【2019最新】高考物理专题十功能关系及其应用精准培优专练

合集下载

高考物理机械能守恒定律和功能关系专题练习

高考物理机械能守恒定律和功能关系专题练习

2019-2019高考物理机械能守恒定律和功能关系专题练习在只有重力或系统内弹力做功的物体系统内,物体的动能和势能可以相互转化,但机械能保持不变,下面是机械能守恒定律和功能关系专题练习,请考生仔细练习。

1.(2019高考天津卷)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止起先下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒B.弹簧弹性势能改变了mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变解析:选B.圆环沿杆下滑的过程中,圆环与弹簧组成的系统机械能守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=L,依据机械能守恒定律,弹簧的弹性势能增加了Ep=mgh=mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.2.如图所示,可视为质点的小球A、B用不行伸长的细软轻线连接,跨过固定在地面上半径为R的光滑圆柱,A的质量为B的两倍.当B位于地面时,A恰与圆柱轴心等高.将A由静止释放,B上升的最大高度是()A.2RB.C.D.解析:选C.如图所示,以A、B为系统,以地面为零势能面,设A质量为2m,B质量为m,依据机械能守恒定律有:2mgR=mgR+3mv2,A落地后B将以v做竖直上抛运动,即有mv2=mgh,解得h=R.则B上升的高度为R+R=R,故选项C正确.3.(2019山东潍坊二模)(多选)如图所示,足够长粗糙斜面固定在水平面上,物块a通过平行于斜面的轻绳跨过光滑轻滑轮与物块b相连,b的质量为m.起先时,a、b均静止且a刚好不受斜面摩擦力作用.现对b施加竖直向下的恒力F,使a、b做加速运动,则在b下降h高度过程中()A.a的加速度为B.a的重力势能增加mghC.绳的拉力对a做的功等于a机械能的增加D.F对b做的功与摩擦力对a做的功之和等于a、b动能的增加解析:选BD.由a、b均静止且a刚好不受斜面摩擦作用知:FT=mg,FT=magsin .即:mg=magsinEpa=maghsin由得:Epa=mgh选项B正确.当有力F作用时,物块a与斜面之间有滑动摩擦力的作用,即绳子的拉力增大,所以a的加速度小于,选项A错误;对物块a、b 分别由动能定理得:WFT-magsin h+Wf=EkaWF-WFT+mgh=Ekb由式可知,选项C错、D对.4.(2019湖北八校高三联考)(多选)如图所示,足够长的传送带以恒定速率沿顺时针方向运转.现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,其次阶段匀速运动到传送带顶端.则下列说法中正确的是()A.第一阶段和其次阶段摩擦力对物体都做正功B.第一阶段摩擦力对物体做的功大于物体机械能的增加量C.其次阶段摩擦力对物体做的功等于其次阶段物体机械能的增加量D.第一阶段摩擦力与物体和传送带间的相对位移的乘积在数值上等于系统产生的内能解析:选ACD.第一阶段和其次阶段传送带对物体的摩擦力方向均沿传送带方向向上,故对物体都做正功,选项A正确;在第一阶段和其次阶段摩擦力对物体做的功等于物体机械能的增加量,选项B错误、选项C正确;第一阶段摩擦力与物体和传送带之间的相对位移的乘积数值上等于系统产生的内能,选项D正确.5.(多选)如图所示,长为L的长木板水平放置,在木板的A端放置一个质量为m的小物块,现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为时小物块起先滑动,此时停止转动木板,小物块滑究竟端的速度为v,在整个过程中() A.木板对小物块做的功为mv2B.支持力对小物块做的功为零C.小物块的机械能的增量为mv2-mgLsinD.滑动摩擦力对小物块做的功为mv2-mgLsin解析:选AD.在运动过程中,小物块受重力、木板施加的支持力和摩擦力,整个过程重力做功为零,由动能定理W木=mv2-0,A 正确;在物块被缓慢抬高过程中摩擦力不做功,由动能定理得W 木-mgLsin =0-0,则有W木=mgLsin ,故B错误;由功能关系,机械能的增量为木板对小物块做的功,大小为mv2,C错误;滑动摩擦力对小物块做的功Wf=W木-W木=mv2-mgLsin ,D正确.6.(2019长春二模)(多选)如图所示,物体A的质量为M,圆环B 的质量为m,通过轻绳连接在一起,跨过光滑的定滑轮,圆环套在光滑的竖直杆上,设杆足够长.起先时连接圆环的绳处于水平,长度为l,现从静止释放圆环.不计定滑轮和空气的阻力,以下说法正确的是()A.当M=2m时,l越大,则圆环m下降的最大高度h越大B.当M=2m时,l越大,则圆环m下降的最大高度h越小C.当M=m时,且l确定,则圆环m下降过程中速度先增大后减小到零D.当M=m时,且l确定,则圆环m下降过程中速度始终增大解析:选AD.由系统机械能守恒可得mgh=Mg(-l),当M=2m时,h=l,所以A选项正确;当M=m时,对圆环受力分析如图,可知FT=Mg,故圆环在下降过程中系统的重力势能始终在削减,则系统的动能始终在增加,所以D选项正确.7.(多选)如图为用一钢管弯成的轨道,其中两圆形轨道部分的半径均为R.现有始终径小于钢管口径的可视为质点的小球由图中的A位置以肯定的初速度射入轨道,途经BCD最终从E离开轨道.其中小球的质量为m,BC为右侧圆轨道的竖直直径,D点与左侧圆轨道的圆心等高,重力加速度为g,忽视一切摩擦以及转弯处能量的损失.则下列说法正确的是()A.小球在C点时,肯定对圆管的下壁有力的作用B.当小球刚好能通过C点时,小球在B点处轨道对小球的支持力为自身重力的6倍C.小球在圆管中运动时通过D点的速度最小D.小球离开轨道后的加速度大小恒定解析:选BD.当小球运动到C点的速度v=时,小球与轨道间没有力的作用,当v时,小球对轨道的上壁有力的作用;当v时,小球对轨道的下壁有力的作用,A错误;小球在C点对管壁的作用力为0时,有vC=,依据机械能守恒定律有mg2R+mv=mv,在B点时依据牛顿其次定律有N-mg=m,解得轨道对小球的支持力N=6mg,B正确;在B、C、D三点中瞬时速度最大的是B点,瞬时速度最小的是C点,C错误;小球从E点飞出后只受重力作用,加速度恒定,则小球做匀变速曲线运动,D正确.8.(2019名师原创卷)我国两轮电动摩托车的标准是:由动力驱动,整车质量大于40 kg,最高车速不超过50 km/h,最大载重量为75 kg.某厂欲生产一款整车质量为50 kg的电动摩托车,厂家已经测定该车满载时受水泥路面的阻力为85 N,g=10 m/s2.求:(1)请你设计该款电动摩托车的额定功率;(2)小王同学质量为50 kg,他骑着该电动车在平直的水泥路面上从静止起先以0.4 m/s2的加速度运动10 s,试求这10 s内消耗的电能.(设此时路面的阻力为65 N)解析:(1)该款摩托车满载时以额定功率匀速行驶,则P=FvF=f解得:P=1 181 W.(2)摩托车匀加速过程:F-f=ma解得F=105 N当达到额定功率时v1==11.2 m/s从静止起先以0.4 m/s2的加速度动身运动10 s的速度v2=at=4 m/s11.2 m/s故在10 s内做匀加速直线运动的位移x=at2=20 m牵引力做的功W=Fx=2 100 J由功能关系可得:E=W=2 100 J.答案:(1)1 181 W (2)2 100 J9.(2019高考福建卷)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止起先沿轨道滑下,重力加速度为g. (1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最终从C点滑出小车.已知滑块质量m=,在任一时刻滑块相对地面速度的水平重量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为,求:滑块运动过程中,小车的最大速度大小vm;滑块从B到C运动过程中,小车的位移大小s.解析:(1)滑块滑到B点时对小车压力最大,从A到B机械能守恒mgR=mv滑块在B点处,由牛顿其次定律得N-mg=m解得N=3mg由牛顿第三定律得N=3mg(2)①滑块下滑到达B点时,小车速度最大.由机械能守恒得mgR=Mv+m(2vm)2解得vm=②设滑块运动到C点时,小车速度大小为vC,由功能关系得mgR-mgL=Mv+m(2vC)2设滑块从B到C过程中,小车运动加速度大小为a,由牛顿其次定律得mg=Ma由运动学规律得v-v=-2as解得s=L答案:(1)3mg (2) L10.某电视消遣节目装置可简化为如图所示模型.倾角=37的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6 m/s 的速度顺时针运动.将一个质量m=1 kg的物块由距斜面底端高度h1=5.4 m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为1=0.5、2=0.2,传送带上表面距地面的高度H=5 m,g取10 m/s2,sin 37=0.6,cos 37=0.8.(1)求物块由A点运动到C点的时间;(2)若把物块从距斜面底端高度h2=2.4 m处静止释放,求物块落地点到C点的水平距离;(3)求物块距斜面底端高度满意什么条件时,将物块静止释放均落到地面上的同点D.解析:(1)A到B过程:依据牛顿其次定律mgsin 1mgcos =ma1=a1t代入数据解得a1=2 m/s2,t1=3 s所以滑到B点的速度:vB=a1t1=23 m/s=6 m/s物块在传送带上匀速运动到Ct2== s=1 s所以物块由A到C的时间:t=t1+t2=3 s+1 s=4 s.(2)在斜面上依据动能定理mgh2-1mgcos =mv2解得v=4 m/s6 m/s设物块在传送带先做匀加速运动达v0,运动位移为x,则:a2==2g=2 m/s2v-v2=2ax,x=5 m6 m所以物块先做匀加速直线运动后和传送带一起匀速运动,离开C 点做平抛运动s=v0t0,H=gt,解得s=6 m.(3)因物块每次均抛到同一点D,由平抛学问知:物块到达C点时速度必需有vC=v0当离传送带高度为h3时物块进入传送带后始终匀加速运动,则:mgh3-1mgcos 2mgL=mvh3=1.8 m当离传送带高度为h4时物块进入传送带后始终匀减速运动,则:mgh4-1mgcos 2mgL=mvh4=9.0 m所以当离传送带高度在1.8~9.0 m的范围内均能满意要求,即1.8 m9.0 m.答案:(1)4 s (2)6 m (3)1.8 m9.0 m机械能守恒定律和功能关系专题练习及答案共享到这里,更多内容请关注高考物理试题栏目。

2019高考物理高频考点重点新题精选专项21功能关系及其应用

2019高考物理高频考点重点新题精选专项21功能关系及其应用

2019高考物理高频考点重点新题精选专项21功能关系及其应用1〔2018江苏徐州摸底〕如下图,将一轻弹簧下端固定在倾角为θ的粗糙斜面底端,弹簧处于自然状态时上端位于A点、质量为m的物体从斜面上的B点由静止下滑,与弹簧发生相互作用后,最终停在斜面上。

以下说法正确的选项是A、物体最终将停在A点B、物体第一次反弹后不可能到达B点C、整个过程中重力势能的减少量大于克服摩擦力做的功D、整个过程中物体的最大动能大于弹簧的最大弹性势能2、〔2018湖南省怀化市期末〕在2018年怀化市中学生篮球比赛中,张宇同学在最后一节三分线外投篮,空心入网,弹网后篮球竖直下落,为该队赢得了比赛。

假设空气阻力大小恒定,那么以下说法能正确反映球从出手到落地这一过程的是`A.篮球上升过程加速度小于g,下降过程加速度大于gB.篮球匀加速上升,变减速下降C.篮球在上升过程中动能减少,下降时机械能增加D.篮球在出手时的机械能一定大于落地时的机械能3. 〔2018辽宁省五校协作体高三期初联考〕2018年伦敦奥运会跳水比赛首先进行的女子单人3米板比赛中,中国队派出了夺得双人项目金牌的吴敏霞和何姿。

最终,吴敏霞以总分414分摘金。

现假设她的质量为m,她进入水中后受到水的阻力而做减速运动,设水对她的阻力大小恒为F,那么在她减速下降高度为h的过程中,以下说法正确的选项是(g为当地的重力加速度) A、她的动能减少了Fh B、她的重力势能减少了mghC、她的机械能减少了(F-mg)hD、她的机械能减少了Fh答案:BD解析:在她减速下降高度为h的过程中,重力做功mgh,她的重力势能减少了mgh;由功能关系,她的机械能减少了Fh,选项BD正确AC错误。

4、(2018西安摸底)一个质量为m的小铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,那么此过程中铁块损失的机械能为( )A 、 mgR 81B 、mgR 41C 、 mgR 21D 、mgR 43答案:D解析:在半圆底部,由牛顿第二定律,1.5mg-mg=mv 2/R ,解得v 2=0.5gR 。

功能关系 能量守恒定律

功能关系 能量守恒定律
减少量为_m_g_h_。 ③滑动摩擦力对物体做的功Wf=___m_g_c_o_s__s_ihn__,物体与 斜面的内能增加,增加量为___m_g_co_s___si_hn____。
④压缩弹簧过程,弹力对物体做_负__功__,弹簧的弹性势能 增加,增加量_等__于__克服弹力做功的多少。 ⑤全过程中,物体与弹簧组成的系统,除重力和弹簧弹 力做功以外,只有_滑__动__摩__擦__力__做负功,系统的机械能 减少,减少量为__m_g_c_o_s__s_ihn__。
专题六 功能关系 能量守恒定律
【知识梳理】 知识点1 功能关系 1.功是_能__量__转__化__的量度,即做了多少功就有多少_能__量__ _发__生__了__转__化__。 2.做功的过程一定伴随着_能__量__的__转__化__,而且_能__量__的__转__ _化__必须通过做功来实现。
【解析】选B。夯杆被提上来的过程中,先受到滑动摩 擦力,然后受静摩擦力,故A错误;增加滚轮匀速转动的 角速度时夯杆获得的最大速度增大,可减小提杆的时间, 增加滚轮对杆的正压力,夯杆受到的滑动摩擦力增大, 匀加速运动的加速度增大,可减小提杆的时间,故B正确; 根据功能关系可知,滚轮对夯杆做的功等于夯杆动能、
A.夯杆被提上来的过程中滚轮先对它施加向上的滑动 摩擦力,后不对它施力 B.增加滚轮匀速转动的角速度或增加滚轮对杆的正压 力可减小提杆的时间 C.滚轮对夯杆做的功等于夯杆动能的增量 D.一次提杆过程系统共产生热量 1 mv2
2
【思考探究】 (1)夯杆被提升经历匀加速和匀速运动过程,分析这两 个过程的受力情况如何? 提示:匀加速运动过程受重力和向上的滑动摩擦力作用, 匀速运动过程受重力和向上的静摩擦力作用。
2a 2
2
故D错误。

高中物理功能关系知识点及习题总结(K12教育文档)

高中物理功能关系知识点及习题总结(K12教育文档)

高中物理功能关系知识点及习题总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理功能关系知识点及习题总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理功能关系知识点及习题总结(word版可编辑修改)的全部内容。

高中物理功能关系专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE。

高考物理 功能关系 单元评估检测

高考物理 功能关系 单元评估检测

功能关系单元评估检测一、选择题(本题共8小题,每小题6分,共48分。

1~5题为单选题,6~8题为多选题)1.(2017·南阳模拟)如图所示,质量为m的物块与转台之间的最大静摩擦力为物块重力的k倍,物块与转轴OO′相距R,物块随转台由静止开始转动,当转速缓慢增加到一定值时,物块将在转台上滑动,在物块由静止到相对滑动前瞬间的过程中,转台的摩擦力对物块做的功为( )A.0B.2πkmgRC.2kmgRD.0.5kmgR【加固训练】安徽首家滑雪场正式落户国家AAAA级旅游景区——安庆巨石山,现已正式“开滑”。

如图所示,滑雪者从O点由静止沿斜面自由下滑,接着在水平面上滑至N 点停下。

斜面、水平面与滑雪板之间的动摩擦因数都为μ=0.1。

滑雪者(包括滑雪板)的质量为m=50kg,g取10m/s2,O、N两点间的水平距离为s=100m。

在滑雪者经过ON段运动的过程中,克服摩擦力做的功为( )A.1 250 JB.2 500 JC.5 000 JD.7 500 J2.(2017·泉州模拟)如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与两斜面间的动摩擦因数相同,物体滑至斜面底部C点时的动能分别为E kA和E kB,在滑行过程中克服摩擦力所做的功分别为W A和W B,则有( )A.E kA=E kB,W A>W BB.E kA<E kB,W A>W BC.E kA>E kB,W A=W BD.E kA>E kB,W A<W B3.(2017·济南模拟)如图所示,某段滑雪雪道倾角为30°,总质量为m的滑雪运动员从距底端高为h处的雪道上由静止开始匀加速下滑,加速度为错误!未找到引用源。

g的运动员从上向下滑到底端的过程中( )A.合外力做功为错误!未找到引用源。

mghB.增加的动能为错误!未找到引用源。

mghC.克服摩擦力做功为错误!未找到引用源。

[K12配套]2019年版本高考物理专题复习-——功能关系综合运用(例题 习题 答案)-Word版

[K12配套]2019年版本高考物理专题复习-——功能关系综合运用(例题 习题 答案)-Word版

高考物理专题复习——功能关系综合运用(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为W=ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

实际应用时,后一种表述比较好操作。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。

(2)对研究对象进行受力分析。

(研究对象以外的物体施于研究对象的力都要分析,含重力)。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。

(4)写出物体的初、末动能。

(5)按照动能定理列式求解。

二、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。

2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。

通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。

高考物理功能关系守恒定律考点总结

高考物理功能关系守恒定律考点总结

[思路点拨] 解答本题时注意三方面的关系: (1)小滑块动能的改变量对应合外力做的功; (2)小滑块重力势能的改变量对应重力做的功; (3)小滑块机械能的改变量对应除重力以外的力做的功.
[课堂笔记] (1)据动能定理,动能的改变量等于外力做功 的代数和,其中做负功的有空气阻力、斜面对滑块的作用 力(因弹力不做功,实际上为摩擦阻力做的功). 因此ΔEk=A-B+C-D. (2)滑块重力势能的减少等于重力做的功,因此ΔEp=-C. (3)滑块机械能的改变量等于重力之外的其他力做的功, 因此ΔE=A-B-D. [答案] (1)A-B+C-D (2)-C (3)A-B- D
2.高考考查该类问题时,常综合平抛、圆周运动及电学、 磁学、热学等知识,考查学生的判断、推理及综合分析 问题的能力.
3.(2010·盐城模拟)NBA篮球赛非常精彩,吸引了众多观
众.经常有这样的场面:在终场前0.1 s,运动员把球投
出且准确命中,获得比赛的胜利.如果运动员投篮过程
中对篮球做功为W,出手高度(相对地面)为h1,篮筐距地
2.运动员跳伞将经历开伞前后的加速下降和减速下降两
个过程.将人和伞看成一个系统,在这两个过程中,
下列说法正确的是
()
A.阻力对系统始终做负功
B.系统受到的合外力始终向下
C.重力做功使系统的重力势能增加
D.任意相等的时间内重力做的功相等
解析:阻力的方向总与运动方向相反,故阻力总做负功, A项正确;运动员加速下降时合外力向下,减速下降时合 外力向上,B项错误;重力做功使系统重力势能减少,C 项错误;由于做变速运动,任意相等时间内的下落高度h 不相等,所以重力做功W=mgh不相等,D项错误. 答案:A
[思路点拨]
[解题样板] (1)滑块在由A到B的过程中机械能守恒,

【高中物理】专题:功能关系的理解与应用 2022-2023学年高一物理人教版(2019)必修第二册

【高中物理】专题:功能关系的理解与应用 2022-2023学年高一物理人教版(2019)必修第二册
3、摩擦生热:Q =f s相
新课讲授 功能关系的理解
1、功能关系:功是能量转化的量度 2、对功能关系的理解: ①做功的过程就是能量转化的过程,不同形式的能量发生相互转化必须通过做 功来实现,不同力做功,对。 ③功和能虽然单位相同,但不一回事,功是过程量,能是状态量。
新课讲授 功能关系的理解 3、力学中的功能关系
功 重力做功
弹力做功
合外力做功
除重力、系统内弹力以外的 其他力做功
两物体间滑动摩擦力对物体 系统做功
能量转化 重力势能的改变 弹性势能的改变 动能的变化量
机械能的变化量
内能的改变量
关系式 WG=-ΔEp WF=-ΔEp W合=ΔEk W其他=ΔE机
Q=Ff·x相对
人教版必修二
拓展3 功能关系的理解与应用
新课引入
所有的自然现象都涉及能量,任何人类活 动都离不开能量。但要用一句话说清楚能量 是什么却不容易。费恩曼也曾说“能量是一 个最为抽象的概念”。能量有各种各样的形 式,能量可以从一种形式转化为另一种形式, 而转化的过程总是伴随着做功过程,做功的 过程就是能量转化的过程,做了多少功就有 多少能量发生转化。功和能之间的这种关系, 统称为“功能关系”。
AC
课堂练习
4、一质量均匀、不可伸长的绳索,重为G,A、B两端固定在天花板上,
如图所示。现在最低点C处施加一竖直向下的力,将最低点缓慢拉至D点。
在此过程中,绳的重心位置 A
A、逐渐升高 B、逐渐降低
A
B
C
C、先降低后升高
D
D、始终不变
课堂练习
5、质量为m的物体由静止开始下落,由于空气阻力的影响,物体下落的
新课讲授 功能关系的理解
5、功能关系图像问题

河北2019年高考物理二轮练习考点综述功能关系

河北2019年高考物理二轮练习考点综述功能关系

河北2019年高考物理二轮练习考点综述功能关系功能关系1、假设地球、月球都静止不动,用火箭从地球沿地月连线向月球发射一探测器,假定探测器在地球表面附近脱离火箭、用W表示探测器从脱离火箭处飞到月球的过程中克服地球引力做的功,用E k表示探测器脱离火箭时的动能,假设不计空气阻力,那么()、A、E k必须大于或等于W,探测器才能到达月球B、E k小于W,探测器也可能到达月球C、E k=W,探测器一定能到达月球D、E k=W,探测器一定不能到达月球2、构建和谐型、节约型社会深得民心,节能器材遍布于生活的方方面面、自动充电式电动车确实是特别好的一例、电动车的前轮装有发电机,发电机与蓄电池连接、当骑车者用力蹬车或电动自行车自动滑行时,自行车就能够连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来、现有某人骑车以500J的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图1中图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,那么第二次向蓄电池所充的电能是()、图1A、200JB、250JC、300JD、500J3、如图2所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进入光滑水平面又压缩弹簧、在此过程中,小球重力势能和动能的最大值分别为Ep和Ek,弹簧弹性势能的最大值为Ep′,那么它们之间的关系为()、图2A、Ep=Ek=Ep′B、Ep>Ek>Ep′C、Ep=Ek+Ep′D、Ep+Ek=Ep′图34、(多项选择)如图3所示,固定在竖直平面内的光滑圆弧轨道最高点为D,AC为圆弧的一条水平直径,AE为水平面、现使小球从A点正上方O点处静止释放,小球从A 点进入圆弧轨道后能通过轨道最高点D,那么()、A、小球通过D点时速度可能为零B、小球通过D点后,一定会落到水平面AE上C、小球通过D点后,一定会再次落到圆弧轨道上D 、小球要通过D 点,至少要从高52R 处开始下落5、(多项选择)如图4所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,关于物块从静止释放到相对静止这一过程,以下说法正确的选项是 ()、A 、电动机做的功为12mv2B 、摩擦力对物体做的功为mv2C 、传送带克服摩擦力做的功为mv2D 、电动机增加的功率为μmgv6、图4-18是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B 处安装一个压力传感器,其示数N 表示该处所受压力的大小,某滑块从斜面上不同高度h 处由静止下滑,通过B 时,以下表述正确的有 ()、图4-18A 、N 小于滑块重力B 、N 大于滑块重力C 、N 越大说明h 越大D 、N 越大说明h 越小7、如下图,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径、假设在A 点以初速度v1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;假设A 点小球抛出的同时,在C 点以初速度v2沿BA 方向平抛另一相同质量的小球同时也能击中D 点、∠COD =60°,且不计空气阻力,那么 ()、A 、两小球同时落到D 点B 、两小球在此过程中动能的增加量相等C 、在击中D 点前瞬间,重力对两小球做功的功率不相等D 、两小球初速度之比v1∶v2=6∶38、低碳、环保是以后汽车的进展方向、某汽车研发机构在汽车的车轮上安装了小型发电机,将减速时的部分动能转化并储存在蓄电池中,以达到节能的目的、某次测试中,汽车以额定功率行驶一段距离后关闭发动机,测出了汽车动能Ek 与位移x 的关系图象如下图,其中①是关闭储能装置时的关系图线,②是开启储能装置时的关系图线、汽车的质量为1000kg ,设汽车运动过程中所受地面阻力恒定,空气阻力不计、依照图象所给的信息可求出 ()、A 、汽车行驶过程中所受地面的阻力为1000NB 、汽车的额定功率为80kWC 、汽车加速运动的时间为22.5sD 、汽车开启储能装置后向蓄电池提供的电能为5×105J9.如图5所示为一种摆式摩擦因数测量仪,可测量轮胎与地面间动摩擦因数,其要紧部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆,摆锤的质量为m 、细杆可绕轴O 在竖直平面内自由转动,摆锤重心到O 点距离为L ,测量时,测量仪固定于水平地面,将摆锤从与O 等高的位置处静止释放、摆锤到最低点附近时,橡胶片紧压地面擦过一小段距离s(s ≪L),之后接着摆至与竖直方向成θ角的最高位置、假设摆锤对地面的压力可视为大小为F 的恒力,重力加速度为g ,求:(1)摆锤在上述过程中损失的机械能;(2)在上述过程中摩擦力对摆锤所做的功;(3)橡胶片与地面之间的动摩擦因数、10、如图6所示,一轨道由光滑竖直的14圆弧AB 、粗糙水平面BC 及光滑斜面CE 组成,BC 与CE 在C 点由极小光滑圆弧相切连接,一小球从A 点正上方h =0.2m 处自由下落正好沿A 点切线进入轨道,小球质量m =1kg ,14竖直圆弧半径R =0.05m ,BC 长s =0.1m ,小球过C 点后t1=0.3s 第一次到达图中的D 点、又经t2=0.2s 第二次到达D 点、重力加速度取g =10m/s2,求:图6(1)小球第一次在进入圆弧轨道瞬间和离开圆弧轨道瞬间受轨道弹力大小之比N1∶N2;(2)小球与水平面BC 间的动摩擦因数μ;(3)小球最终停止的位置、11、如下图,质量为m 的小物块在粗糙水平桌面上做直线运动,经距离l 后以速度v 飞离桌面,最终落在水平地面上、l =1.4m ,v =3.0m/s ,m =0.10kg ,物块与桌面间的动摩擦因数μ=0.25,桌面高h =0.45m ,不计空气阻力,重力加速度g 取10m/s2.求:(1)小物块落地点到飞出点的水平距离s;(2)小物块落地时的动能Ek;(3)小物块的初速度大小v0.12、如下图,考驾照需要进行路考,其中一项为哪一项定点停车、路旁竖起一标志杆,考官向考员下达定点停车的指令,考员马上刹车,将车停在标志杆处、假设车以v0=36km/h的速度匀速行驶,当车头距标志杆s=20m时,考员开始制动,要求车在恒定阻力作用下做匀减速运动,同时使车头恰好停在标志杆处、车(包括车内的人)的质量为m =1600kg,重力加速度g=10m/s2.(1)刹车过程中车所受阻力的大小为多少?(2)假设当车头距标志杆s=20m时,考官下达停车指令,考生经时间t0=0.8s(即反应时间)后开始刹车,车的初速度仍为v0=36km/h,那么刹车阶段车克服阻力做功的功率约为多少?13、如下图,装置ABCDE固定在水平地面上,AB段为倾角θ=53°的斜面,BC段为半径R =2m的圆弧轨道,两者相切于B点,A点离地面的高度为H=4m.一质量为m=1kg的小球从A点由静止释放后沿着斜面AB下滑,当进入圆弧轨道BC时,由于BC段是用特别材料制成的,导致小球在BC段运动的速率保持不变,最后,小球从最低点C水平抛出,落地速率为v=7m/s.小球与斜面AB之间的动摩擦因数μ=0.5,重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:(1)小球从B点运动到C点克服阻力所做的功、(2)B点到水平地面的高度、14、如下图,由于街道上的圆形污水井盖破损,临时更换了一个稍大于井口的红色圆形平板塑料盖、为了测试因塑料盖意外移动致使盖上的物块滑落入污水井中的可能性,有人做了一个实验:将一个可视为质点、质量为m的硬橡胶块置于塑料盖的圆心处,给塑料盖一个沿径向的水平向右的初速度v0,实验的结果是硬橡胶块恰好与塑料盖分离、设硬橡胶块与塑料盖间的动摩擦因数为μ,塑料盖的质量为2m、半径为R,假设塑料盖与地面之间的摩擦可忽略,且不计塑料盖的厚度、(1)求硬橡胶块与塑料盖刚好分离时的速度大小;(2)通过计算说明实验中的硬橡胶块是落入井内依旧落在地面上、参考答案1、BD2、A对图线②有ΔEk =Ffx2+E 电,x2=6m因此E 电=410ΔEk =200J ,故A 正确、]3、A4、BD5、CD6、BC[设滑块质量为m ,在B 点所受支持力为FN ,圆弧半径为R ,所需向心力为F.滑块从高度h 处由静止下滑至B 点过程中,由机械能守恒定律有12mv2B =mgh ,在B 点滑块所需向心力由合外力提供,得FN -mg =m v2B R .由牛顿第三定律知,传感器示数N 大小等于FN ,解得N =mg +2mgh R ,由此式知N>mg ,且h 越大,N 越大、选项B 、C 正确、]7、CD[此题考查平抛运动规律及功和功率、由h =12gt2可知小球下落时间取决于下落高度,因C 点距D 点的高度是AD 竖直高度的一半,故从C 点抛出的小球先到达D 点,选项A 错误;由动能定理可知两球在此过程中动能增量等于重力所做的功,由W =mgh 可知选项B 错误;依照P =mgv 可知重力的瞬时功率与其竖直方向速度有关,由2gh =v2可得从A 点抛出的小球落到D 点时竖直方向分速度大于从C 点抛到D 点的分速度,应选项C 正确;由h =12gt2及x =v0t 可得v1∶v2=6∶3,选项D 正确、]8、BD[考查机车定功率启动等相关问题、由图线①求所受阻力,ΔEk =Ef Δx ,Ff =8×105400=2000N ,A 错误;由Ek =mv2m 2可得,vm =40m/s ,因此P =Ffvm =80kW ,B 正确;加速阶段,Pt -Ffx =ΔEk,80×103t -2×103×500=3×105,t =16.25s ,C 错误;依照能量守恒,由图线②可得,ΔE =Ek -Ffx =(8×105-2×103×150)J =5×105J ,D 正确、]9、解析(1)选从右侧最高点到左侧最高点的过程研究、因为初、末状态动能为零,因此全程损失的机械能ΔE 等于减少的重力势能,即:ΔE =mgLcos θ.①(2)对全程应用动能定理:WG +Wf =0,②WG =mgLcos θ,③由②、③得Wf =-WG =-mgLcos θ④(3)由滑动摩擦力公式得f =μF ,⑤摩擦力做的功Wf =-fs ,⑥④、⑤式代入⑥式得:μ=mgLcos θFs.⑦ 答案(1)损失的机械能ΔE =mgLcos θ(2)摩擦力做的功Wf =-mgLcos θ(3)动摩擦因数μ=mgLcos θFs10、解析(1)令小球在A 、B 两点速度大小分别为vA 、vB ,那么由动能定理知mgh=12mv2A ,mg(h +R)=12mv2B ,在圆弧轨道A 点:N1=m v2A R ,在圆弧轨道B 点:N2-mg =m v2B R ,联立得N1∶N2=8∶11.(2)由(1)知小球在B 点速度为vB =5m/s ,小球在CE 段加速度a =gsin θ=5m/s2,做类似竖直上抛运动,由对称性及题意知小球从C 点上滑到最高点用时t =0.4s ,因此小球在C 点速度为vC =at =2m/s ,小球从B 到C 由运动学规律知v2B -v2C =2μgs.因此μ=0.5.(3)因小球每次通过BC 段损失的能量相等,均为ΔE =μmgs =0.5J ,而初动能为E =12mv2B ,其他各段无能量损失,因此小球最终停止在C 点、答案(1)8∶11(2)0.5(3)最终停在C 点11、解析(1)由平抛运动规律,有:竖直方向h =12gt2,水平方向s =vt ,得水平距离s =2h g v =0.90m.(2)由机械能守恒定律,动能Ek =12mv2+mgh =0.90J.(3)由动能定理,有-μmg ·l =12mv2-12mv20,得初速度大小v0=2μgl +v2=4.0m/s.答案(1)0.90m(2)0.90J(3)4.0m/s12、解析(1)刹车过程中由牛顿第二定律得f =ma ,设车头刚好停在标志杆处,由运动学公式得:v20=2as 解得f =mv202s ,代入数据得f =4×103N.(2)设刹车后通过t 时间停止,由s =v0t0+v02t解得t =2.4s ,由动能定理得车克服阻力做功W =12mv20=8.0×104J ,车克服阻力做功的功率为P =Wt =3.33×104W.答案(1)4×103N(2)3.33×104W13、解析(1)设小球从B 到C 克服阻力做功为WBC ,由动能定理,得mgR(1-cos θ)-WBC =0.代入数据,解得WBC =8J.(2)设小球在AB 段克服阻力做功为WAB ,B 点到地面高度为h ,那么WAB =μmg AB cos θ,而AB =H -hsin θ.关于小球从A 点落地的整个过程,由动能定理,得mgH -WAB -WBC =12mv2,联立,解得h =2m.答案(1)8J(2)2m14、解析(1)设硬橡胶块与塑料盖恰好分离时,两者的共同速度为v ,从开始滑动到分离经历时间为t ,在此期间硬橡胶块与塑料盖的加速度大小分别为a1、a2,由牛顿第二定律得:μmg =ma1①μmg =2ma2②v =a1t =v0-a2t ③由以上各式得v =23v0④(2)设硬橡胶块与塑料盖恰好分离时,硬橡胶块移动的位移为x ,取硬橡胶块分析,应用动能定理得μmgx =12mv2⑤由系统能量关系可得μmgR =12(2m)v20-12(m +2m)v2⑥由④⑤⑥式可得x =23R ⑦因x<R ,故硬橡胶块将落入污水井内、答案(1)23v0(2)井内。

专题10 天体运动-2023届高考物理一轮复习热点题型专练(解析版)

专题10  天体运动-2023届高考物理一轮复习热点题型专练(解析版)

专题10天体运动目录题型一开普勒定律的应用 (1)题型二万有引力定律的理解 (3)类型1万有引力定律的理解和简单计算 (3)类型2不同天体表面引力的比较与计算 (4)类型3重力和万有引力的关系 (5)类型4地球表面与地表下某处重力加速度的比较与计算 (7)题型三天体质量和密度的计算 (8)类型1利用“重力加速度法”计算天体质量和密度 (8)类型2利用“环绕法”计算天体质量和密度 (9)类型3利用椭圆轨道求质量与密度 (11)题型四卫星运行参量的分析 (13)类型1卫星运行参量与轨道半径的关系 (13)类型2同步卫星、近地卫星及赤道上物体的比较 (15)类型3宇宙速度 (17)题型五卫星的变轨和对接问题 (19)类型1卫星变轨问题中各物理量的比较 (19)类型2卫星的对接问题 (22)题型六天体的“追及”问题 (23)题型七星球稳定自转的临界问题 (25)题型八双星或多星模型 (26)类型1双星问题 (27)类型2三星问题 (29)类型4四星问题 (31)题型一开普勒定律的应用【解题指导】1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl1r1=12Δl2r2,12v1·Δt·r1=12v2·Δt·r2,解得v1v2=r2r1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a3T2=k中,k值只与中心天体的质量有关,不同的中心天体k值不同,且该定律只能用在同一中心天体的两星体之间.【例1】(2022·山东潍坊市模拟)中国首个火星探测器“天问一号”,已于2021年2月10日成功环绕火星运动。

若火星和地球可认为在同一平面内绕太阳同方向做圆周运动,运行过程中火星与地球最近时相距R0、最远时相距5R0,则两者从相距最近到相距最远需经过的最短时间约为()A.365天B.400天C.670天D.800天【答案】B【解析】设火星轨道半径为R1,公转周期为T1,地球轨道半径为R2,公转周期为T2,依题意有R1-R2=R0,R1+R2=5R0,解得R1=3R0,R2=2R0,根据开普勒第三定律有R31T21=R32T22,解得T1=278年,设从相距最近到相距最远需经过的最短时间为t,有ω2t-ω1t=π,ω=2πT,代入数据可得t=405天,故选项B正确。

专题08 功能关系、机械能守恒定律及其应用-2019高三物理总复习真题精准导航(原卷版)

专题08 功能关系、机械能守恒定律及其应用-2019高三物理总复习真题精准导航(原卷版)

考纲定位本讲共1个考点,一个二级考点(1)功能关系本讲高考频率非常高,本考点涵盖了前面动能定理、重力做功、机械能守恒等知识,高考中选择题多以难度比较大,计算题题中考查这个知识也是非常之高。

必备知识一、几种常见的功能关系及其表达式二、两种摩擦力做功特点的比较三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.题型洞察一.题型研究一:机械能守恒定律及其应用(一)真题再现1.(2018·江苏高考)如图所示,钉子A、B相距5l,处于同一高度。

细线的一端系有质量为M的小物块,另一端绕过A固定于B。

质量为m的小球固定在细线上C点,B、C间的线长为3l。

用手竖直向下拉住小球,使小球和物块都静止,此时BC与水平方向的夹角为53°。

松手后,小球运动到与A、B相同高度时的速度恰好为零,然后向下运动。

忽略一切摩擦,重力加速度为g,取sin 53°=0.8,cos 53°=0.6。

求:(1)小球受到手的拉力大小F。

(2)物块和小球的质量之比M∶m。

(3)小球向下运动到最低点时,物块M所受的拉力大小T。

2.(2017江苏卷,9)如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L,B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°,A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中(A)A的动能达到最大前,B受到地面的支持力小于32 mg(B)A的动能最大时,B受到地面的支持力等于32 mg(C)弹簧的弹性势能最大时,A的加速度方向竖直向下(D mgL3.(2015·全国卷ⅡT21)如图所示,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg4.(2016·全国卷丙T 24)如图所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.(二)精准练习1.如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN 是通过椭圆中心O点的水平线.已知一小球从M 点出发,初速率为v 0,沿管道MPN 运动,到N 点的速率为v 1,所需时间 为t 1;若该小球仍由M 点以初速率v 0出发,而沿管道MQN 运动,到N 点的速率为v 2,所需时间为t 2.则( )A .v 1=v 2,t 1>t 2B .v 1<v 2,t 1>t 2C .v 1=v 2,t 1<t 2D .v 1<v 2,t 1<t 22.水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道ab 向右运动,如图所示,小球进入半圆形轨道后刚好能通过最高点c .则( )A .R 越大,v 0越大B .R 越大,小球经过b 点后的瞬间对轨道的压力越大C .m 越大,v 0越大D .m 与R 同时增大,初动能E k0增大3.如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d .杆上的A 点与定滑轮等高,杆上的B 点在A 点正下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为4d 34.如图所示,直立弹射装置的轻质弹簧顶端原来在O 点,O 与管口P 的距离为2x 0,现将一个重力为mg 的钢珠置于弹簧顶端,再把弹簧压缩至M 点,压缩量为x 0.释放弹簧后钢珠被弹出,钢珠运动到P 点时的动能为4mgx 0,不计—切阻力,下列说法中正确的是( )A .弹射过程,弹簧和钢珠组成的系统机械能守恒B.弹簧恢复原长时,弹簧的弹性势能全部转化为钢珠的动能C.钢珠弹射所到达的最高点距管口P的距离为7x0D.弹簧被压缩至M点时的弹性势能为7mgx0二.题型研究二:功能关系(一)真题再现1.(2018·全国卷I ·T18) 如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R;bc是半径为R的四分之一圆弧,与ab相切于b点。

2019年高考真题物理专题10 磁场

2019年高考真题物理专题10  磁场

2016年—2018年高考试题精编版分项解析专题10 磁场1.某空间存在匀强磁场和匀强电场。

一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是A. 磁场和电场的方向B. 磁场和电场的强弱C. 粒子的电性和电量D. 粒子入射时的速度【来源】2018年全国普通高等学校招生统一考试物理(北京卷)【答案】 C点睛:本题考查了带电粒子在复合场中的运动,实际上是考查了速度选择器的相关知识,注意当粒子的速度与磁场不平行时,才会受到洛伦兹力的作用,所以对电场和磁场的方向有要求的。

2.(多选)如图,纸面内有两条互相垂直的长直绝缘导线L1、L2,L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称。

整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外。

已知a、b两点的磁感应强度大小分别为和,方向也垂直于纸面向外。

则()A. 流经L1的电流在b点产生的磁感应强度大小为B. 流经L1的电流在a点产生的磁感应强度大小为C. 流经L2的电流在b点产生的磁感应强度大小为D. 流经L2的电流在a点产生的磁感应强度大小为【来源】2018年普通高等学校招生全国统一考试物理(全国II卷)【答案】 AC可解得: ;故AC正确;故选AC点睛:磁场强度是矢量,对于此题来说ab两点的磁场强度是由三个磁场的叠加形成,先根据右手定则判断导线在ab两点产生的磁场方向,在利用矢量叠加来求解即可。

3.(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。

将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。

下列说法正确的是()A. 开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 AD【解析】本题考查电磁感应、安培定则及其相关的知识点。

【2020】高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案

【2020】高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案

【精品】最新高考物理专题复习-——功能关系综合运用(例题+习题+答案)试卷及参考答案(附参考答案)知识点归纳:一、动能定理1.动能定理的表述合外力做的功等于物体动能的变化.。

(这里的合外力指物体受到的所有外力的合力,包括重力).。

表达式为W=ΔEK动能定理也可以表述为:外力对物体做的总功等于物体动能的变化.。

实际应用时,后一种表述比较好操作.。

不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程.。

和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动.。

(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零).。

(2)对研究对象进行受力分析.。

(研究对象以外的物体施于研究对象的力都要分析,含重力).。

(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).。

如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功.。

(4)写出物体的初、末动能.。

即WAB=mgR-μmgS=1×10×0.8-1×10×3/15=6 J【例5】:如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止.。

已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数.。

高考中常见的功能关系及其在选择题中的应用

高考中常见的功能关系及其在选择题中的应用

高考中常见的功能关系及其在选择题中的应用在高中物理中,主干知识就两个,即力和运动、功和能,所以功能关系是每套高考试题不可回避的必考考点。

在高考中,功能关系这个考点的出题方式也很灵活,在理科综合考试中,它可以出选择题,也可以出计算题,而在单科物理考试中,它可以出选择题、填空题和计算题,所以对该知识点的论述在很多教师的教学总结和论文中屡屡出现,本文就该知识点在选择题中的解法谈谈笔者的看法:高中阶段常见的十大功能关系:一、重力做功的特点1.重力做功的大小仅与高度差有关,而与物体所经过的路径无关。

2.重力做正功,物体所在位置的高度减小,物体的重力势能减小。

重力做负功,物体所在位置的高度增加,物体的重力势能增加。

二、电场力做功的特点1.电场力做功仅与电荷在电场中的位置有关,与所经过的路径无关。

2.电场力做正功,正电荷沿着电场线移动,负电荷逆着电场线移动,电荷的电势能降低电场力做负功,正电荷逆着电场线移动,负电荷顺着电场线移动,电荷的电势能升高。

三、弹簧弹力做功的特点1.弹簧弹力做功仅与弹簧的初末状态的形变量有关,而与具体的形变过程无关。

2.弹簧弹力做正功,弹簧的形变量减小,弹簧弹力做负功,弹簧的形变量增大。

四、分子力做工的特点1.分子力做功仅与分子的初末位置有关,而与分子经过的路径无关。

2.分子力做正功,分子势能减小,分子力做负功,分子势能增加。

五、摩擦力做功的特点:1.静摩擦力做功仅与物体的位移有关,其求解用功的定义进行。

2.滑动摩擦力做功的特点(1)“一动一静”的滑动摩擦力做功仅与运动物体运动的路程有关,且滑动摩擦力一定做负功,把机械能转化为热能。

特别应注意的是:固定斜面上移动的物体的摩擦力做功仅与物体移动的斜面的水平投影的长度有关,而与斜面的长度无关。

(2)“两个都对地运动”的滑动摩擦力做功特点:①当两个物体同向运动时,对地速度大的物体受到的与其运动的方向相反,对该物体做负功,把该物体的机械能转化出来。

高三物理:功能关系及能量守恒的综合应用(解析版)

高三物理:功能关系及能量守恒的综合应用(解析版)

功能关系及能量守恒的综合应用1.功能关系及能量守恒在高考物理中占据了至关重要的地位,因为它们不仅是物理学中的基本原理,更是解决复杂物理问题的关键工具。

在高考中,这些考点通常被用于检验学生对物理世界的深刻理解和应用能力。

2.从命题方式上看,功能关系及能量守恒的题目形式丰富多样,既可以作为独立的问题出现,也可以与其他物理知识点如牛顿运动定律、动量守恒定律等相结合,形成综合性的大题。

这类题目往往涉及对能量转化、传递、守恒等概念的深入理解和灵活运用,对考生的逻辑思维和数学计算能力有较高的要求。

3.备考时,考生需要首先深入理解功能关系及能量守恒的基本原理和概念,明确它们之间的转化和守恒关系。

这包括理解各种形式的能量(如动能、势能、热能等)之间的转化关系,以及能量守恒定律在物理问题中的应用。

同时,考生还需要掌握相关的公式和计算方法,如动能定理、机械能守恒定律等,并能够熟练运用这些公式和方法解决实际问题。

4.考向一:应用动能定理处理多过程问题1.解题流程2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。

(2)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。

(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解,这样更简便。

(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。

考向二:三类连接体的功能关系问题1.轻绳连接的物体系统常见情景二点提醒(1)分清两物体是速度大小相等,还是沿绳方向的分速度大小相等。

(2)用好两物体的位移大小关系或竖直方向高度变化的关系。

2.轻杆连接的物体系统常见情景三大特点(1)平动时两物体线速度相等,转动时两物体角速度相等。

(2)杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒。

2025高考物理备考复习教案 第六章 第4讲 功能关系 能量守恒定律

2025高考物理备考复习教案  第六章 第4讲 功能关系 能量守恒定律
已知v 1 = v 2 ,得mgl 1 (1- cos θ 1 )=mgl 2 (1- cos θ 2 )
因为l 1 >l 2 ,则 cos θ 1 > cos θ 2
所以θ 2 >θ 1
返回目录
第4讲
功能关系
和在水平面上运动,图像的斜率相同,C错误.
返回目录
第4讲
功能关系
能量守恒定律
命题点3 功能关系的综合应用
5. [2021北京]秋千由踏板和绳构成,人在秋千上的摆动过程可以简化为单摆的摆
动,等效“摆球”的质量为m,人蹲在踏板上时摆长为l1,人站立时摆长为l2.不计空
气阻力,重力加速度大小为g.
(1)如果摆长为l1,“摆球”通过最低点时的速度为v,求此时“摆球”受到拉力T的
返回目录
第4讲
功能关系
能量守恒定律
方法点拨
两种摩擦力做功特点的比较
类型
能量的
转化
静摩擦力做功
机械能只能从一个物体转移到
另一个物体,而没有机械能转
化为其他形式的能
滑动摩擦力做功
(1)一部分机械能从一个物体转移到另
一个物体.
(2)一部分机械能转化为内能,此部分
能量就是系统机械能的损失量
返回目录
第4讲


返回目录
第4讲
功能关系
能量守恒定律
力做功
能的变化
只有重力或系统
机械能
内弹力做功
除重力和系统内
弹力之外的其他
力做功
不变化
机械能
变化
二者关系
机械能守恒,即ΔE=[6] 0

(1)其他力做多少正功,物体的机械能增加多少;
(2)其他力做多少负功,物体的机械能减少多少;

高考物理一轮复习 第六章 专题强化十 动力学和能量观点的综合应用

高考物理一轮复习 第六章 专题强化十 动力学和能量观点的综合应用

2.功能关系分析 (1)传送带克服摩擦力做的功:W=fs传; (2)系统产生的内能:Q=fs相对. (3)功能关系分析:W=ΔEk+ΔEp+Q.
例1 (多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机 的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量 m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s 的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1, 运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是
法二:滑块与挡板碰撞前,木板受到的拉力为F1=2 N (第二问可知) F1做功为W1=F1s=2×0.8=1.6 J 滑块与挡板碰撞后,木板受到的拉力为: F2=f1+f-s)=22×1.2 J=26.4 J 碰到挡板前滑块速度v1=v0-at=4 m/s 滑块动能变化:ΔEk=20 J 所以系统因摩擦产生的热量: Q=W1+W2+ΔEk=48 J.
最终工件获得的动能 Ek=12mv02=20 J 工件增加的势能Ep=mgh=150 J 电动机多消耗的电能 E=Q+Ek+Ep=230 J.
方法点拨
摩擦生热的计算 1.正确分析物体的运动过程,做好受力分析. 2.利用运动学公式,结合牛顿第二定律分析物体的速度关系及 位移关系,求出两个物体的相对位移. 3.代入公式Q=f·s相对计算,若物体在传送带上做往复运动,则 为相对路程s相对.
经过C点时受轨道的支持力大小FN, 有 FN-mg=mvRC2 解得FN=50 N 由牛顿第三定律可得滑块在C点时对轨道的压力大小F压=50 N
(3)弹簧的弹性势能的最大值; 答案 6 J
设弹簧的弹性势能最大值为Ep,滑块从C到F点 过程中, 根据动能定理有-μmgL-mgLsin 30°-Ep=0- 12mvC2 代入数据可解得Ep=6 J

2019届高考物理专题十功能关系、机械能守恒定律及其应用精准培优专练

2019届高考物理专题十功能关系、机械能守恒定律及其应用精准培优专练

培优点十 功能关系、机械能守恒定律及其应用1. 此知识点每年必考,试题往往与其他知识点相结合,难度较大。

2. 两点注意:(1)求机械能和重力势能都要选择好零势能点。

(2)利用动能定理求做功,对物体运动过程要求不严格,只要求得运动物体初末状态的速度即可。

典例1. (2018∙全国I 卷∙18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R 。

bc 是半径为R 的四分之一的圆弧,与ab 相切于b 点。

一质量为m 的小球。

始终受到与重力大小相等的水平外力的作用,自a 点从静止开始向右运动,重力加速度大小为g 。

小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A. 2mgRB. 4mgRC. 5mgRD. 6mgR【解析】设小球运动到c 点的速度大小为v c ,a 到c 的过程,由动能定理得2132c F R m g R m v ⋅-=,又F = mg ,解得24c v gR =,小球离开c 点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用力下做匀减速直线运动,由牛顿第二定律可知,小球离开c 点后水平方向和竖直方向的加速度大小均为g ,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间为c v t g == a = g ,在水平方向的位移为2122x at R ==。

由以上分析可知,小球从a 点开始运动到其轨迹最高点的过程中,水平方向上的位移大小为5R ,则小球机械能的增加量E = F ∙5R = 5mgR ,选项C 正确。

【答案】C典例2. (2017∙全国III 卷∙16)如图,一质量为m ,长度为l 的均匀柔软细绳PQ 竖直悬挂。

用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P一、考点分析二、考题再现相距13l 。

重力加速度大小为g 。

在此过程中,外力做的功为( )A .19mglB .16mglC .13mglD .12mgl【解析】将绳的下端Q 缓慢地竖直向上拉起至M 点,PM 段绳的机械能不变,MQ 段绳的机械能的增加量为21211()()36339E mg l mg l mgl ∆=---=,由功能关系可知,在此过程中外力做的功19W mgl =,故选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(多选)如图所示,物块A和圆环B用绕过定滑轮的轻绳连接在一起,圆环B套在光滑的竖直固定杆上,开始时连接B的绳子处于水平。零时刻由静止释放B,经时间t,B下降h,此时,速度达到最大。不计滑轮摩擦和空气的阻力,则( )
A.t时刻B的速度大于A的速度
B.t时刻B受到的合力等于零
C.0~t过程A的机械能增加量大于B的机械能减小量
若物块在传送带上一直加速运动,有:mv Bm2-mv02=μ1mgL
知其到B点的最大速度vBm= m/s
综合上述分析可知,只要传送带速度 m/s≤v≤ m/s就满足条件。
3.如图所示,可视为质点的小球A和B用一根长为0.2 m的轻杆相连,两球质量相等,开始时两小球置于光滑的水平面上,并给两小球一个2 m/s的初速度,经一段时间两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,g取10 m/s2,在两小球的速度减小为零的过程中,下列判断正确的是( )
5.(多选)水平长直轨道上紧靠放置n个质量为m可看作质点的物块,物块间用长为l的细线连接,开始处于静止状态,轨道与物块间的动摩擦因数为μ。用水平恒力F拉动物块1开始运动,到连接第n个物块的线刚好拉直时整体速度正好为零,则( )
A.拉力F所做功为nFl
B.系统克服摩擦力做功为
C.F>
D.nμmg>F>(n-1)μmg
A.杆对小球A做负功
B.小球A的机械能守恒
C.杆对小球B做正功
D.小球B速度为零时距水平面的高度为0.15 m
【答案】D
【解析】由题意可知,A、B两球在上升中受重力做功而做减速运动;假设没有杆连接,则A上升到斜面时,B还在水平面上运动,即A在斜面上做减速运动,B在水平面上做匀速运动,因有杆存在,所以是B推着A上升,因此杆对A做正功,故A错误;因杆对A球做正功,故A球的机械能不守恒,B错误;由以上分析可知,杆对球B做负功,故C错误;设小球B速度为零时距水平面的高度为h,根据系统机械能守恒,可得mgh+mg(h+Lsin 30°)=×2mv2,解得h=0.15 m,故D正确。
【答案】C
典例2. (20xx∙全国III卷∙16)如图,一质量为m,长度为l的均匀柔软细绳PQ竖直悬挂。用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距。重力加速度大小为g。在此过程中,外力做的功为( )
A.B.
C.D.
【解析】将绳的下端Q缓慢地竖直向上拉起至M点,PM段绳的机械能不变,MQ段绳的机械能的增加量为,由功能关系可知,在此过程中外力做的功,故选A。
4.(多选)如图所示,轻质弹簧一端固定在水平面上O点的转轴上,另一端与一质量为m、套在粗糙固定直杆A处的小球(可视为质点)相连,直杆的倾角为30°,OA=OC,B为AC的中点,OB等于弹簧原长。小球从A处由静止开始下滑,初始加速度大小为aA,第一次经过B处的速度大小为v,运动到C处速度为0,后又以大小为aC的初始加速度由静止开始向上滑行。设最大静摩擦力等于滑动摩擦力,重力加速度为g。下列说法正确的是( )
D.0~t过程A的重力势能增加量大于B的重力势能减小量
【答案】AB
【解析】t时刻B的速度可以分解为沿绳子方向的分速度与垂直于绳子方向的分速度,其中沿绳子方向的分速度与A的速度大小相等,故A正确;当B刚释放的瞬间,绳子的拉力方向与杆垂直,B所受的合力等于mg,B向下先做加速运动,当绳子在竖直方向上的分力等于B的重力时,B的速度最大,加速度等于0,所以B受到的合力等于0,故B正确;0~t过程A与B组成的系统机械能守恒,所以A的机械能增加量等于B的机械能减小量,故C错误;0~t过程A与B组成的系统的机械能守恒,B减少的重力势能转化为A的重力势能和A、B的动能,所以0~t过程A的重力势能增加量小于B的重力势能减小量,故D错误。
6.如图所示,光滑圆弧AB在竖直平面内,圆弧B处的切线水平。A、B两端的高度差为0.2 m,B端高出水平地面0.8 m,O点在B点的正下方。将一滑块从A端由静止释放,落在水平面上的C点处。(取g=10 m/s2)
(1)OC的长度是多少?
(2)在B端接一长为1.0 m的木板MN,滑块从A端释放后正好运动到N端停止,则木板与滑块间的动摩擦因数多大?
联立整理得:s=1+0.8-ΔL
根据数学知识得知,当=0.4时,s最大,即ΔL=0.16 m时,s最大。
7.如图所示,一根轻弹簧左端固定于竖直墙上,右端被质量m=1 kg可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度。在平台的右端有一传送带,AB长L=5 m,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC长s=1.5 m,它与物块间的动摩擦因数μ2=0.3,在C点右侧有一半径为R的光滑竖直圆弧与BC平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F处有一固定挡板,物块撞上挡板后会以原速率反弹回来。若传送带以v=5 m/s的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失。当弹簧储存的Ep=18 J能量全部释放时,小物块恰能滑到与圆心等高的E点,取g=10 m/s2。
(3)若将木板右端截去长为ΔL的一段,滑块从A端释放后将滑离木板落在水平面上P点处,要使落地点距O点的距离最远,ΔL应为多少?
【解析】(1)滑块从光滑圆弧AB下滑过程中,根据机械能守恒定律得:mgh1=mvB2
解得:vB==2 m/s
滑块离开B点后做平抛运动,则
竖直方向:h2=gt2
水平方向:x=vBt
(2)设物块从E点返回至B点的速度为vB,有:
mv2-mvB2=μ2mg·2s
解得:vB= m/s
因为vB>0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性,可知其以相同的速率离开传送带,设最终停在距C点x处,有:
mv B2=μ2mg(s-x)
解得:x= m。
(3)设传送带速度为v1时物块恰能到F点,在F点满足:mgsin 30°=m
从B到F过程中由动能定理可知:
mv12-mv F2=μ2mgs+mg(R+Rsin 30°)
解得:v1= m/s
设传送带速度为v2时,物块撞挡板后返回能再次上滑恰到E点,有:
mv22=μ2mg·3s+mgR
解得:v2= m/s
A.小球可以返回到出发点A处
B.撤去弹簧,小球可以在直杆上处于静止状态
C.弹簧具有的最大弹性势能为mv2
D.aA-aC=g
【答案】CD
【解析】设小球从A运动到B的过程克服摩擦力做功为Wf,AB间的竖直高度为h,弹簧具有的最大弹性势能为Ep,根据能量守恒定律:对于小球从A到B的过程有mgh+Ep=mv2+Wf,A到C的过程有2mgh+Ep=2Wf+Ep,解得Wf=mgh,Ep=mv2,小球从C点向上运动时,假设能返回到A点,则由能量守恒定律得Ep=2Wf+2mgh+Ep,该式不成立,可知小球不能返回到出发点A处,A项错误,C项正确;设从A运动到C摩擦力的平均值为f,AB=s,由Wf=mgh得f=mgsin 30°,在B点,摩擦力Ff=μmgcos 30°,由于弹簧对小球有拉力(除B点外),小球对杆的压力大于mgcos 30°,所以f>μmgcos 30°可得mgsin 30°>μmgcos 30°,因此撤去弹簧,小球不能在直杆上处于静止状态,B项错误;根据牛顿第二定律得,在A点有Fcos 30°+mgsin 30°-Ff=maA,在C点有Fcos 30°-Ff-mgsin 30°=maC,两式相减得aA-aC=g,D项正确。
【1)l,则拉力F所做功为WF=F·(n-1)l=(n-1)Fl,故A错误。系统克服摩擦力做功为Wf=μmg·l+…+μmg·(n-2)l+μmg·(n-1)l=,故B正确。据题,连接第n个物块的线刚好拉直时整体速度正好为零,假设没有动能损失,由动能定理有WF=Wf,解得F=。现由于绳子绷紧瞬间系统有动能损失,所以根据功能关系可知F>,故C正确,D错误。
(1)求右侧圆弧的轨道半径R;
(2)求小物块最终停下时与C点的距离;
(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围。
【解析】(1)物块被弹簧弹出,有:Ep=mv02
解得:v0=6 m/s
因为v0>v,故物块滑上传送带后先减速,物块与传送带相对滑动过程中,有:
μ1mg=ma1,v=v0-a1t1,x1=v0t1-a1t12
解得:a1=2 m/s2,t1=0.5 s,x1=2.75 m
因为x1<L,故物块与传送带同速后相对静止,最后物块以5 m/s的速度滑上水平面BC,物块滑离传送带后恰到E点,由动能定理可知:
mv2=μ2mgs+mgR
解得:R=0.8 m。
典例1. (20xx∙全国I卷∙18)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R。bc是半径为R的四分之一的圆弧,与ab相切于b点。一质量为m的小球。始终受到与重力大小相等的水平外力的作用,自a点从静止开始向右运动,重力加速度大小为g。小球从a点开始运动到其轨迹最高点,机械能的增量为( )
A.va=vb=vcB.va<vb<vc C.vc>va>vb D.va>vb>vc
【答案】C
【解析】链条释放之后到离开桌面,由于桌面无摩擦,机械能守恒,对三次释放,选桌面下方L处为零势能面,释放后重力势能减少量分别为ΔEp1=mgL,ΔEp2=mgL,ΔEp3=mgL,由机械能守恒定律有ΔEp1=mva2,ΔEp2=(2m)vb2,ΔEp3=(2m)vc2,解得v a2=gL,vb2=gL,v c2=gL,即vc2>v>vb2,所以vc>va>vb,故选C。
联立解得:x=0.8 m。
(2)滑块从B端运动到N端停止的过程,根据动能定理得
-μmgL=0-mvB2
代入数据解得:μ=0.2。
(3)若将木板右端截去长为ΔL的一段后,设滑块滑到木板最右端时速度为v,由动能定理得
相关文档
最新文档