有参考基因组的转录组生物信息分析模板
有参考基因组的转录组生物信息分析
一、生物信息分析流程获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析:二、项目结果说明1 原始序列数据高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。
FASTQ格式文件中每个read由四行描述,如下:@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACGGCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT+@@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。
illumina 测序标识符详细信息如下:第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。
如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Qphred表示,则有下列关系:公式一:Qphred = -10log10(e)illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下:2 测序数据质量评估2.1 测序错误率分布检查每个碱基测序错误率是通过测序Phred数值(Phred score, Qphred)通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示:illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。
转录组分析报告
转录组分析报告介绍转录组分析是研究基因组中转录过程的研究领域。
通过转录组分析,我们可以了解到在特定条件下细胞中正在转录的所有基因。
这些信息对于理解细胞功能、疾病发展以及生物技术的开发都非常重要。
本报告将介绍转录组分析的一般步骤和常用方法。
步骤一:实验设计转录组分析的第一步是设计实验。
在这个步骤中,我们需要确定要研究的样本类型、实验条件和重复次数。
合理的实验设计可以最大程度地减少误差,并提高结果的可靠性。
步骤二:RNA提取在转录组分析中,我们需要从样本中提取RNA。
RNA是细胞中转录的产物,它可以反映细胞中正在表达的基因信息。
RNA提取的质量和纯度对后续的转录组分析非常重要。
常用的提取方法包括酚氯仿法、磁珠法和硅胶膜法等。
步骤三:RNA测序RNA测序是转录组分析的核心步骤之一。
通过RNA测序,我们可以将RNA样本转化为对应的DNA序列,并确定每个基因的表达水平。
常见的RNA测序技术包括Sanger测序、二代测序和三代测序等。
二代测序技术如Illumina和Ion Torrent等已经成为转录组分析的主流技术。
步骤四:数据预处理RNA测序会产生大量的原始数据,这些数据需要进行预处理以去除噪音和提高数据质量。
数据预处理包括去除低质量的reads、去除接头序列、去除重复序列和过滤低表达基因等。
预处理后的数据可以为后续的分析提供可靠的基础。
步骤五:差异表达基因分析差异表达基因分析是转录组分析的重要环节之一。
通过比较不同条件下基因的表达水平,我们可以找到与特定条件相关的差异表达基因。
常用的差异表达基因分析方法包括DESeq、edgeR和limma等。
这些方法可以帮助我们发现与特定条件相关的生物学过程和信号通路。
步骤六:功能注释和富集分析一旦确定了差异表达基因,我们可以对这些基因进行功能注释和富集分析。
功能注释可以帮助我们了解差异表达基因的功能和参与的生物学过程。
而富集分析可以帮助我们发现差异表达基因在特定功能和通路中的富集情况。
有参考基因组的转录组生物信息分析模板
有参考基因组的转录组生物信息分析模板转录组是指一些特定生物体在特定时期和特定环境下,在其中一种特定的组织或细胞中所表达的所有基因的mRNA的总和。
转录组测序技术的发展使得我们能够全面了解基因的表达水平和差异,并帮助我们深入探索特定生物体的功能和特性。
本文将为您提供一个转录组生物信息分析的模板,以帮助研究者进行转录组数据分析。
一、质检与预处理1. 检查转录组测序数据的质量,使用FastQC等工具查看测序质量报告。
2. 根据报告,去除测序中存在的接头污染、低质量碱基,以及过短或过长的reads。
3. 使用Trimmomatic等工具进行reads修剪和过滤,保留高质量的reads。
二、比对到参考基因组2. 使用比对软件如Bowtie2、STAR等将reads比对到参考基因组上。
3. 根据比对结果生成BAM/SAM文件,并使用Samtools等工具对文件进行排序和索引。
三、基因表达量估计1. 使用HTSeq、featureCounts等软件对比对结果进行基因表达量估计,生成基因计数矩阵。
2. 将基因计数矩阵导入R或Python环境,进行表达量分析和统计。
3. 使用DESeq2、edgeR等软件对不同样本之间的差异表达基因进行筛选和统计。
四、差异表达基因分析1. 使用DESeq2、edgeR等软件进行差异表达基因分析,确定在不同条件下表达显著变化的基因。
2.使用热图、散点图、MA图等工具可视化差异表达基因的分布和表达模式。
五、注释分析1. 使用生物信息学工具如DAVID、enrichR等进行功能富集和通路分析,找出差异表达基因所涉及的生物学过程和通路。
2. 利用基因本体论(Gene Ontology)和KEGG数据库等进行差异表达基因的功能注释。
六、蛋白质互作网络分析1.将差异表达基因输入蛋白质互作数据库如STRING等,构建差异表达基因的蛋白质互作网络。
2. 使用Cytoscape等工具进行蛋白质互作网络的可视化和分析。
有参考基因组的转录组生物信息分析模板
v1.0 可编辑可修改一、生物信息分析流程获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析:二、项目结果说明1 原始序列数据高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。
FASTQ格式文件中每个read由四行描述,如下:@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACGGCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT+@@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。
illumina 测序标识符详细信息如下:第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。
如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Qphred表示,则有下列关系:公式一:Qphred = -10log10(e)illumina Casava 版本测序错误率与测序质量值简明对应关系如下:2 测序数据质量评估测序错误率分布检查每个碱基测序错误率是通过测序Phred数值(Phred score, Q)通过公式1phred转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示:illumina Casava 版本碱基识别与Phred分值之间的简明对应关系测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。
转录组有参考生物信息分析结题报告模版-V2.0
转录组有参考基因组生物信息分析结题报告获得原始测序序列(Sequenced Reads)后,并且其相应的基因组参考序列( Reference Genome )可以获得的情况下,可以用有参考基因组信息分析流程对数据进行详细的分析,分析流程图如下:1. 原始序列数据高通量测序(如Illunima HiSeq TM2000/ Miseq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。
测序样品中真实数据随机截取结果如下:@HWI-ST1106:227:D14F6ACXX:1:1101:1202:2188 1:N:0:GCCAAT CGGATGATCTTCTTAATCTCTCCTTGCATAGTTATGAAACAGTCCGTGGACTTGCTGGAAAATCTCTCTTGAAGATGATGAAGAGATGGCCCTCTACAAT +CCCFFFDFFHHHHJJJJJIJIGGGIGICIGIIJEIIJIIJJI@DHEDHECFGGAHGGJGHIICGEEIEHGGGIECEEHH@HE>C@EBBE@CCDDCCCDDC @HWI-ST1106:227:D14F6ACXX:1:1101:1237:2217 1:N:0:GCCAAT GAAGGTGAGTCTGAGGAGGCCAAGGAGGGAATGTTTGTGAAAGGATATGTCTACTAAGATATTAGAAAGTATGTACTACTACTACTACTACATGTTTTCA +@@@FDADDFDHFHIIIDHIIJJJGICGGGCGHGFIGHBHEHHGI;BDHHCFGCHIIIIEHGIGHHIJJE7??ACHCDFFFFFEEECCEE>C>ACCCDC>@ @HWI-ST1106:227:D14F6ACXX:1:1101:1382:2195 1:N:0:GCCAAT TTTTGCAACAATGGCTTCCACCATGATGACTACTCTACCACAGTTCAATGGACTCAAACCCCAACCTTTCTCAGCTTCTCCAATTCAAGGCTTGGTGGCA +@@@DD3DDFFFF:CDGI@GIEEDH<F49C?EGFBF9?FF?C@BFEFGIII3BDDFFIIG7FFFIIBEFFIFDC3ACBDDDBD@>@AAD;;;@@####### @HWI-ST1106:227:D14F6ACXX:1:1101:1255:2239 1:N:0:GCCAAT CGGATTTTCAAGGGCCGCCGGGAGCGCACCGGACACCACGCGACGTGCGGTGCTCTTCCAGCCGCTGGACCCTACCTCCGGCTGAGCCGATTCCAGGGTG +CCCDFFFFHHH?FHIIIJJJJJIGBEHHJJBHBDDCDAC??@@BDBBBBD8BDDCDDACC@A?@BBB@<<CB?CB<AD?9<B@>(8>?395?4:(:<@## @HWI-ST1106:227:D14F6ACXX:1:1101:1423:2239 1:N:0:GCCAAT CTTGTATTGCTCTCCCACAACCCCGTTTTCACGGTTTAGGCTGCTCCCATTTCGCTCGCCGCTACTACGGGAATCGCTTTTGCTTTCTTTTCCTCTGGCT +CCCFDFFFHHHHHJJIJJJJJIJJGGIHIIGIIJGIGGIJJGGGJGIJ>FGIIGHGGBEHBCCBBDDD@BB@@<AABDDBCACDCDACDCD@:>@C::@C2.测序数据质量评估2.1 测序错误率分布检查测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。
转录组测序数据分析(有参考基因组)
转录组测序数据分析(有参考基因组)一、数据分析流程二、数据分析内容1. 数据预处理目的:对原始测序数据进行一定程度的过滤。
原理:根据测序接头以及测序质量对原始的测序数据进行预处理,其中,测序质量Q与测序错误E之间的关系如下:结果:对预处理后质量以及碱基分布统计进行统计2. 比对基因组目的:将经过预处理的测序数据与参考基因组进行相似性比对。
原理:Burrower-Wheeler转换算法与splicing比对算法。
1)Burrower-Wheeler转换算法:由于测序数据量非常大,与整条基因组比对所需资源与时间是较为巨大的。
目前,我们采用Burrower-Wheeler(BWT)算法对基因进行建立索引、碱基压缩等过程,这样可以很大程度上加快比对速度,减少比对过程中所需资源。
2)splicing比对算法:即分段比对算法,当某条测序序列位于转录本剪切位点时,也就是这条序列同时属于两个外显子,如果将它与参考基因组进行比对,由于基因组两个外显子之间含有intron区,那么它将无法找到它合适的位置;但是应用分段比对算法就可以将这条测序序列分割变成多段子序列,然后应用这些段子序列与基因组进行比对,这样就可以找到它们真正的位置。
Vps28基因的一个分段比对的结果,蓝线连接的两端即为被分割的子序列,可见此种算法非常的适用于转录组测序。
结果展示:应用比对结果进行一些相关mapping统计,测序饱和度及测序5’,3’ bias统计。
Multi mapping,Unique mapping及Unique gene-body mapping统计。
饱和度分析,当reads达到一定测序量后,基因覆盖率基本达到饱和。
测序3’,5’偏好性统计,测序主要集中于基因bady区,两端偏向性较轻。
3. 基因表达水平研究目的:应用基因组比对结果进行基因定量。
原理:从指定物种基因模型(基因结构)中得到gene、exon、intron以及UTR等位置信息,通过基因组比对结果计算出在不用区域富集片段数目,然后应用RPKM/FPKM标准化公式对富集片段的数量进行归一化。
转录组分析概要范文
转录组分析概要范文1. RNA提取:首先需要从样本中提取出总RNA,包括mRNA、rRNA、tRNA等各种类型的RNA。
提取RNA的方法有多种,常见的有TRIzol法和磁珠法等。
2.RNA质量评估:为了确定RNA的质量和完整性,通常会使用生物芯片、琼脂糖凝胶电泳等技术对提取的RNA样本进行质检。
质量好的RNA样本会进一步进行下一步的分析。
3. RNA测序:将RNA样本转化为可测序的cDNA,在高通量测序平台上进行测序。
测序技术的发展使得转录组分析变得更加高效和精确,目前常用的测序技术包括Illumina HiSeq、PacBio和Nanopore等。
4. 数据处理和分析:测序后得到的原始数据需要进行固定的数据处理流程,包括去除低质量序列、去除adaptor序列、对reads进行拼接和组装等。
然后将得到的reads与参考基因组或转录组进行比对,得到基因表达水平的定量信息。
常见的分析软件包括Tophat-Cufflinks、STAR-RSEM和HISAT-StringTie等。
5. 基因差异分析:通过比较不同样本之间的基因表达差异,可以识别出差异表达的基因,并进行功能分析,进一步了解基因的生物学功能。
差异分析的方法有多种,包括DESeq、edgeR和Limma等。
6.生物信息学注释和功能分析:对差异表达基因进行生物信息学注释,包括功能注释、通路注释和亚细胞定位等。
注释分析可以帮助我们理解差异表达基因的生物学功能和调控机制。
7. 转录本组装和可变剪接分析:通过组装测序数据,可以得到转录本的信息,了解基因的可变剪接模式以及转录本的相对丰度。
转录本组装和可变剪接分析的软件包括StringTie、Cufflinks和Trinity等。
8.功能富集分析:将差异表达基因和转录本进行功能富集分析,可以发现特定的功能通路和生物过程的富集情况,从而进一步了解差异表达基因的生物学意义。
总结起来,转录组分析是通过测序技术对RNA进行测序并进行一系列的数据处理和分析,以揭示基因表达的调控机制和细胞功能的变化。
PolyA法转录组测序数据分析报告模板
2.1.4 转录本覆盖情况和均一性结果ቤተ መጻሕፍቲ ባይዱ................................................................................................................... 9
2.2
基因表达量整体分析..................................................................................................................................... 11
2.1.3 Reads 分布结果........................................................................................................................................... 8
3.7
RNA 编辑 ....................................................................................................................................................... 57
2.15 样品间相关性分析 ........................................................................................................................................ 42
生物信息学分析范文
生物信息学分析范文生物信息学的应用非常广泛,主要包括基因组学、蛋白质组学和转录组学等方面。
在基因组学中,生物信息学可以用于预测基因的结构和功能,鉴定基因的变异和突变,以及研究基因的演化和分布。
在蛋白质组学中,生物信息学可以用于预测蛋白质的结构和功能,鉴定蛋白质的修饰和相互作用,以及研究蛋白质的表达和调控。
在转录组学中,生物信息学可以用于分析基因的转录和表达,鉴定基因的调控元件和信号通路,以及研究基因的功能和调控网络。
生物信息学的方法主要包括序列比对、结构预测和功能注释等方面。
序列比对是生物信息学中最常用的方法之一,它可以用于比较不同物种或样本的基因组、蛋白质或RNA序列,以及分析它们的相似性和差异性。
结构预测是生物信息学中另一个重要的方法,它可以用于预测蛋白质的三维结构,以及分析蛋白质的稳定性和功能。
功能注释是生物信息学中最有挑战性的方法之一,它可以用于预测基因或蛋白质的功能、鉴定代谢途径和信号通路,以及研究基因或蛋白质的功能调控网络。
生物信息学在基因组学中的应用非常广泛。
通过分析基因组的序列和结构,生物信息学可以用于预测基因的结构和功能,鉴定基因的变异和突变,以及研究基因的演化和分布。
例如,通过比对不同物种或样本的基因组序列,可以鉴定基因的保守区域和编码区域,以及分析它们的相似性和差异性。
同时,生物信息学还可以预测基因的启动子、转录因子结合位点和DNA甲基化位点,以及研究基因的调控网络和表达模式。
生物信息学在蛋白质组学中的应用也非常重要。
通过分析蛋白质的序列和结构,生物信息学可以用于预测蛋白质的结构和功能,鉴定蛋白质的修饰和相互作用,以及研究蛋白质的表达和调控。
例如,通过比对不同物种或样本的蛋白质序列,可以鉴定蛋白质的保守区域和功能域,以及分析它们的相似性和差异性。
同时,生物信息学还可以预测蛋白质的二级结构、三级结构和配体结合位点,以及研究蛋白质的功能调控网络和信号通路。
生物信息学在转录组学中的应用也越来越重要。
转录组分析报告
转录组分析报告1. 引言转录组是一组特定生物体细胞或组织中主动转录的所有RNA分子的总和。
转录组分析是通过高通量测序技术,如RNA-seq等,研究生物体在特定生理或病理状态下的基因表达模式和转录水平的变化。
转录组分析在基因功能研究、疾病机制解析和新药研发等领域具有重要应用价值。
2. 实验设计本次实验旨在分析转录组在不同处理条件下的差异表达基因。
我们选取了A和B两个处理组进行对比分析。
每个组别包含3个重复样本,共计6个样本。
样本采集后,我们使用RNA提取试剂盒提取转录组RNA,然后使用Illumina HiSeq平台进行RNA-seq测序。
3. 数据处理3.1 数据质控首先对测序数据进行质量控制,使用FastQC软件分析测序数据的质量分数和碱基分布。
结果显示,测序数据质量良好,无需进行过滤或修剪操作。
3.2 数据预处理在数据预处理过程中,我们主要进行了以下步骤: 1. 使用Bowtie2软件将测序数据比对到参考基因组;bowtie2 -x reference_genome -U input_fastq -S output_sam2.使用Samtools软件将比对结果转换为BAM格式;samtools view -S -b input_sam > output_bam3.使用StringTie软件进行转录本拼接和定量分析;stringtie -G annotation_file -o output_gtf input_bam经过数据预处理后,我们获得了每个基因的表达计数和转录本的FPKM值。
4. 差异表达分析利用DESeq2软件对处理组A和B的差异表达基因进行分析。
在进行差异表达分析之前,我们首先进行了归一化处理,通过计算基因的大小因子来消除测序深度和基因长度之间的偏差。
然后,对处理组A和B之间的基因表达差异进行了t检验,并进行了多重检验校正。
最终,我们选择了在p值<0.05和|log2(fold change)|>1的条件下,认定差异表达基因具有统计学意义。
转录组分析
通过基因表达差异我们可以检查出不同组样品
之间的代谢及信号通路差异,直观的了解细胞 所处的不同状态。 KEGG网址:www.kegg.jp
6
斑马鱼(注释完善的参考基因组)
• 斑马鱼免疫系统转录组的研究 • 一个免疫组,一个对照组 • 用迟钝爱德华菌低毒株免疫
RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish. BMC Genomics 2012, 13:319
• 基因表达差异
表达量计算用RPKM。 样本间每个基因的表达差异分析。
• 功能聚类分析 • UTR分析 • AS分析
有表达差异的基因,通过功能进行聚类分析
发现可能存在于基因上下游的UTR区域。 描述样本中可能存在的不同剪切形式。
• 新基因发现
找到已注释过的基因组上未标出的新转录物。
• cSNP分析 • SSR分析
12
NGS illumina Sample A Tophat A accepted_hits.bam
NGS illumina Sample B Tophat B accepted_hits.bam
转录组浏览系统
Cufflinks A transcripts.gtf Samtools A
Sample_A.mpileup
高通量测序转录组相对于表达谱芯片的优势
• 芯片主要检测已知的具体位点,适合于定制检测。 • 高通量测序能够检测整个转录组,获取的数据更加全面, 数据量更大,覆盖检测类型更广,更适合探索性的科学研 究。
生物信息学中的基因组学和转录组学分析方法
生物信息学中的基因组学和转录组学分析方法随着生物技术的快速发展,人们对于基因组学和转录组学这两个领域的研究也更加深入。
基因组学是指对于一个物种基因组的全面描述和研究,而转录组学则是研究一个物种所有转录的RNA的组成和表达情况。
在生物信息学中处理基因组学和转录组学数据的方法也在不断发展,以下将介绍一些常用的分析方法。
1. 基因组学分析方法1.1 基因预测基因是有生物学功能的DNA序列,因此基因预测是基因组学研究中非常重要的一环。
目前,常用的基因预测方法包括比对法、剪接法、比例法等。
其中,比对法是通过与外部数据库的已知基因序列比对来预测基因;剪接法则是通过剪接位点的识别来预测基因;比例法则是根据区域内G、C含量与AT含量的比例来预测基因。
1.2 基因富集分析基因富集分析是在基因组水平上对生物学过程的研究。
这种方法通过寻找基因组中一组特定的DNA区域来确定在生物进化过程和特定疾病生理学过程中哪些基因受到了选择或扰动。
通过这种方法,可以找到与某个生命现象相关的基因,在进一步研究中挖掘新的生物信号通路。
1.3 基因组序列比对基因比对是基于不同物种的遗传信息相似度来分析它们之间的关系。
基因组序列比对有两种常见的方法:全基因组序列比对和局部序列比对。
全基因组比对指将一个物种与另一个物种的全部基因组序列全局比对,而局部比对则是利用这些序列一部分的相似性来进行比对。
这种方法可以帮助生物学家了解物种间基因组的组成和演化情况。
2. 转录组学分析方法2.1 RNA测序RNA测序是从RNA样品中获取序列的技术,通常使用高通量测序技术(如Illumina、PacBio)进行。
RNA测序技术产生的数据称为RNA-seq数据,其可以研究RNA在生命过程中的表达情况、种类、剪接和修饰等。
RNA-seq技术的发展让我们窥探到基因表达的复杂性和多样性,为探索生命和疾病的本质提供了新的视角。
2.2 差异表达分析差异表达分析是通过测量两个或多个样品在基因表达水平上的差异来确定基因在不同生物学条件下的表达变化。
生物信息学研究中的基因组与转录组分析
生物信息学研究中的基因组与转录组分析生物信息学是一门跨学科的学科,结合了计算机科学、统计学、生物学等多个领域的知识,致力于对生物学系统进行大规模数据的处理、分析和挖掘,从而探究生物学中的各种问题。
在生物信息学的研究中,基因组和转录组分析是其中的两个重要研究方向。
一、基因组分析基因组分析是指对整个基因组进行研究,包括基因组结构、功能、表达等多个方面。
随着高通量二代测序的出现,我们已经能够生成大量基因组测序的数据,从而对基因组进行研究。
在基因组分析中,主要包括以下几个方面:1. 基因预测基因预测是基因组分析中的一个基础工作,其目的是利用计算方法从DNA序列中预测出具有生物学功能的基因序列。
基因预测通常包括两个步骤,首先是进行基因识别,其次是对已经识别的基因进行进一步的注释。
2. 基因组比较基因组比较是指对两个或多个物种基因组进行比较,从而挖掘物种之间的遗传差异。
基因组比较可以发现物种之间的同源基因、基因家族、保守元件等,进而推断基因组的进化历史等信息。
3. 基因组注释基因组注释是指对基因组中已知和未知区域进行注释,以确定其功能和特征。
基因组注释可以帮助我们了解基因组的生物学意义,同时也可以为后续的研究提供重要的信息。
二、转录组分析转录组分析是研究基因转录水平的变化和调控机制,从而揭示基因调控的分子机制。
在转录组分析中,主要包括以下几个方面:1. 转录本定量转录本定量是指对基因的转录水平进行定量分析,从而比较不同条件下基因表达的水平变化。
转录本定量通常基于RNA测序数据,可以通过计算每个基因的表达量得到。
2. 基因表达调控机制研究基因表达调控机制研究是研究基因表达的调控机制,包括转录因子、microRNA等调控机制的研究。
通过研究不同条件下基因表达的差异,可以进一步预测调控因子和其靶基因的关系,并探究这些调控机制在生物学过程中的作用。
3. 基因功能注释基因功能注释是指利用生物信息学方法对基因的功能进行预测和注释。
生物信息流程分析
生物信息学分析及案例目录目录 (2)RNA-SEQ 分析 (5)概述 (5)分析流程: (5)基因功能分类及Pathway分析 (9)概述 (9)案例 (9)基因多态性分析 (10)分析流程 (11)CHIP_SEQ (12)概述: (12)实验流程: (13)分析流程: (14)研究内容: (14)应用领域: (15)CNV-Seq (16)概述: (16)分析流程: (16)案例: (17)SNV (17)概述: (17)实验及分析流程: (18)案例: (19)microRNA分析 (19)概述 (19)用途 (20)实验流程 (20)分析流程 (21)案例 (22)1. 去除低质量序列、adaptor序列以及含polyA的序列 (22)2. 将Clean reads比对到microRNA数据库当中(如miRBase),求出样本中各已知microRNA的表达水平。
(23)3. 样本间差异表达分析 (24)4. 表达聚类分析 (25)5. 差异表达microRNA靶基因GO及pathway分析 (25)6. 过滤掉map到已有注释过的小RNA及mRNA上的序列,用于后续新microRNA的预测分析 (27)7. novel microRNA的预测 (27)8. novel microRNA靶基因预测 (28)下一代基因测序技术在Metagenomics研究中的应用——生物菌群种类分析 (29)简介 (29)分析流程 (29)实例:检测污水处理样品中微生物 (31)1. 各样本间微生物结构及差异分析(RDP Classifier分析法) (31)2. 样本菌群差异分析 (33)3. 序列聚类分析(靶相似度较高的序列归为一类,即OTUs) (34)4. 各样本间微生物结构及差异分析(MEGAN分析法) (35)DNA甲基化分析 (36)简介: (36)DNA甲基化反应机理: (36)分析流程: (37)案例: (38)RNA-SEQ 分析概述RNA-Seq是指转录组的测序技术,而RNA-Seq流程是指分析测序数据的一整套相关程序的集合,在这里面分享的内容分别是:用mapping软件将测序后的数据比对到参考基因或参考基因组上、对比对后的数据进行过滤、统计过滤后数据信息并计算基于的表达量,覆盖率,长度等、查看reads在参考基因组上的分布情况、计算两个样本之间基因表达量的相关性、在两个样本之间筛选差异基因、对筛选出来的差异基因进行聚类分析,对差异基因进行GO功能富集分析、对差异基因进行Pathway功能富集分析。
有参考基因组的转录组生物信息分析
一、生物信息分析流程获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析:二、项目结果说明1 原始序列数据高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。
FASTQ格式文件中每个read由四行描述,如下:@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACGGCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT+@@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。
illumina 测序标识符详细信息如下:第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。
如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Qphred表示,则有下列关系:公式一:Qphred = -10log10(e)illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下:2 测序数据质量评估2.1 测序错误率分布检查每个碱基测序错误率是通过测序Phred数值(Phred score, Qphred)通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示:illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。
有参考基因组的转录组生物信息分析
有参考基因组的转录组生物信息分析参考基因组的转录组生物信息分析是一种通过对基因组DNA的转录产物进行高通量测序分析,来揭示基因组的表达特征和功能的方法。
它可以为研究生物体的基因表达和调控机制提供重要的信息,并且在许多领域如医学、农业和生物工程中具有广泛的应用。
转录组学分析的第一步是通过测序技术获得RNA样品的序列信息。
当前常用的转录组测序方法有RNA-Seq和Microarray。
RNA-Seq是一种高通量测序方法,它通过将RNA样品转录成cDNA,然后进行高通量测序,将转录本的序列信息转化为数字信号。
Microarray则是一种基于杂交原理的芯片技术,它通过在芯片上固定大量的DNA探针,然后将标记有荧光的RNA样品与之杂交,通过检测荧光强度来推断RNA的序列信息。
两种方法各有优缺点,研究者可以根据实际需要选择合适的方法。
得到转录组测序数据后,下一步是对数据进行预处理和质量控制。
预处理包括去除低质量的reads、去除接头、去除未知核苷酸、去除重复序列等。
质量控制则包括检查测序得到的reads质量分数,对于质量不合格的reads可以进行过滤或者修剪。
得到基因或者转录本的表达水平数据后,可以进行进一步的生物信息学分析。
最简单的是计算和比较基因的表达水平,可以通过计算基因的FPKM(fragments per kilobase of transcript per million mapped reads)或者RPKM(reads per kilobase of transcript per million mapped reads)来衡量基因的表达水平,然后根据不同样品的表达水平比较来发现差异表达基因。
此外,还可以应用聚类分析、差异分析、富集分析等方法,来挖掘转录组数据中的有用信息。
基因组和转录组的整合分析
基因组和转录组的整合分析基因组和转录组是生物学研究中的两个重要概念。
基因组指的是一种生物的完整基因信息的集合,包括其内部的编码区和非编码区,而转录组则指的是一种生物在特定条件下转录出的全部RNA信息。
基因组和转录组的整合分析,即将两种信息结合起来,可以更全面、更深入地理解生物的遗传信息。
在过去的几十年中,科学家已经完成了很多种生物的基因组和转录组测序,并将这些数据发布在各种数据库中。
这些数据是公开的,可以帮助科学家更加深入地探索生物的分子机制。
基因组和转录组的整合分析,就是将这些数据库中的数据进行分析和比对,并从中找出有意义的信息。
基因组和转录组的整合分析适用于各种生物学研究领域,例如发育生物学、癌症研究、遗传学等等。
通过整合基因组和转录组数据,可以研究基因的表达模式、剪接变异和可变剪接后果等等问题。
一种常用的基因组和转录组整合分析方法是RNA-Seq。
这种方法是通过分析RNA序列和基因组序列之间的比对,来确定基因的表达水平和转录变异。
RNA-Seq方法已经被广泛应用于各种生物学研究中。
基因组和转录组的整合分析还可以帮助我们更好地了解基因底疾病。
例如,通过整合遗传数据和转录组数据,可以发现一些基因在发生突变时会导致疾病的发生。
此外,通过基因组和转录组的整合分析,还可以分析哪些基因与哪些药物之间有关系。
这些信息对于药物研发和个性化治疗都具有重要意义。
总之,基因组和转录组的整合分析是生物学研究的一个重要领域。
通过将基因组和转录组的信息结合起来,可以更好地了解生物的遗传信息和分子机制。
这种分析方法在各种生物学研究中都有重要的应用,可谓是生物学研究的一个重要突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、生物信息分析流程获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析:二、项目结果说明1 原始序列数据高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。
FASTQ格式文件中每个read由四行描述,如下:@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACGGCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT+@@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。
illumina 测序标识符详细信息如下:第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。
如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Qphred表示,则有下列关系:公式一:Qphred = -10log10(e)illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下:2 测序数据质量评估2.1 测序错误率分布检查)通过公式1每个碱基测序错误率是通过测序Phred数值(Phred score, Qphred转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示:illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。
对于RNA-seq技术,测序错误率分布具有两个特点:(1)测序错误率会随着测序序列(Sequenced Reads)的长度的增加而升高,这是由于测序过程中化学试剂的消耗而导致的,并且为illumina高通量测序平台都具有的特征(Erlich and Mitra, 2008; Jiang et al.)。
(2)前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq建库过程中反转录所需要的随机引物的长度。
所以推测前6个碱基测序错误率较高的原因为随机引物和RNA模版的不完全结合(Jiang et al.)。
测序错误率分布检查用于检测在测序长度范围内,有无异常的碱基位置存在高错误率,比如中间位置的碱基测序错误率显著高于其他位置。
一般情况下,每个碱基位置的测序错误率都应该低于0.5%。
图2.1 测序错误率分布图横坐标为reads的碱基位置,纵坐标为单碱基错误率2.2 GC含量分布检查GC含量分布检查用于检测有无AT、GC 分离现象,而这种现象可能是测序或者建库所带来的,并且会影响后续的定量分析。
在illumina测序平台的转录组测序中,反转录成cDNA时所用的6bp 的随机引物会引起前几个位置的核苷酸组成存在一定的偏好性。
而这种偏好性与测序的物种和实验室环境无关,但会影响转录组测序的均一化程度(Hansen et al.)。
除此之外,理论上G和C碱基及A和T碱基含量每个测序循环上应分别相等,且整个测序过程稳定不变,呈水平线。
对于DGE测序来说,由于随机引物扩增偏差等原因,常常会导致在测序得到的每个read前6-7个碱基有较大的波动,这种波动属于正常情况。
图2.2 GC含量分布图横坐标为reads的碱基位置,纵坐标为单碱基所占的比例;不同颜色代表不同的碱基类型2.3 测序数据过滤测序得到的原始测序序列,里面含有带接头的、低质量的reads,为了保证信息分析质量,必须对raw reads进行过滤,得到clean reads,后续分析都基于clean reads。
数据处理的步骤如下:(1) 去除带接头(adapter)的reads;(2) 去除N(N表示无法确定碱基信息)的比例大于10%的reads;(3) 去除低质量reads。
RNA-seq 的接头(Adapter, Oligonucleotide sequences for TruSeq TM RNA and DNA Sample Prep Kits) 信息:RNA 5’ Adapter (RA5), part # 15013205:5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’RNA 3’ Adapter (RA3), part # 15013207:5’-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC(6位index)ATCTCGTATGCCGTCTTCTGCTTG-3’图2.3 原始数据过滤结果2.4 测序数据质量情况汇总表2.4 数据产出质量情况一览表Sample name Raw reads Clean reads clean bases Error rate(%) Q20(%) Q30(%) GC content(%) HS1_1 3.52G 0.03 97.88 92.88 49.39 HS1_2 3.52G 0.03 96.50 90.38 49.59 HS2_1 3.51G 0.03 97.85 92.81 49.53数据质量情况详细内容如下:(1) Raw reads:统计原始序列数据,以四行为一个单位,统计每个文件的测序序列的个数。
(2) Clean reads:计算方法同 Raw Reads,只是统计的文件为过滤后的测序数据。
后续的生物信息分析都是基于Clean reads。
(3) Clean bases:测序序列的个数乘以测序序列的长度,并转化为以G为单位。
(4) Error rate:通过公式1计算得到。
(5) Q20、Q30:分别计算 Phred 数值大于20、30的碱基占总体碱基的百分比。
(6) GC content:计算碱基G和C的数量总和占总的碱基数量的百分比。
3 参考序列比对分析测序序列定位算法:根据不同的基因组的特征,我们选取相对合适的软件(动植物用TopHat(Trapnell et al., 2009)、真菌或者基因密度较高的物种用Bowtie),合适的参数设置(如最大的内含子长度,会根据已知的该物种的基因模型来进行统计分析),将过滤后的测序序列进行基因组定位分析。
下图为TopHat 的算法示意图:Tophat的算法主要分为两个部分:(1) 将测序序列整段比对到外显子上。
(2) 将测序序列分段比对到两个外显子上。
我们统计了实验所产生的测序序列的定位个数(Total Mapped Reads)及其占clean reads的百分比,其中包括多个定位的测序序列个数(Multiple Mapped Reads)及其占总体(clean reads)的百分比,以及单个定位的测序序列个数(Uniquely Mapped Reads)及其占总体(clean reads)的百分比。
3.1 Reads与参考基因组比对情况统计表3.1 Reads与参考基因组比对情况一览表比对结果统计详细内容如下:(1) Total reads:测序序列经过测序数据过滤后的数量统计(Clean data)。
(2) Total mapped:能定位到基因组上的测序序列的数量的统计;一般情况下,如果不存在污染并且参考基因组选择合适的情况下,这部分数据的百分比大于 70%。
(3) Multiple mapped:在参考序列上有多个比对位置的测序序列的数量统计;这部分数据的百分比一般会小于10%。
(4) Uniquely mapped:在参考序列上有唯一比对位置的测序序列的数量统计。
(5) Reads map to '+',Reads map to '-':测序序列比对到基因组上正链和负链的统计。
(6) Splice reads:(2)中,分段比对到两个外显子上的测序序列(也称为Junction reads)的统计,Non-splice reads为整段比对到外显子的将测序序列的统计,Splice reads的百分比取决于测序片段的长度。
3.2 Reads在参考基因组不同区域的分布情况对Total mapped reads的比对到基因组上的各个部分的情况进行统计,定位区域分为Exon(外显子)、Intron(内含子)和Intergenic(基因间隔区域)。
正常情况下,Exon (外显子)区域的测序序列定位的百分比含量应该最高,定位到Intron (内含子) 区域的测序序列可能是由于非成熟的mRNA的污染或者基因组注释不完全导致的,而定位到Intergenic(基因间隔区域)的测序序列可能是因为基因组注释不完全以及背景噪音。
.图3.2 Reads在参考基因组不同区域的分布情况3.3 Reads在染色体上的密度分布情况对Total mapped reads的比对到基因组上的各个染色体(分正负链)的密度进行统计,如下图所示,具体作图的方法为用滑动窗口(window size)为1K,计算窗口内部比对到碱基位置上的reads的中位数,并转化成 log。
正常情况2下,整个染色体长度越长,该染色体内部定位的reads总数会越多(Marquez et al.)。
从定位到染色体上的reads数与染色体长度的关系图中,可以更加直观看. 出染色体长度和reads总数的关系。
图3.3 Reads在染色体上的密度分布图上图:横坐标为染色体的长度信息(以百万碱基为单位),纵坐标为log2(reads的密度的中位数),绿色为正链,红色为负链下图:横坐标为染色体的长度信息(单位为Mb),纵坐标为mapped到染色体上的reads数(单位为M)3.4 Reads比对结果可视化我们提供RNA-seq Reads在基因组上比对结果的bam格式文件,部分物种还提供相应的参考基因组和注释文件,并推荐使用IGV (Integrative Genomics Viewer) 浏览器对bam文件进行可视化浏览。