lnx x=+'=+,221()(0)a x a g x x x x x -'=-=>,当0a 时,()0g x '>,()g x 在(0,)+∞上递增;当0a >时,0x a <<时,()0g x '<,()g x 在(0,)a 上递减,x a >时,()0g x '>,()g x 在(,)a +∞上递增.综上可得,当0a 时,()g x 的增区间为(0,)+∞;当0a >时,()g x 的增区间为(,)a +∞,减区间为(0,)a .(3)()f x lnx =,()()()g x f x af x =+',即有()a g x lnx x=+,由1a =,1()g x lnx x =+,22111()x g x x x x-'=-=,令()0g x '=,解得1x =,当()0g x '>,即1x >时,函数()g x 单调递增,当()0g x '<,即01x <<时,函数()g x 单调递减,即有()min g x g =(1)1=,由于1()()g m g x m -<,对任意0x >恒成立,则11()lnm g x m m+-<,0m >,即有()lnm g x <恒成立,即1lnm <,解得0m e <<,则实数m 的取值范围是(0,)e .6.【详解】(1)由题知1b =,3d ==则c +=,则c =⋯.(2分)则222213a b c =+=+=,则椭圆飞标准方程为2213x y +=⋯.(5分)(2)设1(M x ,1)y ,2(N x ,2)y ,则221122221313x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩⋯(7分)两式作差得12121212()()()()03x x x x y y y y -++-+=所以1212203y y x x -+=-,即121223y y k x x -==--,⋯.(10分)则直线方程为12(1)23y x -=--,即4670x y +-=⋯.(12分)(其他方法可参考给分)7.【详解】()I 因AB AC =,D 为BC 中点,故AD BC ⊥(1分).又因在直三棱柱111A B C ABC -中,1CC ⊥平面ABC ,故1AD CC ⊥(2分).又1BC CC C = (3分),故AD ⊥平面11BCC B (4分).用向量方法证明本题请对应给分.本题可分别以AB ,AC ,1AA 为x ,y ,z 轴建立空间直角坐标系,也可分别以DC ,DA ,11(AD D 为棱11B C 中点)为x ,y ,z 轴建立空间直角坐标系.()II 如图,连接11A C AC E = ,连接DE .因D 、E 分别是BC 、1A C 的中点,故DE 是△1A BC 的中位线(5分),故1//A B DE (6分).因1A B ⊂/平面1ADC (7分),故1//A B 平面1ADC (8分).用向量方法证明本题请如下给分:求出平面1ADC 的法向量(2分),因1A B ⊂/平面1ADC (7分),故1//A B 平面1ADC (8分).()III 解法一:连接11B A BA O = ,分别取OB 、AB 中点H 、1O ,连接DH 、1DO .因为四边形11ABB A 是正方形且1O ,H 分别是BA ,BO 中点,故1HO AB ⊥.又因1O ,H 分别是BA ,BC 中点且AB AC ⊥,故1O D AB ⊥,故1O HD ∠就是二面角1A A B D --的平面角(10分).设2AB =,则在Rt △1HO D 中,190HO D ∠=︒且111121,222O D AC O H OA ====,故62HD =,故113cos 3O H O HD DH ∠==(12分).解法二:设2AB AC ==,则BC =222AB AC BC +=,故AB AC ⊥(9分),又因三棱柱111A B C ABC -为直三棱柱,故AB ,AC ,1AA 两两垂直,故可建系如图.则平面1AA B 的法向量为1(0,1,0)n = (10分).又11(2,0,2),(1,1,2)A B A D =-=- ,设平面1A BD 的法向量2(,,)n x y z = ,则020x z x y z -=⎧⎨+-=⎩.令1z =可得2(1,1,1)n = (11分).设所求二面角为θ,由图可知θ为锐角,故1212||cos ||||n n n n θ== (12分).。

2021年军考复习解放军武警(高中)士兵考军校数学专项测试卷附答案解析

2021年军考复习解放军武警(高中)士兵考军校数学专项测试卷附答案解析

高中学历士兵考军校-数学-直线与圆测试卷关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。

1.已知圆的一条直径的端点分别是(0,0)A ,(2,4)B ,则此圆的方程是()A .22(1)(2)5x y -+-=B .22(1)(2)25x y -+-=C .22(5)5x y -+=D .22(5)25x y -+=2.已知圆C 的圆心在直线y x =-上,且过两点(2,0)A ,(0,4)B -,则圆C 的方程是()A .22(3)(3)x y -++=B .22(3)(3)x y ++-=C .22(3)(3)10x y -++=D .22(3)(3)10x y ++-=3.已知圆心为点(1,1)C -,并且在直线4320x y --=上截得的弦长为的圆的方程为()A .22(1)(1)2x y ++-=B .22(1)(1)4x y ++-=C .22(1)(1)2x y -++=D .22(1)(1)4x y -++=4.圆22(2)(12)4x y ++-=关于直线80x y -+=对称的圆的方程为()A .22(3)(2)4x y +++=B .22(4)(6)4x y ++-=C .22(4)(6)4x y -+-=D .22(6)(4)4x y +++=5.已知直线0x y a ++=与圆22(2)(3)2x y -++=相切,那么a 的值为()A .3或1-B .1±C .3-或7-D .5-±6.已知圆22(1)(2)9x y -++=的一条直径通过直线240x y +-=被圆所截弦的中点,则该直径所在的直线方程为()A .250x y +-=B .250x y --=C .250x y -+=D .250x y ++=7.直线1y =+被圆224x y +=截得的弦长为()A B .C D8.两圆222620x y x y +-++=,224240x y x y ++--=的公共弦所在的直线方程为()A .3430x y --=B .4350x y ++=C .3490x y ++=D .4350x y -+=9.已知圆2221:(3)(4)(0)O x y r r ++-=>与圆222:1O x y +=外切,则实数(r =)A .2B .4C .6D .810.已知圆22241:()C x y a a +-=的圆心到直线20x y --=的距离为,则圆1C 与圆222:2440C x y x y +--+=的位置关系是()A .相交B .内切C .外切D .相离11.P 是圆22:(3)4M x y +-=上的动点,则P 到直线30l y --=的最短距离为()A .5B .3C .2D .112.已知点(,)P x y 是圆22(2)1x y -+=上任意一点,则yx的最大值是()A BC .12D 13.圆22(1)(2)8x y -++=上到直线30x y ++=的点的个数为()A .1B .2C .3D .414.已知点(,)P x y 是曲线2sin (cos x y ααα=+⎧⎨=⎩为参数)上任意一点,则22(5)(4)x y -++的最大值为()A .6B .5C .36D .2515.P 是直线:40l x y +-=上的动点,Q 是曲线:(sin x C y θθθ⎧=⎪⎨=⎪⎩为参数)上的动点,则||PQ 的最小值是()A .522B .22C D .322参考答案与试题解析1.【详解】解:根据题意,圆的一条直径的端点分别是(0,0)A ,(2,4)B ,则圆的圆心为AB 的中点,即圆心的坐标为(1,2);圆的半径11||22r AB ===则要求圆的标准方程为22(1)(2)5x y -+-=;故选:A .2.【详解】解:由题意设圆的圆心坐标为(,)C a a -,可得||||AC BC =,即=,解得:3a =,即圆心坐标(3,3)-,半径r ==,所以圆的方程为:22(3)(3)10x y -++=.故选:C .3.【详解】解:圆心C 到直线4320x y --=的距离1d =,又圆截直线4320x y --=所得的弦长为,∴圆的半径2r ==.则所求圆的方程为22(1)(1)4x y -++=.故选:D .4.【详解】解:由圆22(2)(12)4x y ++-=可得圆心坐标(2,12)-,半径为2,由题意可得关于直线80x y -+=对称的圆的圆心与(2,12)-关于直线对称,半径为2,设所求的圆心为(,)a b 则21280221212a b b a -+⎧-+=⎪⎪⎨-⎪=-⎪+⎩解得:4a =,6b =,故圆的方程为:22(4)(6)4x y -+-=,故选:C .5.【详解】解:圆22(2)(3)2x y -++=其圆心为(2,3)-,半径为因为直线与圆相切,则圆心到切线的距离等于圆的半径,=解得3a =或1-.故选:A .6.【详解】解:由圆22(1)(2)9x y -++=的方程可得圆心坐标为(1,2)-,联立直线240x y +-=与圆22(1)(2)9x y -++=可得:2224(1)(2)9y x x y =-+⎧⎨-++=⎩,整理可得:2526280x x -+=,所以12265x x +=,1212122()85y y x x +=-++=-,所以弦的中点坐标为:13(5,6)5-,由题意可得该直径所在的方程为:6252(1)1315y x -++=--,整理可得:250x y --=.故选:B .7.【详解】解:根据题意,圆224x y +=的圆心为(0,0),半径2r =,则圆心到直线1y =+10y -+=的距离12d ==,则直线1y =+被圆224x y +=截得的弦长为2=故选:D .8.【详解】解:根据题意,两圆的方程为222620x y x y +-++=、224240x y x y ++--=,则有222226204240x y x y x y x y ⎧+-++=⎨++--=⎩,变形可得3430x y --=;即两个圆的公共弦所在的直线方程3430x y --=故选:A .9.【详解】解:结合题意12||15O O r =+==,解得:4r =,故选:B .10.【详解】解:圆22241:()C x y a a +-=的圆心为21(0,)C a ,半径21r a =,0a ≠,由圆22241:()C x y a a +-=的圆心到直线20x y --=的距离为,2=,解得a =可得圆1C 的圆心为(0,2),半径为2,而圆222:2440C x y x y +--+=的圆心为(1,2),半径为21r =,由1212||121C C r r ==-=-,可得两圆的位置关系为内切.故选:B .11.【详解】解:如图,过M 作MA l ⊥于A ,当P 在线段MA 上时,||PA 为最短距离,由点到直线的距离公式,知||3MA =,||||21PA MA ∴=-=.故选:D .12.【详解】解:如图,yx的几何意义为圆22(2)1x y -+=上的动点与原点连线的斜率,由图可知,当动点P 与A 重合时,OA 与圆相切,此时yx最大为OA 所在直线的斜率.由图可知,||3OA =,则1333OA k ==.故选:B .13.【详解】解:由题意,圆心坐标为(1,2)-,半径为22, 圆心到直线30x y ++=的距离|123|22d -+==,∴圆22(1)(2)8x y -++=上到直线30x y ++=的距离等于2的点共有3个.故选:C .14.【详解】解:曲线2sin (cos x y ααα=+⎧⎨=⎩为参数),转换为普通方程为22(2)1x y -+=,该曲线是以(2,0)为圆心,1为半径的圆.所以圆心(2,0)到点(5,4)-的距离22(52)(4)5d =-+-=,所以点到圆上的最大距离为516+=,所以22(5)(4)x y -++的最大值为36.故选:C .15.【详解】解:Q 是曲线3cos :(sin x C y θθθ⎧=⎪⎨=⎪⎩为参数)上的动点,设,sin )Q θθ,所以点Q 到直线l 的距离|2sin()4|3d πθ+-==当sin()13πθ+=时,min d ==故选:C .。

2021年军考数学复习综合测试卷及答案

2021年军考数学复习综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷1.已知函数()|2|||f x x x a =++-.(1)当1a =时,求不等式()5f x 的解集;(2)若不等式()21f x a -对任意x R ∈恒成立,求实数a 的取值范围.2.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c,已知2sin sin a C B =.(1)若b =120C =︒,求ABC ∆的面积S(2)若:2:3b c =,求3.已知数列{}n a 的前n 项和为n S ,且14||(*)n n a a n N +=-∈.(Ⅰ)若10a >,且1a ,2a ,3a 成等比数列,求1a 和4S ;(Ⅱ)若数列{}n a 为等差数列,求1a 和n S .4.从2018年起,某市中考考试科目将改为“3科必考3+科选考+体育”.其中3科必考科目为语文、数学和外语,3科选考科目应在物理和生化两科中选择1或2科,在历史、地理和思想品德三科中选择1或2科.已知甲、乙两名考生在选考科目中选择每一科的可能性都相同.()I 求甲考生在选考科目中选考历史的概率;()II 如果甲、乙两名考生都选考了物理,求他们选考科目完全相同的概率.5.有7名“厦门金砖会议”志愿者,其中志愿者1A ,2A ,3A 通晓英语,1B ,2B 通晓俄语,1C ,2C 通晓葡萄牙语,从这7名志愿者中任意选出通晓英语、俄语和葡萄牙语的志愿者各1名,组成一个小组(1)求1A 被选中的概率(2)求1B 和1C 不全被选中的概率.6.已知函数221()2f x x a lnx =-,a R ∈.(Ⅰ)若曲线()y f x =在1x =处的切线方程为6270x y +-=,求a 的值;(Ⅱ)若0a >,函数()y f x =与x 轴有两个交点,求a 的取值范围.7.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1F ,2F ,若点B 在椭圆上,且△12BF F 为等边三角形.(1)求椭圆C 的标准方程;(2)过点1F 的直线l 与椭圆C 交于M 、N 两点,若点2F 在以MN 为直径的圆外,求直线l 斜率k 的取值范围.8.如图,三棱柱111ABC A B C -中,平面11AA B B ⊥平面ABC ,D 是AC 的中点.(1)求证:1//B C 平面1A BD ;(2)若160A AB ACB ∠=∠=︒,1AB BB =,2AC =,AB =,求1A 到平面11BCC B 的距离.参考答案与详解1.【详解】(1)把1a =代入()|2|||f x x x a =++-,可得21,2()|2||1|3,2121,1x x f x x x x x x ---⎧⎪=++-=-<<⎨⎪+⎩.当2x -时,()5f x 等价于215x --,解得3x -,则32x --;当21x -<<时,()5f x 等价于35,此式恒成立,则21x -<<;当1x 时,()5f x 等价于215x +,解得2x ,则12x .综上,不等式()5f x 的解集为[3-,2];(2)()|2||||2||||2||2|f x x x a x a x x a x a =++-=++-++-=+,∴不等式()21f x a -对任意x R ∈恒成立转化为|2|21a a +-恒成立,若210a -<,即12a <,则不等式|2|21a a +-成立;若210a -,即12a ,则2244441a a a a ++-+,即23830a a --,解得133a -,则132a .综上,实数a 的取值范围是(-∞,3].2.【详解】(1)由正弦定理知,sin sin c B b C =;由2sin sin a C B =,得2sin sin a C C =,故2a =,b =6a ∴=;又120C =︒,ABC ∆的面积11sin 61822S ab C ==⨯⨯,故ABC ∆的面积S 为18.(2)由2a =,:2:3b c =,∴3232a c b ⎧=⎪⎪⎨⎪=⎪⎩,∴3sin 23sin sin 2A B C B ⎧=⎪⎪⎨⎪=⎪⎩,cos sin 2sin cos sin 222cos 3sin sin 3sin 2B A B A B A A B AC C B ---===-;2222223())522cos 32622b b b c a A bc b b +-+-===;22cos 13A ∴-=.故3sin 2sin 1sin AB C-=.3.【详解】(Ⅰ)10a >,2114||4a a a ∴=-=-,1132111,044||4|4|8,4a a a a a a a <⎧=-=--=⎨->⎩.1a ,2a ,3a 成等比数列,∴2132a a a =,①104a <时,有2211(4)a a =-,得12a =;②14a >时,有2111(8)(4)a a a -=-,得14a =-)或14a =+.综①②可知,12a =或14a =+.当12a =时,22a =,32a =,42a =,得48S =;当14a =+时,2140a a =-<,3180a a =->,4314||4a a a =-=-,得48S =.故48S =;(Ⅱ)214||a a =-,3214||4|4|||a a a =-=--,∴由等差数列的定义得:2132a a a =+,即1112(4||)4|4|||a a a -=+--,当14a >时,可得10a =,矛盾;当104a <时,可得12a =,符合条件;当10a 时,公差2140d a a =-=>,∴必存在2m ,使得14(1)4m a a m =+->,这与14||0m m m m d a a a a +=-=--<矛盾.综上可知,只有12a =时符合条件且此时公差210d a a =-=.2n a ∴=,则12a =,2n S n =.4.【详解】()I 甲若在历史、地理和思想品德三科中只选择1科历史,则他应在物理和生化两科中选择2科,概率为11133⨯=;甲若在历史、地理和思想品德三科中选择2科,其中一科为历史,则他应在物理和生化两科中选择1科,概率为111132212=,甲考生在选考科目中选考历史的概率为11531212+=.()II 如果甲、乙两名考生都选只选考了物理,则他们只需在生化、历史、地理和思想品德四科中同时选择相同的2科,概率为224411136C C =.5.【详解】(1)从这7名志愿者中任意选出通晓英语、俄语和葡萄牙语的志愿者各1名,组成一个小组,基本事件有12个,分别为:1(A ,1B ,1)C ,1(A ,1B ,2)C ,1(A ,2B ,1)C ,1(A ,2B ,2)C ,2(A ,1B ,1)C ,2(A ,1B ,2)C ,2(A ,2B ,1)C ,2(A ,2B ,2)C ,3(A ,1B ,1)C ,3(A ,1B ,2)C ,3(A ,2B ,1)C ,3(A ,2B ,2)C ,用事件M 表示“1A 被选中”,则事件M 包含的基本事件有4个,分别为:1(A ,1B ,1)C ,1(A ,1B ,2)C ,1(A ,2B ,1)C ,1(A ,2B ,2)C ,1A ∴被选中的概率41123p ==.(2)用N 表示事件“1B 和1C 不全被选中”,则N 表示事件“1B 和1C 全被选中”,则N 包含听基本事件有3个,分别为:1(A ,1B ,1)C ,2(A ,1B ,1)C ,3(A ,1B ,1)C ,∴由对立事件概率计算公式得1B 和1C 不全被选中的概率:33()1()1124P N P N =-=-=.6.【详解】由题意知函数的定义域为(0,)+∞,2()a f x x x'=-.(Ⅰ)因为函数在1x =处切线斜率为3-,所以当1x =时,f '(1)213a =-=-,解得2a =±.(Ⅱ)222()()()(0)a x a x a x a f x x x x x x-+-'=-==>,当0x a <<时,()0f x '<;当x a >时,()0f x '>,所以函数()y f x =在区间(0,)a 上单调递减,在区间(,)a +∞上单调递增,当x a =时,函数()f x 有最小值22211()()()22min f x f a a a lna a lna ==-=-,当0x →时,()f x →+∞,当x →+∞时,()f x →+∞,所以要使函数()f x 与x 轴有两个交点,只需()0min f x <,即21()02a lna -<,解得a >7.【详解】(1)由已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为1F ,2F ,若点B在椭圆上,可得b =由△12BF F 为等边三角形可知2a =,则椭圆C 的标准方程为22143x y +=.(2)由已知可得直线l 的斜率存在为k ,直线l 的方程为(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,可得2222(34)84120k x k x k +++-=,设1(M x ,1)y ,2(N x ,2)y ,则2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,且△0>恒成立,由点2F 在以MN 为直径的圆外,则290MF N ∠<︒且22,F M F N 不同向220F M F N ⇒>,则1(1x -,12)(1y x -,2)0y >1212(1)(1)0x x y y ⇒--+>1212(1)(1)(1)(1)0x x k x k x ⇒--+++>,整理可得2221212(1)(1)()10k x x k x x k ++-+++>,则22222224128(1)(1)103434k k k k k k k -+--++>++,整理可得229377977k k k >=>⇒>或377k <-.8.【详解】(1)证明:连结1AB 交1A B 于点O ,则O 为1AB 的中点,因为D 是AC 的中点,所以1//OD B C ,又OD ⊂平面1A BD ,1B C ⊂/平面1A BD ,所以1//B C 平面1A BD .(2)解:2AC =,AB =,60ACB ∠=︒,2222cos 3AB AC BC AC BC ACB ∴=+-∠=,即23422cos60BC BC =+-⨯⨯⨯︒,1BC ∴=,222AC AB BC =+,AB BC ∴⊥.又平面11AA B B ⊥平面ABC ,平面11AA B B ⋂平面ABC AB =,BC ∴⊥平面11AA B B ,160A AB ∠=︒,1AB BB ==111BC B C ==,∴11111111sin 24A B B S A B BB A B B =∠=.∴11111133C A B B A B B V S BC -==⨯.设1A 到平面11BCC B 的距离为h ,1111122CBB SBC BB =⨯⨯=⨯⨯,11111333326A CBB CBB V S h -=⨯⨯=⨯=,1111A BCBC A B B V V --=,∴64h =,解得32h =,1A ∴到平面11BCC B 的距离为32.。

2021年军考-高中学历士兵考军校-数学综合题专项测试卷

2021年军考-高中学历士兵考军校-数学综合题专项测试卷

(Ⅱ)由
2n﹣1 可得 n=1 时, 2﹣=1,
即 b1=a1=1;
n≥2 时,
2n﹣1﹣(2n﹣1﹣1)=2n﹣1,即 bn=2n﹣1an=(2n﹣1)•2n﹣1,
对 n=1 也成立, 则前 n 项和 Tn=1•1+3•2+5•22+5•23+…+(2n﹣1)•2n﹣1, 2Tn=1•2+3•22+5•23+5•24+…+(2n﹣1)•2n, 两式相减可得﹣Tn=1+2(2+22+23+…+2n﹣1)﹣(2n﹣1)•2n
递减,在(x0,+∞)上单调递增,
由 f(1)=0,可得存在 x0∈(1,+∞),f(x0)<0,不合题意. 综上所述,a≤2. 另解:若当 x∈(1,+∞)时,f(x)>0, 可得(x+1)lnx﹣a(x﹣1)>0,
即为 a<

由y
的导数为 y′

由 y=x 2lnx 的导数为 y′=1
>0,
函数 y 在 x>1 递增,可得
设 DE=a,则 D(1,a,0),E(1,0,0),F(0,0, ), (﹣1,﹣
a, ),
∵直线 DF 与平面 BCDE 所成角的正切值为 , Ṹ
∴直线 DF 与平面 BCDE 所成角的正弦值为 , 平面 BCDE 的法向量 (0,0,1),
∵直线 DF 与平面 BCDE 所成角的正切值为 ,
∴|cos< , >|

, 当且仅当 2a=3b 时取等号,

的最小值为 .
2.【详解】(1)因为 bsinB=asinC,根据正弦定理可得 b2=ac,

2021年军考高中士兵考军校综合测试卷及答案

2021年军考高中士兵考军校综合测试卷及答案

2021年军考-高中学历士兵考军校-数学综合测试卷一.选择题(共9小题)1.已知集合{|(1)}A x y ln x ==+,2{|40}B x x =-,则(A B =)A .{|2}x x -B .{|12}x x -<C .{|12}x x -<<D .{|2}x x 2.已知函数213()log (38)f x x ax =-+在[1-,)+∞上是减函数,则实数a 的取值范围是()A .(-∞,6]-B .[11-,6]-C .(11-,6]-D .(11,)-+∞3.已知命题:21p x m <+,2:560q x x -+<,且p 是q 的必要不充分条件,则实数m 的取值范围为()A .12m >B .12mC .1m >D .1m 4.已知递增的等差数列{}n a 的前n 项和为n S ,175a a =,266a a +=,对于*n N ∈,不等式1231111nM S S S S +++⋯+<恒成立,则整数M 的最小值是()A .1B .2C .3D .45.已知a =,b =,2log 3c =,则a ,b ,c 的大小关系为()A .b a c>>B .a c b>>C .a b c>>D .b c a>>6.点M 为圆22:20C x y +=上的任意一点,则点M 到直线8x =-与直线1y =-的距离之积的最大值为()A .50B .54C .56D .587.某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为8:00~8:40,课间休息10分钟.某学生因故迟到,若他在9:10~10:00之间到达教室,则他听第二节课的时间不少于10分钟的概率为()A .15B .310C .25D .458.已知向量(3cos ,3sin )a θθ=,(0,3)b =-,(,)2πθπ∈,则向量a 、b 的夹角为()A .32πθ-B .2πθ-C .2πθ+D .θ9.若函数2,0()21,0x e x f x x x x ⎧=⎨-++<⎩(其中e 是自然对数的底数),且函数|()|y f x mx =-有两个不同的零点,则实数m 的取值范围是()A .(0,1)B .(0,)e C .(-∞,0)(1⋃,)+∞D .(-∞,0)(e ⋃,)+∞二.填空题(共8小题)10.若正数a ,b 满足2483log 1log log ()a b a b +=+=+,则a =,b =.11.已知(1A ,0,2),(1B ,3-,1),点M 在Z 轴上且到A 、B 两点的距离相等,则M 点坐标为.12.若(0,)2πα∈,且2cos 2)54παα=+,则tan α=.13.在三角形ABC 中,(1A ,2-,1)-,(0B ,3-,1),(2C ,2-,1),若向量n 与平面ABC垂直,且||n =,则n 的坐标为.14.912x-展开式中的常数项是.(用数字作答)15.2[147(32)]lim6752n a n n n →∞+++⋯+-=--,则a =.16.设2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,则a 的取值范围为.17.在平行六面体1111ABCD A B C D -中,1AB =,2AD =,13AA =,90BAD ∠=︒,1160BAA DAA ∠=∠=︒,则1AC 的长为.参考答案与详解一.选择题(共9小题)1.【详解】{|10}{|1}A x x x x =+>=>-,{|22}B x x =-,{|12}AB x x ∴=-<.故选:B .2.【详解】213()log (38)f x x ax =-+在[1-,)+∞上是减函数,且外层函数13y log t =为减函数,则内层函数238t x ax =-+在[1-,)+∞上是增函数且恒大于0,∴2163(1)80aa ⎧-⎪⎨⎪⨯-++>⎩,解得116a -<-.∴实数a 的取值范围是(11-,6]-.故选:C .3.【详解】命题:21p x m <+,2:560q x x -+<,即:23x <<,p 是q 的必要不充分条件,(2∴,3)(21m ⊆+,)+∞,213m ∴+,解得1m .实数m 的取值范围为1m .故选:D .4.【详解】等差数列{}n a 满足266a a +=,176a a ∴+=,又175a a =,∴1715a a =⎧⎨=⎩,或1751a a =⎧⎨=⎩等差数列{}n a 是递增数列,11a ∴=,75a =.设公差为d ,则7165a a d =+=,23d ∴=.11(1)(21)3n a a n d n =+-=+.∴1(2)()23n n n n n s a a +=+=.1311()22n s n n =-+.故12311113311()2212n S S S S n n +++⋯+=--++,令11()12f n n n =+++11(1)()031f n f n n n +-=-<++.∴函数()f n 在n N +∈单调递减,∴33119()[1,22124n n --∈++.∴对于*n N ∈,不等式1231111n M S S S S +++⋯+<恒成立时,94M,则整数M 的最小值是3.故选:C .5.【详解】根据指数运算与对数运算的性质,3a =>,12b <=<,21log 32c <=<,设2log b ==,2log 3c =,由于函数2log m t =为增函数,由于y =4,所以a b c >>.故选:C .6.【详解】设(,)M x y ,则点M 到直线8x =-与直线1y =-的距离之积为|8||1|x y ++,由题意,只需求(8)(1)88x y xy y x ++=+++的最大值.2214xy x y +,2816y y +,2114x x +,三式相加得:2258()17424xy y x x y ++++=,当且仅当12x y =,4y =,112x =,同时成立,即2x =,4y =时,(8)(1)x y ++的最大值为50.故选:A .7.【详解】他在9:10~10:00之间随机到达教室,区间长度为50,他听第二节课的时间不少于10分钟,则他在9:10~9:20之间随机到达教室,区间长度为10,∴他在9:10~10:00之间随机到达教室,则他听第二节课的时间不少于10分钟的概率是101505=,故选:A .8.【详解】(3cos ,3sin )a θθ=,(0,3)b =-,||3a ∴=,||3b =,3cos 03sin (3)9sin a b θθθ=⨯+⨯-=-,设向量a 与b 夹角为α,则3cos sin cos()2||||a b a b παθθ==-=-,又(2πθ∈,)π,3(22ππθ-∈,)π,且[0α∈,]π,32παθ∴=-,故选:A .9.【详解】由|()|0y f x mx =-=得|()|f x mx =,当0x =时,|(0)|0f =,即10=不成立,0x ∴≠,即|()|f x m x=,当0x >时,x e m x =,设()x e g x x =,则22(1)()x x x e x e e x g x x x --'==,由()0g x '>得1x >,由()0g x '<得01x <<,即当1x =时,函数()g x 取得极小值,极小值为g (1)e =,当0x <时,22|()||21||(1)2|f x x x x m x x x -++--===,则当1x =-时,2|(1)2|0x x --=,则函数22|(1)2||21|x x x y x x----==2221211||||2|x x x x x x x x----=-=-=----,设1()2h x x x=--在0x <时为增函数,且当1x <-时,()0h x <,且为增函数,|()|h x 为减函数,|()|h x -为增函数,且1|()||2|0h x x x-=---<,当1x >时,()0h x >,且为增函数,|()|h x 为增函数,|()|h x -为减函数,且1|()||2|0h x x x-=---<,作出函数|()|f x y x=的图象如图:要使|()|f x m x=有两个不同的根,则m e >或0m <,即实数m 的取值范围是(-∞,0)(e ⋃,)+∞,故选:D .二.填空题(共8小题)10.【详解】正数a ,b 满足2483log 1log log ()a b a b +=+=+,222(4)()log (8)23log b log a b a +∴==,8a ∴==,解得116a b ==.故答案为:116,116.11.【详解】设(0M ,0,)z ,=,解得3z =-.M ∴点坐标为(0,0,3)-.故答案为:(0,0,3)-.12.【详解】(0,)2πα∈,且cos 2)54παα=+,1cos 2cos )cos )5ααααα∴=+=+,221cos sin (cos sin )(sin cos )(sin cos )5αααααααα∴-=-+=+,1cos sin 5αα∴-=①,可得:cos sin αα>,即tan 1α<,∴①式两边平方可得:112sin cos 25αα-=,解得:242sin cos 25αα=,∴2222sin cos 2tan 24125sin cos tan αααααα==++,可得:212tan 25tan 120αα-+=,∴解得:3tan 4α=,或43(大于1,舍去).故答案为:34.13.【详解】设平面ABC 的法向量为(m x =,y ,)z ,则0m AB =,且0m AC =,(1AB =-,1-,2),(1AC =,0,2),∴2020x y z x z --+=⎧⎨+=⎩,即24x zy z =-⎧⎨=⎩,令1z =,则2x =-,4y =,即(2m =-,4,1),若向量n 与平面ABC 垂直,∴向量//n m ,设(2n m λλ==-,4λ,)λ,||n =,∴||λ=,即||1λ=,解得1λ=±,∴n 的坐标为(2,4-,1)-或(2-,4,1),故答案为:(2,4-,1)-或(2-,4,1)14.【详解】91)2x展开式中的通项公式:939219911()()22r r rr r rr T xx --+=-=-痧.令9302r -=,解得3r =.∴常数项339121(22=-=-ð.故答案为:212-.15.【详解】2[147(32)]lim6752n a n n n →∞+++⋯+-=--,∴2[(132)]2lim 6752n na n n n →∞+-=--,22322lim 6752n a an n n n →∞-=--,∴3267a=,解得28a =.故答案为:28.16.【详解】由于2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩,则当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(-∞,0]为减区间,即有0a ,则有21a x a x++,0x >恒成立,由12x x +=,当且仅当1x =取最小值2,则22a a +,解得12a -.综上,a 的取值范围为[0,2].故答案为:[0,2].17.【详解】由题意,如图,作1A O ⊥底面于O ,作OE 垂直AB 于E ,OF 垂直AD 于F ,连接1A F ,1A E ,由于,1160BAA DAA ∠=∠=︒,故有△1A FA ≅△1A EA ,即11A F A E=从而有△1A FO ≅△1A EO ,即有OF OE =,由作图知,O 在角DAB 的角平分线上,又底面是矩形,故角DAO =角45BAO =︒,又1AB =,2AD =,13AA =,1160BAA DAA ∠=∠=︒,11A F A E ∴==,32AE AF ==,于是有322AO =,在直角三角形1A OA 中,解得1322A O =在图中作1C H 垂直底面于H ,作HR 垂直DC 延长线与R ,由几何体的性质知,32HR CR ==,112A O C H ==连接AH ,得如图的直角三角形ASH ,直角三角形1AHC ,由已知及上求解得52AS =,72SH =22222211125491892234444AC AH C H AS SH C H ∴=+=++=++==1AC ∴=。

2021军考复习资料高中毕业生士兵考军校-数学专项测试卷及答案解析

2021军考复习资料高中毕业生士兵考军校-数学专项测试卷及答案解析

高中学历士兵考军校-数学-等差数列测试卷关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。

一.选择题(共9小题)1.已知等差数列{}n a 中,468a a +=,则34567(a a a a a ++++=)A .10B .16C .20D .242.已知{}n a 为等差数列,若1598a a a π++=,则28cos()(a a +=)A .12-B .32C .12D .323.已知数列{}n a 是首项14a =,公比1q ≠的等比数列,且14a ,5a ,32a -成等差数列,则公比q 等于()A .12B .1-C .2-D .24.等比数列{}n a 中,5a 、7a 是函数2()43f x x x =-+的两个零点,则39a a 等于()A .3-B .3C .4-D .45.设等差数列{}n a 的前n 项和为n S ,且0n a ≠,若533a a =,则95(S S =)A .95B .59C .53D .2756.等差数列{}n a 的前n 项和为n S ,26312a a +=-,1020S =,则n S 取最小值时,n 的值为()A .2B .3C .4D .57.在等差数列{}n a 中,已知35715a a a ++=,则该数列前9项和9(S =)A .18B .27C .36D .458.在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于()A .66B .132C .66-D .132-9.在等差数列{}n a 中,前n 项和n S 满足9235S S -=,则6a 的值是()A .5B .7C .9D .3二.详解题(共3小题)10.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足*1121(2,)n n n S S S n n N +-+=+∈.(1)求证:数列{}n a 为等差数列,并求{}n a 的通项公式;(2)设3n n n b a = ,求数列{}n b 的前n 项和n T .11.已知等差数列{}n a 的前n 项和为n S ,25a =-,612S =-.(1)求{}n a 的通项公式;(2)求n s ,并求当n 取何值时n S 有最小值.12.已知各项都不相等的等差数列{}n a ,66a =,又1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)设22n a n b n =+,求数列{}n b 的前n 项和n S .参考答案与试题解析一.选择题(共10小题)1.C【详解】解:等差数列{}n a 中,468a a +=,可得3746528a a a a a +=+==,可得54a =,则则3456788420a a a a a ++++=++=.故选:C .2.A【详解】解:{}n a 为等差数列,192852a a a a a ∴+=+=,1598a a a π++= ,583a π∴=,28163a a π+=,28161cos()cos32a a π∴+==-.故选:A .3.B【详解】解: 数列{}n a 是首项14a =,公比1q ≠的等比数列,且14a ,5a ,32a -成等差数列,513242a a a ∴=-,422(4)442(4)q q ∴=⨯-,解得1q =(舍)或1q =-.故选:B .4.B【详解】解:5a 、7a 是函数2()43f x x x =-+的两个零点,5a ∴、7a 是方程2430x x -+=的两个根,573a a ∴= ,由等比数列的性质可得:39573a a a a == .故选:B .5.D【详解】解:依题意,19951553992552a a S a a a S a +⨯==+⨯,又533a a =,∴95927355S S =⨯=,故选:D .6.C【详解】解:设等差数列{}n a 的首项为1a ,公差为d ,由26312a a +=-,1020S =,得11481210910202a d da +=-⎧⎪⎨⨯+=⎪⎩,解得172a d =-⎧⎨=⎩.72(1)29n a n n ∴=-+-=-.由290n a n =-,得92n.∴数列{}n a 自第5项起大于0,则n S 取最小值时,n 的值为4.故选:C .7.D【详解】解:由等差数列的性质可得:3575153a a a a ++==,解得55a =.则该数列的前9项和1959()9452a a a +===.故选:D .8.D【详解】解:在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,3924a a ∴+=-,∴数列{}n a 的前11项和为:1111139111111()()(24)132222S a a a a =+=+=⨯-=-.故选:D .9.A【详解】解: 等差数列{}n a 中,前n 项和n S ,满足9235S S -=,34567896735a a a a a a a a ∴++++++==,65a ∴=,故选:A .三.详解题(共3小题)10.【解答】解:(1)由已知,11()()1(2n n n n S S S S n +----=,*)n N ∈,即*11(2,)n n a a n n N +-=∈,且211a a -=.∴数列{}n a 是以12a =为首项,公差为1的等差数列.1n a n ∴=+(2)由(Ⅰ)知3(1)3n n n n b a n ==+ ,它的前n 项和为22333(1)3n n T n =++⋯++ ,(1)23132333(1)3n n T n +=++⋯++ ,(2)12341(1)(2):2233333(1)3n n n T n +--=++++⋯+-+ 13(13)333(1)3(331322n n n n n +-=+-+=--+- ,∴333(3244n n T n =+- .11.【详解】解:(1)设{}n a 的公差为d ,由题意得115254a d a d +=-⎧⎨+=-⎩,得17a =-,2d =.{}n a ∴的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,∴当4n =时,n S 取得最小值,最小值为16-.12.【详解】解:(1) 各项都不相等的等差数列{}n a ,66a =,又1a ,2a ,4a 成等比数列.∴61211156()(3)0a a d a d a a d d =+=⎧⎪+=+⎨⎪≠⎩,解得11a =,1d =,∴数列{}n a 的通项公式1(1)1n a n n =+-⨯=.(2)2222n a n n b n n =+=+ ,∴数列{}n b 的前n 项和:23(2222)2(123)n n S n =+++⋯+++++⋯+2(12)(1)2122n n n -+=+⨯-1222n n n +=-++.。

2021年军考数学综合大题练习试卷及答案

2021年军考数学综合大题练习试卷及答案

2021年军考-高中学历士兵考军校-数学专项测试卷压轴题1.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,满足sin (2cos)0C c A -+=.(1)求角A 的大小;(2)若a =,ABC ∆sin sin B C +的值.2.已知函数()|1|2|2|()f x x x x R =-+-∈,记()f x 的最小值m .(1)解不等式()5f x ;(2)若23a b c m ++=,求222a b c ++的最小值.3.已知数列{}n a 是等比数列,公比为q ,数列{}n b 是等差数列,公差为d ,且满足:111a b ==,2324b b a +=,3235a b -=-.(1)求数列{}n a 和{}n b 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和n S .4.2019年《少年的你》自上映以来引发了社会的广泛关注,特别引起了在校学生情感共鸣,现假如男生认为《少年的你》值得看的概率为45,女生认为《少年的你》值得看的概率为34,某机构就《少年的你》是否值得看的问题随机采访了4名学生(其中2男2女).(1)求这4名学生中女生认为值得看的人数比男生认为值得看的人数多的概率;(2)设ξ表示这4名学生中认为《少年的你》值得看的人数,求ξ的分布列与数学期望.5.已知函数()(1)2x f x e a lnx =-+-,e 为自然对数的底数.(1)若1x =是()f x 的极值点,求a 的值,并求()f x 的单调区间;(2)当2a =时,证明:()433f x ln >-.6.已知椭圆2222:1(0)x y C a b a b+=>>经过点1)2P ,两个焦点为1(F ,2F .(1)求C 的方程;(2)设圆222:()D x y r b r a +=<<,若直线l 与椭圆C ,圆D 都相切,切点分别为A 和B ,求||AB 的最大值.7.如图,长方体1111ABCD A B C D -的底面ABCD 为正方形,AB =13AA =,E 为棱1AA 上一点,1AE =,F 为棱11B C 上任意一点.(1)证明:BE EF ⊥;(2)求点1B 到平面1BEC 的距离.参考答案与解析1.【解答】解:(1sin sin (2cos )0A C C A -+=,因为sin 0C ≠cos 2A A -=,所以sin()16A π-=,解得62A ππ-=,故23A π=;(2)1sin 2ABC S bc A ∆==4bc =,由余弦定理,可得22222120cos 228b c a b c A bc +-+--===,故2216b c +=,则b c +====,所以()sin sin sin 2210b c b c A B C R R a ++=+===.2.【解答】解:(1)53(1)()|1|2|2|3(12)35(2)x x f x x x x x x x -<⎧⎪=-+-=-⎨⎪->⎩,()5f x ,∴5351x x -⎧⎨<⎩或3512x x -⎧⎨⎩或3552x x -⎧⎨>⎩,∴1003x,∴不等式的解集为10[0,]3.(2)由(1)知()f x 的最小值为1,1m ∴=.231a b c m ∴++==,∴2222222111()(149)(23)141414a b c a b c a b c ++=++++++=,当且仅当113,,14714a b c ===时,等号成立,222a b c ∴++的最小值为114.3.【解答】解:(1)设等比数列{}n a 的公比为q ,等差数列{}n b 的公差为d ,由题意知0q >,由已知,有2(1)(12)43(1)5d d q q d +++=⎧⎨-+=-⎩,即243232q d q d -+=-⎧⎨-=-⎩,解得2q d ==.{}n a ∴的通项公式为12n n a -=,{}n b 的通项公式为21n b n =-;(2)由(1)知,1221n n n n c a b n -=+=+-,则121(1222)[135(21)]n n S n -=+++⋯+++++⋯+-21(12)(121)21122n n n n n ⨯-+-=+=+--.4.【解答】解:(1)设X 表示2名男生认为值得看的人数,Y 表示2名女生中认为值得看的人数,设“这4名观众中女生认为值得看的人数比男生认为值得看的人数多”为事件A ,又男生认为《少年的你》值得看的概率为45,女生值得看的概率为34,P ∴(A )(1P X ==,2)(0Y P X =+=,1)(0Y P X =+=,2)Y =212122223411133187()()()(()((()45554445400C C =++=,∴这4名学生中女生认为值得看的人数比男生认为值得看的人数多的概率为87400.(2)ξ的可能取值为0,1,2,3,4,(0)(0P P X ξ===,0202221110)()()54400Y C C ===,(1)(1P P X ξ===,0)(0Y P X =+=,1020212222411131141)()()(()()()554544400Y C C C C ==+=,(2)(2P P X ξ===,0)(1Y P X =+=,1)(0Y P X =+=,2)Y =22021102222222224141131373()()()()()()(()54554454400C C C C C C =++=,(3)(1P P X ξ===,2)(2Y P X =+=,12222122224131311681)()(()()()()554544400Y C C C C ==+=,(4)(2P P X ξ===,222222431442)((54400Y C C ===,ξ∴的分布列为:ξ01234P 140014400734001684001444001147316814431()0123440040040040040010E ξ=⨯+⨯+⨯+⨯+⨯=.5.【解答】解:(1)()(1)2x f x e a lnx =-+-,1()x a f x e x+'∴=-,1x =是()f x 的极值点,f '∴(1)(1)0e a =-+=,解得1a e =-.此时,()x ef x e x'=-,令()0f x '=,则1x =,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增.故()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)证明:当2a =时,()32x f x e lnx =--,3()x f x e x'=-,令3()()x g x f x e x '==-,则23()0x g x e x'=+>,即()g x 在(0,)+∞上单调递增,又g (1)30e =-<,g (2)2302e =->,∴存在0(1,2)x ∈,使得0()0g x =,即003x e x =,也就是003lnx ln x =-,当0(0,)x x ∈时,()0g x <,()0f x '<,()f x 单调递减;当0(x x ∈,)+∞时,()0g x >,()0f x '>,()f x单调递增.000000033()()323(3)23332332433x min f x f x e lnx ln x x ln ln ln x x ∴==--=---=+-->-=-,故()433f x ln >-.6.【解答】解:解法1:(1)由题意c =,所以223a b =+,C 的方程可化为22221(0)3x y b b b +=>+.因为C的经过点1)2,所以2231134b b +=+,解得21b =,或234b =-(舍去).于是C 的方程为2214x y +=.(2)设:l y kx m =+,代入2214x y +=得222(41)8440k x kmx m +++-=.由△2216(41)0k m =+-=,得2214m k =+①.设0(A x ,0)y ,则024441km k x k m =-=-+,001y kx m m=+=-.因为l 与圆D 相切,所以圆心D 到lr =,即222(1)m r k =+②.由①②得22234r m r =-,22214r k r -=-.所以圆D的切线长||AB ===.因为2244r r +=,当r =时取等号,因为(1,2)r =,所以||AB 的最大值为1.解法2:(1)由椭圆定义得122||||4a AF AF =+=+=.所以2a =,因为c =,所以2221b a c =-=,于是C 的方程为2214x y +=.(2)设:l y kx m =+,代入2214x y +=得222(41)8440k x kmx m +++-=.由△2216(41)0k m =+-=,得2214m k =+①.设1(A x ,1)y ,则124441km kx k m=-=-+.将y kx m =+代入222x y r +=得2222(1)20k x kmx m r +++-=.由△22224()0r k r m =+-=,得222(1)m r k =+②.由①②得22214r k r -=-.设2(B x ,2)y ,则22122.|||1km kr x AB x x k m=-=-=-=+.因为2244r r +=,当r =时取等号,因为(1,2)r =,所以||AB 的最大值为1.7.【解答】(1)证明:1AE =,12A E =,在长方体1111ABCD A B C D -中,1B E ==,BE ==∴22211B B B E BE =+,即1BE B E ⊥,在长方体1111ABCD A B C D -中,11B C ⊥平面11A ABB ,BE ⊂平面11A ABB ,11BE B C ∴⊥,又1111B E B C B =,BE ∴⊥平面11B C E ,无论点F 位置如何,EF ⊂平面11B C E ,BE EF ∴⊥.(2)解:设点1B 到平面1BEC 的距离为h ,由(1)知,BE ⊥平面11B C E ,1BE EC ∴⊥,又1BC =21EC ∴==∴111122BEC SEC BE ==⨯=,111111122B EC SB C B E ===,1111B BEC B B EC V V --=,即1111133BEC B EC Sh SBE =.1112B EC BEC SBEh S∴===,即点1B 到平面1BEC的距离为。

军队院校招生文化科目统考士兵高中《数学》考前点题卷一

军队院校招生文化科目统考士兵高中《数学》考前点题卷一

军队院校招生文化科目统考士兵高中《数学》考前点题卷一[单选题]1.设集合U={1,2,3,4),M={1,2,3},N={2,3(江南博哥),4},则C U(M∩N)=()。

A.{1,2}B.{2,3}C.{2,4}D.{1,4}参考答案:D参考解析:M∩N={2,3},C U(M∩N)={1,4}.[单选题]2.已知下列命题:(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。

(2)如果直线“和平面a满足a∥α,那么a与α内的任何直线平行。

(3)如果直线a,b和平面a满足a∥a,b∥a,那么a∥b.(4)如果直线a,b和平面α满足a//b,a//α,b?α,那么b//α。

其中正确的命题的个数为()。

A.0B.1C.2D.3参考答案:B参考解析:对于(1),有可能a在经过b的某个平面内.对于(2)a与α内的某些直线异面.对于(3),直线a,b平行,相交,异面都有可能;(4)是正确的.[单选题]3.已知a=1og30.8,b=1og25,c=0.32,则()。

A.a<b<cB.b<a<cC.a<c<bD.c<b<a参考答案:C参考解析:a=1og30.8<0,b=1og25>1og22=1,c=0.32∈(0,1).[单选题]4.已知平面向量a=(3,-1),b=(x,3),a⊥b,则x的值为()。

A.-3B.-1C.1D.3参考答案:C参考解析:.[单选题]5.已知双曲线的渐近线相互垂直,则双曲线的离心率为()。

A.B.C.D.参考答案:A参考解析:(-)=-1,所以a2=b2,所以a:b:c=1:1:,所以e==.[单选题]6.已知正项数列{a n}的各项均不相等,且,则下列各不等式中一定成立的是()。

A.B.C.D.参考答案:B参考解析:由条件知{a n}为等差数列,[单选题]7.若直线x-2y+1=0过圆x2+y2-ax+6y-1=0的圆心,则实数a 的值为()。

A.10B.14C.-10D.-14参考答案:D参考解析:由于圆心坐标为(,-3),所以a=-14.[单选题]8.椭圆上的一点P到左焦点的距离为1,则它到相对应准线的距离为()。

2021年军考解放军武警(高中学历)士兵考军校数学仿真试卷及答案

2021年军考解放军武警(高中学历)士兵考军校数学仿真试卷及答案

故答案为:2+2 .
16.【详解】令 t=f(a), 则 f(t)≤0, 当 t≤1 时,有 2t2﹣2≤0, 解得﹣1≤t≤1; 当 t>1 时,lgt≤0, 解得 0<t≤1,不成立. 即有﹣1≤f(a)≤1, 当 a≤1 时,﹣1≤2a2﹣2≤1,
解得 a 或
a

则有 a≤1 或
a

当 a>1 时,有﹣1≤lga≤1,
∵NC1=2NB1,∴CP⊥BN,
又 DC⊥平面 BCC1B1,∴DC⊥BN,则 BN⊥平面 DCP, 则 M 点的轨迹为平面 DCP 与球 O 的截面圆周. 建立如图所示的坐标系,则 D(0,0,0),C(0,6,0),P(6,6,2),O(3,3, 3), 设平面 DOP 的法向量为 (x,y,z),
7.已知 6 个高尔夫球中有 2 个不合格,每次任取 1 个,不放回地取两次,在第一次取
第 1页(共 11页)
到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为( )
A.
B.
C.
D. t
8.在△AnBn∁n 中,记角 An、Bn、∁n 所对的边分别为 an、bn、cn,且这三角形的三边长
是公差为 1 的等差数列,若最小边 an=n+1,则
()
A.
B.
C.
D.
9.点 M 是棱长为 6 的正方体 ABCD﹣A1B1C1D1 的内切球 O 球面上的动点,点 N 为 B1C1
上一点,2NB1=NC1,DM⊥BN,则动点 M 运动路线的长度为( )
A.
B.
t
C.
D.
二.填空题(共 8 小题)
10.lg 2lg2﹣( )﹣1=

11.已知 sin(α ) ,α∈(0,π),则 cos(2α )=

2021年军考教材 高中士兵考军校数学试题

2021年军考教材 高中士兵考军校数学试题

高中士兵考军校 军考数学科目必刷卷关键词:冠明军考 军考教材 军考复习资料 军考模拟试卷 2021军考教材一、选择题(每小题4分,共36分)1.设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( ) A.[1,2) B.[1,2] C.(2,3] D.[2,3]2.设实数a ,b ,c 分别满足323log 1,log 1,22a a b b c c ==+=,则a ,b ,c 的大小关系为( ) A.a >b >cB.b >a >cC.c >b >aD.a >c >b3.若a ,b 为实数,则“0<ab <1”是“a <1b或b >1a”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知数列{}n a 是公差为2的等差数列,且125a a a 、、成等比数列,则前8项和8S 等于( )A.44 B.64C.8D.2555.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72B.4C.92D.5 6.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有( ) A.24个 B.30个 C.40个 D.60个7.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军。

若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12B.35C.23D.348.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.489.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱 锥S -ABC 的体积为( ) A.33B.233C.433D.533二、填空题(每小题4分,共32分)10.已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 12.设复数z 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________. 13.函数f (x )=5log (2x +1)的单调增区间是________.14.18x ⎛ ⎝的展开式中含x 15的项的系数为________.(结果用数值表示) 15.已知sin α=12+cos α,且α∈π0,2⎛⎫⎪⎝⎭,则cos 2πsin 4αα-⎛⎫ ⎪⎝⎭的值为________.16.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。

2021军考复习高中毕业生士兵考军校数学专项测试卷及答案

2021军考复习高中毕业生士兵考军校数学专项测试卷及答案

高中数学-直线方程测试卷关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download(下载,安装)“军考课堂”Application(简称“APP”)进行观看。

一.选择题(共11小题)1.直线x +y﹣2=0的倾斜角为()A.30°B.150°C.120°D.60°2.已知直线l过点(﹣2,1),且倾斜角是,则直线l的方程是()A.x+y+1=0B.y=﹣x C.x+2=0D .y﹣1=0 3.直线l经过点A (2,1),B(3,t2),,则直线l倾斜角的取值范围是()A.B.[0,π)C.D.4.若直线mx+2y﹣2=0与直线x+(m﹣1)y+2=0平行,则m的值为()A.﹣1B.1C.2或﹣1D.25.已知点A(1,﹣2),B(m,2),若线段AB的垂直平分线的方程是x+2y﹣2=0,则实数m的值是()A.﹣2B.﹣7C.3D.16.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直7.已知△ABC的顶点坐标为A(7,8),B(10,4),C(2,﹣4),则BC边上的中线AM的长为()A.8B.13C.2D.8.已知点A(1,1)和点B(4,4),P是直线x﹣y+1=0上的一点,则|PA|+|PB|的最小值是()A.3B.C.D.29.已知点P是x轴上的点,P到直线3x﹣4y+6=0距离为6,则P点坐标为()A.(﹣6,0)B.(﹣12,0)C.(﹣12,0)或(8,0)D.(﹣6,0)或(6,0)10.已知抛物线C:y2=x,点P为抛物线C上任意一点,则点P到直线x﹣y+2=0的最小距离为()A.B.C.D.11.点A(cosθ,sinθ)到直线3x+4y﹣4=0距离的最大值为()A.B.C.1D.二.填空题(共5小题)12.若直线l1:ax+3y﹣5=0与l2:x+2y﹣1=0互相垂直,则实数a的值为.13.直线l1:x﹣y﹣m=0与直线l2:mx﹣y+3=0平行,则m=;l1与l2之间的距离为.14.已知直线l1:ax﹣y﹣1=0,直线l2:x+y﹣3=0.若直线l1的倾斜角为,则a=;若l1∥l2,则l1,l2之间的距离为.15.过点A(﹣2,)与直线x﹣y+5=0成的直线方程.16.我们称两条相交直线所成的角中不大于90°的角为这两条直线的夹角.设直线l1:y=x,与直线l2:y=﹣2x+4的夹角为θ,则cosθ的值为.参考答案与试题解析一.选择题(共11小题)1.【详解】设倾斜角为α,直线x+y﹣2=0的斜率为﹣,则tanα=﹣,∵0<α<180°∴α=120°,故选:C.2.【详解】直线l过点(﹣2,1),且倾斜角是,故直线l的斜率不存在,则直线l的方程是x=﹣2,故选:C.3.【详解】∵直线l经过点A(2,1),B(3,t2),∴,∵,∴0≤t2≤2,则t2﹣1∈[﹣1,1],设直线l的倾斜角为θ(0≤θ<π),则tanθ∈[﹣1,1],得θ∈.故选:A.4.【详解】由直线mx+2y﹣2=0与直线x+(m﹣1)y+2=0平行,得,解得m=2.故选:D.5.【详解】∵A(1,﹣2)和B(m,2)的中点在直线x+2y﹣2=0上,∴.∴m=3,故选:C.6.【详解】设直线l1、l2的斜率分别为k1,k2,∵直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,∴k1k2=﹣1.∴l1⊥l2.故选:D.7.【详解】由B(10,4),C(2,﹣4),得x M==6,y M=,即M坐标为(6,0).又A(7,8),∴|AM|=.故选:D.8.【详解】点A(1,1)和点B(4,4),P是直线x﹣y+1=0上的一点,过A作直线y=x+1的对称点A',设A'(m,n),可得=﹣1,=+1,解得m=0,n=2,即A'(0,2),连接A'B,可得|P A|+|PB|=|P A'|+|PB|≥|A'B|==2,当且仅当A',P,B三点共线时,取得最小值2.故选:D.9.【详解】由P是x轴上的点,设P(x,0);由P到直线3x﹣4y+6=0距离为6,所以=6,即|3x+6|=30,所以3x+6=±30,解得x=8或x=﹣12;所以P点坐标为(8,0)或(﹣12,0).故选:C.10.【详解】设点P(m2,m),则点P到直线x﹣y+2=0的距离为:=≥=.∴点P到直线x﹣y+2=0的最小距离为.故选:B.11.【详解】点A(cosθ,sinθ)到直线3x+4y﹣4=0距离为=≤=,即点A(cosθ,sinθ)到直线3x+4y﹣4=0距离的最大值为,其中,tanα=,α为锐角,故选:D.二.填空题(共5小题)12.【详解】∵直线l1:ax+3y﹣5=0与l2:x+2y﹣1=0互相垂直,∴a+6=0,解得a=﹣6.故答案为:﹣6.13.【详解】∵直线l1:x﹣y﹣m=0与直线l2:mx﹣y+3=0平行,∴m≠0,=≠,则m=1.且它们之间的距离为=2,故答案为:1;2.14.【详解】根据题意,直线l1:ax﹣y﹣1=0,即y=ax﹣1,其斜率k=a,若直线l1的倾斜角为,则其斜率k=tan=1,则有a=1,若l1∥l2,则有a×1=(﹣1)×1,解可得a=﹣1,此时l1的方程为﹣x﹣y﹣1=0,即x+y+1=0,则l1,l2之间的距离d==2;故答案为:1,2.15.【详解】直线x﹣y+5=0的斜率为,倾斜角为,因为所求直线与该直线的夹角为,所以所求直线的倾斜角为或,对应的斜率为﹣或不存在,当斜率为﹣时,直线方程为y﹣=﹣(x+2),即x+y﹣1=0;当斜率不存在时,直线方程为x=﹣2.所以所求直线的方程为x+2=0或x+y﹣1=0.故答案为:x+2=0或x+y﹣1=0.16.【详解】由题意可得:tanθ==3,∴cosθ==.故答案为:.。

【精品】2021军考高中士兵考军校数学知识点复习大全

【精品】2021军考高中士兵考军校数学知识点复习大全

第一章集合与简易逻辑主要内容第一节集合一集合的基本概念【例1-1-1】设集合2{|20}A x x x =--=,{|||2B x x y ==+,}y A ∈,则集合B 是()A .{-4,4}B .{-4,-1,1,4}C .{0,1}D .{-1,1}【详解】解集合A 方程,220x x --=得到2x =,1x =-,即:{21}A =-,y A ∈ ,即:2y =,1y =-,集合与简易逻辑集合简易逻辑集合中元素的特征集合的表示集合间的基本关系集合的基本运算四种命题充分必要性∴集合B :||2x y =+,y A ∈,得:||24x y =+=,||21x y =+=,故:4x =±,1x =±,∴集合B ={-4,-1,1,4},故选B 。

【例1-1-2】设集合{2A =,1a -,22}a a -+,若4A ∈,则(a =)A .-3或-1或2B .-3或-1C .-3或2D .-1或2【详解】∵4A ∈,∴集合A 里有数字4,若14a -=,则3a =-,2214a a ∴-+=,{2A ∴=,4,14};若224a a -+=,则2a =或1a =-,2a =时,11a -=-{214}A ∴=-,,;1a =-时,12a -=,由于集合中元素具有互异性,所以当1a =-时不成立,即a =-3或2,故选C 。

二集合的表示方法【例1-1-3】下列各组中的M 、P 表示同一集合的是①{3M =,1}-,{(3,1)}P =-;②{(3,1)}M =,{(1,3)}P =;③2{|1}M y y x ==-,2{|1}P t t x ==-;④2{|1}M y y x ==-,2{(,)|1}P x y y x ==-A .①B .②C .③D .④【详解】在①中,{3M =,1}-是数集,{(3,1)}P =-是点集,二者不是同一集合,故①错误;在②中,{(3,1)}M =,{(1,3)}P =是两个点集,但表示的不是同一个点,故②错误;在③中,2{|1}[1M y y x ==-=-,)+∞,2{|1}[1P t t x ==-=-,)+∞,二者表示同一集合,故③正确;在④中,2{|1}M y y x ==-表示数集,2{(,)|1}P x y y x ==-表示一条抛物线,故④错误;故选C 。

【精品】2021军考复习高中毕业生士兵考军校数学专项测试卷及答案

【精品】2021军考复习高中毕业生士兵考军校数学专项测试卷及答案

高中学历士兵考军校-数学综合测试卷关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。

一.选择题(共9小题)1.设集合{|415}A x x =-<-<,2{|4}B x x =>,则(A B = )A .{|26}x x <<B .{|36}x x -<<C .{|22}x x -<<D .{|32x x -<<-或26}x <<2.函数221(2xxy -+=的单调递增区间是()A .[1-,)+∞B .(-∞,1]-C .[1,)+∞D .(-∞,1]3.在ABC ∆中,能使3sin 2A >成立的充分不必要条件是()A .(0,)3A π∈B .(3A π∈,23πC .(3A π∈,2πD .(2A π∈,5)6π4.已知数列{}n a 的前n 项和为*22()n n S n N =-∈,则下列结论正确的是()A .11056a a a a =B .对任意2n ,且*n N ∈,都有211n n na a a +-=C .5S ,105S S -,1510S S -成等比数列D .对任意*n N ∈,都有1n na a+>5.若正数a ,b满足13a b+=,则ab 的最小值为()A .B .C .D .26.已知直线过抛物线24y x =的焦点F ,并与抛物线交于点A ,(B A 在第一象限),若A 的纵坐标为6,则线段AB 的长为()A .496B .1009C .436D .9197.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是()A .35B .25C .59D .238.直线l 过(1,2)P ,且(2,3)A ,(4,5)B -到l 的距离相等,则直线l 的方程是()A .460x y +-=B .460x y +-=C .2370x y +-=或460x y +-=D .3270x y +-=或460x y +-=9.已知(1a = ,1,1),(0b = ,y ,1)(01)y ,则cos a < ,b > 最大值为()A .33B .23C .32D .63二.填空题(共8小题)10.已知正实数a 满足9(8)a a a a =,log (2)a a 的值为.11.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是.12.已知复数1(z i i =-是虚数单位),则2iz z+=.13.在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c ,若2a =,3b =,2C A =,则cos 2C =.14.已知直线1y x =-与双曲线221(0,0)ax by a b +=><的渐近线交于A ,B 两点,且过原点和线段AB 中点的直线的斜率为,则b a =15.621(1)x x++展开式中2x 的系数为.16.已知正数x ,y 满足22241x xy y ++=,则x y +的取值范围是.17.在如图所示的四棱锥P ABCD -中,四边形ABCD 为菱形,60DAB ∠=︒,DM PA ⊥,4PA PD AB ===,M 为BC 中点.则点M 到平面PBD 的距离是.参考答案与试题解析一.选择题(共9小题)1.【详解】{|36}A x x =-<< ,{|2B x x =<-或2}x >,{|32A B x x ∴=-<<- 或26}x <<.故选:D .2.【详解】令22t x x =-+,则1(2ty =,由22t x x =-+的对称轴为1x =,可得函数t 在(,1)-∞递增,[1,)+∞递减,而1(2ty =在R 上递减,由复合函数的单调性:同增异减,可得函数221(2x xy -+=的单调递增区间是[1,)+∞,故选:C .3.【详解】在ABC ∆中,(0,)A π∈,∴由sin A >233A ππ<<,对于A ,(0,3A π∈时,sin A <,故A 错误;对于B ,(3A π∈,3)sin 22A π⇔>,(3A π∴∈,)2π是能使3sin 2A >成立的充要条件,故B 错误;对于C ,(3A π∈,3)sin 22A π⇒>,(3A π∴∈,)2π是能使3sin 2A >成立的充分不必要条件,故C 正确;对于D ,当2(3A π∈,5)6π时,sin 2A <,故D 错误.故选:C .4.【详解】22n n S =- .当1n =时110a s ==.当2n 时112n n n n a s s --=-=.∴10,12,2n n n a n -=⎧=⎨⎩∴数列{}n a 不是等比数列.对于A 选项,9110560,2a a a a ==,所以11056a a a a ≠,A 不正确对于B 选项,当2n =时110n n a a +-=,24n a =显然21n n n a a a +≠,B 不正确对于C 选项,5S ,105S S -,1510S S -不是等比数列,C 不正确对于D 选项,对任意*n N ∈,都有1n n a a +>,D 正确,故选:D .5.【详解】0a>,0b>,∴13a b=+∴∴ab,当且仅当13a b=时取等号,∴ab的最小值为.故选:B.6.【详解】如图:过B作BN OF⊥,交x轴于N,直线过抛物线24y x=的焦点F,并与抛物线交于点A,(B A在第一象限),若A的纵坐标为6,可得(9,6)A所以63tan84AFx∠==,4cos5AFx∠=,设BF m=,可得24cos5NF mAFxBF m-=∠==,解得109m=,线段AB的长为:101001099+=.故选:B.7.【详解】设事件A表示“第一次摸出次品”,事件B表示“第二摸出正品”,则P(A)42105==,264()5915P AB=⨯=,所以在第一次摸出次品的条件下,第二次也摸到正品的概率:4()215(|)2()35P ABP B AP A===.故选:D.8.【详解】设所求直线为l,由条件可知直线l平行于直线AB或过线段AB的中点,(1)AB的斜率为35424+=--,当直线//l AB时,直线l的方程是24(1)y x-=--,即460x y+-=,(2)当直线l经过线段AB的中点(3,1)-时,l的斜率为213132+=--,直线l的方程是32(1)2y x-=--,即3270x y+-=,故所求直线的方程为3270x y+-=,或460x y+-=.故选:D.9.【详解】【解法一】利用作图法,构造正方体,设正方体的边长为1,如图所示;则(1a OB ='= ,1,1),(0b OE == ,y ,1),且E 在线段D C ''上移动,当E 在D '位置时,cos a <,||||a b b a b >==⨯ 当E 在C '位置时,cos a <,||||a b b a b >===⨯ 【解法二】 (1a = ,1,1),(0b = ,y ,1)(01)y ,∴1a b y =+,||a =,||b = cos a ∴<,||||a b b a b >==⨯ ;设t ,则221t y -=,y t∴=,1())f t t ∴==;设1sin tα=,则21sin 2α,即42ππα,()sin )g αα∴=sin )αα=+)4πα=+,∴当4πα=时,()g α=.故选:D .二.填空题(共8小题)10.【详解】 正实数a 满足9(8)a a a a =,9log 8a a a a ∴=,由1log 89a a =,得8log 89a =-,8log 227a ∴=-,819log (2)log 2112727a a a ∴=+=-+=.故答案为:1927.11.【详解】函数()2cos sin 2f x x x =+,则2()2sin 2cos224sin 2sin 2(2sin 1)(sin 1)f x x x x x x x '=-+=--=--+,由()0f x '=可得1sin 2x =或sin 1x =-,当1sin (1,2x ∈-时,()0f x '>,当1sin (2x ∈,1)时,()0f x '<,所以1sin 2x =时,()f x 取得极大值此时3cos 2x =-或3cos 2x =,经验证可知,cos 2x =时,函数取得最大值,又()2cos (sin 1)f x x x =+,()f x ∴的最大值是:12(1)2+=.12.【详解】根据题意,复数1z i =-,则222(1)(1)(1)212i i i i z i i i z i ++=++=++=-,故答案为:2i .13.【详解】因为2C A =,所以3B A C A ππ=--=-,由正弦定理可得sin sin sin sin sin(3)sin 3aAAAb B A A π===-,因为sin 3sin(2)sin cos 2cos sin 2A A A A A A A=+=+22sin (12sin )2cos sin A A A A =-+22sin (12sin )2(1sin )sin A A A A=-+-33sin 4sin A A =-,则32sin 123sin 4343aA b A sin A sin A ===--,因为2(0,)C A π=∈,所以(0,2A π∈解得sin A =,故221cos 212sin 124A A =-=-⨯=,则217cos 2cos 42cos 2121168C A A ==-=⨯-=-,故答案为:78-.14.【详解】双曲线221(0,0)ax by a b +=><0±=,直线1y x =-0=联立,可得A,B ,,则AB 的中点为(b a b +,)aa b+,由过原点和线段AB中点的直线的斜率为,可得32aaa b b b a b+==-+,则3ba=-,故答案为:3-.15.【详解】当21(1)x +选择1时,6(1)x +展开式选择2x 的项为226C x ;当21(1x+选择21x时,6(1)x +展开式选择为446C x ,所以621(1)x x++展开式246630C C +=;故答案为:30.16.【详解】 正数x ,y 满足22241x xy y ++=,可得241y <,即有102y <<,2222131x xy y y ∴++=-<,即2()1x y +<,解得112x y <+<,故x y +的取值范围为1(2,1),故答案为:1(2,1)17.【详解】 四边形ABCD 为菱形,且60DAB ∠=︒,BCD ∴∆是等边三角形,又M 是BC 的中点,DM BC ∴⊥,又//BC AD ,DM AD ∴⊥,又DM PA ⊥,PA AD A = ,DM ∴⊥平面PAD ,又DM ⊂平面ABCD ,∴平面PAD ⊥平面ABCD .取AD 的中点H ,连接PH ,BH ,4PA PD AB === ,4AB BD AD ===,PH AD ∴⊥,且PH BH ==由平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PH ∴⊥平面ABCD ,故PH BH ⊥,∴PB =4PD BD ==,∴12BDP S ∆=⨯=,设M 到平面PBD 的距离为h,则13M PBD V h -=⨯=.又112432M PBD P BDM V V --==⨯⨯⨯=,∴4=,解得h =.∴点M 到平面PBD 的距离为2155.故答案为:2155.。

2021年解放军武警士兵考军校-军考数学压轴题专项复习测试卷及答案

2021年解放军武警士兵考军校-军考数学压轴题专项复习测试卷及答案

综合压轴题测试1.在ABC ∆中,a ,b ,c 是角A ,B ,C 所对的边,sin sin sin()B C A C -=-.(1)求角A ;(2)若a =,且ABC ∆的面积是,求b c +的值.2.已知函数()f x =的定义域为R .(1)求实数m 的取值范围;(2)若m 的最大值为n ,当正数a ,b 满足2132n a b a b+=++时,求74a b +的最小值.3.设{}n a 是一个公差不为零的等差数列,其前n 项和为n S ,已知990S =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .4.甲、乙两人进行定点投篮游戏,投篮者若投中则继续投篮,否则由对方投篮,第一次由甲投篮已知每次投篮甲、乙命中的概率分别为12、23;(1)求第3次由乙投篮的概率;(2)求前4次投篮中各投篮两次的概率.5.已知函数()log a f x x =,22()21g x m x mx =-+,若1b a >>,且f (b )15()2f b +=,b a a b =.(1)求a 与b 的值;(2)当[0x ∈,1]时,函数()g x 的图象与()(1)h x f x m =++的图象仅有一个交点,求正实数m 的取值范围.6.已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为2,A ,B 分别是椭圆的右顶点和下顶点.(1)求椭圆C 的标准方程;(2)已知P 是椭圆C 内一点,直线AP 与BP 的斜率之积为12-,直线AP 、BP 分别交椭圆于M ,N 两点,记PAB ∆,PMN ∆的面积分别为PAB S ∆,PMN S ∆.①若M ,N 两点关于y 轴对称,求直线PA 的斜率;②证明:PAB PMN S S ∆∆=.7.如图,四棱柱1111ABCD A B C D -的底面ABCD 是平行四边形,且1AB =,2BC =,60ABC ∠=︒,E 为BC 的中点,1AA ⊥平面ABCD ,1A D 与1AD 交于O .(Ⅰ)证明://OE 平面11CDD C ;(Ⅱ)证明:平面1A AE ⊥平面1A DE ;(Ⅲ)若1DE A E =,试求异面直线AE 与1A D所成角的余弦值.参考答案与解析1.【详解】(1)在ABC ∆中,sin sin()B A C =+,sin()sin sin()A C C A C ∴+-=-,即sin cos cos sin sin sin cos cos sin A C A C C A C A C +-=-2cos sin sin 0A C C ∴=≠,∴1cos 2A =,∴3A π=.(2)1sin 2ABC S bc A ∆==,12bc ∴=,由余弦定理得2222222cos ()3a b c bc A b c bc b c bc =+-=+-=+-,22()348b c a bc ∴+=+=,∴b c +=.2.【详解】(1)因为函数的定义域为R ,所以|1||3|0x x m ++--恒成立,设函数()|1||3|g x x x =++-,则m 不大于函数()g x 的最小值,又|1||3||(1)(3)|4x x x x ++-+--=,即()g x 的最小值为4,所以4m .(2)由(1)知4n =,所以21(622)()1213274()(74)4324a b a b a b a ba b a b a b a b +++++++=++=++5132519()24223424a b a b a b a b ++=+++⨯=++,当且仅当23a b a b +=+,即3210b a ==时,等号成立.所以74a b +的最小值为94.3.【详解】(1)设等差数列{}n a 的公差为(0)d d ≠,则21a a d =+,413a a d =+,由1a ,2a ,4a 成等比数列,可得2214a a a =,即2111()(3)a d a a d +=+,整理,可得1a d =.由91989902S a d ⨯=+=,可得12a d ==,1(1)2n a a n d n ∴=+-=.(2)由于2n a n =,所以1111()4(1)41n b n n n n ==-++,从而1111111111[()()()(412233414144n n n T n n n n =-+-+-+⋯+-=⨯=+++,即数列{}n b 的前n 项和为44n n T n =+.4.【详解】(1)由题意得第三次有乙投篮包含两种情况:①第一次甲中第二次甲不中;②第一次甲不中,第二次乙中.∴第3次由乙投篮的概率:111127(1)(1)222312p =-+-⨯=.(2)前4次投篮中各投篮两次包含三种情况:①第一次甲中,第二次甲不中,第三次乙中;②第一次甲不中,第二次乙不中,第三次甲不中;③第一次甲不中,第二次乙中,第三次乙不中.∴前4次投篮中各投篮两次的概率:211212112213(1)(1)(1)(1)(1(1)22323223336p =⨯-⨯+-⨯-⨯-+-⨯⨯-=.5.【详解】(1)()log a f x x =,(1)a >,若b a >,且15()()2f b f b +=,可得1,22a logb =或,因为1b a >>,所以log 1a b >,所以log 2a b =,即2a b =,因为b aa b =所以22()a a a a =,所以22a a =,解之得2a =,4b =.(2)因为m 为正数,222()21(1)g x m x mx mx =-+=-为二次函数,在区间1(0,)m 为减函数,在区间1(,)m +∞为增函数,函数2log (1)y x m =++为增函数,分两种情况讨论:①当01m <时,11m,在区间[0,1]上,2(1)y mx =-为减函数,值域为2[(1)m -,1],函数2log (1)y x m =++为增函数,值域为[m ,1]m +,此时两个函数图象有一个交点,符合题意;②当1m >,得11m <,在区间1(0,)m 上,2(1)y mx =-为减函数,在区间1(,1)m 为增函数,函数2log (1)y x m =++为增函数,值域为[m ,1]m +,若两个函数图象有一个交点,则有2(1)1m m -+,解之得0m 或3m ,因为m 为正数,则3m ;综上m 的取值范围为(0,1][3 ,)+∞.6.【详解】(1)椭圆2222:1(0)x y C a b a b +=>>的短轴长为2,22b ∴=,即1b =,22c e a ==,可得22a =,∴椭圆的方程为2212x y +=,(2)①解:设直线PA 的斜率为k ,则直线PA 的方程为(y k x =-,联立22(22y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 并整理得,2222(12)420k x x k +-+-=,解得1x =,22222212x k =+22222(12M k ∴+,222)12k -+.直线PA ,PB 的斜率乘积为12-,∴直线PB 的方程112y x k=--,联立2211222y x k x y ⎧=--⎪⎨⎪+=⎩,消去y 并整理得22(12)40k x kx ++=,解得10x =,22412k x k -=+,24(12k N k -∴+,221212k k -+.M ,N 关于y 轴对称,∴222222401212k k k --+=++,即2210k --=,解得222k =.当22k +=时,由12(2y y x ⎧=⎪⎪⎨+⎪=-⎪⎩,解得(2P,1)2+-,在椭圆C 外,不满足题意.∴直线PA 的斜率为222-,(3)由(2)可知22222(12M k -+,222)12k -+,24(12k N k -+,2212)12k k -+,A ,0),(0,1)B -,∴直线MB的方程为21y =-,2t =,由(112y k x y x k ⎧=⎪⎨=--⎪⎩,解得2222212P k x k -=+,222212p k y k =-+,22222222222222(1)(1)(()1212(12)k k k k k k PA k k k -+++=-+=+++2222222222222(1)(14)()(1)1212(12)k k k PB k k k -++=+-=+++2222242(12)(1)(14)()(12)k k k PA PB k -+++222222222222222(2)2(1)(1)(12)(12)(12)k k k PM k k k --++-+-=+=+++2222222222222224)(122)(1)(14)(12)(12)(12)k k k k k PN k k k -+-+++=+=+++2222242(12)(1)(14)()(12)k k k PM PN k -++∴=+ PA PB PM PN ∴= ,又APB MPN ∠=∠11sin sin 22PAB PMN S PA PB APB S PM PN MPN ∆∆∴=∠==∠ 7.【详解】(Ⅰ)取AD 的中点H ,连接OE ,EH ,则OH 是△1AD D 的中位线,则1//OH D D ,则正方形ABCD 中,//EH CD ,则平面//OHE 平面11C D DC ,OE ⊂ 平面OEH ,//OE ∴平面11CDD C ;(Ⅱ)依题意,12BE EC BC AB CD ====,ABE ∴∆是正三角形,60AEB ∠=︒,又CDE ∆ 中,1(180)302CED CDE ECD ∠=∠=︒-∠=︒,18090AED CED AEB ∴∠=︒-∠-∠=︒,即DE AE ⊥,1AA ⊥ 平面ABCD ,DE ⊆平面ABCD ,1DE AA ∴⊥.1AA AE A = ,DE ∴⊥平面1A AE ,DE ⊆ 平面1A DE ,∴平面1A AE ⊥平面1A DE .(Ⅲ)取1BB 的中点F ,连接EF 、AF ,连接1B C , △1BB C 中,EF 是中位线,1//EF B C ∴11////A B AB CD ,11A B AB CD ==,∴四边形ABCD 是平行四边形,可得11//B C A D 1//EF A D ∴,可得AEF ∠(或其补角)是异面直线AE 与1A D 所成的角.CDE ∆ 中,DE =,CD =,1A E =,1AE AB ==1A A ∴=,由此可得22BF =,AF EF ===,2226cos 26AE EF AF AEF AE EF +-∴∠== ,即异面直线AE 与1A D 所成角的余弦值为6.。

2021年(高中士兵)军考数学专项练习测试卷及答案

2021年(高中士兵)军考数学专项练习测试卷及答案

2021年军考-高中学历士兵考军校-数学专项测试卷基础练习(二项式与概率)1.在62()x x-的二项式展开式中,常数项为()A .160B .160-C .60D .60-2.在6(2)x -展开式中,2x 的系数为()A .240B .240-C .160-D .1603.82(x x+的展开式中4x 的系数是()A .28B .56C .112D .2564.在61(2)x x+的展开式中常数项是()A .60B .120C .160D .9605.若26246810120123456(2)x a a x a x a x a x a x a x +=++++++,则05(a a +=)A .88B .86C .76D .666.某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是()A .35B .40C .45D .607.某单位共有职工300名,其中高级职称90人,中级职称180人,初级职称30人.现采用分层抽样方法从中抽取一个容量为60的样本,则从高级职称中抽取的人数为()A .6B .9C .18D .368.袋子中有5个大小质地完全相同的球,其中3个红球和2个白球,从中不放回地依次随机摸出两个球,则摸出的两个球颜色相同的概率为()A.15B.25C.35D.459.现从甲、乙等6人中随机抽取2人到幸福社区参加义务劳动,则甲、乙仅有1人被抽到的概率为()A.25B.715C.815D.3510.从A,B,C三个同学中选2名代表学校到省里参加全国高中数学联赛,A 被选中的概率是()A.1B.23C.12D.1311.某生物实验室有20颗开紫花的豌豆种和25颗开白花的豌豆种,若从这些豌豆种中随机选取1颗,则这颗种子是开紫花的豌豆种的概率为()A.49B.59C.13D.2312.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是()A.13B.12C.23D.113.将甲、乙等4名交警随机分配到两个不同路口疏导交通,每个路口两人,则甲和乙不在同一路口的概率为()A.12B.13C.23D.1414.某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为()A.18B.38C.78D.8915.甲乙俩人投篮相互独立,且各投篮一次命中的概率分别是0.4和0.3,则甲乙俩人各投篮一次,至少有一人命中的概率为()A.0.7B.0.58C.0.12D.0.4616.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为()A.0.24B.0.36C.0.6D.0.84 17.2019年10月1日,在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学学院的甲、乙、丙三名同学被选上的概率分别为13,14,16,这三名同学中至少有一名同学被选上的概率为()A.13B.512C.712D.23参考答案与详解1.【解答】解:展开式的常数项为333333662(()2(1)208(1)160C x C x-=⨯⨯-=⨯⨯-=-,故选:B .2.【解答】解:展开式的通项公式为661662()(1)2r r r r r r r r T C x C x --+=-=-,令2r =,则展开式中含2x 项的系数为2246(1)21516240C -=⨯=,故选:A .3.【解答】解:82(x x +的展开式的通项公式为8821882(2r r r r r r r T C x C x x--+==,令824r -=,解得2r =,所以82(x x+的展开式中4x 的系数是2282112C =.故选:C .4.【解答】解:在61(2)x x+的展开式的通项公式为26162r r r r T C x -+=⋅⋅,令260r -=,求得3r =,可得展开式的常数项是3362160C ⋅=,故选:C .5.【解答】解:令0x =得60264a ==,5a 为10x 的系数,即556212a C =⋅=,则05641276a a +=+=,故选:C .6.【解答】解:某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是8003508045800-⨯=,故选:C .7.【解答】解:共有教师300人,其中高级职称90人,中级职称180人,初级职称30人,现用分层抽样方法抽取一个容量为60的样本,则高级职称中抽取的人数为:9060189018030⨯=++.故选:C .8.【解答】解:袋子中有5个大小质地完全相同的球,其中3个红球和2个白球,从中不放回地依次随机摸出两个球,基本事件总数5420n =⨯=,摸出的两个球颜色相同包含的基本事件个数32218m =⨯+⨯=,则摸出的两个球颜色相同的概率为:82205m P n ===.故选:B .9.【解答】解:现从甲、乙等6人中随机抽取2人到幸福社区参加义务劳动,基本事件总数2615n C ==,甲、乙仅有1人被抽到包含的基本事件个数11248m C C ==,则甲、乙仅有1人被抽到的概率为815m P n ==.故选:C .10.【解答】解:从A ,B ,C ,三个同学中选2名代表学校到省里参加全国高中数学联赛,共有AB ,AC ,BC ,3个基本事件,A 被选中共有2个基本事件,分别为:AB ,AC ,A ∴被选中的概率是23P =,故选:B .11.【解答】解:由古典概型可知,这颗豌豆种是开紫花的豌豆种的概率为:20420259P ==+.故选:A .12.【解答】解:盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,基本事件总数3n =,取到白球包含的基本事件个数1m =,∴取到白球的概率是13P =.故选:A .13.【解答】解:将甲、乙等4名交警随机分配到两个不同路口疏导交通,每个路口两人,基本事件总数22426n C C ==,甲和乙不在同一路口包含的基本事件个数11224m C C ==,则甲和乙不在同一路口的概率为4263m P n ===.故选:C .14.【解答】解:某同学上学的路上有4个红绿灯路口,假如他走到每个红绿灯路口遇到绿灯的概率为23,则该同学在上学的路上至少遇到2次绿灯的概率为:2223344444222228()(1)()(1)(333339P C C C =-+-+=.故选:D .15.【解答】解:甲乙俩人投篮相互独立,且各投篮一次命中的概率分别是0.4和0.3,则甲乙俩人各投篮一次,至少有一人命中的概率为:1(10.4)(10.3)0.58P =---=.故选:B .16.【解答】解:某班级举办投篮比赛,每人投篮两次,小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为:1(10.6)(10.6)0.84P =---=.故选:D .17.【解答】解:军事科学学院的甲、乙、丙三名同学被选上的概率分别为13,14,16,∴这三名同学中至少有一名同学被选上的概率为:11171(1)(1)P=----=.34612故选:C.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中学历士兵考军校-数学综合测试卷(选择填空)关键词2021年军考,军考辅导,军考数学,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。

大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。

一.选择题(共9小题)1.已知集合{0A =,1,2,3,4},2{|30}B x x x =->,则集合A B 的子集个数为()A .2B .3C .4D .82.若函数2()log (2)(0a f x x x a =->,且1)a ≠在区间1(2,1)内恒有()0f x >,则函数()f x 的单调递增区间是()A .(,0)-∞B .1(,)4-∞C .1(,)2+∞D .1(,)4+∞3.若“1x >”是“不等式2x a x >-成立”的必要不充分条件,则实数a 的取值范围是()A .3a >B .3a <C .4a >D .4a <4.已知322a -=,32()5b =,31()2c =,则a ,b ,c 的大小顺序正确的是()A .c a b >>B .a b c >>C .b a c >>D .a c b>>5.若函数3232y x x a =-+在[1-,1]上有最大值3,则该函数在[1-,1]上的最小值是()A .12-B .0C .12D .16.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于()A .13B .26C .8D .1627.2log (2)log log a a a M N M N -=+,则MN的值为()A .14B .4C .1D .4或18.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A .105B .210C .240D .6309.若向量a,b 满足||a = ||2b = ,()a a b ⊥- ,则a与b 的夹角为()A .4πB .34πC .6πD .56π二.填空题(共8小题)10.已知2sin()43πα+=,则sin 2α=.11.使2log ()1x x -<+成立的x 的取值范围是.12.在ABC ∆中,M 是BC 的中点,||1AM = ,2AP PM = ,则()PA PB PC +=.13.过点(1,2)P 与双曲线22:22C x y -=有且只有一个公共点的直线共条.14.2123limn nn →∞+++⋯+=.15.设a R ∈,若51()(1)a x x++展开式中2x 的系数为20,则a =.16.已知函数29,3()6,3x f x x x x ⎧=⎨-+<⎩,则不等式2(2)(34)f x x f x -<-的解集是.17.若对于任意[1x ∈,4],不等式2044ax bx a x ++恒成立,|||25|a a b +++的范围为.参考答案与试题解析一.选择题(共9小题)1.【详解】{0A = ,1,2,3,4},{|03}B x x =<<,{1A B ∴= ,2},故其子集的个数是224=.故选:C .2.【详解】当1(2x ∈,1)时,22(0,1)x x -∈,若()0f x >,则01a <<,则log a y t =为减函数,2()log (2)a f x x x =- 的定义域为(-∞,10)(2⋃,)+∞,故22t x x =-在(,0)-∞上递减,在1(2,)+∞上递增,根据复合函数“同增异减”的原则,可得()f x 的单调递增区间是(,0)-∞,故选:A .3.【详解】若2x a x >-,即2x x a +>;设()2x f x x =+,该函数为增函数;根据题意“不等式2x x a +>成立,即()f x a >成立”能得到“1x >”,并且反之不成立;1x > 时,()3f x >;3a ∴>.故选:A .4.【详解】333222(2a -== ,又3y x =在R 上是增函数,因为12225>>,所以a c b >>,故选:D .5.【详解】函数的导数2()333(1)f x x x x x '=-=-,由()0f x '>得1x >或0x <,此时函数递增,由()0f x '<得01x <<,此时函数递减,故0x =时,函数()f x 取得极大值,同时也是在[1-,1]上的最大值,即(0)3f a ==,f (1)351322=-+=.31(1)1322f -=--+=,(1)f f ∴-<(1),即函数在[1-,1]上的最小值是12,故选:C .6.【详解】在等差数列{}n a 中若m n k l +=+则m n k l a a a a +=+因为35102()24a a a ++=所以由等差数列上述性质得:4101132a a a a +=+=.所以1131313()132a a S ⨯+==.故选:A .7.【详解】2log (2)log log a a a M N M N -=+,化为2(2)M N MN -=(20)M N >>可得22540M MN N -+=即:2()540M M N N -+=解得4M N =,故选:B .8.【详解】分三类:①选三个女教师,全排列即可,有35120A =种;②选两个女教师,一个男教师,男教师先挑位置,有11232560A A = ð种;③选一个女教师,两个男教师,女教师固定,有125330A = ð种.故不同的安排方案种数共有:1206030210++=种;故选:B .9.【详解】因为||a =||2b = ,()a a b ⊥- ,∴2()0a a b a a b -=-=,即20a b -= ,∴2a b =.∴cos 2||||a b a b θ==,又因为[0θ∈,]π,∴4πθ=.故选:A .二.填空题(共8小题)10.【详解】22sin(cos )423πααα+=+=∴两边平方得,2212(2cos sin )29sin cos αααα++=52sin cos 9αα∴=-故5sin 29α=-,故答案为:59-11.【详解】利用作图法可以判断2()log ()f x x =-和()1g x x =+,相交于(1,0)-前者是单调递减,后者是单调递增.所以只有10x -<<时,2log ()1x x -<+成立,故答案为:(1,0)-.12.【详解】如图所示,ABC ∆中,M 是BC 的中点,||1AM = ,2AP PM =,∴()22PA PB PC PM PM+=- 24PM=-⨯ 214(||)3AM =-⨯49=-.故答案为:49-.13.【详解】 双曲线22:22C x y -=;即2212y x -=.1a ∴=,b =.当直线的斜率不存在时,直线的方程为1x =,满足题意;因为1a =,b =,所以双曲线的渐近线方程为y =,则过P 分别作出两条与渐近线平行的直线即与双曲线只有一个交点;过点P 还可以作一条与左支相切的直线,故满足条件的直线共有4条.故答案为:4.14.【详解】2123lim n n n →∞+++⋯+2(1)12lim lim 2n n n n n n n →∞→∞++==111lim(222n n →∞=+=,故答案为:1215.【详解】由已知得:55511()(1)(1)a x a x x x x++=+++⋯⋯①对于5(1)x +,其通项为15k k k T C x +=,分别令2k =,3代入①式,可得2x 项的系数为:2355101020aC C a +=+=,解得1a =.故答案为:1.16.【详解】当3x <时,22()6(3)9f x x x x =-+=--+,即有()f x 递增;故()f x 在R 上单调递增.由2(2)(34)f x x f x -<-,可得2234343x x x x ⎧-<-⎨-⎩或223343x x x ⎧-<⎨->⎩,解得1473x x <<⎧⎪⎨⎪⎩或1373x x -<<⎧⎪⎨>⎪⎩,即为713x<或733x <<,即13x <<.即有解集为(1,3).故答案为:(1,3).17.【详解】对于任意[1x ∈,4],不等式2044ax bx a x ++恒成立,可得当[1x ∈,4]时,不等式4(4b a x b x-+-恒成立,设4()f x x x=+,[1x ∈,4];可得[1x ∈,2]时()f x 递减,[2x ∈,4]时()f x 递增,可得f (2)时取得最小值4,f (1)f =(4)时取得最大值5,所以()f x 的值域为[4,5];所以原不等式恒成立,等价于4454b a bb a b --⎧⎨--⎩,(()y af x =为()f x 的一次函数,最大值与最小值都在端点处)即044054a b a b +⎧⎨+⎩,设45a b x a b y +=⎧⎨+=⎩,则0405x y ⎧⎨⎩,所以54a x y b x y =-+⎧⎨=-⎩,所以目标函数|||25||||4325|||4325z a a b y x x y y x x y =+++=-+++=-+++,画出不等式组表示的平面区域,如图所示;当y x 时,目标函数3425z x y =++,所以0x =,0y =时25min z =,4x =,5y =时57max z =;当y x <时,目标函数5225z x y =++,所以0x =,0y =时为临界值25min z =,4x =,4y =时53max z =;综上可得,|||25|a a b +++的范围是[25,57].故答案为:[25,57].。

相关文档
最新文档