LTE技术指导共46页文档

合集下载

LTE无线网络优化工程优化指导书

LTE无线网络优化工程优化指导书

LTE无线网络优化工程优化指导书
内容充实,有一定的参考价值
一、简介
LTE(Long Term Evolution)无线网络是由3GPP(Third
Generation Partnership Project)组织提出的无线网络技术标准,该标
准决定了新一代蜂窝移动通信技术的技术要求和发展方向。

LTE网络的优
化主要侧重于改善用户体验,提高无线网络的性能,改善网络的整体结构,以及提升网络的服务质量和安全性。

二、优化准则
1、建立覆盖优先指标
准则:重视覆盖质量,为用户提供更好的服务,以保证无线网络服务
的稳定可靠。

2、建立容量优先指标
准则:优化网络组网,提高网络的容量,以满足用户更大的流量需求。

3、建立质量优先指标
准则:优先优化用户的下行速率,保证QoS(Quality of Service)
的持续稳定,以满足用户良好的网络体验。

4、建立传输保障指标
准则:优化发射机的参数,保证传输稳定,减少传输过程中的干扰和
衰减,以保证传输的安全性。

三、优化监测工具
1、室外覆盖优先监测工具
主要用于检测室外覆盖,优先监测覆盖质量,包括检测RSSI (Received Signal Strength Indication)、RxLev(Received Level)、IPER(Interference Power)、CINR(Carrier to Interference Noise Ratio)。

2、室内覆盖优先监测工具。

LTE入门教材七(LTE关键技术)

LTE入门教材七(LTE关键技术)

LTE入门教材七(LTE关键技术)目录1 双工方式 (1)2 多址方式 (1)3 多天线技术 (2)4 链路自适应 (3)5 HARQ和ARQ (3)5.1 HARQ (3)5.2 ARQ (4)5.3 HARQ/ARQ交互 (4)6 调度 (4)6.1 基本的调度器操作 (5)6.2 测量 (6)6.3 GBR和AMBR的速率控制 (6)6.4 CQI上报 (6)7 RRC_CONNECTED状态下的DRX (7)8 小区间干扰抑制 (9)1 双工方式LTE支持FDD、TDD两种双工方式。

同时LTE还考虑支持半双工FDD这种特殊的双工方式。

2 多址方式LTE采用OFDMA(正交频分多址:Orthogonal Frequency Division Multiple Access)作为下行多址方式。

OFDM 调制图1 LTE 下行多址方式LTE 采用DFT-S-OFDM (离散傅立叶变换扩展OFDM :Discrete Fourier Transform SpreadOFDM )、或者称为SC-FDMA (单载波FDMA :Single Carrier FDMA)作为上行多址方式。

DFT-SOFDM 调制图2LTE 上行多址方式3 多天线技术下行链路多天线传输:多天线传输支持2根或4根天线。

码字最大数目是2,与天线数目没有必然关系,但是码字和层之间有着固定的映射关系。

码字(code word )、层(layer )和天线口(antennaport )的大致关系可见下面物理信道处理图:图3 物理信道处理多天线技术包括空分复用(SDM :Spatial division multiplexing )、发射分集(Transmitdiversity )等技术。

SDM 支持SU-MIMO 和MU-MIMO 。

当一个MIMO 信道都分配给一个UE时,称之为SU-MIMO(单用户MIMO);当MIMO数据流空分复用给不同的UE时,称之为MU-MIMO(多用户MIMO)。

LTE 基本原理及关键技术课件

LTE 基本原理及关键技术课件

更低的 CAPEX & OPEX
LTE 基本原理及关键技术
7
峰值数据率
1
实现峰值速率的显 著提高,峰值速率 与系统占用带宽成 正比
2
在20MHz 带宽内 实现100Mbit/s的 下行峰值速率(频 谱效率5 bit/s/Hz)
3
在20MHz 带宽内 实现50Mbit/s的上 行峰值速率(频谱 效率2.5 bit/s/Hz)
LTE 基本原理及关键技术
24
终端中的“模”与“频”
No Image
LTE 基本原理及关键技术
25
中国电信LTE终端漫游频段要 求
No Image
LTE 基本原理及关键技术
26
LTE终端漫游频段要求对比
No Image
LTE 基本原理及关键技术
27
LTE终端类别
LTE 基本原理及关键技术
28
量都要达到或超过UTRAN下所支持的
LTE 基本原理及关键技术
9
频谱
• 频谱灵活性
• E-UTRA系统可部署在不同尺寸的频谱中,包括1.4、 3、 5、10、15 和 20 MHz, 支持对已使用频率资源的重复利 用
• 上行和下行支持成对或非成对的频谱
• 共存
• 与GERAN/3G系统在相同地区邻频
• 每个10ms无线帧包括2个长度为5ms的半帧,每个半帧由4个数据子帧和1个特殊 子帧组成
• 特殊子帧包括3个特殊时隙:DwPTS,GP和UpPTS,总长度为1ms
• 支持5ms和10ms上下行切换点
• 子帧0、5和DwPTS总是用于下行LT发E 基送本原理及关键技术
38
上下行配比方式
• “D”代表此子帧用于 下行传输,“U” 代 表此子帧用于上行 传输,“S”是由 DwPTS、GP和 UpPTS组成的特殊 子帧。

LTE的关键技术介绍ppt课件

LTE的关键技术介绍ppt课件
LTE_IDLE:对应RRC的IDLE状态。UE和网络侧存 储的信息包括:给UE分配的IP地址、安全相关的参数 (密钥等)、UE的能力信息、无线承载。此时UE的 状态转移由基站或GW决定。
3) LTE_ACTIVE:对应RRC连接状态;状态转移由 基站或GW决定。
层2的整体功能描述
服务访问点(SAP):同一系统中,相邻两层的实体 进行通信的地方是服务访问点。物理层和MAC层之间 的SAP提供传输信道。MAC层和RLC层之间的SAP提 供逻辑信道。
MAC Control element 2
MAC SDU
... MAC SDU
MAC payload
Padding (opt)
复用和解复用(2)
RLC模式
AM模式: AM模式是为可靠性要求很高并且分组的长 度可变的业务提出的。它的典型特征是支持ARQ和分 组的切割和串接。
M模式:UM模式是为可靠性要求不高的业务提出的。 它的典型特征是支持分组的切割和串接,但不支持 ARQ。
UE
eNB
S-GW
P-GW
Peer
Entity
End-to-end Service
EPS Bearer
External Bearer
Radio Bearer
S1 Bearer
S5/S8 Bearer
Radio
S1
S5/S8
Gi
RRC子层
RRC子管理、 UE测量上报和控制等功能。把RRC在网络侧终 结于eNB,是网络的一个重大改变。
控制平面
UE NAS RRC RLC MAC PHY
eNB
RRC RLC MAC PHY
MME NAS
控制平面的底层协议,和用户平面相似,而上层的 RRC层和非接入子层(NAS)是控制平面最重要的 部分。

lte无线参数优化指导手册

lte无线参数优化指导手册

内部资料注意保存中国联通LTE无线参数优化指导手册网络公司运维部网络技术研究院2015年7月目录1 前言 62 参数配置及优化流程 63 基本参数配置 73.1 概述 73.2 小区配置 83.2.1 参数配置列表 83.2.2 参数详解及调整策略 83.3 天线配置 163.3.1 参数配置列表 163.3.2 参数详解及调整策略 163.3.3 LTE多天线参数配置策略 17 3.4 功率配置 183.4.1 参数配置列表 183.4.2 参数详解及调整策略 183.4.3 支持功率配置策略 213.5 DRX配置 223.5.1 参数配置列表 223.5.2 参数详解及调整策略 244 小区选择和重选 294.1 概述 294.1.1 小区选择 304.1.2 小区重选 314.2 参数配置列表 334.3 参数详解及调整策略 354.3.1 小区选择最小接入电平 354.3.2 小区选择最小接入电平偏置 36 4.3.3 小区内UE最大发送功率 374.3.4 小区重选优先级 384.3.5 同频小区测量启动门限 394.3.6 异频/异系统小区测量启动门限 40 4.3.7 异频高优先级重选门限 404.3.8 异系统高优先级重选门限 414.3.9 服务载频低门限 424.3.10 异频低优先级重选门限 434.3.11 异系统低优先级重选门限 444.3.12 小区独立偏置 454.3.13 小区频率偏置 464.3.14 服务小区重选迟滞 474.3.15 同频重选小区最小接入电平 48 4.3.16 异频重选小区最小接入电平 49 4.3.17 异系统重选小区最小接入电平 50 4.3.18 同频重选判决定时器时长 504.3.19 异频重选判决定时器时长 514.3.20 异系统重选判决定时器时长 525 接入控制 535.1 概述 535.1.1 随机接入前导 545.1.2 PRACH资源 555.1.3 竞争模式随机接入基本流程 57 5.1.4 非竞争模式随机接入基本流程 59 5.2 参数配置列表 605.3 参数详解及调整策略 625.3.1 小区接入半径 625.3.2 PRACH配置索引 635.3.3 PRACH频域位置偏移 645.3.4 基于竞争的PRACH preamble的数量 64 5.3.5 CFRA功能开关 655.3.6 随机接入同步组A的大小 665.3.7 组A消息的大小 675.3.8 组B的功率偏移 685.3.9 前导初始接收目标功率 695.3.10 PRACH功率攀升步长 705.3.11 高速小区指示 715.3.12 零相关配置 725.3.13 根序列索引 785.3.14 前导码最大重传次数 825.3.15 Msg3最大发送次数 835.3.16 随机接入响应窗长 835.3.17 MAC竞争决议定时器 856 系统内测量与切换 866.1 测量 866.1.1 概述 866.1.2 参数配置列表 886.1.3 参数详解及调整策略 89 6.2 同频/异频切换 956.2.1 概述 956.2.2 参数配置列表 976.2.3 参数详解及调整策略 997 功率分配与控制 1177.1 上行功率控制 1177.1.1 概述 1177.1.2 参数配置列表 1197.1.3 参数详解及调整策略 119 7.2 下行功率分配 1257.2.1 概述 1257.2.2 参数配置列表 1267.2.3 参数详解及调整策略 1268 资源调度 1298.1 上下行资源调度 1298.1.1 概述 1298.1.2 参数配置列表 1318.1.3 参数详解及调整策略 1319 寻呼控制 1339.1 概述 1339.1.1 S1接口的寻呼过程 134 9.1.2 Uu接口的寻呼过程 134 9.2 参数配置列表 1359.3 参数详解及调整策略 135 9.3.1 默认寻呼周期 1359.3.2 NB值 13610 准入控制 13810.1 概述 13810.2 参数配置列表 13910.3 参数详解及调整策略 140 10.3.1 接纳算法配置 14010.3.2 小区激活UE数门限 14110.3.3 小区RRC连接用户数门限 14110.3.4 小区激活E-RAB数门限 14210.3.5 接纳空闲态下小区RB利用率门限(初始业务请求) 143 10.3.6 接纳连接态下小区RB利用率门限(无线承载激活) 144 10.3.7 接纳切换请求业务时的小区RB利用率门限 14410.3.8 上行最小保证速率 14510.3.9 下行最小保证速率 14611 LTE与2/3G互操作 14711.1 概述 14711.1.1 空闲态互操作原理 14711.1.2 连接态互操作原理 14811.2 参数配置列表 15311.3 参数详解及调整策略 15511.3.1 小区重选优先级(UTRAN) 15511.3.2 重选高门限(UTRAN) 15611.3.3 重选低门限(UTRAN) 15711.3.4 最小接收功率(UTRAN) 15911.3.5 上行最大传输功率(UTRAN) 16011.3.6 频率偏移(UTRAN) 16111.3.7 UTRAN小区重选定时器 16211.3.8 小区重选优先级(GERAN) 16211.3.9 高门限值(GERAN) 16311.3.10 低门限值(GERAN) 16411.3.11 邻接小区需求的最小接收功率级别(GERAN) 165 11.3.12 UE的最大发射功率(GERAN) 16611.3.13 频率偏移(GERAN) 16711.3.14 GERAN小区重选定时器 16711.3.15 UTRAN RSCP滤波因子 16811.3.16 UTRAN B1,B2事件报告开关 16911.3.17 B1事件UTRAN RSCP门限 17011.3.18 B2事件EUTRAN RSRP门限1 17111.3.19 B2事件UTRAN RSCP门限2 17211.3.20 滞后参数(UTRAN) 17311.3.21 事件触发时间(UTRAN) 17411.3.22 GERAN RSSI滤波因子 17511.3.23 GERAN B1,B2事件报告开关 17611.3.24 B1事件GERAN门限 17711.3.25 B2事件GERAN门限1 17811.3.26 B2事件GERAN门限2 17911.3.27 滞后参数(GERAN) 18011.3.28 事件触发时间(GERAN) 18011.3.29 RIM开关 18211.3.30 是否支持GSM系统标志位(PS) 182 11.3.31 LTE/GSM连接态互操作方案(PS) 183 11.3.32 GSM异系统优先级(PS) 18411.3.33 是否支持UTRAN系统标志位(PS) 185 11.3.34 LTE/UTRAN连接态互操作方案(PS) 185 11.3.35 UTRAN异系统优先级(PS) 18611.3.36 是否支持PS重定向标志位(UTRAN) 187 11.3.37 是否支持PS 切换(UTRAN) 18811.3.38 是否支持PS重定向标志位(GERAN) 188 11.3.39 E-UTRAN异频和RAT间测量的门限值 189 11.4 异系统互操作策略配置 18911.4.1 异系统互操作触发事件策略 18911.4.2 异系统互操作参数配置策略 18912 CSFB参数 19112.1 概述 19112.2 参数配置列表 19312.3 参数详解及调整策略 19412.3.1 是否支持GSM系统标志位(CSFB) 194 12.3.2 是否支持CS重定向标志位(GERAN) 195 12.3.3 LTE/GSM连接态互操作方案(CSFB) 196 12.3.4 GSM异系统优先级(CSFB) 19612.3.5 是否支持UTRAN系统标志位(CSFB) 197 12.3.6 是否支持CS重定向标志位(UTRAN) 198 12.3.7 RIM开关 19812.3.8 LTE/UTRAN连接态互操作方案(CSFB) 19912.3.9 UTRAN异系统优先级(CSFB) 20413 定时器 20513.1 概述 20513.2 参数配置列表 20513.3 参数详解及调整策略 20713.3.1 T300 20713.3.2 t301 20813.3.3 t302 20913.3.4 t304 21013.3.5 t304Geran 21113.3.6 t310 21213.3.7 t311 21313.3.8 t320 21413.3.9 N310 21513.3.10 N311 21613.3.11 时间校准定时器 21714 SON相关参数 21814.1 概述 218。

LTE关键技术教程

LTE关键技术教程

为其它调度算法的上界
UE1
UE2
UE1 UE1 UE1 UE1 UE1 UE1 UE1 UE2
正比公平法PF
□ 根据用户的信道条件和其平均吞吐量进行优先权设置,兼顾系统“效率”与用 户“公平” • 从统计意义上来看,每个用户分配的资源是相同的,而系统容量高于RR, 接近Max C/I,适合于大部分应用场景
TBS_L2 20616 21384 22152 22920 23688 24496 25456 25456 27376 28336 29296 30576 31704 32856 34008 35160 36696 37888 39232 40576 42368 43816 45352 46888 48936 51024 52752 55056
杂无线环境还是不可避免地有各种类型干扰。
LTE多址方式-下行
LTE多址方式-上行
MIMO
广义定义:MIMO=Multiple-Input Multiple-Output=多进多出,即俗称的 “多天线技术”:多个输入和多个输出既可以来自于多个数据流,也可以来自 于一个数据流的多个版本。按照这个定义,各种多天线技术都可以算作 MIMO技术 狭义定义:多流MIMO——提高峰值速率 :多流MIMO,多个信号流在空中并行传输.按照这个定义,只有空间复用和空 分多址可以算作MIMO 特例:SIMO(单进多出)和MISO(多进单出)
TBS_L1 28336 29296 30576 31704 32856 34008 35160 36696 37888 39232 40576 42368 43816 45352 46888 48936 51024 52752 55056 57336 59256 61664 63776 66592 68808 71112 73712 75376

LTE基础知识培训文档

LTE基础知识培训文档

传输信道
PHY(L1) 数据在实际物理信道上的传输
关键技术与协议
头压缩、加密、完整性保护
为用户和控制数据提供分段和重传业务
完成数据调度传输和无线资源分配
L2的下行结构图
L2的上行结构图
关键技术与协议
Hale Waihona Puke 用户面 控制面 应用协议流控制传输协议,支持有序传输,支持多 宿主连接,可在出现错误时自动切换。
根据具体情况有不同的上层应用协议
RA Preamble assignment
1
E-NodeB的MAC层产 生随机接入响应 UE 的RRC 层产生 Random Access Response RRC Connection Request
分组数据网网关负责用户数据包与其他网络的处理11mme主要实现功能处理ue和epc之间的控制信令通过nas协议实寻呼和控制信息分发承载控制保证nas信令安全移动性管理pgw主要实现功能ue的ip地址分qos保证计费ip数据包过滤sgw主要实现功能所有ip数据包均通过sgwue在小区间切换时作为移动性控制锚点下行数据缓存lte与其他3gpp技术互联时作为移动性锚点enodeb主要实现功能无线资源管理ip数据包头压缩和用户数据流加密ue连接期间选择mme寻呼消息的调度和传输广播信息的调度和传输移动和调度的测量并进行测量和测量报告的配置网络架构网络架构12lte接入网络的接口共有3种
E-NodeB
Serving GW
PDN GW
没有了RNC,空中接口的用户平面(MAC/RLC)功能由E-NodeB进行管理和控制。
网络架构
S1接口功能: SAE承载服务管理功能(包括SAE 承载建立、修改和释放) UE在LTE_ACTIVE状态下的移动 性功能,例如Intra-LTE切换和 Inter-3GPP-RAT切换。 S1寻呼功能 NAS信令传输功能 S1接口管理功能,例如错误指示 等 漫游和区域限制支持功能 NAS节点选择功能 初始上下文建立功能 ……

LTE通信VOLTE 网优文档113:TD-LTE网络优化的四大指导原则

LTE通信VOLTE 网优文档113:TD-LTE网络优化的四大指导原则

TD-LTE网络优化的四大指导原则1 TD-LTE网络优化的指导原则LTE网络优化的基本原则是在一定的成本下,在满足网络服务质量的前提下,建设一个容量和覆盖范围都尽可能大的网络,并适应未来网络发展和扩容的要求。

LTE网络优化的工作思路是首先做好覆盖优化,在覆盖能够保证的基础上进行业务性能优化最后进行整体优化。

整体网络优化的原则包含以下4个方面:●最佳的系统覆盖●合理的邻区优化●系统干扰最小化●均匀合理的基站负荷2 最佳系统覆盖覆盖是优化环节中极其重要的一环。

在系统的覆盖区域内,通过调整天线,功率等手段使最多地方的信号满足业务所需的最低电平的要求,尽可能利用有限的功率实现最优的覆盖,减少由于系统弱覆盖带来的用户无法接入网络或掉话、切换失败等。

工程建设期可根据无线环境合理规划基站位置、天线参数设置及发射功率设置,后续网络优化中可根据实际测试情况进一步调整天线参数及功率设置,从而优化网络覆盖。

在对TD-LTE覆盖规划时,可以为边缘用户指定速率目标,即在覆盖区域的边缘,要求用户的数据业务满足某一特定速率的要求,例如64kbps,128kbps,甚至根据某些场景下的业务需要,可以提出512kbps或1Mbps更高的速率目标。

只要不超过TD-LTE系统的实际峰值速率,TD-LTE系统通过系统资源的分配与配置就能满足用户不同的业务速率目标要求。

1)LTE系统强弱覆盖情况判定通过扫频仪和路测软件可确定网络的覆盖情况,确定弱覆盖区域和过覆盖区域。

弱覆盖区域指在规划的小区边缘的RSRP小于-110Bm;过覆盖是在规划的小区边缘RSRP高于-90dBm。

2)天线参数调整调整天线参数可有效解决网络中大部分覆盖问题,天线对于网络的影响主要包括以下性能参数和工程参数两方面:●天线性能参数:天线增益、天线极化方式、天线波束宽度●天线工程参数:天线高度、天线下倾角、天线方位角一般在网络规划设计时已根据组网需求确定选择合适的天线,因此天线性能参数一般不调整,只在后期覆盖无法满足要求,且无法增设基站,通过常规网络优化手段无法解决时,才考虑更换合适的天线,例如选用增益较高的天线以增大网络覆盖。

LTE移动通信技术

LTE移动通信技术

LTE 移动通信技术课程目标:◆了解移动通信的发展过程以及LTE的位置和网络结构◆了解E-UTRAN的协议结构和基本技术◆了解LTE应用的关键技术目录第1章概述 (1)1.1 背景介绍 (1)1.1.1 移动通信演进过程概述 (1)1.1.2 WCDMA、TD-SCDMA与CDMA2000制式对比 (2)1.1.3 WCDMA技术演进过程 (2)1.1.4 TD-SCDMA技术演进过程 (3)1.1.5 CDMA2000技术演进过程 (4)1.2 LTE简介和标准进展 (4)第2章 LTE主要指标和需求 (6)2.1 频谱划分 (7)2.2 峰值数据速率 (8)2.3 控制面延迟 (8)2.4 用户面延迟 (8)2.5 用户吞吐量 (9)2.6 频谱效率 (9)2.7 移动性 (10)2.8 覆盖 (10)2.9 频谱灵活性 (11)2.10 与现有3GPP系统的共存和互操作 (11)2.11 减小CAPEX和OPEX (11)第3章 LTE总体架构 (12)3.1 系统结构 (12)3.2 无线协议结构 (16)3.2.1 控制面协议结构 (16)3.2.2 用户面协议结构 (17)3.3 S1和X2接口 (17)I3.3.1 S1接口 (18)3.3.2 X2接口 (22)第4章物理层 (24)4.1 帧结构 (25)4.2 物理资源 (25)4.3 物理信道 (27)4.4 传输信道 (29)4.5 传输信道与物理信道之间的映射 (30)4.6 物理信号 (31)4.7 物理层模型 (32)4.8 物理层过程 (36)4.8.1 同步过程 (36)4.8.2 功率控制 (36)4.8.3 随机接入过程 (36)第5章层2 (39)5.1 MAC子层 (40)5.1.1 MAC功能 (40)5.1.2 逻辑信道 (41)5.1.3 逻辑信道与传输信道之间的映射 (42)5.2 RLC子层 (43)5.2.1 RLC功能 (43)5.2.2 PDU结构 (44)5.3 PDCP子层 (45)5.3.1 PDCP功能 (45)5.3.2 PDU结构 (45)第6章 RRC (47)6.1 RRC功能 (47)6.2 RRC状态 (48)6.3 NAS状态及其与RRC状态的关系 (49)6.4 RRC过程 (50)II6.4.1 系统信息 (50)6.4.2 连接控制 (52)第7章 LTE关键技术 (54)7.1 双工方式 (54)7.2 多址方式 (54)7.3 多天线技术 (55)7.4 链路自适应 (56)7.5 HARQ和ARQ (56)7.5.1 HARQ (56)7.5.2 ARQ (58)7.5.3 HARQ/ARQ交互 (58)第8章缩略语 (59)第9章参考资料 (61)III第1章概述知识点◆移动通信系统的发展过程◆WCDMA技术演进过程◆TD-SCDMA技术演进过程◆CDMA2000技术演进过程1.1 背景介绍1.1.1 移动通信演进过程概述移动通信从2G、3G到3.9G发展过程,是从低速语音业务到高速多媒体业务发展的过程。

LTE总体技术规范-V3.0-发布稿

LTE总体技术规范-V3.0-发布稿

LTE总体技术规范-V3.0-发布稿QB/CU 中国联通公司企业标准中国联通LTE数字蜂窝移动通信网终端设备技术规范总册:总体技术要求 V3.0Technical Specification for China Unicom LTE Digital Cellular Mobile Telecommunication Network Mobile Equipment(V3.0)2015-xx-xx发布2015-xx-xx实施前言本标准的制定是为保证中国联通公司LTE数字移动通信网能正常运行和方便运营管理,并为终端设备的开发生产提供依据。

技术指标主要依据国际标准组织3GPP和国内相应行业标准中的规定,并根据中国联通实际商用的需求而编写。

本标准规定中国联通LTE终端设备基本技术要求。

本标准的附录为规范的组成部分,如无特殊说明和本规范正文具有同等约束力。

本标准是中国联通LTE数字蜂窝移动通信网终端设备的系列标准之一,该系列标准的名称及结构如下:a) 《中国联通LTE数字蜂窝移动通信网终端设备技术规范总册:总体技术要求 V3.0》;b) 《中国联通LTE数字蜂窝移动通信网终端设备测试规范总册:总体测试规范 V3.0》;今后,中国联通将根据LTE业务和功能的发展需要,不断更新和增加相应分册。

本标准与《中国联通LTE数字蜂窝移动通信网终端设备测试规范总册:总体测试规范 V3.0》配套使用。

为及时反映LTE终端技术的最新发展并结合中国联通的实际发展需要,本标准在《中国联通LTE数字蜂窝移动通信网终端设备技术规范总册:总体技术要求V2.0》的基础上进行修订。

修订记录见本标准附录A。

本标准由中国联通公司技术部/市场营销部提出。

本标准由中国联通公司技术部归口。

本标准负责起草单位:中国联通技术部、中国联通市场营销部、中国联通研究院。

本标准主要起草人:本标准的修改和解释权属中国联通公司。

中国联通LTE数字蜂窝移动通信网终端设备技术规范总册:总体技术要求V3.01 范围本标准主要规定了LTE语音数据类终端和LTE数据类终端数据业务方面的功能、性能、LTE系统与非LTE 系统间的互操作、CSFB、载波聚合等方面的技术要求。

TDLTE基础理论技术培训

TDLTE基础理论技术培训
One resource block Nsymb NsRcBresource element
one slot, Nsymbol个符号 NsRcB个子载波, 180kHz
RE:最小的资源单位,时域上为1个符号,频域上为1个子载波。 RB: 业务信道的资源单位,时域上为1个时隙,频域上为12个子载波。
时延要求(4.68us)。
第10页,共50页。
上行SC-FDMA技术
l OFDM系统中每个符号由多个载波符号叠加而成,因此其峰均比较大,对功放的要求相应比较 高,导致整机电源效率降低,这种影响对终端的上行发送来说尤其严重。
l 终端的配置越来越多,功能越来越强大,导致对终端电源效率提出越来越高的要求,而电池 技术却一直没有突破性进展,因此对终端的节能技术提出了越来越高的要求。
第12页,共50页。
上行SC-FDMA技术
IFFT变换前的DFT操作是SC-FDMA和OFDMA的最基本区别。
通过改变不同用户的DFT的输 出到IDFT输入端的对应关系
,输入数据符号的频谱可以 被搬移至不同的位置,从而 实现多用户多址接入。
第13页,共50页。
目录
TD-LTE多址技术
l 下行OFDM技术 l 上行SC-FDMA技术
节省带宽资源 正交频分复用(OFDM)多载波调制技术
频率
OFDM通过将信道分成若干正交子信道,将高速数据流转换成并行的低速子数据流,调
制到每个子载波上进行传输。在接收端再将正交子载波解调,恢复高速数据流。
第3页,共50页。
下行OFDM技术—时频域分析
时域
频域
矩形函数
4个子载波
OFDM符号周期内 4个子载波
在发射端和接收端同时采用多天线,可以进一步提高信噪比和获得分集增益,灵活实现空间复用和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档