高光谱遥感图像目标检测讲解

合集下载

高光谱遥感图像处理与应用研究

高光谱遥感图像处理与应用研究

高光谱遥感图像处理与应用研究遥感技术是地球科学和自然资源管理领域的核心技术之一。

高光谱遥感是一种近年来发展迅猛的高分辨率遥感技术,其具有高维度、高分辨率和高覆盖面积等优势,被广泛应用于农业、森林、城市规划和环境监测等领域。

本文将对高光谱遥感图像的处理方法和应用进行简要介绍。

一、高光谱遥感图像的处理方法(一)预处理高光谱遥感图像的预处理是为了降低图像噪声和增强图像特征,以提高后续分析处理的准确性和可信度。

1、辐射校正:即将图像灰度值归一化为反射率,以消除光照不均匀和大气影响。

2、几何校正:对图像进行几何校正可以消除成像中的扭曲和畸变,使得图像更为准确和精确。

3、噪声去除:高光谱遥感图像常常伴随着高噪声,因此需要通过噪声滤波或概率降噪等方法来降低图像噪声。

(二)特征提取特征提取是高光谱遥感图像处理的重要环节,它是提取图像中某些特定目标信息的过程。

1、主成分分析法(PCA):PCA是最常见的特征提取算法之一,可以将高光谱数据降维并提取主成分,以保留更有效的信息,提高分类精度。

2、端元分解法(VCA):VCA是一种基于混合像元模型的特征提取方法,可以将每个像素分解为混合的端元(pure pixels)和混杂像元,从而更好地识别目标对象。

(三)分类识别分类识别是高光谱遥感图像分析最常用的技术之一,它是将图像中像素点进行分类,把同一类别的像素标注相同标签的过程。

1、常用分类算法:传统的分类算法包括最小距离分类、支持向量机(SVM)分类、KNN分类等。

2、深度学习分类:随着深度学习的发展,深度卷积神经网络(CNN)被广泛应用于高光谱遥感图像分类中,并在各种分类任务中取得了不错的效果。

二、高光谱遥感图像的应用研究(一)农业领域高光谱遥感图像可以用于农作物的分类、生长状态的监测和病虫害的诊断,从而帮助农业生产做出更加科学和精准的决策。

(二)森林资源管理领域高光谱遥感图像可用于森林植被覆盖度、森林生物多样性、森林类型等指标的监测和评估。

面向高光谱图像的目标检测研究

面向高光谱图像的目标检测研究

第44卷第6期航天返回与遥感2023年12月SPACECRAFT RECOVERY & REMOTE SENSING45面向高光谱图像的目标检测研究高大化贺昱董宇波*刘丹华李浩勇石光明(西安电子科技大学,西安710071)摘要现有的高光谱目标检测方法是通过逐像素分类而实现,导致了检测速度缓慢。

物体级目标检测的发展为高光谱图像实时目标检测带来了希望。

为了实现实时高光谱图像目标检测,文章提出了一种基于目标检测模型YOLO的卷积神经网络算法。

首先,该算法提出了用多尺度光谱注意力网络(Res2NetSE)来提取空谱特征,能够提升多尺度目标检测效果并能更有效地提取关键波段信息;其次,该算法提出了一个空间增强的特征金字塔模块(Spatial Enhanced FPN,SFPN)用于特征融合,提升了神经网络的感受野和多尺度性能;最后,该算法设计了FIOU(Fantastic IoU)损失函数,提升了预测框定位精度。

实验结果表明,所提出的算法能够有效提取空间域和光谱域信息特征,分别在平均准确率上提升了14.19%、8.01%和5.38%,与现有方法相比表现出更出色的性能。

文章的算法为高光谱图像的物体级目标检测提供了一种有效的解决方案,有望推动高光谱图像分析领域的进一步发展。

关键词光谱注意力特征金字塔高光谱目标检测物体级目标检测高光谱图像处理中图分类号: TP753文献标志码: A 文章编号: 1009-8518(2023)06-0045-12DOI: 10.3969/j.issn.1009-8518.2023.06.005Object Detection for Hyperspectral ImagesGAO Dahua HE Yu DONG Yubo*LIU Danhua LI Haoyong SHI Guangming(Xidian University, Xiʹan 710071, China)Abstract Existing hyperspectral image (HSI) target detection methods rely on pixel-wise classification, resulting in slow detection speed. The development of object detection offers hope for real-time HSI target detection. To achieve real-time HSI target detection, this paper proposes a Convolutional Neural Network (CNN) algorithm based on YOLO. Firstly, the algorithm introduces a multi-scale spectral attention network (Res2NetSE) to extract spectral features, thereby improving multi-scale target detection and effectively capturing critical spectral information. Secondly, the algorithm presents a Spatial Enhanced Feature Pyramid Module (SFPN) for feature fusion, further enhancing the neural network's receptive field and multi-scale performance.Finally, the algorithm designs a Fantastic IoU (FIOU) loss function to enhance the precision of predicted bounding boxes. Experimental results demonstrate that the proposed algorithm can effectively extract spatial and spectral features, achieving performance improvements of 14.19%, 8.01%, and 5.38% in terms of mean average precision (mAP) when compared to existing methods. The proposed algorithm offers an effective solution for real-time object detection in HSIs, with the potential to advance the analysis of HSI further.收稿日期:2023-06-30基金项目:国家重点研发计划项目(2019YFA0706604);国家自然科学基金(61976169,62293483,62205260)引用格式:高大化, 贺昱, 董宇波, 等. 面向高光谱图像的目标检测研究[J]. 航天返回与遥感, 2023, 44(6): 45-56.GAO Dahua, HE Yu, DONG Yubo, et al. Object Detection for Hyperspectral Images[J]. Spacecraft Recovery &Remote Sensing, 2023, 44(6): 45-56. (in Chinese)46航天返回与遥感2023年第44卷Keywords spectral attention; feature pyramid networks; HSI target detection; object detection; HSI processing0 引言高光谱成像技术是利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。

卫星影像处理与遥感图像解译技巧

卫星影像处理与遥感图像解译技巧

卫星影像处理与遥感图像解译技巧地球遥感技术以其高分辨率和广覆盖的优势,成为当今科技发展中重要的工具之一。

卫星影像处理和遥感图像解译技巧是在遥感应用过程中必不可少的环节。

本文将探讨几种常见的卫星影像处理和遥感图像解译技巧,并探索其应用领域和未来发展方向。

一、卫星影像预处理技巧在利用卫星影像进行遥感图像解译之前,首先需要对卫星影像进行预处理。

预处理的目的是消除或减小影像中的噪声和不确定因素,提高遥感数据的可用性。

1. 辐射校正辐射校正是指将原始卫星影像转化为反映地表辐射能量分布的数据。

由于卫星影像获取过程中会受到大气环境的影响,因此需要进行辐射校正来消除大气效应。

常用的辐射校正方法有大气纠正、反射率校正等。

2. 几何校正几何校正是指对卫星影像进行几何校正,使其符合地理坐标系统。

卫星影像获取过程中会受到卫星运动和地球自转的影响,因此几何校正对于实现影像的精确配准和准确的空间位置信息非常重要。

3. 合成影像将多幅卫星影像合成成为一张高分辨率的影像可以提高遥感数据的空间分辨率,同时也可以提高影像的质量。

常用的合成影像方法有类别合成、分辨率增强等。

二、遥感图像解译技巧遥感图像解译是指通过对卫星影像进行解读和分析,得出地表特征和信息的过程。

它是遥感技术中最核心、最具挑战性的环节之一。

1. 图像分类图像分类是将卫星影像中的像元划分为不同的类别,以实现不同地物类别的提取和识别。

常用的图像分类方法包括像元法、目标法、混合像元法等。

2. 特征提取特征提取是指从卫星影像中提取出能够区分和区域化地物类别的特征。

常用的特征提取方法有光谱特征提取、纹理特征提取、形态特征提取等。

3. 目标检测目标检测是指利用卫星影像进行目标或地物的检测和识别。

常见的卫星影像目标检测方法有目标检测算法、基于机器学习的目标检测等。

三、卫星影像处理与遥感图像解译的应用领域卫星影像处理和遥感图像解译技巧广泛应用于地质勘探、环境监测、农业、城市规划等领域。

高分辨率光学遥感图像目标精细化检测

高分辨率光学遥感图像目标精细化检测
如何将不同模态的遥感数据进行融合,以获取更丰富的 目标特征信息,提高目标检测的性能。
3. 端到端优化
如何将整个目标检测流程进行端到端的优化,以进一步 提高目标检测的精度和效率。
THANKS
感谢观看
计算效率优化
虽然该算法在精度上取得了优异的性能表现,但计算效 率还有待进一步优化,以满足实际应用中对实时性的要 求。
未来研究方向
针对高分辨率光学遥感图像的目标精细化检测,未来的 研究方向可以包括以下方面
1. 跨域学习
如何利用不同数据源之间的信息进行迁移学习,以提高 目标检测的精度和泛化能力。
2. 多模态融合
研究内容与方法
01
02
03
内容1
研究基于深度学习的目标 精细化检测方法,提高对 高分辨率光学遥感图像中 目标的检测精度。
内容2
分析高分辨率光学遥感图 像的特点,研究适合该类 图像的目标检测网络结构 。
内容3
研究如何提高目标检测方 法的鲁棒性和泛化能力, 以适应不同场景和任务需 求。
研究内容与方法
多尺度特征融合
将不同尺度的特征进行融合,提高目标检测的准 确性。
跨层特征融合
将浅层和深层特征进行融合,使网络能够同时获 得空间和语义信息。
上下文信息融合
将上下文信息融入到特征融合中,提高目标检测 的鲁棒性。
04
实验与分析
数据集与实验设置
数据集
使用公开的、经过标注的高分辨率光学遥感图像数据集,如GF-1、高分一号等。 这些数据集包含多种地物类型,如建筑物、植被、道路等,为精细化目标检测提 供了充足的数据源。
卷积神经网络(CNN)为基础
01
利用CNN进行特征提取,通过多层级特征融合提高目标的局部

高光谱遥感图像的特征提取和分类算法探究

高光谱遥感图像的特征提取和分类算法探究

高光谱遥感图像的特征提取和分类算法探究遥感技术已经成为了现代地球科学中不可或缺的一部分,这种技术通过对地球表面的各种信息进行多波段、多角度、多时相的采集和处理,可以形成一系列高分辨率遥感图像。

其中,高光谱遥感图像是一种获取地表物质高光谱信息的遥感技术,这种技术可以获取大量的物质光谱信息,为我们研究地球科学和环境变化提供了重要的数据来源。

在高光谱遥感图像中,物质对不同波长的电磁辐射的反射和吸收的不同程度是其与众不同的特性。

由于不同的物质对不同波段的辐射产生的反应不同,固有光谱和在远距离上的高光谱遥感图像可以很好地区分不同物质。

在高光谱遥感图像研究中,特征提取和分类算法是研究的两个重要方面。

因此,本篇文章将探讨高光谱遥感图像的特征提取和分类算法的研究进展和应用现状。

一、特征提取在高光谱遥感图像中,特征提取是一项至关重要的技术。

特征提取的主要任务是将高光谱遥感图像中每个像元的光谱信息转化成低维空间的特征,以减少信息冗余和处理量,同时保留物体空间分布和分类信息。

常用的特征提取方法包括如下几种。

1. 主成分分析(PCA)PCA是一种线性变换的方法,可以将高维空间中的数据降维到低维度的特征空间。

在高光谱遥感图像中,PCA方法可以对数据矩阵进行特征值分解,得到协方差矩阵的主特征向量。

这些主成分可以描述遥感图像的大部分空间信息,对于多波段数据的降维处理非常有效。

2. 独立成分分析(ICA)ICA是一种非线性变换的方法,可以将遥感图像中的光谱信息进行分离和隔离,从而得到更加明确的光谱信息。

在高光谱遥感图像中,ICA可以对数据矩阵进行特征值分解,找到可以独立分离的成分。

这些成分可以帮助我们更好地理解高光谱遥感图像中的光谱结构,并提高物体检测和分类的准确率。

3. 小波变换(WT)WT是一种非平稳信号的频域分析方法,可以用于多尺度分析和特征提取。

在高光谱遥感图像中,WT可以将数据矩阵分解为一组小波系数,这些系数可以反映不同尺度下的物体信息。

高光谱图像

高光谱图像

高光谱图像
高光谱图像是一种特殊的图像,它不同于普通的彩色图像,能够提供更加丰富
和详细的信息。

在高光谱成像中,每个像素点不仅具有红、绿、蓝三个通道的信息,还包含了很多更加细致的波长范围内的信息。

这种细致的信息能够提供更加全面的数据,对于很多应用领域都具有重要意义。

高光谱成像的原理
高光谱成像是利用光谱分析技术,通过记录目标在不同波长下的光谱响应,获
得目标在光谱范围内的反射、透射等信息。

在高光谱成像中,往往需要使用具有很高光谱分辨率的设备,例如高光谱相机或高光谱遥感仪器。

这些设备能够获取大量的波长信息,使得每个像素点都能够呈现在光谱上的一个连续曲线,而非单一的颜色。

高光谱图像的应用
高光谱图像在很多领域都有广泛的应用。

其中,农业是一个重要的应用领域之一。

通过高光谱图像,可以实现对土壤、植被及作物的快速检测和分析,实现精准农业。

此外,高光谱图像还可以应用于环境监测、食品安全等领域,为决策提供数据支持。

高光谱成像的未来
随着科学技术的不断进步,高光谱成像技术也在不断发展。

未来,高光谱成像
技术可以望远镜技术结合,实现在宇宙空间中对星球和星系进行高光谱成像,为天文研究提供更多宝贵的数据。

同时,高光谱成像技术还可以与人工智能技术相结合,实现更加智能化的数据分析和应用。

高光谱成像是一项强大的技术,具有广泛的应用前景。

随着技术的不断完善和
发展,相信在未来的某一天,高光谱成像技术将为人类社会的发展做出更大的贡献。

遥感图像目视判读

遥感图像目视判读

遥感图像目视判读遥感图像目视判读是指通过观察遥感图像中的特定特征,进行分析和解译的过程。

遥感图像是利用航空或卫星传感器获取的地球表面信息的电磁图像。

目视判读可以帮助我们了解地表的特征、环境变化以及资源分布情况等,对于城市规划、环境保护、农业发展等领域具有重要的应用价值。

一、目视判读的基本原理遥感图像中的各种特征可以通过目视判读的方法进行解译,其基本原理包括:1. 各类地物在遥感图像上具有特定的光谱反射特征,如植被、水体、建筑物等,不同地物在图像上会呈现不同的颜色和亮度。

2. 地物的形态特征也可以通过目视判读进行解译,如河流的走向、湖泊的形状等。

3. 图像上的纹理和阴影也是目视判读的重要参考因素,可以帮助判读地物的类型和分布情况。

二、目视判读的步骤目视判读一般包括以下几个步骤:1. 图像预处理:对遥感图像进行预处理,如去除噪声、增强对比度等,以提高图像的观测质量。

2. 地物分类:根据遥感图像上的颜色、亮度等信息,将地物进行分类,如区分植被、水体、建筑物等。

3. 目标探测:探测和识别具有特定目标的地物,如识别道路、农田、城市区域等。

4. 变化检测:通过对比多期遥感图像,判断地表的变化情况,如城市扩张、土地利用变化等。

5. 结果验证:对目视判读的结果进行验证,可以通过实地调查或其他遥感数据进行对比。

三、目视判读的应用领域目视判读在许多领域具有广泛的应用,包括但不限于以下几个方面:1. 城市规划:通过对城市遥感图像的目视判读,可以获取城市用地的分布情况和更新变化,为城市规划提供重要参考。

2. 农业发展:农田遥感图像的目视判读可以帮助农业管理者监测作物种植情况、病虫害的扩散情况和土地利用的变化等,提高农业生产效益。

3. 环境保护:通过遥感图像目视判读,可以了解环境中的污染源和敏感区域,指导环境保护工作,保护生态环境。

4. 自然资源管理:通过对遥感图像的目视判读,可以了解地表的自然资源分布情况,包括水资源、森林资源、矿产资源等,为资源管理和合理利用提供依据。

高分遥感图像中多角度小目标检测算法研究

高分遥感图像中多角度小目标检测算法研究

高分遥感图像中多角度小目标检测算法研究随着遥感技术的不断发展和应用,高分辨率遥感图像中的小目标检测成为了一个重要的研究方向。

由于小目标通常具有低对比度、复杂背景和多角度等特点,传统的目标检测算法在高分辨率遥感图像中的效果受到了限制。

因此,研究人员们开始关注多角度小目标检测算法的研究。

多角度小目标检测算法的研究主要围绕以下几个方面展开。

首先,由于高分辨率遥感图像中的小目标通常具有低对比度,如何提高目标的可见性成为了一个关键问题。

一种常用的方法是通过图像增强技术来增强目标的边缘和纹理特征,从而提高目标的可见性。

其次,由于高分辨率遥感图像中的小目标通常受到复杂背景的干扰,如何提高目标的检测准确性成为了一个挑战。

一种常用的方法是通过背景建模和目标分割等技术来提取目标的特征,从而减少背景的干扰。

最后,由于高分辨率遥感图像中的小目标通常具有多角度的特点,如何提高目标的检测精度成为了一个难题。

一种常用的方法是通过多尺度和多方向的目标检测算法来提高目标的检测精度。

近年来,研究人员们提出了许多高效的多角度小目标检测算法。

例如,基于特征提取和分类的方法可以有效地提取目标的特征,并通过分类模型来判断目标的存在。

此外,基于深度学习的方法可以利用深度神经网络来提取目标的特征,并通过分类模型来判断目标的存在。

这些方法在高分辨率遥感图像中的小目标检测方面取得了较好的效果。

然而,目前的多角度小目标检测算法仍然存在一些问题和挑战。

首先,由于传统的目标检测算法通常是基于2D图像的,对于高分辨率遥感图像中的小目标的多角度特征提取和检测还存在一定的困难。

其次,由于高分辨率遥感图像中的小目标通常具有复杂的形状和结构,如何有效地提取目标的特征并准确地检测目标仍然是一个挑战。

综上所述,高分遥感图像中多角度小目标检测算法的研究具有重要意义。

通过提高目标的可见性、减少背景的干扰和提高检测精度,可以有效地提高高分辨率遥感图像中的小目标检测效果。

未来的研究可以进一步探索新的特征提取和分类方法,并结合深度学习和3D图像处理等技术,以提高多角度小目标检测算法的性能和效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈠纯点模型
二 • 纯点模型不考虑光谱混合,模型相对简单 – 目标与背景之间除了二次散射和阴影的关系外,不存 基 在其他的相互作用,观测数据要么是属于目标,要么 于 是属于背景。 纯 • 图像观测光谱可以写为如下形式: 点 x 为观测光谱向量 其中: 模 x st w s b 为背景光谱。 型 s t 为目标光谱 x sb w 的 w 附加噪声 目 或者写成如下形式: 标 x st w 检 测 x st sb w
局部异常检测 输出结果
目标检测 自适应异常检测
人工输入 ·图像解译参数以及阈值确定 ·离线的大气校正
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈡高光谱目标检测方法分类
– 按数据观测模型:
→基于纯点模型的检测 →基于混合点模型
– 基于线性混合模型 – 基于非线性混合模型
一 高 光 谱 图 像 目 标 检 测 概 述
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈡高光谱目标检测方法分类
一 • 分类方式: – 按先验信息的有无 高 – 按数据观测模型 光 谱 – 按技术路线 图 像 目 标 检 测 概 述
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈡高光谱目标检测方法分类
d
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
第五讲 高光谱图像目标检测
接 下 一.高光谱图像目标检测概述 来 二.基于纯点模型的目标检测 ……
– – – ㈠纯点模型 ㈡基于纯点模型的似然比检验 ㈢基于纯点模型的检测方法
三.基于多元统计混合模型的目标检测 四.基于空间投影的混合模型目标检测 五.高光谱图像异常检测
SIPA
Remote Sensing
第五 高光谱图像目标检测
本 一. 高光谱图像目标检测技术概述 讲 二. 基于纯点模型的目标检测 内 三. 基于多元统计混合模型的目标检测 容 四. 基于几何方式混合模型的目标检测 五. 高光谱图像异常检测
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
– 按先验信息有无:
原始的 高光谱 数据
一 高 光 谱 图 像 目 标 检 测 概 述
预处理 ·数据格式化 ·坏点修复 ·波段配准 ·无用数据删除
辐射校正
波段融合和波 段选择 ·取样 ·平均
数据调整 ·白化 ·分割 ·归一化
已知目标和背景 未知目标 已知背景 已知目标 未知背景 未知目标和背景
目标检测
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈠面向目标检测的纯点模型
二 • 通常,我们将背景和噪声结合在一起,称之为 干扰,可定义干扰模型: 基 x 于 v 为背景干扰 纯 x s t 点 – 多元正态分布是最常用的统计分布之一,这主要是因 为它具有良好的可操作性,且已经成功地应用于许多 模 目标检测技术中。 型 的 • 针对干扰模型,可假设v服从多元正态分布: 目 均值: 标 v ~ N (b , ) 方差: 检 测
SIPA
Remote Sensing
㈠高光谱目标检测的优势
一 • 具有光谱识别和鉴别目标的能力,对图像 空间分辨率的要求不高。 高 光 • 借助光谱信息可以在场景中区分真实和诱 谱 饵目标。 图 像 • 具有在复杂背景条件下自动检测图像异常 的能力。 目 标 – 通常,遥感图像目标检测是建立在一定先验信 检 息的基础上。 测 – 异常检测算子能够在没有先验信息的条件下检 概 测与周围环境存在光谱差异的目标。 述
SIPA
Remote Sensing



遥 感
Hyperspectral Remote Sensing
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
第四讲 高光谱图像特征提取与光 谱解混合
上 一 讲 内 容 回 顾
一. 高光谱数据降维 二. 光谱特征提取 三. 光谱混合模型
第五讲 高光谱图像目标检测
接 下 一.高光谱图像目标检测概述 – ㈠高光谱目标检测的优势 来 ……
– – ㈡高光谱目标检测方法分类 ㈢高光谱目标检测的一般流程
二.基于纯点模型的目标检测 三.基于多元统计混合模型的目标检测 四.基于几何方式混合模型的目标检测 五.高光谱图像异常检测
NUDT

卫星信息处理与应用实验室
成像机 理 辐射校正 反射率反 演 遥感物 理学基 础 光谱的获取 图像压缩 与解压缩 高光谱图 像预处理 端元 提取 光谱解 混合 特征提取 与解混合
高光谱图像 目标检测 高光 谱遥 感的 军、 民应 用
高光谱图像 地物分类
基于光谱特 征的地物识 别 数据处理 技术
NUDT

应用
卫星信息处理与应用实验室
SIPA
Remote Sensing



遥 感
Hyperspectral Remote Sensing
第五讲 高光谱图像目标检测
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
本讲内容所处的位置关系
本 • 高光谱遥感应用基本流程 讲 数据 传感器定 地物光 标 降维 谱特性 分析 内 几何校正 光谱特 容 征提取 高光谱
– 图像光谱特征变化分析、光谱混合机理、混合模型
四. 线性混合模型端元提取
– 端元提取的目的和意义、线性混合模型端元提取原理、 线性混合模型端元数目的估计、线性混和模型端元提 取方法
五. 线性混合模型光谱解混合
– 光谱解混合的意义和原理、光谱解混合方法、光谱解 混合的应用
NUDT

卫星信息处理与应用实验室
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈡高光谱目标检测方法分类
– 按技术路线:
→基于统计方式的检测
– 纯点模型 – 线性混合模型
一 高 光 谱 图 像 目 标 检 测 概 述
→基于几何方式的检测
– 纯点模型 – 线性混合模型
统计方式 几何方式
NUDT

卫星信息处理与应用实验室
SIPA
Remote Sensing
㈢高光谱目标检测一般流程
一 • 目前所采用的大部分检测算法,其算子的 处理流程可分为两步: 高 – 空间投影 光 谱 →目的:抑制背景的信号能量,突出目标能量。 图 – 目标与背景分离 像 →阈值分割 目 →目标鉴别 标 检 x F(x) M F(x) 测 概 第二阶段:检测 第一阶段:投影 器 滤波器 述
相关文档
最新文档