五年级奥数题及答案流水行船问题2-教育文档
(完整版)流水行船问题的公式和例题(含答案)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。
* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
奥数专题_流水行船问题(带答案完美排版)#(精选.)
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
五年级流水行船奥数题及答案【三篇】
五年级流水行船奥数题及答案【三篇】【第一篇】一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
解:设静水速度为x。
总路程是相同的。
6×(x+2.5)=8×(x-2.5)6x+15=8x-20x=17.5答:静水速度为17.5千米/小时。
【第二篇】两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。
【第三篇】已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.。
小学数学五年级《流水行船问题》练习题(含答案)
《流水行船问题》练习题(含答案)在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是和流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度,船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(以下简称水速),顺水速度=船速+水速;逆水速度=船速-水速 .顺水行程=顺水速度×顺水时间逆水行程=逆水速度×逆水时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2 .(可理解为和差问题)【例1】甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?分析:从甲到乙顺水速度:234÷9=26(千米/小时);从乙到甲逆水速度:234÷13=18(千米/小时);船速是:(26+18)÷2=22(千米/小时);水速是:(26-18)÷2=4(千米/小时).【前铺】轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要多少小时?分析:要求轮船从乙港返回甲港所需的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度。
现在知道轮船在静水中的速度,只需求出水流速度.根据已知,自甲港逆水航行8小时,到达相距144千米的乙港,由此可求出轮船的逆水航行的速度.再根据逆水速度与船速、水速的关系即可求出水速.水流速度:21—144÷8=21—18=3(千米/小时),顺水速度:2l+3=24(千米/小时),乙港返回甲港所需时间:144÷24=6(小时).【巩固】甲、乙两港相距208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达.水流速度是多少?分析:顺水速度=208÷8=26(千米/小时),逆水速度=208÷13=16(千米/小时),水速=(顺水速度-逆水速度)÷2=(26-16)÷2=5(千米/小时).【例2】A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?分析:先求出甲船往返航行的时间分别是:(105+35)÷2=70小时,(105-35)÷2=35.再求出甲船逆水速度每小时560÷70=8千米,顺水速度每小时560÷35=16千米,那么甲船在静水中的速度是每小时(16+8)÷2=12千米,水流的速度是每小时12-8=4千米,乙船在静水中的速度是每小时12×2=24千米,所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=20+28=48小时.【例3】甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问:这艘船还要航行几小时?分析:船在甲河中的顺水速度为:133÷7=19(千米/小时),船速=19-3=16(千米/小时).船在乙河中的逆水速度=船速一水速=16-2=14(千米/小时),逆水时间=逆水行程÷逆水速度=84÷14=6(小时).【例4】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离.分析:两港口间的距离=顺水速度×顺水时间=(船速+水速)×顺水时间=(船速+6)×4 ;两港口间的距离=逆水速度×逆水时间=(船速-6)×7;所以可得:(船速+6)×4=(船速-6)×7,解得:船速=22,可得两港口间的距离为:(22+6)×4=(22—6) ×7=112(千米).【例5】某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天.问:水从甲地流到乙地用了多少时间?分析:(法1)水流的时间=甲乙两地间的距离÷水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键.将甲、乙两地距离看成单位“1”,则顺水每天走全程的15,逆水每天走全程的17.水速=(顺水速度一逆水速度)÷2=135,所以水从甲地流到乙地需:113535÷=(天).当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!(法2)用方程思路,5×(船速+水速)=7×(船速—水速),即船速=6×水速,所以轮船顺流行5天的路程等于水流5+5×5=35(天)的路程,即木筏从A城漂到B城需35天.(法3)逆水比顺水多2天到达,即船要多行驶2天,为什么会多2天呢,因为顺水时得到了5天的水速帮助,逆水时又要去克服7天的水速,这一切都是靠2天的船速所实现的,即船速等于6天的水速;所以轮船顺流行5天的路程等于水流5+5×6=35(天)的路程,即木筏从A城漂到B城需35天.【例6】一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?分析:(法1)两次航行顺流的路程差:33-24=9 (千米),逆流的路程差:14-11=3 (千米),也就是说顺流航行9千米所用的时间和逆流航行3千米所用时间相同,那么顺流航行33千米与逆流航行33÷3=11 (千米)时间相同,则逆流速度:(11+11)÷11=2(千米/小时),同样可得顺流速度为:(24+14×3)÷11=6(千米/小时),静水速度:(6+2)÷2=4(千米/小时),水流速度:(6-2)÷2=2(千米/小时).(法2)根据顺流航行9千米所用的时间和逆流航行3千米所用时间相同,9千米=顺流速度×时间=逆流速度×3倍的时间,可得:顺流速度=3×逆流速度,而后仿照法1部分思路解答.【例7】一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.分析:逆水速度:18×2÷3=12(千米/小时),船速:(18+12)÷2=15(千米/小时)。
五年级奥数专题 流水行船问题二(学生版)
学科培优数学“流水行船问题二”学生姓名授课日期教师姓名授课时长在行程问题这个大家族中,除了我们常常研究的相遇与追及外,还有两个特别相似的问题:流水行程和扶梯问题。
它们之间有很多相似之处,当然也有不同之处,在学习的过程中,同学们应该细细体会。
在历届小升初和杯赛考试中,相比与流水行船问题,扶梯问题往往不是重点,但是也需要我们有一定的了解和认识!在讲解本讲知识点时,一定要讲两大问题进行对比讲解,从公式形式到一般变形,以及推导过程都要让学生加以重点理解。
流水行船问题中速度打破了常规的0参考系,在讲解过程中可以引入生活中最贴切的实例,加深学生印象。
一、流水行船问题通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①顺水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,在流水行船问题中,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
流水行船问题中的相遇与追及:①两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和。
这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。
最新五年级奥数练习题流水行船.doc
最新五年级奥数练习题流水行船
甲、乙两船分别从港顺水而下至480千米外的B港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A港多少千米?
答案与解析:
甲船顺水行驶全程需要:480(56+8)=7.5(小时),乙船顺水行驶全程需要:480(40+8)=10(小时).甲船到达B港时,乙船行驶1.5+7.5=9(小时),还有1小时的路程(48千米),即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处,即距离B 港24千米处,此处距离A港480-24=456(千米).
本文就是我们为大家准备的五年级奥数练习题流水行船,希望可以为大家的数学学习起到一定作用!。
五年级数学(上)奥数思维拓展《流水行船问题》测试题(含答案)
五年级数学(上)奥数思维拓展《流水行船问题》测试题(含答案)一.填空题(共8小题)1.某轮船顺流航行3h,逆流航行1.5h,已知轮船在静水中的速度为akm/h,水流速度为ykm/h,则轮船共航行了km。
2.甲、乙两个景点相距15千米,一艘观光游船从甲景点出发,抵达乙景点后立即返回,共用3小时.已知第三小时比第一小时少行12千米,那么这条河的水流速度为每小时千米.3.一艘轮船的静水速度为每小时36千米,在河中逆水航行140千米用了4小时,那么这条河的水流速度是每小时千米.4.甲、乙两城相距350千米,一艘客轮在其间往返航行,从甲城到乙城是顺流,用去10小时;从乙城返回甲城是逆流,用去14小时.那么,船在静水中的速度是千米/时,水流速度是千米/时.5.甲乙两游船顺水航行的速度均是每小时7千米,逆水航行的速度均是每小时5千米.现甲乙两船从某地同时出发,甲先逆流而上再顺流而下,乙先顺流而下再逆流而上,1小时后他们又都回到了出发点.那么两船在这段时间内共有分钟行进方向相同.6.一只船在河中顺水航行了4小时,行程为48千米.已知水速为每小时3千米,则该船的静水速度为每小时千米.7.甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米.这只机帆船往返两港要小时.8.一只小船从甲港到乙港顺流航行需1小时,水流速度增加一倍后,再从甲港到乙港航行需50分钟,水流速度增加后,从乙港返回甲港需航行.二.应用题(共13小题)9.甲船逆水航行360千米需18小时,返回原地需要10小时:乙船逆水航行同样一段距离需要15小时,返回原地需要多少小时?10.甲、乙两港相距334千米,此时风平浪静,一艘客船和一艘货船同时自两港相向航行,开出4.5小时后两船相距100千米,已知客船每小时行进比货船快4千米,货船每小时行多少千米?有几种可能?(用方程解)11.甲、乙两港相距100千米,一艘轮船从甲港到乙港是顺水航行,船在静水中的速度是每小时23.5千米,水流速度是每小时3.5千米。
五年级奥数流水行船问题.docx
流水行船问题:顺水速度 =静水速度(船速) +水速逆水速度=静水速度(船速)-水速静水速度(船速) =(顺水速度 +逆水速度)÷ 2水速 =(顺水速度 - 逆水速度)÷ 21、两个码头相距 352 千米,一船顺流而下,行完全程需要11 小时,逆流而上,行完全程需要 16 小时,求这条河的水流速度和船的静水速度。
2、长江沿岸甲乙两城的水路距离为240 千米,一条船从甲城开往乙城,顺水10 小时可以到达,从乙城返回甲城,逆水则需要 15 小时才能到达,求船速和水速。
3、两个港口相距 528 千米,一艘轮船顺水航行要24 小时走完全程,已知这条河的水速是每小时 3 千米,那么它返回逆流航行时要多少小时?4、两个港口相距 480 千米,一艘轮船顺水航行要24 小时走完全程,已知这条河流的水速是每小时 4 千米,那么它返回逆流航行要多少小时?5、甲乙两地相距234 千米,一只船从甲港到乙港需9 小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?6、一只船在长江里航行,顺流每小时 20 千米,已知这艘船顺流 4 小时恰好与逆流 5 小时的路程相等,求船速与水速?7、船行于 120 千米一段长的江河中,逆流而上用 10 小时,顺流而下用 6 小时,水速和船速各是多少千米?8、一只船逆流而上,水速 2 千米,船速 32 千米, 4 小时行多少千米?9、甲乙两地之间的距离是140 千米,一艘轮船从甲港开往乙港,顺水7 小时到达,从乙港返回甲港,逆水 10 小时到达,这艘轮船在静水中的速度和水流速度各是多少?10、一只船在静水中的速度是每小时 18 千米,水流速度是每小时 2 千米。
这只船从甲港逆水航行到乙港需要 15 小时,甲、乙两港的距离是多少千米?11、两码头相距 192 千米,一艘汽艇顺水行完全程需要 8 小时,已知这条河流的水流速度为每小时 4 千米,求逆水行完全程需要多少小时 ?12、甲、乙两船分别从 A 港出发逆流而上行驶向 B 港,甲船的顺水速度是每小时30 千米,静水中乙船每小时航行20 千米,水流的速度是每小时 5 千米,乙船出发后 4 小时,甲船才出发,当甲船追上乙船的时候,甲船已经离开 A 港多少千米?13、甲乙两船分别从A 港顺流而下至B 港,甲船的逆水速度为每小时30 千米,静水中乙船的速度为每小时 25 千米,水速为每小时 5 千米,乙船出发后 3 小时甲船才出发,当甲船追上乙船的时候甲船离开 A 港多少千米?14、已知一艘轮船顺水行48 千米需要 4 小时,逆水行 48 千米需要 6 小时,现在轮船从上游的 A 城驶向下游的 B 城,已知两城的水路长客站在船边看风景,不小心把一只鞋掉进水里,问:船到72 千米,开船时一位旅B 城时这只鞋距离B城有多远?15、某人顺水游 360 米需要 12 分钟,逆水游 360 米需要 15 分钟,此人现在从河的下游 A 处游向上游的 B 处, A、B 两地相距 480 千米,他从 A 处刚开始游的时候向水里放了一块木板,当游到 B 处的时候,木板距离他多少米?16、一条船顺水航行 60 千米需要 3 小时,水流速度为每小时 5 千米,这条船逆流行驶 60 千米需要多少小时?17、一条船在河流中顺水航行的速度是每小时40 千米,逆水速度是每小时32千米,这条河流的水速每小时多少千米?18、甲乙两地相距 180 千米,一只船从甲地开往乙地,顺水 9 小时到达,从乙地开往甲地,逆水15 小时到达,求水流的速度。
(完整版)奥数专题_流水行船问题(带答案完美排版)
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
(完整版)五年级奥数流水行船问题
流水行船问题:顺水速度=静水速度(船速)+水速逆水速度=静水速度(船速)-水速静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、两个码头相距352千米,一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河的水流速度和船的静水速度。
2、长江沿岸甲乙两城的水路距离为240千米,一条船从甲城开往乙城,顺水10小时可以到达,从乙城返回甲城,逆水则需要15小时才能到达,求船速和水速。
3、两个港口相距528千米,一艘轮船顺水航行要24小时走完全程,已知这条河的水速是每小时3千米,那么它返回逆流航行时要多少小时?4、两个港口相距480千米,一艘轮船顺水航行要24小时走完全程,已知这条河流的水速是每小时4千米,那么它返回逆流航行要多少小时?5、甲乙两地相距234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?6、一只船在长江里航行,顺流每小时20千米,已知这艘船顺流4小时恰好与逆流5小时的路程相等,求船速与水速?7、船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速和船速各是多少千米?8、一只船逆流而上,水速2千米,船速32千米,4小时行多少千米?9、甲乙两地之间的距离是140千米,一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港,逆水10小时到达,这艘轮船在静水中的速度和水流速度各是多少?10、一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米?11、两码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河流的水流速度为每小时4千米,求逆水行完全程需要多少小时?12、甲、乙两船分别从A港出发逆流而上行驶向B港,甲船的顺水速度是每小时30千米,静水中乙船每小时航行20千米,水流的速度是每小时5千米,乙船出发后4小时,甲船才出发,当甲船追上乙船的时候,甲船已经离开A港多少千米?13、甲乙两船分别从A港顺流而下至B港,甲船的逆水速度为每小时30千米,静水中乙船的速度为每小时25千米,水速为每小时5千米,乙船出发后3小时甲船才出发,当甲船追上乙船的时候甲船离开A港多少千米?14、已知一艘轮船顺水行48千米需要4小时,逆水行48千米需要6小时,现在轮船从上游的A城驶向下游的B城,已知两城的水路长72千米,开船时一位旅客站在船边看风景,不小心把一只鞋掉进水里,问:船到B城时这只鞋距离B 城有多远?15、某人顺水游360米需要12分钟,逆水游360米需要15分钟,此人现在从河的下游A处游向上游的B处,A、B两地相距480千米,他从A处刚开始游的时候向水里放了一块木板,当游到B处的时候,木板距离他多少米?16、一条船顺水航行60千米需要3小时,水流速度为每小时5千米,这条船逆流行驶60千米需要多少小时?17、一条船在河流中顺水航行的速度是每小时40千米,逆水速度是每小时32千米,这条河流的水速每小时多少千米?18、甲乙两地相距180千米,一只船从甲地开往乙地,顺水9小时到达,从乙地开往甲地,逆水15小时到达,求水流的速度。
(完整word)奥数专题_流水行船问题(带答案完美排版)
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速。
(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度—船速,船速=顺水速度—水速。
由公式(2)可以得到:水速=船速—逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
流水行船问题的公式和例题(含答案)
!流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:(船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:|25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
小学五年级奥数题答案:流水行船
小学五年级奥数题答案:流水行船
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
【流水行船】
难度:
甲、乙两船分别从港顺水而下至480千米外的B港,静水中甲船每小时行56千米,乙船每小时行40千米,水速为每小时8千米,乙船出发后1.5小时,甲船才出发,到B港后返回与乙迎面相遇,此处距A港多少千米?
【分析】甲船顺水行驶全程需要:480(56+8)=7.5(小时),乙船顺水行驶全程需要:480(40+8)=_(小时).甲船到达B港时,乙船行驶1.5+7.5=9(小时),还有1小时的路程(48千米),即乙船与甲船的相遇路程.甲船逆水与乙船顺水速度相等,故相遇时在相遇路程的中点处,即距离B港24千米处,此处距离A港480-24=456(千米).
小学五年级奥数题答案:流水行船.到电脑,方便收藏和打印:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数题及答案流水行船问题2 编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:流水行船问题2,可以帮助到你们,助您快速通往高分之路!!
例3 甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时? 分析要求帆船往返两港的时间,就要先求出水速.由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度.
在此基础上再用和差问题解法求出水速。
解:
轮船逆流航行的时间:(35+5)÷2=20(小时),
顺流航行的时间:(35—5)÷2=15(小时),
轮船逆流速度:360÷20=18(千米/小时),
顺流速度:360÷15=24(千米/小时),
水速:(24—18)÷2=3(千米/小时),
帆船的顺流速度:12+3=15(千米/小时),
帆船的逆水速度:12—3=9(千米/小时),
帆船往返两港所用时间:
360÷15+360÷9=24+40=64(小时)。
答:机帆船往返两港要64小时。
下面继续研究两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:
甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系。
同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:
甲船顺水速度-乙船顺水速度
=(甲船速+水速)-(乙船速+水速)
=甲船速-乙船速。
如果两船逆向追赶时,也有
甲船逆水速度-乙船逆水速度
=(甲船速-水速)-(乙船速-水速)
=甲船速-乙船速。
这说明水中追及问题与在静水中追及问题及两车在陆地上
追及问题一样。
由上述讨论可知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答。
例4 小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
分析此题是水中追及问题,已知路程差是2千米,船在顺水中的速度是船速+水速.水壶飘流的速度只等于水速,所以速度差=船顺水速度-水壶飘流的速度=(船速+水速)-水速=
船速.
解:路程差÷船速=追及时间
2÷4=0.5(小时)。
答:他们二人追回水壶需用0.5小时。
例5 甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?
解:①相遇时用的时间
336÷(24+32)
=336÷56
=6(小时)。
②追及用的时间(不论两船同向逆流而上还是顺流而下):336÷(32—24)=42(小时)。
答:两船6小时相遇;乙船追上甲船需要42小时。