北京市海淀外国语实验学校2020年 3 月份初三月考数学考试试题 (Word版无答案)
北京市2020〖人教版〗九年级数学下册第二学期3月月考
北京市2020年〖人教版〗九年级数学下册第二学期3月月考创作人:百里严守 创作日期:202B.03.31审核人: 北堂本一创作单位: 雅礼明智德学校一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填在答题卷相应位置.......上) 1.在实数π、132、sin30°,无理数的个数为( ▲ ) A.1 B.2 C.3 D.4 2.下列计算正确的是( ▲ ) A.020= B.331-=-93=235=3.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由此可知( ▲ ) A .甲比乙的成绩稳定 B .乙比甲的成绩稳定C .甲乙两人的成绩一样稳定 D .无法确定谁的成绩更稳定4.二次函数的顶点坐标是( ▲ )A .(-3,-2)B .(-3,2)C .(3,-2)D .(3,2)5.如图1,将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( ▲ ) A .15 B .28 C .29D .346.如图2,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ▲ )C 10D 25A .21B 5 二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答.题卷相应位置......上) 7.在函数y =x -2中,自变量x 的取值范围是▲. 8.方程x x=2的解是▲。
9.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是▲. 10.若两圆半径分别为3和5,且圆心距为8,则两圆的位置关系为▲. 11.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=__▲____.()2322---=x y C BA图2图1F E A B C D12.若α∠是锐角,且03sin 2=-α,则α∠ =___▲___度. 13.若扇形的圆心角为60°,弧长为π2,则扇形的半径为 ▲ . 14.如图3,△ABC 是⊙O 的内接三角形,sinA=52,BC=4,则⊙O 的半径 为 ▲ .15.如图4,为二次函数y=ax 2+bx +c 的图象,在下列说法中:①ac >0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
北京市2020〖人教版〗九年级数学下册期末复习试卷三月月考数学试题
北京市2020年〖人教版〗九年级数学下册期末复习试卷三月月考数学试题一、选择题(每小题3分,共30分)1. 给出四个数,,,,其中最小的是( )A. B. C. D.2. 下列运算正确的是( )A. B. C. D.3. 如图,直线,点在直线上,.若,则的度数为( )A. B. C. D.4. 为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是( )A. 极差是B. 众数是C. 中位数是D. 平均数是5. 甲安装队为 A小区安装台空调,乙安装队为 B小区安装台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装台,设乙队每天安装台,根据题意,下面所列方程中正确的是A. B. C. D.6. 如图,将沿直线折叠,使得点与点重合.已知,的周长为,则的长为( )A. B. C. D.7. 在如图所示的方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A. ①B. ②C. ③D. ④第3题图第6题图第7题图8. 如图,是的弦,是的切线,为切点,经过圆心,若,则的大小等于( )A. B. C. D.9. 如图,的顶点都是正方形网格中的格点,则等于( )A. B. C. D.10. 如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接.若,,则的值是A. B. C. D.第8题图第9题图第10题图二、填空题(每小题3分,共24分)11. 若点在一次函数的图象上,它关于轴的对称点在反比例函数的图象上,则反比例函数的提示式为.12. 函数中,已知时,,则的范围是.13. 如图,为了测量电线杆的高度,小明将测角仪放在与电线杆的水平距离为的处.若测角仪的高度为,在处测得电线杆顶端的仰角为,则电线杆的高度约为(精确到).(参考数据:,,)14. 由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是个.第13题图第14题图15. 如图,平行四边形中,用直尺和圆规作的平分线交于点.若,,则的长为.16. 分解因式:.17. 已知,,则代数式的值为.18. 已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是(填序号).第15题图第18题图三、解答题(共7小题;共66分)19. (本题8分)计算:.20. (本题8分)甲口袋中装有两个相同的小球,它们的标号分别为和,乙口袋中装有两个相同的小球,它们的标号分别为和,丙口袋中装有三个相同的小球,它们的标号分别为,,.从这个口袋中各随机取出一个小球.(1)用树形图表示所有可能出现的结果;(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.21. (本题8分)如图,菱形的对角线,相交于点,且,,求证:四边形是矩形.22. (本题10分)已知,A,B 两市相距千米,甲车从 A 市前往 B 市运送物资,行驶小时在 M 地汽车出现故障,立即通知技术人员乘乙车从 A 市赶来维修(通知时间忽略不计),乙车到达 M 地后又经过分钟修好甲车后以原速原路返回,同时甲车以原速倍的速度前往 B 市,如图是两车距 A 市的路程(千米)与甲车行驶时间(小时)之间的函数图象,结合图象回答下列问题:(1)直接写出甲车提速后的速度、乙车的速度、点的坐标;(2)求乙车返回时与的函数关系式并直接写出自变量的取值范围;(3)求甲车到达 B 市时乙车已返回 A 市多长时间?23. (本题10分)如图所示,四边形是平行四边形.以为圆心,为半径的圆交于点,延长交于点,连接,.若是的切线,解答下列问题:(1)求证:是的切线;(2)若,,求平行四边形的面积.24. (本题10分)关于的一元二次方程有两个不等实根,.(1)求实数的取值范围;(2)若方程两实根,满足,求的值.25. (本题12分)如图,抛物线交轴于点和点,交轴于点.(1)求抛物线的函数表达式;(2)若点在抛物线上,且,求点的坐标;(3)如图 b,设点是线段上的一动点,作轴,交抛物线于点,求线段长度的最大值.第22题图第23题图第25题图答案一、选择题1. D2. B3. B【提示】因为,所以.所以.因为,所以.4. B【提示】A、,结论正确,故本选项错误;B、众数为,结论错误,故本选项正确;C、中位数为,结论正确,故本选项错误;D、平均数是,结论正确,故本选项错误.5. D【提示】同时开工同时完成即时间相等,由此可建立方程.6. C【提示】根据折叠性质可得:是的垂直平分线,.的周长为,,.,.7. B8. D【提示】连接,则.,,.9. B【提示】.10. D【提示】直线与轴交于点,与轴交于点,点的坐标为,,,,,,,点的坐标为,反比例函数在第一象限内的图象交于点,.二、填空题11.12.13.【提示】.14.【提示】结合主视图和俯视图可知,左边上层最多有个,左边下层最多有个,右边只有一层,且只有个.所以图中的小正方体最多块.15.16.17.【提示】.18.【提示】①由图象可知,当时,;②因为图象与轴交于点,,且,所以对称轴.因为,,,故;③因为,所以,又因为当时,,④因为抛物线与轴正半轴的交点在的下方,可得,所以,故.三、解答题19.20. (1)如图所示:所以共有种可能出现的结果;(2)这些线段能够成三角形(记为事件)的结果有种:;;;,所以.21. 四边形为菱形,,,,,四边形为平行四边形,四边形是矩形.22. (1);;【提示】甲车提速后的速度:千米/时,乙车的速度:千米/时;点的横坐标为,纵坐标为,坐标为;(2)设乙车返回时与的函数关系式,代入和得所以与的函数关系式;(3)答:甲车到达 B 市时乙车已返回 A 市小时.23. (1)如图所示,连接,则..,,,.,().是的切线,,为的切线.(2)在平行四边形中,.,,.24. (1)原方程有两个不相等的实数根,,解得:.(2)由根与系数的关系,得,.,,解得:或,又,.25. (1)把,代入,得解得故该抛物线的提示式为:.(2)由(1)知,该抛物线的提示式为,则易得.,..整理,得或,解得或.则符合条件的点的坐标为:或或.(3)设直线的提示式为,将,代入,得解得即直线的提示式为.创作人:百里严守创作日期:202B.03.31 设点坐标为,则点坐标为,,当时,有最大值.创作人:百里严守创作日期:202B.03.31。
北京2020年初三第二学期数学3月月考试题
年第二学期初三年级数学练习一、选择题(本题共30分,每小题3分)1.太阳的半径约为696000千米,用科学记数法可表示为( ) A .6.96×103千米B .6.96×104千米C .6.96×105千米D .6.96×106千米2.327-的绝对值是( ) A .3B .3-C .13D .13-3.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为( ) A .14B .12C .13D .344.如图,几何体上半部分为正三棱柱,下半部为圆柱,其俯视图是( )A .B .C .D .5.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若AD =1,BC =3,则AOCO 的值为( ) 6.A .12B .13C .14D .197.方程2460x kx -+=的一个根是2,那么k 的值和方程的另一个根分别是( ) A .5,34B .11,34C .11,34-D .5,34-8.根据表中二次函数()20y ax bx c a =++≠的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴的交点情况是( )x … 1-0 1 2 … y… 1-74- 2-74- …A .只有一个交点B .有两个交点,且它们均在y 轴同侧C .无交点D .有两个交点,且它们分别在y 轴两侧9.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 的长是( ) A .65B .95 C .125 D .16510.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( ) A .邻边不等的矩形 B .等腰梯形C .有一角是锐角的菱形D .正方形11.如图,在平面直角坐标系xoy 中,P 是反比例函数1y x=(x >0)图象上的一个动点,点A 在x 轴上,且PO =P A ,AB 是△P AO 中OP 边上的高.设OA =m ,AB =n ,则下列图象中,能表示n 与m 的函数关系的图象大致是( )A .B .C .D .二、填空题(本题共18分,每小题3分) 12.分解因式:2327x -=_______________13.如图,圆O 的半径为5,AB 为圆O 的弦,OC ⊥AB 于点C ,若OC =3,则弦AB 的长为__________ 14.函数2xy -=中,自变量x 的取值范围是_________ 15.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于______16.已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是____________17.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2015次变换后,正方形ABCD 的对角线交点M 的坐标变为___________18.计算:()201183220153π-⎛⎫---+- ⎪⎝⎭19.解不等式组()2452213x x x x+≤+⎧⎪⎨-<⎪⎩并求它的整数解。
北京实验外国语学校初三数学月考试卷
北京实验外国语学校初三数学月考试卷班级________ 姓名________ 分数________一、填空:(每空2分×12=24分)1.一元二次方程012)1(2=+--x x a 有实数根,则a 的取值范围是_______________ ____________.2.以3和-4为根的一元二次方程是____________. 3.1x ,2x 是方程01432=--x x 的两个根,则=+2111x x ____________. 4.1522--x x 分解因式为___________________________.5.已知点A (-3,2),则点A 到x 轴的距离是________,到y 轴的距离是________. 6.点B (-3,-4)在第________象限内,到原点的距离是________. 7.在函数223+-=x xy 中,自变量x 的取值范围是____________________________.8.已知243=-y x ,用x 的代数式表达y ,则________________________________. 9.已知:在△ABC 中,∠C =90°,54sin =A ,则tan A =________. 10.已知∠A +∠B =90°,8436.0sin =B ,那么cos A =________.二、选择题(每题3分×12=36分)1.已知方程03422=--x x 的两个实数根分别为1x ,2x ,那么=⋅21x x ( ).A .3B .-3C .23D .23- 2.如果关于x 的方程0412=-+k x x 没有实数根,那么k 的取值范围是( ). A .1-≥k B .1-<k C .1≤k D .1>k3.将1442--x x 在实数范围内分解因式,下列结果正确的是( ) A .)221)(221(--+-x x B .)221)(221(4---+-x x C .)212)(212(+---x x D .)212)(212(++-+x x4.方程04622=--+x x x 的根为( ) A .-3 B .-2 C .2 D .2或-35.用换元法解方程112)1(31)2(82222=+-+-+x x x x x x 时若设y xx x =+-2122,则可得到整式方程是( ).A .081132=+-y yB .11832=+y yC .031182=+-y yD .11382=+y y 6.方程⎩⎨⎧==+127xy y x 的解是( )A .⎩⎨⎧==52y xB .⎩⎨⎧-=-=43y xC .⎩⎨⎧==34y x D .⎩⎨⎧==.4211y x ⎩⎨⎧==3422y x7.已知点1A (-2,3),2A (4,-3),3A (-5,0),4A (0,-4),5A (0,0),6A (-3,-6)其中在第三象限内的点的个数是( ).A .4B .3C .2D .18.点P 在第四象限,且点P 到x 轴的距离为2,到y 轴的距离是5,则点P 的坐标为( ). A .(2,-5) B .(5,-2) C .(5,3) D .(-3,5) 9.在函数21+=x y 中,自变量x 的取值范围是( ) A .2≠x B .2-≠x C .2->x D .2<x10.在△ABC 中,∠C =90°,如果54sin =A ,那么B cot 的值等于( )A .53B .45C .43D .3411.如果α 是锐角,30cos sin =α°,那么α为( )A .30°B .45°C .60°D .不确定 12.下列各式中,正确的是( )A .01cos >-AB .1cos )1(cos 2-=-A AC .==23cos A 30° D .cos45°=sin45°三、计算(每题2分×3=6分) 1.︒︒︒︒⋅⋅-45sin 60cos 45cos 30sin2.︒︒︒︒+-60cot 30cos 30tan 60sin3.求证:A AA sin tan 1tan 2=+.四、解方程(组)(每小题3分×4=12分) 1.用配方法解方程:05632=--x x2.用换元法解方程06)2(5)2(2=++-+x xx x3.⎩⎨⎧=+=+51322y x y x 4.⎪⎩⎪⎨⎧=+=+-25122222y x y xy x五、列方程解应用题(每小题3分×2=6分)1.化工厂一月份生产某种产品200吨,二、三月两月产量比前一个月增长一个相同的百分数.这样该厂第一季度共生产这种产品1400吨,求这个百分数.2.甲、乙二人合做某项工作,4天以后,乙另有任务,剩下的由甲独做,又干了2天后才完成.已知独做这项工作,甲比乙快3天,求二人单独做这件工作各需多少天.六、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知10=a ,310=b ,解这个三角形.(5分)七、(5分)已知:如图在△ABC 中,∠C =90°,BD 是∠ABC 的内角平分线,32=BC ,4=BD ,求AB 和AC .八、(6分)海中一小岛周围3.8海里内有暗礁.军舰由西向东航行,望见这岛在北偏东75°,航行8海里后,望见这岛在北偏东60°,如果军舰不改变航向,继续前进,有没有触礁的危险.参考答案一、填空.(每空2分×12=24分) 1.2≤a 且1≠a . 2.0122=-+x x . 3.-4. 4.)4335)(4335(2--+-x x . 5.2,3.6.三,5.7.23≤x 且2-≠x . 8.423-=x y .9.34.10.0.8436.二、选择题(每题3分×3=36分)1.D 2.B 3.C 4.A 5.A 6.D 7.D 8.B 9.B 10.D 11.C 12.D三、计算题(每题2分×3=6分)1.原式22212221⨯-⨯=04242=-=2.原式3233323333233323+-=+-= 51353==.3.证明:左边A A A A AAA A A AA A Asin cos 1cos sin cos sin cos cos sin cos sin 1cos sin 2222==+=+=右边A sin =∴ 左边=右边 ∴ 命题成立 四、解方程(组).(每题3分×4=12分)1.解:二次项系数化为1,整理得3522=-x x 配方,方程两边都加上2)1(-得 222)1(35)1(2-+=-+-x x 即 38)1(2=-x 3221±=-x 32211+=x ,32212-=x . 2.解:设y x x=+2,则原方程可化得 0652=+-y y解这个方程得 21=y ,32=y .当2=y 时,22=+x x,去分母得42+=x x ,∴ 41-=x 当3=y 时,32=+x x,去分母得63+=x x ,∴ 32-=x 经检验,41-=x ,32-=x 都是原方程的解. ∴ 原方程的解是41-=x ,32-=x .4.⎩⎨⎧=+=+②①51322y x y x解:由①得y x -=5. ③ ③代入①得13)5(22=+-y y 整理得 0652=+-y y 解方程得 21=y ,32=y . 把21=y 代入③ 3251=-=x 把32=y 代入③ 2352=-=x∴ 原方程组的解是⎩⎨⎧==2311y x ⎩⎨⎧==3222y x5.⎪⎩⎪⎨⎧=+=+-②①25122222y x y xy x解:由①得1)(2=-y x ∴ 1=-y x 或1-=-y x 原方程组可代得 ⎩⎨⎧=+=-25122y x y x ⎩⎨⎧=+-=-25122y x y x用代入法解这两个方程组得原方程组的解为⎩⎨⎧==3411y x ⎩⎨⎧-=-=4322y x ⎩⎨⎧==4333y x ⎩⎨⎧-=-=3444y x五、列方程解应用题(3分×2=6分) 1.解:设这个百分数为x ,依题意得 1400)1(200)1(2002002=++++x x 整理得 0432=-+x x 0)1)(4(=-+x x41-=x (不合题意舍去),%10012==x 答:这个百分数为100%.2.设甲单独完成用x 天,则乙用(x +3)天,依题意得1346=++x x 去分母,整理得01872=--x x0)2)(9(=+-x x 91=x ,22-=x经检验,91=x ,22-=x 都是原方程的解. 将2-=x 不合题意舍去,∴ 9=x 时,123=+x ∴ 甲用9天,乙用12天.六、解:在△ABC 中,∠C =90°. 10=a ,310=b ∴ 2222)310(10+=+=b a C20400== ∵ 3331010tan ===b a A ∵ 30tan °33=∴ =∠A 30°∠B =90°-∠A =90°-30°=60° 七、解:在△ABC 中,∠C =90°, 32=BC ,4=BD ∴ 22BC BD CD -=22)32(4-=2=23432c o s ===∠BD BC CBD ︒30cos 23=∴ =∠CBD 30°∵ BD 是∠ABC 的平分线 ∴ ∠DBA =∠CBD =30° ∴ ∠A =90°-2×30°-30° ∴ ∠A =∠DBA ∴ AD =BD =4∴AC =CD +AD =6.BC AB 2= 322⨯= 34=. 八、解:MCB ACB ∠=∠,=∠MCA 15° ∠ADB =90°-∠NDA =30° ∵ ∠ADB =∠ACB +∠CAD ∴ ∠CAD =30°-15°=15° ∴ ∠ACB =∠CAD∴ AD =CD =8∵ ADABADB =∠sin A D B AD AB ∠=⋅sin4218=⨯=4>3.8∴ 没有触礁的危险.。
北京市2020〖人教版〗九年级下学期第一次月考数学试卷
创作人:百里严守 创作日期:202B.03.31A B C O北京市2020年〖人教版〗九年级下学期第一次月考数学试卷创作人:百里严守 创作日期:202B.03.31审核人: 北堂本一创作单位: 雅礼明智德学校一、选择题(本大题共8个小题,每小题3分,共24分.) 1.3-的绝对值是( )A .3B .3-C .13D .13-2.函数12y x =- 中,自变量x 的取值范围是( )A .2x >B .2x <C .2x ≠D .2x ≠-3.如图所示的几何体是由4个相同的小正方体组成.其主视图 ( ) A . B . C . D . 4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷=D .33()a a -=5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )元A .59.310⨯B .9103.9⨯C .49310⨯D .60.9310⨯6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( ) A .( 3-,5-) B .(3,5)C .(3.5-) D .(5,3-) 6题 7题 8题7.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( ) A .60° B . 65° C . 75° D . 80° 8.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DCB .AC=BDC .AC ⊥BDD .OA=OC二、填空题(本大题共8个小题,每小题3分,共24分) 9.分解因式:25x x - =________. 10.已知x =3是方程260x x k的一个根,则k ______.11.已知|2|30a b ,则ba =____________. 12题 12.如图,在△ABC 中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A ,B 为圆心,以大于AB 的长为半径做弧,两弧相交于点P 和Q .②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若CE=4,则AE=. 13.商店某天销售了ll 件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=23 ,0C=1,则半径OB 的长为______. 15.下列说法:①对顶角相等;②打开电视机,“正在播放《新闻联播》”是必然事件;③若某次摸奖活动中奖的概率是15,则摸5次一定会中奖; 14题图④想了解端午节期间某市场粽子的质量情况,适合的调查方式是抽样调查; ⑤若甲组数据的方差s 2=0.01,乙组数据的方差s 2=0.05,则乙组数据比甲组数据 更稳定.其中正确的说法是________________.(写出所有正确说法的序号)16.一组按规律排列的式子:a2,43a ,65a ,87a ,….则第n 个式子是________.三、解答题(本大题共6个小题,共72分)17.(8分)计算:(1) 024cos 458(3)(1)π-+++-(2)先化简,再求值:(a+2)(a ﹣2)+4(a+1)﹣4a ,其中a=﹣1.18.(8分)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩19.(8分) 如图,在△ABC 中,AB=AC ,AD 是高,AM 是△ABC 外角∠CAE 的平分线.(1)用尺规作图方法,作∠ADC 的平分线DN ;(保留作图痕迹,不写作法和证明) (2)设DN 与AM 交于点F ,判断△ADF 的形状.说明理由。
北京市2020〖人教版〗九年级数学下册月考数学试卷3月份1
北京市2020年〖人教版〗九年级数学下册月考数学试卷(3月份)创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(每题3分,共30分)1.﹣2的相反数等于()A.﹣2 B.2 C.D.2.方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1 D.23.在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为()A.451×105B.45.1×106 C.4.51×107D.0.451×1084.下列运算正确的是()A.a+2a=2a2B. +=C.(x﹣3)2=x2﹣9 D.(x2)3=x65.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根6.在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣x+3 B.y=C.y=2x D.y=﹣2x2+x﹣77.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.58.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A.B.C.D.9.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.410.已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m ≠1的实数),其中结论正确的个数有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.计算:﹣3+2=.12.计算:﹣2等于.13.不等式组的解集是.14.化简÷(﹣)的结果是.15.若2a x+y b5与﹣3ab2x﹣y是同类项,则2x﹣5y的立方根是.16.已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.17.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.18.如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A 的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是.三、简答题(共96分)19.(1)计算:﹣()﹣2+|﹣2|﹣2tan60°+0(2)化简:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.解不等式:≤﹣1,并把解集表示在数轴上.21.先化简(1+)÷,再从1,2,3三个数中选一个合适的数作为x的值,代入求值.22.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.23.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?24.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?26.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?27.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B 地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.28.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D (3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)求点A坐标及抛物线的解析式.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?答案与试题解析一、选择题(每题3分,共30分)1.﹣2的相反数等于()A.﹣2 B.2 C.D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣2的相反数是﹣(﹣2)=2.故选:B.2.方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1 D.2【考点】解一元一次方程.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D3.在网络上用“Google”搜索引擎搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为()A.451×105B.45.1×106 C.4.51×107D.0.451×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:45 100 000=4.51×107,故选:C.4.下列运算正确的是()A.a+2a=2a2B. +=C.(x﹣3)2=x2﹣9 D.(x2)3=x6【考点】幂的乘方与积的乘方;实数的运算;合并同类项;完全平方公式.【分析】分别根据合并同类项的法则、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、a+2a=2a≠2a2,故本选项错误;B、与不是同类项,不能合并,故本选项错误;C、(x﹣3)2=x2﹣6x+9,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.5.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.6.在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣x+3 B.y=C.y=2x D.y=﹣2x2+x﹣7【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【分析】将(0,0)代入各选项进行判断即可.【解答】解:A、当x=0时,y=3,不经过原点,故本选项错误;B、反比例函数,不经过原点,故本选项错误;C、当x=0时,y=0,经过原点,故本选项正确;D、当x=0时,y=﹣7,不经过原点,故本选项错误;故选C.7.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.5【考点】由实际问题抽象出分式方程.【分析】设原价每瓶x元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程.【解答】解:设原价每瓶x元,﹣=20.故选B.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】根据二次函数的图象得出a,b,c的符号,进而利用一次函数与反比例函数得出图象经过的象限.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵对称轴经过x的负半轴,∴a,b同号,图象经过y轴的正半轴,则c>0,∵函数y=,a<0,∴图象经过二、四象限,∵y=bx+c,b<0,c>0,∴图象经过一、二、四象限,故选:B.9.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.=,S△【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,OAD过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,=4S□ONMG=4|k|,∴S矩形ABCO由于函数图象在第一象限,k>0,则++9=4k,解得:k=3.故选C.10.已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m ≠1的实数),其中结论正确的个数有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴为x=1,能得到:a <0,c>0,﹣=1,∴b=﹣2a>0,∴abc<0,此结论正确;②当x=﹣1时,由图象知y<0,把x=﹣1代入解析式得:a﹣b+c<0,∴b>a+c,∴②错误;③图象开口向下,与y轴交于正半轴,对称轴为x=1,能得到:a<0,c>0,﹣=1,所以b=﹣2a,所以4a+2b+c=4a﹣4a+c>0.∴③正确;④∵由①②知b=﹣2a且b>a+c,∴2c<3b,④正确;⑤∵x=1时,y=a+b+c(最大值),x=m时,y=am2+bm+c,∵m≠1的实数,∴a+b+c>am2+bm+c,∴a+b>m(am+b).∴⑤错误.故选:B.二、填空题(每题3分,共24分)11.计算:﹣3+2=﹣1.【考点】有理数的加法.【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【解答】解:﹣3+2=﹣1.故答案为:﹣1.12.计算:﹣2等于2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.13.不等式组的解集是﹣<x<3.【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:由(1)得:x<3;由(2)得:x>﹣.∴﹣<x<3.14.化简÷(﹣)的结果是.【考点】分式的混合运算.【分析】先算减法,再分子分母分解因式,同时把除法变成乘法,最后求出即可.【解答】解:原式=÷=•=,故答案为:.15.若2a x+y b5与﹣3ab2x﹣y是同类项,则2x﹣5y的立方根是.【考点】立方根;同类项.【分析】依据同类项的定义可得到得到x、y的方程组,从而可求得x,y的值,然后再求得代数式的值,最后利用立方根的性质求解即可.【解答】解:∵2a x+y b5与﹣3ab2x﹣y是同类项,∴x+y=1,2x﹣y=5.解得:x=2,y=﹣1.∴2x﹣5y=9.∴2x﹣5y的立方根是.故答案为:.16.已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=25.【考点】根与系数的关系.【分析】由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣mn+n2=(m+n)2﹣3mn=16+9=25.故答案为:25.17.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).【考点】两条直线相交或平行问题.【分析】依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x 的取值,依次代入即可.【解答】解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB 为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).18.如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A 的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是(,).【考点】规律型:点的坐标;等边三角形的性质.【分析】根据O(0,0),A(2,0)为顶点作△OAP1,再以P1和P1A的中B 为顶点作△P1BP2,再P2和P2B的中C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.【解答】解:由题意可得,每一个正三角形的边长都是上个三角形的边长的,则第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是=,P6的纵坐标为,故答案为:(,).三、简答题(共96分)19.(1)计算:﹣()﹣2+|﹣2|﹣2tan60°+0(2)化简:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.【考点】整式的除法;实数的运算;单项式乘多项式;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)直接利用算术平方根以及负整数指数幂的性质、零指数幂的性质和绝对值、特殊角的三角函数值分别化简求出答案;(2)直接利用单项式乘以多项式以及合并同类项法则化简,进而利用多项式除法运算法则求出答案.【解答】解:(1)﹣()﹣2+|﹣2|﹣2tan60°+0=3﹣9+2﹣﹣2+1=﹣6;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y=[(x3y2﹣x2y)﹣x2y+x3y2]÷x2y=(2x3y2﹣2x2y)÷x2y=2xy﹣2.20.解不等式:≤﹣1,并把解集表示在数轴上.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.21.先化简(1+)÷,再从1,2,3三个数中选一个合适的数作为x的值,代入求值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x=3代入计算即可求出值.【解答】解:原式=•=•=x﹣2,当x=3时,原式=3﹣2=1.22.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【考点】一元二次方程的应用.【分析】本题可设小路的宽为xm,将4块种植地平移为一个长方形,长为(40﹣x)m,宽为(32﹣x)m.根据长方形面积公式即可求出小路的宽.【解答】解:设小路的宽为xm,依题意有(40﹣x)(32﹣x)=1140,整理,得x2﹣72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.23.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?【考点】反比例函数的应用;一次函数的应用.【分析】(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.24.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,,解得.故y与x的函数关系式为y=﹣x+180;(2)∵y=﹣x+180,∴W=(x﹣100)y=(x﹣100)(﹣x+180)=﹣x2+280x﹣18000=﹣(x﹣140)2+1600,∵a=﹣1<0,∴当x=140时,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.25.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.26.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn;(2)利用所探索的结论,找一组正整数a、b、m、n填空:4+ 2=(1+ 1)2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.27.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B 地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.【考点】一次函数的应用.【分析】(1)由乙在途中的货站装货耗时半小时易得a=4.5,甲从A到B共用了(+7)小时,然后利用速度公式计算甲的速度;(2)设乙开始的速度为v千米/小时,利用乙两段时间内的路程和为460列方程4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),计算出4v=360,则可得到D(4,360),E(4.5,360),然后利用待定系数法求出线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)先计算60×=40,则可得到C(0,40),再利用待定系数法求出直线CF的解析式为y=60x+40,和直线OD的解析式为y=90x(0≤x≤4),然后利用函数值相差15列方程:当60x+40﹣90x=15,解得x=;当90x﹣(60x+40)=15,解得x=;当40x+180﹣(60x+40)=15,解得 x=.【解答】解:(1)a=4.5,甲车的速度==60(千米/小时);(2)设乙开始的速度为v千米/小时,则4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),4v=360,则D(4,360),E(4.5,360),设直线EF的解析式为y=kx+b,把E(4.5,360),F(7,460)代入得,解得.所以线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)甲车前40分钟的路程为60×=40千米,则C(0,40),设直线CF的解析式为y=mx+n,把C(0,40),F(7,460)代入得,解得,所以直线CF的解析式为y=60x+40,易得直线OD的解析式为y=90x(0≤x≤4),设甲乙两车中途相遇点为G,由60x+40=90x,解得x=小时,即乙车出发小时后,甲乙两车相遇,当乙车在OG段时,由60x+40﹣90x=15,解得x=,介于0~小时之间,符合题意;当乙车在GD段时,由90x﹣(60x+40)=15,解得x=,介于~4小时之间,符合题意;当乙车在DE段时,由360﹣(60x+40)=15,解得x=,不介于4~4.5之间,不符合题意;当乙车在EF段时,由40x+180﹣(60x+40)=15,解得x=,介于4.5~7之间,符合题意.所以乙车出发小时或小时或小时,乙与甲车相距15千米.28.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D (3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)求点A坐标及抛物线的解析式.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?【考点】二次函数综合题.【分析】(1)由抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,可求得点A的坐标,然后设抛物线的解析式为y=a(x﹣1)2+4,将点C代入即可求得答案;(2)分别从∠QPC=90°与∠PQC=90°,利用cos∠QPC求解即可求得答案;(3)首先设直线AC的解析式为y=kx+b,利用待定系数法即可求得直线AC的解析式,然后求得点Q的坐标,继而求得S△ACQ =S△AFQ+S△CPQ=FQ•AG+FQ•DG=FQ(AG+DG)=﹣(t﹣2)2+1,则可求得答案.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QPC==,∴=,解得t=;当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得:.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.创作人:百里严守 创作日期:202B.03.31创作人:百里严守 创作日期:202B.03.31 ∴Q 点的纵坐标为4﹣, ∴QF=(4﹣)﹣(4﹣t )=t ﹣, ∴S △ACQ =S △AFQ +S △CPQ =FQ •AG +FQ •DG=FQ (AG +DG )=FQ •AD=×2(t ﹣)=﹣(t ﹣2)2+1,∴当t=2时,△ACQ 的面积最大,最大值是1.创作人:百里严守创作日期:202B.03.31 审核人: 北堂本一 创作单位: 雅礼明智德学校。
北京市海淀区外国语实验学校2020-2021学年九年级下学期3月月考数学试题
下面是该定理的证明过程(借助了第(2)问的结论):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴ ,∴IAIDIMIN①
如图②,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF
A. 元B. 元C. 元D. 元
2.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与点字所在面相对的面上的汉字是()
A.青B.春C.梦D.想
3.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )
北京市海淀区外国语实验学校2020-2021学年九年级下学期3月月考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.响应党中央号召,连日来,全国广大共产党员继续踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()
三、解答题
17.计算: 6sin60°
18.已知x+y=xy,求代数式 + ﹣(1﹣x)(1﹣y)的值.
19.如图,在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,连接AC,CF.求证:
(1)AF=CF;
(2)CA平分∠DCF.
20.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
┃精选3套试卷┃2020年北京市中考数学3月质量监测试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:3【答案】D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.2.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.42【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42∴22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=∵BE=6,BC=AD=9,∴CE=BC ﹣BE=9﹣6=3,∴BE :CE=6:3=2:1,∵AB ∥FC ,∴△ABE ∽△FCE ,∴S △ABE :S △CEF =(BE :CE )2=4:1,则S △CEF =14S △ABE =22. 故选A .【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.3.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误; y=3x的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x 的图象在二、四象限,故选项C 错误; y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;故选B.4.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3B .a <3C .a≥3D .a≤3【答案】D【解析】分析:先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围.详解:解不等式2(x-1)>4,得:x >3,解不等式a-x <0,得:x >a ,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm【答案】D 【解析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x ,宽为y ,根据题意得:x+2y=a ,则图②中两块阴影部分周长和是:2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b .故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .25【答案】C 【解析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=5,应用两次勾股定理分别求BE 和a .【详解】过点D 作DE ⊥BC 于点E.由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 1..∴AD=a.∴12DE•AD =a. ∴DE=1.当点F 从D 到B 时,用5s.∴BD=5.Rt △DBE 中,BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a , Rt △DEC 中,a 1=11+(a-1)1.解得a=52. 故选C . 【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.8.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .15【答案】A 【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用.9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .94m < B .94m C .94m > D .94m 【答案】A【解析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可.【详解】∵关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,∴△=b 2﹣4ac=(﹣3)2﹣4×1×m >0,∴m <94, 故选A .【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 10.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些【答案】B【解析】试题解析:方差越小,波动越小. 22,A B s s >数据B 的波动小一些.故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(本题包括8个小题)11.抛物线y =﹣x 2+bx+c 的部分图象如图所示,则关于x 的一元二次方程﹣x 2+bx+c =0的解为_____.【答案】x 1=1,x 2=﹣1.【解析】直接观察图象,抛物线与x 轴交于1,对称轴是x =﹣1,所以根据抛物线的对称性可以求得抛物线与x 轴的另一交点坐标,从而求得关于x 的一元二次方程﹣x 2+bx+c =0的解.【详解】解:观察图象可知,抛物线y =﹣x 2+bx+c 与x 轴的一个交点为(1,0),对称轴为x =﹣1, ∴抛物线与x 轴的另一交点坐标为(﹣1,0),∴一元二次方程﹣x 2+bx+c =0的解为x 1=1,x 2=﹣1.故本题答案为:x 1=1,x 2=﹣1.【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.12.正六边形的每个内角等于______________°.【答案】120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.13.地球上的海洋面积约为361000000km1,则科学记数法可表示为_______km1.【答案】3.61×2【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将361 000 000用科学记数法表示为3.61×2.故答案为3.61×2.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx,则k值为_____.【答案】1【解析】作DH⊥x轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAO+∠DAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠DAH ,在△ABO 和△DAH 中AOB DHA ABO DAH AB DA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABO ≌△DAH ,∴AH=OB=3,DH=OA=1,∴D 点坐标为(1,1),∵顶点D 恰好落在双曲线y=k x 上, ∴a=1×1=1.故答案是:1.15.因式分解:9a 2﹣12a+4=______.【答案】(3a ﹣1)1【解析】直接利用完全平方公式分解因式得出答案.【详解】9a 1-11a+4=(3a-1)1.故答案是:(3a ﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.16.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .【答案】:k <1.【解析】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.17.当x 为_____时,分式3621x x -+的值为1. 【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.18.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .【答案】2【解析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k 的几何意义.三、解答题(本题包括8个小题)19.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x/元… 15 20 25 … y/件 … 25 20 15 … 已知日销售量y 是销售价x 的一次函数.求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】(1)40y x =-+;(2)此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩,∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.20.如图,A (4,3)是反比例函数y=k x 在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x 的图象于点P .求反比例函数y=k x 的表达式;求点B 的坐标;求△OAP 的面积.【答案】(1)反比例函数解析式为y=12x;(2)点B 的坐标为(9,3);(3)△OAP 的面积=1. 【解析】(1)将点A 的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB ∥x 轴即可得点B 的坐标;(3)先根据点B 坐标得出OB 所在直线解析式,从而求得直线与双曲线交点P 的坐标,再利用割补法求解可得.【详解】(1)将点A (4,3)代入y=k x ,得:k=12, 则反比例函数解析式为y=12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC=4、AC=3,∴2243+,∵AB ∥x 轴,且AB=OA=1,∴点B 的坐标为(9,3);(3)∵点B 坐标为(9,3),∴OB 所在直线解析式为y=13x , 由1312y x y x ⎧=⎪⎪⎨⎪=⎪⎩可得点P 坐标为(6,2),(负值舍去), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,则点E 坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP 的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=1. 【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.21.关于x 的一元二次方程ax 2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解析】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.22.如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.【答案】(1)AC=10;(2)35 ADBD=.【解析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC=2231+=10;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34 DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.23.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;【答案】(1)1;(2)1 6【解析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为12和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:21 212x= ++解得:x=1经检验:x=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:21126=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.24.如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=kx在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.【答案】(1)反比例函数解析式为y=8x;(2)C点坐标为(2,1)【解析】(1)由S △BOD =1可得BD 的长,从而可得D 的坐标,然后代入反比例函数解析式可求得k ,从而得解析式为y=8x ; (2)由已知可确定A 点坐标,再由待定系数法求出直线AB 的解析式为y=2x ,然后解方程组82y x y x⎧=⎪⎨⎪=⎩即可得到C 点坐标.【详解】(1)∵∠ABO=90°,OB=1,S △BOD =1,∴OB×BD=1,解得BD=2,∴D (1,2)将D (1,2)代入y=k x, 得2=4k , ∴k=8,∴反比例函数解析式为y=8x; (2)∵∠ABO=90°,OB=1,AB=8,∴A 点坐标为(1,8),设直线OA 的解析式为y=kx ,把A (1,8)代入得1k=8,解得k=2,∴直线AB 的解析式为y=2x ,解方程组82y x y x⎧=⎪⎨⎪=⎩得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴C 点坐标为(2,1).25.如图,矩形ABCD 中,CE ⊥BD 于E ,CF 平分∠DCE 与DB 交于点F .求证:BF =BC ;若AB =4cm ,AD =3cm ,求CF 的长.【答案】(1)见解析,(2)CF 65cm. 【解析】(1)要求证:BF=BC 只要证明∠CFB=∠FCB 就可以,从而转化为证明∠BCE=∠BDC 就可以; (2)已知AB=4cm ,AD=3cm ,就是已知BC=BF=3cm ,CD=4cm ,在直角△BCD 中,根据三角形的面积等于12BD•CE=12BC•DC ,就可以求出CE 的长.要求CF 的长,可以在直角△CEF 中用勾股定理求得.其中EF=BF-BE ,BE 在直角△BCE 中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD 是矩形,∴∠BCD =90°,∴∠CDB+∠DBC =90°.∵CE ⊥BD ,∴∠DBC+∠ECB =90°.∴∠ECB =∠CDB .∵∠CFB =∠CDB+∠DCF ,∠BCF =∠ECB+∠ECF ,∠DCF =∠ECF ,∴∠CFB =∠BCF∴BF =BC(2)∵四边形ABCD 是矩形,∴DC =AB =4(cm ),BC =AD =3(cm ).在Rt △BCD 中,由勾股定理得BD =2222435AB AD +=+=. 又∵BD•CE =BC•DC ,∴CE =·125BC DC BD =. ∴BE =22221293()55BC CE -=-=. ∴EF =BF ﹣BE =3﹣9655=. ∴CF =222212665()()55CE EF +=+=cm . 【点睛】 本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.26.在等边三角形ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ .求证:△ABP ≌△CAQ ;请判断△APQ 是什么形状的三角形?试说明你的结论.【答案】 (1)证明见解析;(2) △APQ 是等边三角形.【解析】(1)根据等边三角形的性质可得AB =AC ,再根据SAS 证明△ABP ≌△ACQ;(2)根据全等三角形的性质得到AP =AQ ,再证∠PAQ = 60°,从而得出△APQ 是等边三角形.【详解】证明:(1)∵△ABC 为等边三角形, ∴AB=AC ,∠BAC=60°,在△ABP和△ACQ中,AB ACABP ACQBP CQ=⎧⎪∠=∠⎨⎪=⎩∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)【答案】A【解析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.2.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小【答案】C【解析】如图所示,连接CM,∵M 是AB 的中点,∴S △ACM =S △BCM =12S △ABC , 开始时,S △MPQ =S △ACM =12S △ABC ; 由于P ,Q 两点同时出发,并同时到达终点,从而点P 到达AC 的中点时,点Q 也到达BC 的中点,此时,S △MPQ =14S △ABC ; 结束时,S △MPQ =S △BCM =12S △ABC . △MPQ 的面积大小变化情况是:先减小后增大.故选C .3.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤【答案】B【解析】试题分析: ①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化; ③、面积S △PMN =14S △PAB =14×12AB·h ,其中h 为直线l 与AB 之间的距离,不变; ④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB 的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线4.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A.0个B.1个C.2个D.3个【答案】B【解析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y 轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎝米2B.932π⎛-⎝米2C.9632π⎛⎝米2D.(693π-米2【答案】C【解析】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt △OCD 中,∵OD=6,OC=1,∴2222CD OD OC 6333=-=-=.又∵CD 333sin DOC OD 62∠===,∴∠DOC=60°. ∴2606193336336022DOCAOD S S S ππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2). 故选C .6.如图,折叠矩形纸片ABCD 的一边AD,使点D 落在BC 边上的点F 处,若AB=8,BC=10,则△CEF 的周长为( )A .12B .16C .18D .24【答案】A 【解析】解:∵四边形ABCD 为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上的F 处,∴AF=AD=10,EF=DE ,在Rt △ABF 中,∵22AF AB -,∴CF=BC-BF=10-6=4,∴△CEF 的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A .7.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°【答案】A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.8.下列几何体中,俯视图为三角形的是( )A .B .C .D .【答案】C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.9.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B.94C.352D.354【答案】B【解析】试题解析:在菱形ABCD中,6AC=,8BD=,所以4OA=,3OD=,在Rt AOD△中,5AD=,因为11641222ABDS BD OA=⋅⋅=⨯⨯=,所以1122ABDS AB DH=⋅⋅=,则245DH=,在Rt BHD中,由勾股定理得,22222418655BH BD DH⎛⎫=-=-=⎪⎝⎭,由DOG DHB∽可得,OG ODBH DH=,即3182455OG=,所以94OG=.故选B.10.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】C【解析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.二、填空题(本题包括8个小题)11.若使代数式212x x -+有意义,则x 的取值范围是_____. 【答案】x≠﹣2【解析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】∵分式212x x -+有意义, ∴x 的取值范围是:x+2≠0,解得:x≠−2.故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.12.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
北京市海淀区2019-2020学年中考数学三月模拟试卷含解析
北京市海淀区2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在矩形ABCD 中AB =2,BC =1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .8πB .222π-C .23π-D .6π 2.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .B .C .D .3.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A .B .C .D .4.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是( ) A .29.8×109B .2.98×109C .2.98×1010D .0.298×10105.已知一元二次方程2310x x --= 的两个实数根分别是 x 1 、 x 2 则 x 12 x 2 + x 1 x 22 的值为( ) A .-6B .- 3C .3D .66.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )A .B .C .D .7.如图,在四边形ABCD 中,∠A=120°,∠C=80°.将△BMN 沿着MN 翻折,得到△FMN .若MF ∥AD ,FN ∥DC ,则∠F 的度数为( )A .70°B .80°C .90°D .100°8.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37°9.下列各数中,最小的数是( ) A .﹣4 B .3 C .0 D .﹣2 10.计算:()()223311aa a ---的结果是( )A .()21ax -B .31a -. C .11a - D .31a + 11.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=bx在同一坐标系中的图象的形状大致是( )A.B.C.D.12.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.15.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.16.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若2,则CE的长为_____.17.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.18.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知▱ABCD.作∠B的平分线交AD于E点。
北京市九年级下学期数学3月月考试卷
北京市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)—3的倒数是()A . 3B . -3C .D .2. (2分) (2016九上·黔西南期中) 下列平面图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) (2019七下·恩施月考) 如图,将一张对边互相平行的纸条沿EF折叠,若∠EFB=32°,则①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°;则下列结论正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分)某县为了大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新。
2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A . 20﹪,-220﹪B . 40﹪C . -220﹪D . 20﹪5. (2分)(2019·贵池模拟) 下表,是池州市今年“五一”这周内日最高气温的统计表,关于这7天的日最高气温的众数,中位数,方差分别是:()日期29日30日5月1日2日3日4日5日日最高气温16°C19°C22°C24°C26°C24°C23°CA . 24,23,10B . 24,23,C . 24,22,10D . 24,22,6. (2分) (2018九上·罗湖期末) 若关于X的一元二次方程X2一X一3m=0有两个不相等的实数根,则m 的取值范围是()A . m>B . m<C . m>一D . m<一二、填空题 (共10题;共13分)7. (1分)(2017·齐齐哈尔) 因式分解:4m2﹣36=________.8. (1分)(2017·永定模拟) 在我国南海某海域探明可燃冰储量约有194亿立方米,数字19400000000用科学记数法表示正确的是________.9. (1分)(2018·深圳模拟) 函数中自变量x的取值范围为________.10. (2分)(2012·抚顺) 在一个不透明的盒子中装有2个红球和若干个白球,若再放进4个红球(盒子中所有球除颜色外其它完全相同),摇匀后,从中摸出一个球,摸到红球的概率恰好是,那么此盒子中原有白球的个数是________.11. (1分) (2020七上·无锡期末) 若代数式的值为,则代数式的值为________.12. (2分)函数y=2﹣中,自变量x的取值范围为________.13. (2分)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).14. (1分) (2019九上·保山期中) 正三角形内接于⊙ ,⊙ 的半径为,则这个正三角形的面积为________.15. (1分) (2018九上·惠山期中) 如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为________.16. (1分) (2018九上·苏州月考) 如图,在矩形中,是边上一点,连接,将矩形沿翻折,使点落在边上点处,连接 .在上取点,以点为圆心,长为半径作⊙ 与相切于点 .若,,给出下列结论:① 是的中点;②⊙ 的半径是2; ③ ;④ .其中正确的是________.(填序号)三、解答题 (共10题;共102分)17. (10分)(2017·深圳模拟) 计算:|﹣1+ |﹣﹣(5﹣π)0+4cos45°.18. (15分)(2017·河源模拟) 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有________名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?19. (6分) (2012九上·吉安竞赛) 某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是.(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.20. (5分)如图所示,已知在平行四边形ABCD中,BE=DF求证:AE=CF.21. (5分)如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.22. (10分) (2016九上·北京期中) 在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x (元)的一次函数.(1)直接写出y与x之间的函数关系式y=________(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?23. (10分) (2019八下·丰润期中) 如图,矩形ABCD中,点E , F分别在边AB , CD上,点G , H在对角线AC上,EF与AC相交于点O , AG=CH , BE=DF .(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,DC=8,AD=4,求AE的长.24. (11分)(2019·祥云模拟) 如图,在平面直角坐标系中,直线与轴,轴分别交于点A、B,抛物线经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.(1)求抛物线的解析式;(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;(3)当△ADE为等腰三角形时,求t的值;(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.25. (15分) (2018八上·如皋期中) 已知:如图1,在平面直角坐标系中,点A,B,C都在坐标轴上,且OA=OB=OC,△ABC的面积为9,点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA,PB,D(﹣m,﹣m)为AC上的点(m>0)(1)试分别求出A,B,C三点的坐标;(2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?请说明理由;(3)如图2,若PA=AB,在第四象限内有一动点Q,连QA,QB,QP,且∠PQA=60°,当Q在第四象限内运动时,求∠APQ与∠PBQ的度数和.26. (15分)(2018·宜昌) 如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=________,k=________,点E的坐标为________;(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共13分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共102分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、25-3、26-1、。
2020年海淀外国语实验学校中考数学模拟试卷(3月份)(含答案解析)
2020年海淀外国语实验学校中考数学模拟试卷(3月份)一、选择题(本大题共8小题,共16.0分)1.小明给希望工作捐款15000元,15000用科学记数法表示为()A. 15×103B. 1.5×103C. 1.5×104D. 1.5×1052. 3.下列正方体展开图中,与“治”字相对面的字为()A. 乱B. 扫C. 黑D. 除3.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE//BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°4.下列运算正确的是()A. (−x2)3=−x5B. xy2÷12y=2xy(y≠0)C. 2√x+3√y=5√xyD. −6a6÷2a2=−3a45.如图(1)是一座横断面为抛物线形状的拱桥,当水面在直线l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的表达式是()A. y=−2x2B. y=2x2C. y=−12x2 D. y=12x26.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A、B的对应点A′、B′的坐标分别是()A. (−3,3)、(−2,4)B. (3,−3)、(1,4)C. (3,−3)、(−2,4)D. (−3,3)、(1,4)7.如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原的图像点O顺时针旋转90∘,得到△OA′B′,若反比例函数y=kx经过点A的对应点A′,则k的值为()A. 6B. −3C. 3D. 68.矩形的两相邻边长分别为a、b,下列数据能构成黄金矩形的是()A. a=4,b=√5+1B. a=4,b=√5−2C. a=2.b=√5+1D. a=2.b=√5−1二、填空题(本大题共8小题,共16.0分)9.已知关于x的方程x2+kx−3=0的一个根是x=−1,则另一根为_____.10.如果点P(6,1+m)在第四象限,写出一个符合条件的m的值:m=______.11.已知一次函数y=kx+2,若y随x的增大而减小,则它的图象不经过第_________象限.12.A、B两地相距10千米,甲、乙二人同时从A地出发去B地,甲的速度是乙的速度的3倍,结小时.设乙的速度为x千米/时,可列方程为______ .果甲比乙早到1313.如图,已知△ABC中,∠C=90°,∠BAC=45°,AC=√2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为_______.14.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为______ .15.如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜,若∠C=110°,则∠ABC的度数等于______.16.已知点P(a,3),点Q(−2,b)分别在第二、三象限的角平分线上,则a=______,b=__________.三、解答题(本大题共12小题,共68.0分)17.计算:2sin60°+2−1−20190−|1−√3|18.已知2x+3y=2014,求代数式2(3x−2y)−(x−y)+(−x+9y)的值.19.已知:如图,AB//CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BC.20.2019年春节,小娜家购买了4个灯笼,灯笼上,灯笼上分别写有“欢”、“度”、“春”、“节”(外观完全一样).(1)小娜抽到“2019年”是______事件,“欢”字被抽中的是______事件;(填“不可能”或“必然”或“随机”).小娜从四个灯笼中任取一个,取到“春”的概率是______.(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”、“节”两个灯笼的概率.21.如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.22.已知正比例函数y=kx(k≠0)和反比例函数y=m的图象都经过点(4,2).x(1)求这两个函数的解析式;(2)这两个函数图象还有其他交点吗⋅若有,请求出交点的坐标;若没有,请说明理由.23.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)若AB=2√5,AC=2,求四边形AODE的周长.24.如图,AB是⊙O的直径,AC为⊙O的弦,OD⊥AB,OD与AC的延长线交于点D,点E在OD上,且∠ECD=∠B.(1)求证:EC 是⊙O 的切线;(2)若OA =3,AC =2,求线段CD 的长.25. 若一个四位自然数n 满足千位与个位相同,百位与十位相同,我们称这个数为“天平数”.将“天平数”n 的前两位与后两位交换位置得到一个新的“天平数”n′,记F(n)=n−n′99,例如n =2112,n′=1221,F(2112)=2112−122199=9(1)计算F(5335)=______;若“天平数”n 满足F(n)是一个完全平方数,求F(n)的值;(2)s 、t “天平数“,其中s =abba −,t =xyyx −(1≤b <a ≤9,1≤x <y ≤9且a ,b ,xy 为整数),若F(s)能被8整除,且F(s)+F(t)−9(y +1)=0,规定:K(s,t)=s−t s ,求K(s,t)的所有结果的值.26.已知P(−5,m)和Q(3,m)是二次函数y=2x2+bx+1图象上的两点.(1)求b的值;(2)将二次函数y=2x2+bx+1的图象进行一次平移,使图象经过原点.(写出一种即可)27.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE和AF数量关系______.(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.28.如图,在平面直角坐标系xOy中,已知△ABC的∠ACB=90°,A(−3,0),C(1,0),tan∠BAC=3,4 P是AB的中点.(1)点B的坐标是____,点P的坐标是____;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不含全等),求点D的坐标;(3)在x轴上找一点Q,使以A,P,Q为顶点的三角形与△ABC相似,求Q的坐标.【答案与解析】1.答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.解:15000=1.5×104.故选C.2.答案:A解析:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,从而分析判断即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“治”字相对面的字为乱.故选A.本题主要考查了正方体的展开图,熟练掌握正方体展开图的特点是解题的关键.3.答案:A解析:解:∵AE//BD,∴∠CBD=∠E=35°,。
北京市海淀外国语实验学校2020年 3 月份初三月考数学试题
北京市海淀外国语实验学校初三 3 月份月考数学试题班级姓名考生须知1.本试卷共8 页,共三道大题,28 道小题。
满分100 分。
考试时间120 分钟。
2.在试卷和答题卡上准确填写班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,作图题用2B 铅笔作答,其他题用黑色字迹签字笔作答。
一、选择题(本题共16 分,每小题2 分)第1-8题均有四个选项,符合题意的.一个.1.响应党中央号召,连日来,全国广大共产党员继续踊跃捐款,表达对新冠肺炎疫情防控工作的支持。
据统计,截至 3 月 10 日,全国已有 7436 万多名党员自愿捐款,共捐款 76.8 亿元,则 76.8 亿元用科学记数法可表示为A.7.68 ⨯109 元B.7.68 ⨯1010 元C.76.8 ⨯108 元D.0.768 ⨯1010 元2.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是A.青B.春C.梦D.想3.如图,在△ABC 中,AB=AC,∠A=30°,直线a∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2 的度数是A.30°B.35°C.40°D.45°4.下列运算正确的是5.如图1,该大桥由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2 所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78 米(即最高点O 到AB 的距离为78 米),跨径为90 米(即AB=90 米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为图 1 图 26.如右上图,将△ABC 绕点 C (0,1)旋转 180°得到△A'B'C ,设点 A 的坐标为(a , b ) ,则点A '的坐标为 A. (-a , -b )B. (-a , -b +1)C. (-a , -b -1)D. (-a , -b + 2)7.如图,点 A 的坐标是(﹣2,点B的坐标是(0,C 为 O B 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A ′B ′C ′.若反比例函数 的图象恰好经过 A ′B 的 中点 D ,则 k 的值是A .9B .12C .15D .18 8.宽与长的比是5 -1(约为 0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学 2 价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形 ABCD , 分别取 AD ,BC 的中点 E ,F ,连接 EF ;以点 F 为圆心,以 FD 为半径画弧,交 BC 的延长线与点 G ;作GH ⊥ AD ,交 AD 的延长线于点 H .则图中下列矩形是黄金矩形的是 A .矩形 D CGH B .矩形 E FCD C .矩形 E FGH D .矩形 A BFE二、填空题(本题共 16 分,每小题 2 分)9.已知 x =1 是方程 x 2+bx ﹣2=0 的一个根,则方程的另一个根是 .10.已知点P611.已知一次函数y=kx +b ( b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第象限.12.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10 倍,在峰值速率下传输500 兆数据,5G 网络比4G 网络快45 秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x兆数据,依题意,可列方程是.13.如下图左,在△ABC 中,∠BAC=90°,AB=AC= 4 cm,点D为△ABC 内一点,∠BAD=15°,AD=6cm,连接B D,将△ABD 绕点A逆时针方向旋转,使A B 与A C 重合,点D 的对应点E,连接D E,DE 交A C 于点F,则CF 的长为cm.,B(3,q)两点,则不等式a x2+mx+c>n 的解集是.如上四边形ABCD内接于AB为⊙O的点16.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别以点,为圆心,大于的长为半径画弧,两弧在第二象限内交于点,则与的数量关系是.三、解答题(本题共68 分,第17-22 题,每小题5 分;第23-26 题,每小题6 分;第27-28题,每小题7 分)解答应写出文字说明、演算步骤或证明过程.17.计算:6sin60°﹣)0+| ﹣2020|.18.已知x+y=xy ,求代数式1+1- (1-x)(1-y) 的值.x yIM ID19.如图,在四边形A B C D中,A B =B C ,B F 平分∠A BC ,A F ∥20.去年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从 4 名女班干部(小悦、小文、小雅和小宇)中通过抽签方式确定 2 名女生去参 加.抽签规则:将 4 名女班干部姓名分别写在 4 张完全相同的卡片正面,把四张卡片背面 朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的 3 张卡片中随机抽取第二张,记下姓名. (1)该班男生“小安被抽中”是 事件,“小悦被抽(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小雅被抽中”的概率. 21.阅读以下材料,并按要求完成相应的任务: 莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和 r 分别为外接圆和内切圆的半径,O 和 I 分别为其外心延长AI 交⊙O 于点 D ,过点 I 作⊙O 的直径 MN ,连接 DM ,AN. ∵∠D =∠N ,∴∠D M I =∠N A I (同弧所对的圆周角, ∴△MDI ∽△ANI.∴ = ,∴ I A ⋅ ID = IM ⋅ IN ① IA IN 如图②,在图 1(隐去 MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF ∵DE 是⊙O 的直径,∴∠DBE=90°. ∵⊙I 与 AB 相切于点 F ,∴∠AFI=90°, ∴∠DBE=∠IFA. ∵∠B A D =∠E (同弧所对圆周角, ∴△AIF ∽△EDB.BF• ∴2Rr = (R + d )(R - d ) ,∴ R 2- d 2= 2Rr∴ d 2 = R 2- 2Rr (1)观察发现:I M = R +d ,I N =(用含R ,d 的代数式;(2)请判断 BD 和 ID 的数量关系,并说明理由.(请利用图 1 证明) (3)应用:若△ABC 的外接圆的半径为 6cm ,内切圆的半径为 2cm ,则△ABC 的外心与内心之间的距离为 cm.k 22.如图,反比例函数y = x (k ≠0)的图象与正比例函数 y =2x 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,∠ABC=90°.(1)求 k 的值及点 B 的坐标; (2)求tanC 的值.D EAC23.如上图右,菱形 ABCD 中,对角线 AC ,BD 交于 O 点,DE ∥AC ,CE ∥BD . (1)求证:四边形 OCED 为矩形; (2)在 BC 上 截取 CF =CO ,连接 OF ,若 AC =16,BD =12,求四边形 OFCD 的面积.O24.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 的中点,E 为 OD 延长线上一点, 且∠CAE =2∠C ,AC 与 BD 交于点 H ,与 OE 交于点 F . (1)求证:AE 是⊙O 的切线; (2)若 ,求直径 A B 的长.25.阅读下面的材料:如果函数 y =f (x )满足:对于自变量 x 的取值范围内的任意 x 1,x 2, (1)若 x 1<x 2,都有 f (x 1)<f (,则称 f (x )是增函数; (2)若x 1<x 2,都有 f (x 1)>f (,则称 f (x )是减函数.例题:证明函数 (x >0)是减函数.证明:设 0<x 1<x 2, f (x 1)﹣f (x 2)=﹣==.∵0<x 1<x 2, ∴x 2﹣x 1>0,x 1x 2>0. ∴>0.即 f (x 1)﹣f (x 2)>0. ∴f (x 1)>f (∴函数 f (x )= (x >0)是减函数. 根据以上材料,解答下面的问题:f(﹣1)=+(﹣2)=-1,f(﹣2)=+(﹣4)=-154 (1)计算:f(﹣3)=,f(﹣4)=;(3)请仿照例题证明你的猜想.26.已知抛物线y =-2x 2+(m -2)x +(n -2020) (m,n 为常数).(1)若抛物线的的对称轴为直线x=1,且经过点(,,求m,n 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求n 的取值范围;1 1(3)在(1)的条件下,存在正实数a,b( a<b),当a≤x≤b 时,恰好有b请直接写出a,b 的值.≤y ≤,a 27.小明研究了这样一道几何题:如图 1,在∆ABC 中,把AB 点A 顺时针旋转α(00 <α<1800 )得到A B',把A C绕点A逆时针旋转β得到A C',连接B'C'.当α+β=1800 时,请问∆AB'C'边B'C'上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当∆ABC 为等边三角形时,AD 与B C 的数量关系为AD =BC ;②如图3,当∠BAC = 900 , BC = 8 时,则A D 长为.猜想论证:(2)在图 1 中,当∆ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用(3)如图 4,在四边形ABCD ,是否存在点P ,使∆PDC 与∆PAB 之间满足小明探究的问题中的边角关系?若存在,请画出点 P 的位置(保留作图痕迹,不需要说明)并直接写出∆PDC 的边DC 上的中线PQ 的长度;若不存在,说明理由.28.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,请判断点P是△MON的自相似点吗?(填是或不是):当点M的坐标是(,3),点N的坐标是(,0)时,请直接写出点P的坐标(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市海淀外国语实验学校初三 3 月份月考数学试题2020.3.17班级姓名考生须知1.本试卷共8 页,共三道大题,28 道小题。
满分100 分。
考试时间120 分钟。
2.在试卷和答题卡上准确填写班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,作图题用2B 铅笔作答,其他题用黑色字迹签字笔作答。
一、选择题(本题共16 分,每小题2 分)第1-8 题均有四个选项,符合题意的选项只.有.一个.1.响应党中央号召,连日来,全国广大共产党员继续踊跃捐款,表达对新冠肺炎疫情防控工作的支持。
据统计,截至 3 月 10 日,全国已有 7436 万多名党员自愿捐款,共捐款 76.8 亿元,则 76.8 亿元用科学记数法可表示为A.7.68 ⨯109 元B.7.68 ⨯1010 元C.76.8 ⨯108 元D.0.768 ⨯1010 元2.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是A.青B.春C.梦D.想3.如图,在△ABC 中,AB=AC,∠A=30°,直线a∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2 的度数是A.30°B.35°C.40°D.45°4.下列运算正确的是5.如图1,该大桥由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2 所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78 米(即最高点O 到AB 的距离为78 米),跨径为90 米(即AB=90 米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为图1 图26.如右上图,将△ABC 绕点C(0,1)旋转180°得到△A'B'C,设点A 的坐标为(a, b) ,则点A'的坐标为A. (-a, -b)B. (-a, -b + 1)C. (-a, -b - 1)D. (-a, -b + 2)7.如图,点A 的坐标是(﹣2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到△A′B′C′.若反比例函数的图象恰好经过A′B 的中点D,则k 的值是A.9 B.12 C.15 D.188.宽与长的比是5 -1(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学2价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC 的中点E,F,连接EF;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G;作GH ⊥AD ,交AD 的延长线于点H.则图中下列矩形是黄金矩形的是A.矩形DCGH B.矩形EFCD C.矩形EFGH D.矩形ABFE二、填空题(本题共16 分,每小题2 分)9.已知x=1 是方程x2+bx﹣2=0 的一个根,则方程的另一个根是.10.已知点P(x,y)位于第四象限,并且x≤y+4(x,y 为整数),写出一个符合上述条件的点P 的坐标.611.已知一次函数y =kx +b ( b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第象限.12.世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10 倍,在峰值速率下传输500 兆数据,5G 网络比4G 网络快45 秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是.13.如下图左,在△ABC 中,∠BAC=90°,AB=AC= 4 cm,点D 为△ABC 内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E,连接DE,DE 交AC 于点F,则CF 的长为cm.14.如上图中,抛物线y=ax2+c 与直线y=mx+n 交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n 的解集是.15.如上图右,四边形ABCD 内接于⊙O,AB 为⊙O 的直径,点C 为的中点.若∠A=40°,则∠B= 度.16.如图,在平面直角坐标系中,以为圆心,适当长为半径画弧,交轴于点,交轴于点,再分别以点,为圆心,大于的长为半径画弧,两弧在第二象限内交于点,则与的数量关系是.三、解答题(本题共68 分,第17-22 题,每小题5 分;第23-26 题,每小题6 分;第27-28题,每小题7 分)解答应写出文字说明、演算步骤或证明过程.17.计算:6sin60°﹣)0+| ﹣2020|.18.已知x +y =xy ,求代数式1+1- (1-x)(1-y) 的值.x yIM ID19.如图,在四边形ABCD 中,AB=BC,BF 平分∠ABC,AF∥DC,连接AC,CF. 求证:(1)AF=CF;(2)CA 平分∠DCF.20.去年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4 名女班干部(小悦、小文、小雅和小宇)中通过抽签方式确定2 名女生去参加.抽签规则:将4 名女班干部姓名分别写在4 张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的 3 张卡片中随机抽取第二张,记下姓名.(1)该班男生“小安被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小文被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小雅被抽中”的概率.21.阅读以下材料,并按要求完成相应的任务:莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O和I 分别为其外心和内心,则OI 2 =R2 - 2Rr .下面是该定理的证明过程(借助了第(2)问的结论):延长AI 交⊙O 于点D,过点I 作⊙O 的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI∽△ANI.∴=,∴IA⋅ID =IM ⋅IN ①IA IN如图②,在图1(隐去MD,AN)的基础上作⊙O 的直径DE,连接BE,BD,BI,IF∵DE 是⊙O 的直径,∴∠DBE=90°.∵⊙I 与AB 相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对圆周角相等),∴△AIF∽△EDB.BF•∴2Rr = (R +d )(R -d ) ,∴R2 -d 2 = 2Rr∴d 2 =R2 - 2Rr任务:(1)观察发现:IM=R+d,IN =(用含R,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由.(请利用图1 证明)(3)应用:若△ABC 的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC 的外心与内心之间的距离为cm.k22.如图,反比例函数y=x(k≠0)的图象与正比例函数y=2x 的图象相交于A(1,a),B 两点,点C 在第四象限,CA∥y 轴,∠ABC=90°.(1)求k 的值及点B 的坐标;(2)求tanC 的值.D EA C23.如上图右,菱形ABCD 中,对角线AC,BD 交于O 点,DE∥AC,CE∥BD.(1)求证:四边形OCED 为矩形;(2)在BC 上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD 的面积.O24.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 的中点,E 为OD 延长线上一点,且∠CAE=2∠C,AC 与BD 交于点H,与OE 交于点F.(1)求证:AE 是⊙O 的切线;(2)若,求直径AB 的长.25.阅读下面的材料:如果函数y=f(x)满足:对于自变量x 的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)= (x>0)是减函数.根据以上材料,解答下面的问题:f(﹣1)=+(﹣2)=-1,f(﹣2)=+(﹣4)=-154 (1)计算:f(﹣3)=,f(﹣4)=;(3)请仿照例题证明你的猜想.26.已知抛物线y =-2x 2 +(m -2)x +(n -2020) (m,n 为常数).(1)若抛物线的的对称轴为直线x=1,且经过点(0,-1),求m,n 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求n 的取值范围;1 1(3)在(1)的条件下,存在正实数a,b( a<b),当a≤x≤b 时,恰好有b请直接写出a,b 的值.≤y ≤,a 27.小明研究了这样一道几何题:如图 1,在∆ABC 中,把AB 点A 顺时针旋转α(00 <α<1800 )得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=1800 时,请问∆AB'C'边B'C'上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当∆ABC 为等边三角形时,AD 与BC 的数量关系为AD =BC ;②如图3,当∠BAC = 900 , BC = 8 时,则AD 长为.猜想论证:(2)在图 1 中,当∆ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用(3)如图 4,在四边形ABCD ,是否存在点P ,使∆PDC 与∆PAB 之间满足小明探究的问题中的边角关系?若存在,请画出点 P 的位置(保留作图痕迹,不需要说明)并直接写出∆PDC 的边DC 上的中线PQ 的长度;若不存在,说明理由.28.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,请判断点P是△MON的自相似点吗?(填是或不是):当点M的坐标是(,3),点N的坐标是(,0)时,请直接写出点P的坐标(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.。