最新湘教版九年级上数学 第三章 图形的相似周周测8(3.5)

合集下载

九年级数学上册第三章图形的相似周周测93.6无答案新版湘教版

九年级数学上册第三章图形的相似周周测93.6无答案新版湘教版

九年级数学上册第三章图形的相似周周测93.6无答案新版湘教版一、选择题(共6小题)1.用作位似形的方法,可以将一个图形放大或缩小,位似中心()A. 只能选在原图形的外部B. 只能选在原图形的内部C. 只能选在原图形的边上D. 可以选择任意位置2.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,边OC在y轴上.如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于OABC的面积的,则点B的对应点B′的坐标为()A. (2,1)B. (2,1)或(﹣2,﹣1)C. (1,2)D. (1,2)或(﹣1,﹣2)3.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A. (1,﹣2)B. (﹣2,1)C. (,)D. (1,﹣1)4. 在平面直角坐标系x0y中,已知A(4,2),B(2,﹣2),以原点O为位似中心,按位似比1:2把△OAB缩小,则点A的对应点A′的坐标为()A. (3,1)B. (﹣2,﹣1)C. (3,1)或(﹣3,﹣1)D. (2,1)或(﹣2,﹣1)5.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若 S1表示△ADE的面积,S2表示四边形DBCE的面积,则S1:S2= ()A. 1︰ 2B. 1︰3 C. 1︰4 D. 2︰36. 如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,若三角尺的一边长为8cm,则这条边在投影中的对应边长为()A. 8cmB. 12cmC. 16cmD. 24cm二、填空题(共6小题)7.两个相似多边形,如果它们对应顶点所在的直线那么这样的两个图形叫做位似图形.8.如图,在直角坐标系中,△ABC的各顶点坐标为A(﹣1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为.则点A的对应点A′的坐标为________ .9.位似图形的相似比也叫做________10. 如图,△ABC与△DEF是位似图形,相似比为5:7,已知DE=14,则AB的长为________.11. △ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是________.12.如图,在直角坐标系中,△ABC的各顶点坐标为A(﹣1,1),B(2,3),C(0,3).现以坐标原点为位似中心,作△A′B′C′,使△A′B′C′与△ABC的位似比为.则点A的对应点A′的坐标为________.三、解答题(共4小题)13. 如图,四边形ABCD和四边形A′B′C′D′位似,位似比k1=2,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2=1.四边形A″B″C″D″和四边形ABCD是位似图形吗?位似比是多少?14. 如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD 位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)15.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.①画出△ABC向上平移6个单位得到的△A1B1C1;②以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC 的位似比为2:1,并直接写出点A2的坐标.16.如图,已知△ABC的三个顶点的坐标分别为A(-1,2)、B(-3,0)、C(0,0)(1)请直接写出点A关于x轴对称的点的坐标;(2)以C为位似中心,在x轴下方作△ABC的位似图形,使放大前后位似比为1:2,请画出图形,并求出的面积;。

湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用说课稿

湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用说课稿

湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用说课稿一. 教材分析湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用是本章的重要内容。

通过本节的学习,让学生掌握相似三角形的性质,并能运用相似三角形解决实际问题。

教材从生活实例出发,引出相似三角形的概念,然后通过大量的例题和练习,使学生熟练掌握相似三角形的性质和应用。

二. 学情分析九年级的学生已经学习了三角形的性质,平行线的性质等知识,具备了一定的几何基础。

但是,对于相似三角形的概念和性质,学生可能还比较陌生。

因此,在教学过程中,需要引导学生从生活实例中发现相似三角形的性质,并通过大量的练习,使学生熟练掌握相似三角形的应用。

三. 说教学目标1.知识与技能目标:让学生掌握相似三角形的性质,并能运用相似三角形解决实际问题。

2.过程与方法目标:通过观察生活实例,培养学生发现数学问题,解决数学问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生学习数学的自信心。

四. 说教学重难点1.教学重点:相似三角形的性质及其应用。

2.教学难点:相似三角形的性质的推导和运用。

五.说教学方法与手段1.教学方法:采用启发式教学法,让学生通过观察生活实例,发现相似三角形的性质,并通过大量的练习,使学生熟练掌握相似三角形的应用。

2.教学手段:利用多媒体课件,展示生活实例,引导学生观察和思考,同时,利用黑板,板书相似三角形的性质和应用。

六. 说教学过程1.导入:通过展示生活中的一些实例,如相似的图形,引导学生发现相似三角形的性质。

2.探究:让学生通过小组合作,探究相似三角形的性质,并总结出相似三角形的性质。

3.讲解:教师讲解相似三角形的性质,并通过例题,使学生熟练掌握相似三角形的应用。

4.练习:让学生通过大量的练习,巩固相似三角形的性质和应用。

5.小结:教师引导学生总结本节课的主要内容和收获。

七. 说板书设计板书设计如下:相似三角形的性质:1.对应角相等2.对应边成比例相似三角形的应用:1.求解三角形的面积2.求解三角形的边长八. 说教学评价教学评价主要通过学生的课堂表现,练习情况和课后反馈来进行。

湘教版九年级上册数学第3章 图形的相似含答案

湘教版九年级上册数学第3章 图形的相似含答案

湘教版九年级上册数学第3章图形的相似含答案一、单选题(共15题,共计45分)1、如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC 与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:52、下列所给四对三角形中,根据条件不能判断△ABC与△DEF相似的是( )A. B.C. D.3、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为()A.(- ,0)B.(-1.5,-1.5)C.(- ,- )D.(-2,-2)4、已知五边形ABCDE∽五边形FGHIJ,相似比为1:2,若五边形ABCDE的周长和面积分别为6和15,则五边形FGHIJ的周长和面积分别为()A.12和30B. 12和60C.24和30D.24和605、下列四个三角形,与左图中的三角形相似的是().A. B. C. D.6、如图,正方形的边长为6,点E是边的中点,连接与对角线交于点G,连接并延长,交于点F,连接交于点H,连接.以下结论:①;②;③;④.其中正确的结论是()A.1B.2C.3D.47、如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.108、如图,以点O为位似中心,将△ABC缩小后得△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3B.3:1C.9:1D.1:99、下列说法中,错误的是A.所有的等边三角形都相似B.和同一图形相似的两图形相似C.所有的等腰直角三角形都相似D.所有的矩形都相似10、如图,在▱ABCD中,M、N为BD的三等分点,连接CM并延长交AB与点E,连接EN并延长交CD于点F,则DF:FC等于().A.1:2B.1:3C.2:3D.1:411、如图,,与相交于点,若,,,则的值是()A. B. C. D.12、如图,菱形的顶点、在轴上(在的左侧),顶点、在轴上方,对角线的长是,点为的中点,点在菱形的边上运动.当点到所在直线的距离取得最大值时,点恰好落在的中点处,则菱形的边长等于()A. B. C. D.13、如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)14、如图,小明(用表示)站在旗杆(用表示)的前方处,某一时刻小明在地面上的影子恰好与旗杆在地面上的影子重合,若,,则旗杆的高度为()A. B. C. D.15、如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③D.①②③二、填空题(共10题,共计30分)16、有一个三角形的三边长为2,4,5,若另一个和它相似的三角形的最短边为4,则第二个三角形的周长为________。

湖南省株洲市(新湘教版)九年级数学上《第3章图形的相似》单元测试题(含答案)

湖南省株洲市(新湘教版)九年级数学上《第3章图形的相似》单元测试题(含答案)

九年级上数学第三章图形的相似测试题 (时限:100分钟 总分:100分)班级 _________ 姓名 _______________ 总分 ______________ 一、选择题(本题共8小题,每小题3分,共24分)1. 已知鼎则字的值为() 3. 下列说法正确的是 A. 两个正方形一定相似 B. 两个菱形一定相似 C. 两个等腰梯形一定相似D. 两个直角梯形一定相似(EC ACAD AEA. iB. 1C. 2 D •丄4.如图,己知Z1 = Z2,那么添加下列一个条件后, 仍无法判定△ABC^AADE的是( )• •A. ZB = ZDB. ZC = ZAED5.如图,小正方形边长均为1,则下列图中三角形(阴影部分)与△ABC相似是()ABCD6. 在平而直角坐标系中,己知A (6,3) ,B (6,0)两点,以坐标原点0为位似中心,位似比为丄,把线段AB 缩小到线段AB ,则AB3的长度等于( ) A. 1 B. 2 C. 3 D. 67. 如图,用两根等长的钢条AC 和3D 交叉构成一个卡钳,可以用来测量工作内槽的宽度.设茅=篇 w 且量得CD = b, A. -A-77?+ 1D. mb8. 如图,尸为线段肚上一点,血?与恭交于£乙CPD=/A=/£BC交PD 于F,AD 交PC于G 则图中相似三角形有()A. 1对B. 2对C. 3对D.4对9•如果沪|,那么;=—则内槽的宽A3等于()C.- m二•填空题(本题共8小题,每小 3分,共24分) ABN10._________________ 在比例尺是1:8000的某市地图上,若一条路的长度约25cm, 则它的实际长度约为:对于地图上3cmX5cm的矩形广场相应的实际占地而积为____ 平方千米.11.如图,在AABC中,点0在肋上,请你再A添加一个适当的条件,使△力0Cs△力個那么要添加的条件是________ (注:只需添写一个满足要求的条件即可).12.在RtA/l^C 若G?是Rt△肋C斜边月尸上的高,血上3, CD=A,则BC二 _____ .13.顶角为36°的等腰三角形称为黄金三角形.如图△/应;'BDC,△宓都是黄金三角形.己知返1,则质二___________ .14.张明同学想利用树影测量校园内的树高,他在某一时刻测得小树高为1. 5m时,其影长为1. 2m,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6. 4m,墙上影长为1.4m,那么这棵大树高约________ m15.如图,DE是:的中位线,M是DE的中点, 那么丑空L二S RBC ---------------------16.在平而直角坐标系中,正方形力磁的位置面积为 __________ . 三•解答题(共52分) 17. (木小题满分10分)如图,图中的小方格都是边长为1的正方形,N4BC 与厶A' B f C 是关于点。

湘教版数学九年级上册第三章相似图形试题(含答案)

湘教版数学九年级上册第三章相似图形试题(含答案)

数学九年级第三章图形的相似试卷一、填空题(每小题3分,共24分)1.如果四条线段m, n, x, y 成比例,若m=2 , n=8 , y=20 .则线段x 的长是__________.2.边长为12cm 的等边三角形按2:1的比例缩小后的三角形是边长为_____的____三角形.3.已知△ABC ∽△DEF, AB =6 , DE =8 , 则:ABC DEF S S ∆∆=________.4.已知三个数2,请你再添一个数,写出一个比例式________.5.点P 是△ABC 中AB 边上的一点,过点P 作直线 (不与直线AB 重合)截△ABC,使截得三角形与△ABC 相似,满足这样条件的直线最多________条.6.电视节目主持人在主持节目时,站在舞台上的黄金分割点处最自然得体,若舞台AB 长为20cm,试计算主持人应走到离A 点至少____________________m 处.(结果精确到0.1m)7.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_________.8.如图,若DE ∥BC,FD ∥AB,AD ∶AC =2∶3 ,AB =9,BC =6,则四边形BEDF 的周长为_____.二、选择题(每小题4分,共40分)1.若果mn ab =,则下列比例式中不正确的是( ) A.a n m b = B.a m n b = C.m n a b = D.m b a n= 2.已知:如图2,在△ABC 中,∠ADE=∠C,则下列等式成立的是( ) A.AD AE AB AC = B.AE AD BC BD= C.DE AE BC AB = D.DE AD BC DB= 3.已知正五边形ABCDE 与正五边形'''''A B C D E 的面积比为1:2,则它们的相似比为( )A. 1:2B. 2:1C.4.如图,两个位似图形△ABO 和△'''C B A ,若OA:'OA =3:1,则正确的是( )A.AB:''A B =3:1B.'AA :'BB =AB:'ABC.OA:'OB =2:1D.∠A =∠'B5.在比例尺是1:3800的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为( )A.0.266kmB.2.66kmC.26.6kmD.266000km6.下列判断正确的是( )A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形7.如图, D 、E 是AB 的三等分点, DF ∥EG ∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( )A.1:2:3B.1:2:4C.1:3:5D.2:3:48.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长9.把△ABC 的各边都扩大为原来的2倍,得到△'''A B C ,下面结论不正确的是( )A.△ABC ∽△'''A B CB.△ABC 和△'''A B C 的各边、各角对应相等C.△ABC 和△'''A B C 的相似比为1:2D.△ABC 和△'''A B C 的相似比为1:310.如图,四边形ABCD 是平行四边形,则图中与△DEF 相似的三角形共有( )A.1个B.2个C.3个D.4个三、解答题(每题8分,共24分)1. 如图,在△ABC 中,∠C=90°,DE ⊥AB 于E,DF ⊥BC 于F.求证: △DEH ~△BCA2.如图,四边形AEFD 与EBCF 是相似的梯形,AE:EB =2:3,EF =12 cm,求AD 、BC 的长.3.如图, 平行四边形ABCD 中,点E 是DC 中点, 连AE 并延长与BC 延长线交于点F, 若CEF S ∆=10 , 求四边形ABCE 的面积.四.(12分)已知如图,平行四边形ABCD 中,AE:EB =1:2 .(1)求AE:DC 的值.(2)△AEF 与△CDF 相似吗?若相似,请说明理由,并求出相似比.(3)如果AEF S ∆=6cm 2,求CDF S ∆数学九年级第三章图形相似试题的答案1、5,2、6cm ,等边,3、9︰16,4、略,5、4、,6、7.6m ,7、24m ,8、14二、选择题:CCCAA BCDDB三、解答题⑴证明:∵DE ⊥AB,DF ⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°而∠BHF=∠DHE ∴∠D=∠B,又∵∠HFB=∠C=90°△DEH ∽△BCA⑵解:∵四边形AEFD ∽四边形EBCF∴EF AD =EB AB ,BC EF =EB AB,∴AD=8,BC=18⑶ 解:∵四边形ABCD 为平行四边形∴EC ∥AB,DC=AB,由E 为DC 中点,∴EC=21DC=21AB,∵EC ∥AB,有∠ECF=∠ABF,∠F=∠F,△ECF ∽△ABF :4:1ABF ECF S S = ∴12123,0cos 2x x α==≤四.提高题 解:① ∵ A B C D ,∴DC=AB 由12AE EB = ∴ 21EBAE =∴31AB AE =,∴13AE DC =②相似,∵ABCD ,有DC ∥AB,∴∠DCF=∠EAF,∠FDC=∠EFA ∴△AEF ∽△CDF,相似比为:13AE DC =③∵△AEF ∽△CDF ∴21:3AEF CDF S S ⎛⎫= ⎪⎝⎭ ∴254CDF S cm =。

初中数学湘教版九年级上册第3章 图形的相似3.5 相似三角形的应用-章节测试习题(2)

初中数学湘教版九年级上册第3章 图形的相似3.5 相似三角形的应用-章节测试习题(2)

章节测试题1.【答题】如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是______毫米.【答案】【分析】本题考查相似三角形的应用.【解答】∵DE∥AB,∴△CDE∽△CAB,∴CD:CA=DE:AB,∴20:60=DE:10,∴DE毫米,∴小管口径DE的长是毫米.故答案为.2.【答题】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内.从标杆CD后退2米到点G处,在G处测得建筑物项端A标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一直线上,则建筑物的高是______米.【答案】54【分析】本题考查相似三角形的应用.【解答】∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴,∵CD=DG=EF=2m,DF=52m,FH=4m,∴,∴,解得BD=52,∴,解得AB=54,即建筑物的高是54m.故答案为54.3.【答题】如图所示为某种型号的台灯的横截面图,已知台灯灯柱AB长30cm,且与水平桌面垂直,灯臂AC长为10cm,灯头的横截面△CEF为直角三角形,当灯臂AC 与灯柱AB垂直时,沿CE边射出的光线刚好射到底座B点.若不考虑其它因素,则该台灯在桌面可照亮的宽度BD的长为______cm.【答案】100【分析】本题考查相似三角形的应用.【解答】∵AB⊥BD,AC⊥AB,∴AC∥BD.∴∠ACB=∠DBC.∵∠A=∠BCD=90°,∴△ABC∽△CDB.∴,∴BC2=AC•BD,在Rt△ABC中,BC2=AC2+AB2=102+302=1000,∴10BD=1000.∴BD=100(cm).故答案为100.4.【题文】如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE =1m,OF=5m,求围墙AB的高度.【答案】4 m.【分析】本题考查相似三角形的应用.【解答】延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,∴,解得x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.5.【题文】如图,要从一块Rt△ABC的白铁皮零料上截出一块矩形EFGH白铁皮.已知∠A=90°,AB=16cm,AC=12cm,要求截出的矩形的长与宽的比为2:1,且较长边在BC上,点E,F分别在AB,AC上,所截矩形的长和宽各是多少?【答案】矩形的长为cm,宽为cm.【分析】本题考查相似三角形的应用.【解答】如图,过点A作AN⊥BC交HF于点M,交BC于点N.∵∠BAC=90°,∴∠BNA=∠BAC,BC20(cm).又∵∠B=∠B,∴△ABN∽△CBA,∴,∴AN(cm).∵四边形EFGH是矩形,∴EF∥HG,∴∠AHF=∠B,∠AFM=∠C,∴△AHF∽△ABC,∴.设EF=x,则MN=x,由截出的矩形的长与宽的比为2:1可知HF=2x,,解得x,∴2x.答:截得的矩形的长为cm,宽为cm.6.【答题】如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为______米.【答案】5【分析】本题考查相似三角形的应用.【解答】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=5.∴小明的影长为5米.7.【答题】如图,为了估计荆河的宽度,在荆河的对岸选定一个目标点,在近岸取点和,使点、、在一条直线上,且直线与河垂直,在过点且与垂直的直线上选择适当的点,与过点且与垂直的直线的交点为,如果,,,则荆河的宽度为()A. B. C. D.【答案】B【分析】本题考查相似三角形的应用,解题的关键是利用相似三角形的对应边的比相等求出PQ的长度.由题意可知:QR∥ST,∴△PQR∽△PST,由相似三角形的性质可知,列出方程即可求出PQ的长度.【解答】由题意可知:QR∥ST,∴△PQR∽△PST,∴.设PQ=x,∴,解得x=120.故PQ=120m.选B.8.【答题】数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为米的竹竿的影长为米.同时另一名同学测量这棵树的影长为米,则树高为______米.【答案】4【分析】本题考查了相似三角形的运用;熟记同一时刻的物高与影长成比例是解答此题的关键.设这棵树的高度是x米,根据同一时刻的物高与影长成比例得出比例式,即可得出结果.【解答】设这棵树的高度是x米,根据题意得1:0.8=x:3.2,解得x=4;即这棵树的高度为4米.故答案为4.9.【答题】如图,小明用2m长的标杆测量一棵树的高度.根据图示条件,树高为______m.【答案】7【分析】根据题意知道,物体的长度和它的影子的长度的比值一定,即物体的长度和它的影子的长度的成正比例,由此列式解答即可.【解答】这棵树高是x米,2:6=x:(6+15),6x=21×2,x=7.故答案是7.10.【题文】如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.【答案】90m.【分析】本题考查了相似三角形的判定与性质,根据已知得出△PQR∽△PST是解题关键.根据相似三角形的性质得出,进而代入求出即可.【解答】根据题意得出QR∥ST,则△PQR∽△PST,故,∵QS=45m,ST=90m,QR=60m,∴,解得PQ=90(m),∴河宽度为90米.11.【题文】如图,有一块三角形的土地,它的一条边BC=100米,BC边上的高AH=80米.某单位要沿着边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC 上.若大楼的宽是40米,求这个矩形的面积.【答案】2000平方米或1920平方米.【分析】利用矩形的性质得出△ADG∽△ABC,然后利用相似三角形对应高的比等于相似比求出矩形的长,然后利用矩形的面积公式计算即可.【解答】∵矩形DEFG中DG∥EF,∴∠ADG=∠B,∠AGD=∠C,∴△ADG∽△ABC,∴.①若DE为宽,则,∴DG=50,此时矩形的面积是50×40=2000平方米;②若DG为宽,则,∴DE=48,此时矩形的面积是48×40=1920平方米.12.【答题】在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A. B. C. 2倍 D. 3倍【答案】A【分析】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【解答】如图,作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的.故选A.13.【答题】如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P处水平放置一平面镜,一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是______米.【答案】24【分析】本题考查了相似三角形的应用,根据题意得出△ABP∽△CDP是解题关键.由已知得△ABP∽△CDP,根据相似形的性质可得=,解答即可.【解答】由反射的性质可得∠APB=∠CPD,又∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∴CD===24(米).故答案为24.14.【题文】如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.【答案】30mm.【分析】【解答】作出示意图.连接AB,同时连结OC并延长交AB于E,∵夹子是轴对称图形,故OE是对称轴,∴OE⊥ABAE=BE,∴Rt△OCD∽Rt△OAE,∴,而,即,∴AB=2AE=30(mm).答:AB两点间的距离为30mm.15.【题文】小青同学想利用影长测量学校旗杆AB的高度.某一时刻他测得长1米的标杆的影长为1.4米,与此同时他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得其长度为11.2米和2米,如图所示.请你帮他求出旗杆AB的高度.【答案】10米.【分析】利用相似三角形对应线段成比例,求解即可【解答】过点C作CH⊥AB.设AH=x米,,解得x=8,AB=8+2=10米.答:AB的高度为10米.16.【题文】数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH =3米;③计算树的高度AB;【答案】15米.【分析】本题考查了相似三角形的应用,正确应用相似三角形的判定与性质是解题关键.根据题意得出△ABF∽△GHF,利用相似三角形的性质得出AB,BC的长进而得出答案.【解答】设AB=x米,BC=y米.∵∠ABC=∠EDC=90°,∠ACB=∠ECD,∴△ABC∽△EDC,∴,∴,∵∠ABF=∠GHF=90°,∠AFB=∠GFH,∴△ABF∽△GHF,∴,∴,∴,解得y=20,把y=20代入中,得x=15,∴树的高度AB为15米.17.【题文】“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.【答案】9.6米.【分析】本题考查相似三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.通过△CND∽△ANB和△EMF∽△AMB的性质求得x的值,然后结合求得大树的高.【解答】设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即.解得x=6.6,∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.18.【题文】如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【答案】48mm.【分析】本题考查了正方形的性质、相似三角形的应用,注意数形结合的运用是解题关键.根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”,设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】∵四边形EGFH为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.19.【题文】20世纪90年代以来,我国户外广告行业取得了突飞猛进的发展,户外广告装置多设立于城市道路、铁路、公路等主要交通干道边上,面向密集的车流和人流.某天,小芳走到如图所示的C处时,看到正对面一条东西走向的笔直公路.上有一辆汽车从东面驶来,到达Q处时,恰好被公路北侧边上竖着的一个长12m的广告牌AB挡住,3s后在P处又重新看到该汽车的全部车身,已知该汽车的行驶速度是21.6km/h,假设AB∥PQ,公路宽为10m,求小芳所在C处到公路南侧PQ的距离.【答案】30m.【分析】本题考查了相似三角形的应用,证明△CAB∽△CPQ是本题的关键.通过证明△CAB∽△CPQ可得,可求解.【解答】设小芳所在C处到公路南侧PQ的距离为x m,21.6km/h=6m/s,∵AB∥PQ,∴△CAB∽△CPQ,∴,∴,∴x=30,∴小芳所在C处到公路南侧PQ的距离为30m.20.【答题】如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A. B. C. D.【答案】D【分析】本题考查了把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出边长,熟练掌握对应高的比等于相似比是关键.过点B 作BP⊥AC,垂足为P,BP交DE于Q,三角形的面积公式求出BP的长度,由相似三角形的判定定理得出△BDE∽△BAC,设边长DE=x,根据相似三角形的对应边成比例求出x的长度可得.【解答】如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC•AB•BC•AC•BP,∴BP.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴.设DE=x,则,解得x,选D.。

湘教版九年级数学上册第3章 图形的相似测试题

湘教版九年级数学上册第3章 图形的相似测试题

湘教版九年级数学上册第3章 图形的相似测试题一、选择题(本大题共7小题,每题4分,共28分)1.5x =6y ,那么x y等于( ) A .5 B .6 C.56 D.652.C 是线段AB 的黄金联系点,且AB =6 cm ,那么BC 的长为( )A .(3 5-3)cmB .(9-3 5)cmC .(3 5-3)cm 或(9-3 5)cmD .(9-3 5)cm 或(6 5-6)cm3.如图3-Z -1,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,AD =1,BC =4,那么△AOD 与△BOC 的面积之比等于( )A.12B.14C.18D.1164.以下选项中能判定△ABC ∽△DEF 的是( )A .∠A =45°,∠B =55°;∠D =45°,∠F =75°B .AB =5,BC =4,∠A =45°;DE =10,EF =8,∠D =45°C .AB =6,BC =5,∠B =40°;DE =5,EF =4,∠E =40°D .BC =4,AC =6,AB =9;DE =18,EF =8,DF =12图3-Z -1图3-Z -25.如图3-Z -2,线段AB 两个端点的坐标区分为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 增加为原来的12后失掉线段CD ,那么端点C 的坐标为( ) A .(3,3) B .(4,3)C .(3,1)D .(4,1)6.如图3-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,衔接DE ,以下结论:①DE BC=12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △DOE S △ADE =13.其中正确的有( ) A .1个 B .2个 C .3个 D .4个图3-Z -3图3-Z -47.如图3-Z -4,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,那么EF 的长为( )A.52B.83C.103D.154二、填空题(本大题共4小题,每题4分,共16分)8.在比例尺为1∶40000的地图上,某条路途的长为7 cm ,那么该路途的实践长度是________ km.9.如图3-Z -5,在△ABC 中,MN ∥BC 区分交AB ,AC 于点M ,N .假定AM =1,MB =2,BC =3,那么MN 的长为________.10.在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =________时,以A ,D ,E 为顶点的三角形与△ABC 相似.图3-Z -5图3-Z -611.如图3-Z -6,铁路道口的栏杆短臂长1 m ,长臂长16 m .当短臂端点下降0.5 m 时,长臂端点降低________m .(杆的宽度疏忽不计)三、解答题(本大题共5小题,共56分)12.(10分)如图3-Z -7所示,AD ,BE 区分是钝角三角形ABC 的边BC ,AC 上的高,求证:AD BE =AC BC. 图3-Z -713.(10分)如图3-Z -8,四边形ABCD 中,E ,F ,G 区分在AD ,BD ,CD 上,且EF ∥AB ,FG ∥BC .求证:△DEG ∽△DAC .图3-Z -814.(10分)如图3-Z -9,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB ′C ′D ′,使它与四边形ABCD 位似,且位似比为2.(1)在图中画出四边形AB ′C ′D ′;(2)填空:△AC ′D ′是________三角形.图3-Z -915.(12分)为测量操场上旗杆的高度,设计的测量方案如图3-Z -10所示,标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛距空中的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m ,E ,C ,A 三点共线,求旗杆AB 的高度.图3-Z -1016.(14分)如图3-Z -11,四边形ABCD 中,AB =AC =AD ,AC 平分∠BAD ,点P 是AC 延伸线上一点,且PD ⊥AD .(1)证明:∠BDC =∠PDC ;(2)假定AC 与BD 相交于点E ,AB =1,CE ∶CP =2∶3,求AE 的长.图3-Z -11详解详析1.D2.C [解析] ∵C 是线段AB 的黄金联系点,且AB =6 cm ,∴BC =5-12AB =(3 5-3)cm 或BC =3-52AB =(9-3 5)cm.应选C.3.D [解析] 在梯形ABCD 中,AD ∥BC ,所以△AOD ∽△COB .又由AD =1,BC =4,依据相似三角形的面积比等于相似比的平方,即可求得△AOD 与△BOC 的面积之比.4.D 5.A6.C [解析] 由BE ,CD 均为△ABC 的中线可知,DE 为△ABC 的中位线,所以DE =12BC ,DE ∥BC ,所以DE BC =12,故①正确; 由DE ∥BC 可得△DOE ∽△COB ,所以S △DOE S △COB =(DE BC)2=14,故②错误;由DE ∥BC 可得AD AB =DE BC ,DE BC =OE OB ,所以AD AB =OE OB ,故③正确;由于DE ∥BC ,所以△ADE ∽△ABC ,所以S △ADE S △ABC =(DE BC )2=14,设△DOE 的高OH 为h ,DE =a ,那么BC =2a ,△BOC 的高为2h ,△ABC 的高为6h ,△ADE 的高为3h ,所以S △DOE S △ADE =12ah 12·a ·3h =13,故④正确.应选择C. 7.C [解析] 延伸FE 交AB 于点D ,作EG ⊥BC 于点G ,作EH ⊥AC 于点H ,∵EF ∥BC ,∠ABC =90°,∴FD ⊥AB .又∵EG ⊥BC ,∴四边形BDEG 是矩形.∵AE 平分∠BAC ,CE 平分∠ACB ,∴ED =EH =EG ,∠DAE =∠HAE ,∴四边形BDEG 是正方形.在△DAE 和△HAE中,∵⎩⎪⎨⎪⎧∠DAE =∠HAE ,∠ADE =∠AHE ,AE =AE ,∴△DAE ≌△HAE (AAS),∴AD =AH .同理△CGE ≌△CHE ,∴CG =CH .设BD =BG =x ,那么AD =AH =6-x ,CG =CH =8-x .∵AC =AB 2+BC 2=62+82=10,∴6-x +8-x =10,解得x =2,∴BD =DE =2,AD =4.∵DF ∥BC ,∴△ADF ∽△ABC ,∴AD AB =DF BC ,即46=DF 8,解得DF =163, 那么EF =DF -DE =163-2=103.应选C. 8.2.8 [解析] 设这条路途的实践长度为x ,那么140000=7x,解得x =280000 cm =2.8 km. 9.1 [解析] ∵MN ∥BC ,∴△AMN ∽△ABC ,∴AM AB =MN BC, 即11+2=MN 3,∴MN =1. 10.125或53 [解析] 当AE AD =AB AC时, ∵∠A =∠A ,∴△AED ∽△ABC ,此时AE =AB ·AD AC =6×25=125;当AD AE =AB AC时,∵∠A =∠A , ∴△ADE ∽△ABC ,此时AE =AC ·AD AB =5×26=53. 故答案为125或53. 11.812.证明:∵AD ,BE 是钝角三角形ABC 的高,∴∠ADC =∠BEC =90°.又∵∠DCA =∠BCE ,∴△DAC ∽△EBC ,∴AD BE =AC BC. 13.证明:∵EF ∥AB ,∴DE DA =DF DB. ∵FG ∥BC ,∴DG DC =DF DB , ∴DE DA =DG DC. 又∵∠EDG =∠ADC ,∴△DEG ∽△DAC .14.解:(1)如图,四边形AB ′C ′D ′即为所求作图形.(2)依据网格的特点,应用勾股定理可以求出AD ′=C ′D ′=210,应用勾股定理的逆定理可以得出∠AD ′C ′=90°,故△AC ′D ′是等腰直角三角形.15.解:如图,过点E 作EH ⊥AB 于点H ,交CD 于点G ,那么EF =DG =BH =1.6 m ,GH =BD =15 m ,EG =DF =2 m ,∴CG =CD -DG =3-1.6=1.4(m).∵CG ∥AH ,∴△ECG ∽△EAH ,∴CG AH =EG EH , 即1.4AH =22+15, 解得AH =11.9(m),∴AB =AH +BH =11.9+1.6=13.5(m).答:旗杆AB 的高度为13.5 m.16.解:(1)证明:∵AB =AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD +∠BDC =90°.∵AC =AD ,∴∠ACD =∠ADC ,∴∠ADC +∠BDC =90°.∵PD ⊥AD ,∴∠ADC +∠PDC =90°,∴∠BDC =∠PDC .(2)过点C 作CM ⊥PD 于点M , ∵∠BDC =∠PDC ,∴CE =CM .∵∠CMP =∠ADP =90°,∠P =∠P , ∴△CPM ∽△APD ,∴CM AD =PC P A. 设CM =CE =x .∵CE ∶CP =2∶3,∴PC =32x . ∵AB =AD =AC =1,∴x 1=32x 32x +1, 解得x =13(x =0不合题意,舍去), 故AE =1-13=23.。

湘教版九年级数学上册第三章 图形的相似单元检测题(含答案)

湘教版九年级数学上册第三章 图形的相似单元检测题(含答案)

第3章 图形的相似检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列四组图形中,不是相似图形的是( )2.已知四条线段是成比例线段,即=,下列说法错误的是( )a ,b ,c ,d A .ad =bcB .=C .=D .=3.在比例尺的地图上,量得两地的距离是,则这两地的实际距离是( 1∶6 000 000 15 cm )A . B.C.D.0.9 km 9 km 90 km 900 km 4.若,且,则的值是( )875cb a ==3a -2b +c =32a +4b -3c A.14B.42C.7D.3145.如图,在△中,点分别是的中点,则下列结论:①;②△ABC D 、E AB 、AC BC =2DE ∽△;③其中正确的有( )ADE ABC AD AE=ABAC ;A.3个B.2个C.1个 D.0个6.如图,//,//,分别交于点,则图中共有相似三角形( )AB CD AE FD AE 、FD BC G 、H A.4对B.5对C. 6对D.7对7.已知△如图所示,则下列4个三角形中,与△相似的是( )ABC ABC 8.下列说法中正确的是( )①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④9.已知,如图,点是线段的黄金分割点,则下列结论中正确的是( )C AB (AC >BC )A.B.AB 2=AC 2+BC 2BC 2=AC•BAC. D.BC AC =5‒12ACBC=5‒1210.如图,在△中,∠的垂直平分线交的延Rt ABC ACB =90°,BC =3,AC =4,AB DE BC 长线于点,则的长为()E CEA. B. C.D.3276 2562二、填空题(每小题3分,共24分)11.已知,且,则_______.a ∶b =3∶2a +b =10b =12.已知是成比例线段,即其中,则a ,b ,c ,d a b =c d ,a=3 cm ,b =2 cm ,c =6 cm d =______.cm 第10题图13.如图,在△中,∥,,则______.ABC DE BC AD =2,AE =3,BD =4AC =14.若,则=__________.5.0===fe d c b af d b e c a +-+-232315.如图,是的黄金分割点,,以为边的正方形的面积为,以为边的C AB BG =AB CA S 1BC 、BG 矩形的面积为,则_______(填“>”“<”“=”).S 2S 1S 216.五边形∽五边形,ABCDE A 'B 'C 'D 'E '∠A =120°,∠B '=130°,∠C =105°,∠D '=85°,则∠E =________.17.如图,在△中, 分别是边上的点,,ABC D 、E AC 、AB ∠AED =∠C 则_______.AB =6,AD = 4,AC =5 ,AE =18.如图,△三个顶点的坐标分别为,以原点为位似中心,ABC A (2,2),B (4,0),C (6,4)将△缩小,位似比为,则线段的中点变换后对应点的坐标为_________.ABC 1∶2AC P 三、解答题(共46分)19.(5分)如图,在平行四边形中,为ABCD E 边延长线上的一点,且为的黄金分割点,即,交于点,已知AD D AE AD =5‒12AEBE DC F ,求的长.AB =5+1CFABC AB=AC BE ABC DE BC DE=EC20. (4分)如图,在△中,,平分∠,∥.求证:.D AC BE AC BE=AD AE BD、BC F、G21.(5分)已知:如图,是上一点,∥,,分别交于点,BF、FG、EF∠1=∠2,探索线段之间的关系,并说明理由.ABCD AB CD F BC DF AB22.(8分)如图,梯形中,∥,点在上,连接并延长与的延长线交于点G.CDF BGF(1)求证:△∽△;F BC F EF CD AD E AB=6 cm,EF=4 cm CD (2)当点是的中点时,过点作∥交于点,若,求的长.第22题图23.(8分)如图,在梯形中,∥,点是边的中点,连接交于,的延长线ABCD AD BC E AD BE AC F BE 交的延长线于.CD G (1)求证:;(2)若,,求线段的长.EG GB =AE BC GE=2BF =3EF 24.(8分)已知:如图,在△中,∥,点在边上,与相交于ABC AB =AC ,DE BC F AC DF BE 点,且∠.G EDF =∠ABE 求证:(1)△∽△;(2)DEF BDE DG•DF =DB•EF.C25.(8分)如图,在正方形中,分别是边上的点,ABCD E 、F AD 、CD 并延长交的延长线于点AE =ED ,DF =DC ,连接EF41BC G.(1)求证:;ABE DEF △∽△(2)若正方形的边长为4,求的长.BG 第25题图参考答案1.D解析:根据相似图形的定义知,A 、B 、C 项都为相似图形,D 项中一个是等边三角形,一个是直角三角形,不是相似图形.2.C 解析:由比例的基本性质知A 、B 、D 项都正确,C 项不正确.3.D 解析:15×6 000 000=90 000 000(cm )=900(km ).4.D解析:设,则所x cb a ===875a =5x ,b =7x ,c =8x ,又因为3a -2b +c =3,以所以.15x ‒14x +8x =3,即3x =1,2a +4b -3c =10x +28x ‒24x =14x =3145.A解析:因为点分别是的中点,所以是△的中位线.由中位线的D 、E AB 、AC DE ABC 性质可推出①②③全部正确.6.C 解析:△∽△∽△∽△.CEG CDH BFH BAG 7.C解析:由对照四个选项知,C 项AB =AC ,∠B =75°,知∠C =75°,∠A =30°,中的三角形与△相似.ABC 8.D解析:①虽然对应边成比例,但是对应角不一定相等,所以不一定相似,比如:所有菱形的对应边成比例,但是它们不一定相似;②两个矩形有一组邻边对应成比例,就可以得出四条边对应成比例,并且它们的角都是90°,所以这两个矩形相似;③有一个角对应相等的平行四边形的对应边不一定成比例,所以不一定相似;④有一个角对应相等就可以得出菱形的其他角对应相等,并且菱形的对应边成比例,所以相似.故选D .9.C 解析:根据黄金分割的定义可知,.BC AC=5‒1210. B解析:在△中,∠由勾股定理得Rt ABC ACB =90°,BC =3,AC =4,AB =5.因为所以.又因为所以DE 垂直平分AB ,BD =52∠ACB =∠EDB =90°,∠B =∠B ,△∽△所以,所以所以ABC EBD ,BE AB =BD BC BE =BD•AB BC =256,CE =BE ‒BC =256‒3=76.11.4 解析:因为,所以设,a ∶b =3∶2a =3x ,则b =2x ,所以a +b =3x +2x =5x =10所以所以x =2,b =2x =4.12.4 解析:把代入得a =3 cm ,b =2 cm ,c =6 cm a b =cd ,d =4 cm.13.9解析:在△中,因为∥,所以∠∠∠ ∠,所以△ABC DE BC ADE =ABC ,AED =ACB ∽△,所以,所以,所以ADE ABC AD AB =AE AC 22+4=3AC AC =9.14. 解析:由,得,,,所以0.55.0===f e d c b a a =0.5b c =0.5d e =0.5f fd be c a +-+-2323.5.0235.05.1=+-+-=fd b fd b 15.解析:由黄金分割的概念知,又所以所以=AC 2=AB•BC BG =AB ,AC 2=BG •BC ,.S 1=S 216.解析:因为五边形∽五边形100°ABCDE A 'B 'C 'D 'E ',所以∠B =∠B '=130°,∠D = ∠D '=85°,又因为五边形的内角和为所以.540°,∠E =540°‒∠A ‒∠B ‒∠C ‒∠D =100°17.解析:在△和△中,∵,,∴△∽△.103AED ACB ∠A =∠A ∠AED =∠C AED ACB ∴∴∴18.或 解析:∵ (2,2),(6,4),∴ 其中点坐标为(4,3),又(-2,‒32)(2,32)A C P 以原点为位似中心,将△缩小,位似比为,∴ 线段的中点变换后对应点的坐ABC 1∶2AC P 标为或.(-2,‒32)(2,32)19.解:∵ 四边形为平行四边形,∴ ∠∠,∠∠,ABCD CBF =AEB BCF =BAE ∴ △∽△,∴ ,即 ,∴ ,∴.BCF EAB CF AB =BC AE CF AB =ADAE CF 5+1=5‒12 CF =220.证明:∵ ∥,∴ .DE BC DB AB =ECAC 又∵ ,∴ .AB =AC DB =EC∵ ∥,∴ ∠∠.DE BC DEB =EBC ∵ 平分∠,∴ ∠∠,∴ ∠∠,BE ABC DBE =EBC DEB =DBE ∴ ,∴ .DB =DE DE =EC 21.解:. 理由:∵ ∥∴ ∠∠.又∴ .BF 2=FG•EF BE AC ,1=E ∠1=∠2,∠2=∠E 又∵ ∴ △∽△,∴ 即.∠GFB =∠BFE ,BFG EFB BF EF =FG BF ,BF 2=FG•EF 22.(1)证明:∵ 梯形中,∥,∴ ABCD AB CD ∠CDF =∠FGB ,∠DCF =∠GBF ,∴ △∽△.CDF BGF (2)解: 由(1)知,△∽△,又是的中点,∴ CDF BGF F BC BF =FC.∴△≌△ ∴ CDF BGF.DF =FG ,CD =BG.又∵ ∥∥,∴ ∥,得. EF CD ,AB CD EF AG 2EF =AG =AB +BG ∴ ∴ .BG =2EF ‒AB =2×4‒6=2,CD =BG =2 cm 23.(1)证明:∵ ∥,∴ ∠∠.AD BC GED =GBC ∵∠∠,∴ △∽△,∴ .G =G GED GBC EG GB =DE BC ∵ 点是边的中点,∴ ,∴ .E AD AE =DE EG GB =AE BC (2)解:∵ ∥,∴ ∠∠,∠∠,AD BC EAC =ACB AEB =EBC ∴ △∽△,∴ .AEF CBF AE BC =EF BF 由(1)知,,∴ .EG GB =AE BC EG GB =EF BF ∵ ,,∴ ,∴ .GE =2BF =322+3+EF=EF3EF =124.证明:(1)∵,∴ ∠.AB =AC ABC =∠ACB ∵∥,∴ ,. DE BC ∠ABC +∠BDE =180°∠ACB +∠CED =180°∴.∠BDE =∠CED ∵,∴△∽△. ∠EDF =∠ABE DEF BDE (2)由△∽△,得,∴ . DEF BDE EFDE DE DB =EF DB DE ⋅=2由△∽△,得.DEF BDE ∠BED =∠DFE∵∠∠,∴△∽△.∴. ∴. GDE =EDF GDE EDF DFDEDE DG =DF DG DE ⋅=2 ∴ .EF DB DF DG ⋅=⋅25.(1)证明:在正方形中,,.ABCD ∠A =∠D =90°AB =AD =CD ∵ ∴ , AE =ED ,DF =DC ,41AE =ED =AB , DF =AB 2141∴,∴.DFAE DE AB =ABE DEF △∽△(2)解:∵ ∴ ,AB =4,AE =2,522422=+=BE ∴,,∴.DEF ABE ∠=∠︒=∠+∠=∠+∠90DEF AEB ABE AEB ︒=∠90BEG 由∥,得,∴ △∽△,AD BG EBG AEB ∠=∠ABE EGB ∴,∴.BGBE BE AE =102==AE BE BG。

湘教版九年级上册数学第三章 图形的相似周周测8(3.5)

湘教版九年级上册数学第三章  图形的相似周周测8(3.5)

第三章 图形的相似周周测9(3.5)一、选择题(共6小题)1.如图,测量小玻璃管口径的量具ABC ,AB 的长为10 cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(DE ∥AB ),那么小玻璃管口径DE 的长是( )A.203 cmB.193cm C .7 cm D .6 cm(第1题图) (第2题图) (第3题图)2.如图,为估算某条河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE =20 m ,EC =10 m ,CD =20 m ,则河的宽度AB 为( )A .60 mB .40 mC .30 mD .20 m3.如图,某学生用长为2.8 m 的竹竿AB 测量学校旗杆CD 的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面上的同一点O 处,此时竹竿与这一点的距离OB =8 m ,与旗杆的距离BD =22 m ,则旗杆CD 的高为( )A .105 mB .77 mC .10.5 mD .7.7 m4. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由图3-5-5获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺5.2017·绵阳为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图所示.已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆DE 的高度等于( )A .10 mB .12 mC .12.4 mD .12.32 m(第5题图) (第6题图) 6.如图所示,某一时刻,一电线杆AB 的影子分别落在地面和墙壁上.此时,小明竖起1米高的标杆(PQ ),量得其影长(QR )为0.5米,此时,他又量得电线杆AB 落在地面上的影子长为3米,墙壁上的影子CD 高为2米.小明利用这些数据很快算出了电线杆AB 的高为( )A .5米B .6米C .7米D .8米二、填空题(共6小题)7. 1.2m 高的杆子直立在水平地面上,它在阳光下的影子长度为1.65 m ,同一时刻,某大楼的影子长度为110m ,则该大楼的高度为 m.8.当下,户外广告已对我们的生活产生直接的影响.图中的AD 是安装在广告架AB 上的一块广告牌,AC 和DE 分别表示太阳光线.若某一时刻广告牌AD 在地面上的影长CE=1m ,BD 在地面上的影长BE=3m ,广告牌的顶端A 到地面的距离AB=20m ,则广告牌AD 的高AD 为 m.9.一个钢筋三角架三边长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 种.10.如图,身高1.8米的小明同学沿着旗杆在地面的影子AB 由A 向B 走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m ,BC=8m ,则旗杆的高度是 m.(第10题图) (第11题图) (第12题图)11.在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如图装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰所成像的高度为________cm .12.已知△ABC 在坐标平面内三顶点的坐标分别为A (0,2)、B (3,3)、C (2,1).以B 为位似中心,画出与△ABC 相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是________ .三、解答题(共5小题)13.如图是小孔成像实验,火焰AC 通过小孔O 照射到屏幕上,形成倒立的实像,像长BD =2 cm ,OA =60 cm ,OB =10 cm ,求火焰AC 的长.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE =40 cm ,EF =20 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =8 m ,求树高AB.15.如图,M ,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M ,N 两点之间的距离,选择测量点A ,B ,C ,点B ,C 分别在AM ,AN 上,现测得AM =1千米,AN =1.8千米,AB =54米,BC =45米,AC =30米,求M ,N 两点之间的距离.16.如图,某水平地面上建筑物的高度为AB ,在点D 和点F 处分别竖立高是2 m 的标杆CD 和EF ,两标杆相隔52 m ,并且建筑物AB 、标杆CD 和EF 在同一竖直平面内,从标杆CD 后退2 m 到点G 处,在G 处测得建筑物顶端A 和标杆顶端C 在同一条直线上;从标杆FE 后退4 m 到点H 处,在H 处测得建筑物顶端A 和标杆顶端E 在同一条直线上,求建筑物的高.17.某校九年级(1)班的一节数学活动课安排了测量操场上旗杆AB的高度.甲、乙、丙三个学习小组设计的测量方案如图所示,甲组测得图中BO=20米,OD=3.4米,CD=1.7米;乙组测得图中CD=1.5米,同一时刻影长FD=0.9米,EB=6米;丙组测得图中EF∥AB,FH∥BD,BD=30米,EF=0.2米,人的臂长(FH)为0.6米.请你任选一种方案,利用试验数据求出该校旗杆的高度.参考答案1.A2.B3.C 4.B 5.B6.D 7. 80 8. 9. 10. 11. 12.13.解:∵AC∥BD,∴△OBD∽△OAC,∴BDAC=OBOA,即2AC=1060,∴AC=12(cm).答:火焰AC的长为12 cm. 14.解:∵∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴DEEF=CDBC,即4020=8BC,解得BC=4(m).∵AC=1.5 m,∴AB=AC+BC=1.5+4=5.5(m),答:树高AB为5.5 m.15.解:连接MN,∵ACAM=301000=3100,ABAN=541800=3100,∴ACAM=ABAN.又∵∠BAC=∠NAM,∴△BAC∽△NAM,∴BCMN=3100,即45MN=3100,∴MN=1500(米).答:M,N两点之间的距离为1500米.16.解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴CDAB=DGDG+BD,EFAB=FHFH+DF+BD.∵CD=DG=EF=2 m,DF=52 m,FH=4 m,∴2AB=22+BD,2 AB=44+52+BD,∴22+BD=44+52+BD,解得BD=52(m),∴2AB =22+52, 解得AB =54(m).答:建筑物的高为54 m.17.解:选择甲组方案计算:在△ABO 和△CDO 中,因为∠ABO =∠CDO =90°,∠AOB =∠COD ,所以△ABO ∽△CDO ,所以AB CD =BO OD ,所以AB =BO ·CD OD. 又BO =20米,OD =3.4米,CD =1.7米,所以AB =10米,即该校旗杆的高度为10米.选择乙组方案计算:在△ABE 和△CDF 中,因为∠ABE =∠CDF =90°,∠AEB =∠CFD ,所以△ABE ∽△CDF ,所以AB CD =EB FD. 又CD =1.5米,FD =0.9米,EB =6米,所以AB =10米,即该校旗杆的高度为10米.选择丙组方案计算:由FH ∥BD ,可得△CFH ∽△CBD ,所以CF CB =FH BD. 由EF ∥AB ,可得△CFE ∽△CBA ,所以CF CB =EF AB ,所以FH BD =EF AB. 又BD =30米,EF =0.2米,FH =0.6米,所以AB =10米,即该校旗杆的高度为10米.。

九年级数学上册 第三章图形的相似周周测 (全章)湘教版

九年级数学上册 第三章图形的相似周周测 (全章)湘教版

第三章图形的相似周周测(全章)一、单选题(共10题,每题3分,共30分)1.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A. 18米B. 16米C. 20米D. 15米2.△ABC∽△A,B,C,,相似比为3:4,那么面积的比是_____。

A. 3:4B. 9:16C. 6:8D. 4:53.如图,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm2(第3题图)(第5题图)4.在上科学课时,老师让同学利用手中的放大镜对蜗牛进行观察,同学们在放大镜中看到蜗牛与实际的蜗牛属于什么变换()。

A. 相似变换B. 平移变换C. 旋转变换D. 轴对称变换5.如图,在△ABC中,DE∥BC ,,DE=4,则BC的长是()A. 8B. 10C. 11D. 126.若相似△ABC与△DEF的相似比为1 :3,则△ABC与△DEF的面积比( )A. 1 : 3B. 1 :9 C. 3 :1 D. 1 :7.如图,在ΔABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN的长为()A. B.C.D.(第7题图)(第8题图)8.如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A. 3B. 4C. 5D. 69.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A. 1: 1B. 1:2 C. 1:3 D. 1:410.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1: 2B. 2:1 C. 1:4 D. 4:1二、填空题(共6题,每题3分,共18分)11.已知8:x =6:9,则x的值等于________。

湘教版数学九年级上册第三章相似图形试题含答案

湘教版数学九年级上册第三章相似图形试题含答案

数学九年级第三章图形的相似试卷(含答案)一、填空题(每小题3分,共24分)1.如果四条线段m, n, x, y 成比例,若m=2 , n=8 , y=20 .则线段x 的长是__________.2.边长为12cm 的等边三角形按2:1的比例缩小后的三角形是边长为_____的____三角形.3.已知△ABC ∽△DEF, AB =6 , DE =8 , 则:ABC DEF S S ∆∆=________.4.已知三个数2,2,请你再添一个数,写出一个比例式________.5.点P 是△ABC 中AB 边上的一点,过点P 作直线 (不与直线AB 重合)截△ABC,使截得三角形与△ABC 相似,满足这样条件的直线最多________条.6.电视节目主持人在主持节目时,站在舞台上的黄金分割点处最自然得体,若舞台AB 长为20cm,试计算主持人应走到离A 点至少____________________m 处.(结果精确到0.1m)7.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_________.8.如图,若DE ∥BC,FD ∥AB,AD ∶AC =2∶3 ,AB =9,BC =6,则四边形BEDF 的周长为_____.二、选择题(每小题4分,共40分)1.若果mn ab =,则下列比例式中不正确的是( ) A.a n m b = B.a m n b = C.m n a b = D.m b a n= 2.已知:如图2,在△ABC 中,∠ADE=∠C,则下列等式成立的是( ) A.AD AE AB AC = B.AE AD BC BD= C.DE AE BC AB = D.DE AD BC DB= 3.已知正五边形ABCDE 与正五边形'''''A B C D E 的面积比为1:2,则它们的相似比为( ) A. 1:2 B. 2:1 C.224.如图,两个位似图形△ABO 和△'''C B A ,若OA:'OA =3:1,则正确的是( )A.AB:''A B =3:1B.'AA :'BB =AB:'ABC.OA:'OB =2:1D.∠A =∠'B5.在比例尺是1:3800的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为( )D.266000km6.下列判断正确的是( )A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形7.如图, D 、E 是AB 的三等分点, DF ∥EG ∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( )A.1:2:3B.1:2:4C.1:3:5D.2:3:48.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长9.把△ABC 的各边都扩大为原来的2倍,得到△'''A B C ,下面结论不正确的是( )A.△ABC ∽△'''A B CB.△ABC 和△'''A B C 的各边、各角对应相等C.△ABC 和△'''A B C 的相似比为1:2D.△ABC 和△'''A B C 的相似比为1:310.如图,四边形ABCD 是平行四边形,则图中与△DEF 相似的三角形共有( )A.1个B.2个C.3个D.4个三、解答题(每题8分,共24分)1. 如图,在△ABC 中,∠C=90°,DE ⊥AB 于E,DF ⊥BC 于F.求证: △DEH ~△BCA2.如图,四边形AEFD 与EBCF 是相似的梯形,AE:EB =2:3,EF =12 cm,求AD 、BC 的长.3.如图, 平行四边形ABCD 中,点E 是DC 中点, 连AE 并延长与BC 延长线交于点F,若CEF S ∆=10 , 求四边形ABCE 的面积.四.(12分)已知如图,平行四边形ABCD 中,AE:EB =1:2 .(1)求AE:DC 的值.(2)△AEF 与△CDF 相似吗?若相似,请说明理由,并求出相似比.(3)如果AEF S ∆=6cm 2,求CDF S ∆ 数学九年级第三章图形相似试题的答案1、5,2、6cm ,等边,3、9︰16,4、略,5、4、,6、7.6m ,7、24m ,8、14二、选择题:CCCAA BCDDB三、解答题⑴证明:∵DE ⊥AB,DF ⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°而∠BHF=∠DHE ∴∠D=∠B,又∵∠HFB=∠C=90°△DEH ∽△BCA⑵解:∵四边形AEFD ∽四边形EBCF∴EF AD =EB AB ,BC EF =EB AB,∴AD=8,BC=18⑶ 解:∵四边形ABCD 为平行四边形∴EC ∥AB,DC=AB,由E 为DC 中点,∴EC=21DC=21AB,∵EC ∥AB,有∠ECF=∠ABF,∠F=∠F,△ECF ∽△ABF:4:1ABF ECF S S = ∴12123,0cos 22x x α==≤ 四.提高题解:① ∵ ABCD ,∴DC=AB 由12AE EB = ∴ 21EB AE =∴31ABAE=,∴13AEDC=②相似,∵ABCD,有DC∥AB,∴∠DCF=∠EAF,∠FDC=∠EFA ∴△AEF∽△CDF,相似比为:13 AE DC=③∵△AEF∽△CDF ∴21:3AEF CDFS S⎛⎫= ⎪⎝⎭∴254CDFS cm=。

最新湘教版九年级上册数学第3章:图形的相似 达标测试卷(含答案)

最新湘教版九年级上册数学第3章:图形的相似 达标测试卷(含答案)

第3章达标测试卷一、选择题(每题3分,共30分)1.若△ABC ∽△A ′B ′C ′,∠A =40°,∠B =60°,则∠C ′等于( )A .20°B .40°C .60°D .80°2.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DE EF等于( ) A.13B.12C.23D .13.下列四组线段中,不是成比例线段的为( )A .3,6,2,4B .4,6,5,10C .1,2,3,6D .2,5,2 3,154.下列各组图形中有可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形5.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O 为位似中心,位似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81.其中正确的有( )A .1个B .2个C .3个D .4个7.如图,为计算河的宽度(河两岸平行),在河对岸选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一直线上,若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 为( )A .60 mB .40 mC .30 mD .20 m8.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2)9.如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO至点C ,使OC =13FO ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC 等于( )A .6:2:1B .3:2:1C .6:3:2D .4:3:210.已知△ABC 的三边长分别为20 cm ,50 cm ,60 cm ,现要利用长度分别为30 cm 和60 cm 的细木条各一根,做一个与△ABC相似的三角形木架,要求以其中一根为一边,将另一根截下两段(允许有余料)作为另外两边,那么另两边的长度分别为( ) A.10 cm,25 cm B.10 cm,36 cm或12 cm,36 cmC.12 cm,36 cm D.10 cm,25 cm或12 cm,36 cm 二、填空题(每题3分,共24分)11.已知c4=b5=a6≠0,则b+ca=________.12.如图,∠1=∠2,添加一个条件____________使得△ADE∽△ACB.13.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形的面积,S2表示长为AD(AD=AB)、宽为AC的矩形的面积,则S1与S2的大小关系为____________.14.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=______,△ADE 与△ABC的周长之比为________,△CFG与△BFD的面积之比为________.15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且OEEA=43,则FGBC=________.16.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形(如图),勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.17.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为____________.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1的边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,……,以此类推,则Sn=______________(用含n的式子表示,n为正整数).三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,四边形ABCD∽四边形EFGH,试求出x及∠α的大小.20.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.21.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB 于点E.(1)求证:△BDE∽△CAD;(2)若AB=13,BC=10,求线段DE的长.22.如图,竖立在B处的标杆AB=2.4米,在F处的观测者从E处看到标杆顶端A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8米,FB=2.5米,EF=1.5米,求树高CD.23.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上的某一点D处,折痕为EF(点E,F分别在边AC,BC上).(1)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为________.②当AC=3,BC=4时,AD的长为__________.(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.24.如图①,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AEBD的值.(2)试判断当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC旋转至A,D,E三点共线时,求线段BD的长.答案一、1.D 2.B 3.B 4.A 5.A 6.B7.B 点拨:∵AB ⊥BC ,CD ⊥BC ,∴∠ABE =∠DCE =90°. ∵∠AEB =∠DEC ,∴△ABE ∽△DCE.∴AB DC =BE CE ,即AB 20=2010. ∴AB =40 m.8.B9.B 点拨:设AB 与OF 相交于点M ,∵AF ∥OB ,∴△FAM ∽△OBM ,∴OM FM =BM AM =BO AF =12. 设S △BOM =S ,则S △AOM =2S ,∵OC =13FO ,OM =12FM , ∴OM =OC.∴S △AOC =S △AOM =2S ,S △BOC =S △BOM =S.∴S △ABO :S △AOC :S △BOC =3:2:1.10.D 点拨:如果从30 cm 长的一根中截,那么60 cm 长的一根只能作为最长边,而△ABC 的最长边也为60 cm ,且另两边长之和大于30 cm ,所以不符合题意.如果从60 cm 长的一根中截,设截得的短边和长边的长分别为x cm ,y cm ,那么有三种情况,即20:30=50:x =60:y 或20:x =50:30=60:y 或20:x =50:y =60:30,解得x =75,y =90(x +y >60,不符合题意,舍去)或x =12,y =36或x =10,y =25.故选D.二、11.3212.∠D =∠C(答案不唯一)13.S1=S2 点拨:∵点C 是线段AB 的黄金分割点,且BC>AC , ∴BC2=AC ·AB.又∵S1=BC2, S2=AC ·AD =AC ·AB ,∴S1=S2.14.2;1:2;1:615.4716.6017点拨:∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x 步,则CD =x 步,AD =(12-x)步,∵DE ∥CF ,∴△ADE ∽△ACB , ∴ED BC =AD AC, ∴x5=12-x 12,∴x =6017. ∴该直角三角形能容纳的正方形边长最大是6017步. 17.65或3 点拨:如图. ∵四边形ABCD 为矩形,∴∠BAD =90°, ∴BD =AB2+AD2=10, 当PD =AD =8时,BP =BD -PD =2,∵△PBE ∽△DBC ,∴BP BD =PE CD ,即210=PE 6, 解得PE =65,当P ′D =P ′A 时,点P ′为BD 的中点,∴P ′E ′=12CD =3, 当PA =AD 时,显然不成立.故答案为65或3. 18.32×⎝ ⎛⎭⎪⎫34n 点拨:在正三角形ABC 中,AB1⊥BC ,∴BB1=12BC =1.在Rt △ABB1中,AB1=AB2-BB21=22-12=3, 根据题意可得△AB2B1∽△AB1B ,记△AB1B 的面积为S , ∴S1S =⎝ ⎛⎭⎪⎫322.∴S1=34S. 同理可得S2=34S1,S3=34S2,S4=34S3,…. ∵S =12×1×3=32,∴S1=34S =32×34, S2=34S1=32×⎝ ⎛⎭⎪⎫342,S3=34S2=32×⎝ ⎛⎭⎪⎫343,S4=34S3=32×⎝ ⎛⎭⎪⎫344,…,Sn =32×⎝ ⎛⎭⎪⎫34n .三、19.解:∵四边形ABCD ∽四边形EFGH ,∴∠H =∠D =95°. ∴∠α=360°-95°-118°-67°=80°.∵四边形ABCD ∽四边形EFGH , ∴BC FG =AB EF, ∴x ∶7=12∶6,解得x =14.20.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6. 21.(1)证明:∵AB =AC ,∴∠B =∠C ,又∵AD 为BC 边上的中线,∴AD ⊥BC.∵DE ⊥AB ,∴∠BED =∠ADC =90°.∴△BDE ∽△CAD.(2)解:∵BC =10,AD 为BC 边上的中线,∴BD =CD =5.∵AC =AB =13,∴由勾股定理可知AD =AC2-CD2=12. 由(1)中△BDE ∽△CAD 可知DE AD =BD AC ,得DE 12=513,故DE =6013. 22.解:过点E 作EH ⊥CD 交CD 于点H ,交AB 于点G ,如图所示.由题意得,EF ⊥FD ,AB ⊥FD ,CD ⊥FD.∵EH ⊥CD ,EH ⊥AB ,∴四边形EFDH 为矩形,∴EF =GB =DH =1.5米,EG =FB =2.5米,GH =BD =8米, ∴AG =AB -GB =2.4-1.5=0.9(米).∵EH ⊥CD ,EH ⊥AB ,∴AG ∥CH ,∴△AEG ∽△CEH ,∴AG CH =EG EH,∴0.9CH = 2.52.5+8, 解得CH =3.78米,∴CD =CH +DH =3.78+1.5=5.28(米).答:树高CD 为5.28米.23.解:(1)①2②95或52 (2)相似.理由:连接CD 交EF 于点O.∵CD 是Rt △ABC 的中线,∴CD =DB =12AB , ∴∠DCB =∠B ,由折叠知∠COF =∠DOF =90°,∴∠DCB +∠CFE =90°,∴∠B +∠CFE =90°.∵∠CEF +∠CFE =90°,∴∠B =∠CEF.在△CEF 和△CBA 中,∠ECF =∠BCA ,∠CEF =∠B ,∴△CEF ∽△CBA.24.解:(1)当α=0°时,∵BC =2AB =8,∴AB =4.∵点D ,E 分别是边BC ,AC 的中点,∴BD =4,AE =EC =12AC. ∵∠B =90°, ∴AC =82+42=45, ∴AE =CE =2 5,∴AE BD =2 54=52. 当α=180°时,如图①,易得AC =45,CE =2 5,CD =4, ∴AE BD =AC +CEBC +CD =4 5+2 58+4=52.(2)无变化.证明:在题图①中,∵DE 是△ABC 的中位线,∴DE ∥AB ,∴CE CA =CD CB,∠EDC =∠B =90°. 在题图②中,∵△EDC 在旋转过程中形状大小不变,∴CE CA =CD CB仍然成立. ∵∠ACE =∠BCD =α,∴△ACE ∽△BCD.∴AE BD =AC BC. 由(1)可知AC =4 5. ∴AC BC =4 58=52.∴AE BD =52. ∴AE BD的大小不变. (3)当△EDC 在BC 上方,且A ,D ,E 三点共线时,四边形ABCD 为矩形,如图②,∴BD =AC =4 5;当△EDC 在BC 下方,且A ,E ,D 三点共线时,△ADC 为直角三角形,如图③,由勾股定理可得AD =AC2-CD2=8.又知DE =2,∴AE =6.∵AE BD =52,∴BD =12 55. 综上,BD 的长为4 5或1255.21 / 21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 图形的相似周周测9(3.5)
一、选择题(共6小题)
1.如图,测量小玻璃管口径的量具ABC ,AB 的长为10 cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处(DE ∥AB ),那么小玻璃管口径DE 的长是( )
A.203 cm
B.193
cm C .7 cm D .6 cm
(第1题图) (第2题图) (第3题图)
2.如图,为估算某条河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上,若测得BE =20 m ,EC =10 m ,CD =20 m ,则河的宽度AB 为( )
A .60 m
B .40 m
C .30 m
D .20 m
3.如图,某学生用长为2.8 m 的竹竿AB 测量学校旗杆CD 的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面上的同一点O 处,此时竹竿与这一点的距离OB =8 m ,与旗杆的距离BD =22 m ,则旗杆CD 的高为( )
A .105 m
B .77 m
C .10.5 m
D .7.7 m
4. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由图3-5-5获得,则井深为( )
A .1.25尺
B .57.5尺
C .6.25尺
D .56.5尺
5.2017·绵阳为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50 cm ,镜面中心C 距离旗杆底部D 的距离为4 m ,如图所示.已知小丽同学的身高是1.54 m ,眼睛位置A 距离小丽头顶的距离是4 cm ,则旗杆DE 的高度等于( )
A .10 m
B .12 m
C .12.4 m
D .12.32 m
(第5题图) (第6题图) 6.如图所示,某一时刻,一电线杆AB 的影子分别落在地面和墙壁上.此时,小明竖起1米高的标杆(PQ ),量得其影长(QR )为0.5米,此时,他又量得电线杆AB 落在地面上的影子长为3米,墙壁上的影子CD 高为2米.小明利用这些数据很快算出了电线杆AB 的高为( )
A .5米
B .6米
C .7米
D .8米
二、填空题(共6小题)
7. 1.2m高的杆子直立在水平地面上,它在阳光下的影子长度为1.65 m,同一时刻,某大楼的影子长度为110m,则该大楼的高度为m.
8.当下,户外广告已对我们的生活产生直接的影响.图中的AD是安装在广告架AB上的一块广告牌,AC和DE分别表示太阳光线.若某一时刻广告牌AD在地面
上的影长CE=1m,BD在地面上的影长BE=3m,广告牌的顶端A到地
面的距离AB=20m,则广告牌AD的高AD为m.
9.一个钢筋三角架三边长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有种.
10.如图,身高1.8米的小明同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC=8m,则旗杆的高度是m.
(第10题图)(第11题图)(第12题图)
11.在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如图装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm,光屏在距小孔30cm处,小华测量了蜡烛的火焰高度为2cm,则光屏上火焰所成像的高度为________cm.
12.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是________.
三、解答题(共5小题)
13.如图是小孔成像实验,火焰AC通过小孔O照射到屏幕上,形成倒立的实像,像长BD =2 cm,OA=60 cm,OB=10 cm,求火焰AC的长.
14.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,
设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,求树高AB.
15.如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的距离,选择测量点A,B,C,点B,C分别在AM,AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M,N两点之间的距离.
16.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2 m的标杆CD和EF,两标杆相隔52 m,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2 m到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4 m到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
17.某校九年级(1)班的一节数学活动课安排了测量操场上旗杆AB的高度.甲、乙、丙三个
学习小组设计的测量方案如图所示,甲组测得图中BO=20米,OD=3.4米,CD=1.7米;乙组测得图中CD=1.5米,同一时刻影长FD=0.9米,EB=6米;丙组测得图中EF∥AB,FH∥BD,BD=30米,EF=0.2米,人的臂长(FH)为0.6米.请你任选一种方案,利用试验数据求出该校旗杆的高度.
参考答案
1.A2.B3.C 4.B 5.B6.D
7. 80 8. 9. 10. 11. 12. 13.解:∵AC∥BD,∴△OBD∽△OAC,
∴BD
AC=
OB
OA,即
2
AC=
10
60,
∴AC=12(cm).
答:火焰AC的长为12 cm. 14.解:∵∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,
∴DE
EF=
CD
BC,即
40
20=
8
BC,
解得BC=4(m).
∵AC=1.5 m,
∴AB=AC+BC=1.5+4=5.5(m),
答:树高AB为5.5 m.
15.解:连接MN,
∵AC
AM=
30
1000=
3
100,
AB
AN=
54
1800=
3
100,
∴AC
AM=
AB
AN.
又∵∠BAC=∠NAM,∴△BAC∽△NAM,
∴BC
MN=
3
100,
即45
MN=
3
100,∴MN=1500(米).
答:M,N两点之间的距离为1500米.16.解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,
∴△CDG∽△ABG,△EFH∽△ABH,
∴CD
AB=
DG
DG+BD

EF
AB=
FH
FH+DF+BD
.
∵CD=DG=EF=2 m,DF=52 m,FH=4 m,

2
AB=
2
2+BD

2 AB=4
4+52+BD


2
2+BD

4
4+52+BD

解得BD=52(m),

2
AB=
2
2+52

解得AB=54(m).
答:建筑物的高为54 m. 17.解:选择甲组方案计算:
在△ABO 和△CDO 中,
因为∠ABO =∠CDO =90°,∠AOB =∠COD ,
所以△ABO ∽△CDO ,
所以AB CD =BO OD ,所以AB =BO ·CD OD
. 又BO =20米,OD =3.4米,CD =1.7米,
所以AB =10米,
即该校旗杆的高度为10米.
选择乙组方案计算:
在△ABE 和△CDF 中,因为∠ABE =∠CDF =90°,∠AEB =∠CFD ,
所以△ABE ∽△CDF ,所以AB CD =EB FD
. 又CD =1.5米,FD =0.9米,EB =6米,
所以AB =10米,
即该校旗杆的高度为10米.
选择丙组方案计算:
由FH ∥BD ,可得△CFH ∽△CBD ,
所以CF CB =FH BD
. 由EF ∥AB ,可得△CFE ∽△CBA ,
所以CF CB =EF AB ,所以FH BD =EF AB
. 又BD =30米,EF =0.2米,FH =0.6米,
所以AB =10米,
即该校旗杆的高度为10米.。

相关文档
最新文档