20092010年上学期八年级数学教案
初二数学上册教案(10篇)
初二数学上册教案(10篇)初二数学上册教案(10篇)教案这是为了确保课堂环境积极健康,并维护良好的教育氛围。
下面是小编为大家整理的初二数学上册教案,如果大家喜欢可以分享给身边的朋友。
初二数学上册教案一、学习目标1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式。
学习方法:归纳、概括、总结。
三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的.各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1.请看乘法公式左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。
大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)2.公式讲解如x2—16=(x)2—42=(x+4)(x—4)。
9m2—4n2=(3m)2—(2n)2=(3m+2n)(3m—2n)。
四、精讲精练例1、把下列各式分解因式:(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:(1)9(m+n)2—(m—n)2;(2)2x3—8x。
补充例题:判断下列分解因式是否正确。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、课堂练习教科书练习。
六、作业1、教科书习题。
2009mdash2010年上学期八年级数学教案
2009—2010年上学期八年级数学教案矩形东陈初中主备人:薛爱玲矩形教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.过程与方法目标:1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法. 2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想. 情感与态度目标:1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.教学重点:矩形的性质和常用判别方法的理解和掌握.教学难点:矩形的性质和常用判别方法的综合应用.教学方法:分析启发法教具准备:像框,平行四边形框架教具,多媒体课件.教学过程设计:一. 情境导入:演示平行四边形活动框架,引入课题.二.板书课题,展示学习目标三.展示自学指导(一)1. 归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)结论:有一个内角是直角的平行四边形是矩形.2.探究矩形的性质:(1). 问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)结论:矩形的四个角都是直角.(2). 探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①. 随着∠α的变化,两条对角线的长度分别是怎样变化的?②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳.)结论:矩形的两条对角线相等.(3). 议一议:(展示问题,引导学生讨论解决.)①. 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.②. 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(4). 归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:如图,在矩形ABCD中,两条对角线AC,BDO厘米.求BD与AD的长.四.展示自学指导(二)(1). 想一想:(学生讨论、交流、共同学习)对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.(理由可由师生共同分析,然后用幻灯片展示完整过程.)(2). 归纳矩形的判别方法:(引导学生归纳)有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.五.课堂练习:(出示P98随堂练习题,学生思考、解答.)六.新课小结:通过本节课的学习,你有什么收获?1.矩形的定义:2.矩形的性质:矩形的四个角都是直角矩形的对角线相等直角三角形斜边上的中线等于斜边的一般3.矩形的判定方法:(1)有一个角是直角的平行四边形是矩形。
2009学年第一学期八年级(上)数学教学计划
2009学年第一学期八年级(上)数学教学计划松岙初中屠淑亚一、学情分析本学期担任八年级两个班级的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
经过七年级一年的数学教学,发现班上的学生数学基础较差,两极分化现象严重。
尤其是女生的数学成绩普遍偏低,男生情况稍好,但是相当一部分学生解题作答比较粗心,不能很好的发挥出自己应有的水平。
但通过上学期的学习,不少学生基本掌握了初中数学的学习方法和解题技巧,对于所学的知识能较好地应用到解题和日常生活中去。
二、教材分析第一章平行线是在七年级上第七章提出平行线的概念、画法后的延续,这章将继续学习平行线的有关判定和性质;教学时把握证明难度,避免概念超前,加强形的建模。
教学应注意以下几点:1、说理的过程仍以填空为主,注意避免综合性较强的说理出现。
2、要避免证明、命题、定理、公理等词的口头出现,课本是以判定方法、性质、结论来描述。
3、要注重现实生活中的实物情景抽象为相交线、平行线等数学图形的建模过程。
4、还应注意画图、探究性题的教学。
第二章特殊三角形是在七年级下册第一章三角形的基础知识和全等三角形的基础上学习等腰三角形、等边三角形、直角三角形的判定和性质,进一步熟练几何符号语言的表达、书写;教学时要控制证明的综合难度,侧重计算与形状的判定。
本节与以往教材相比较,有以下特点:1、加强了对等边三角形的学习要求;2、强化了直角三角形斜边上的中线等于斜边的一半的性质3、淡化了30度角所对的直角边等于斜边的一半的性质。
4、可以在勾股定理的知识上,让学生去研究探讨,增强数学人文性教育。
第三章直棱柱是从七年级上册提出立体图形概念后第一次对立体图形的研究,与原浙江版义务教材相比,是较新的一章(原教材有立体图形直观图的画法),主要是培养学生空间想像能力,也是为高中阶段立体几何中棱柱的学习做准备;教学时要借助实物、课件的展示,逐步构建空间想象基础能力,教材重点落在两处:1、直棱柱特征及表面展开图2、画三视图,关键要理解“长对正,高平齐,宽相等”法则。
2009——2010学年度上学期八年级数学教案
2009——2010学年度上学期八年级数学教案第四章四边形性质探索平行四边形性质(1)主备人:王侃平行四边形的性质【教学目标】1、认知目标:掌握平行四边形的相关概念和性质,并能初步应用这些知识解决简单的数学问题及实际问题。
2、技能目标:(1)丰富学生对平行四边形的认识,发展形象思维。
(2)通过观察、动手操作、猜想、推理、交流等数学活动进一步发展学生的简单推理能力和演绎思维能力,能有条理地、清晰地阐述自己的观点。
(3)尝试从不同角度探索平行四边形性质,运用平行四边形性质解决简单问题,发展应用意识。
体会在解决问题的过程中与他人合作的重要性,学会与他人合作。
3、情感与态度:①通过观察、操作、转化、归纳、类比、推理获得数学知识,体验数学活动充满着探索性和创造性,体验探索成功的快乐。
②在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。
【教学重点】理解与掌握平行四边形的概念及性质。
【教学难点】运用平移、旋转的图形变换思想探索平行四边形的性质。
【教学方法】引导探究法【教学用具】彩纸一张,两张平行四边形纸片,剪刀,图钉,直尺,量角器,多媒体课件,实物投影。
【教学过程】一、设置疑问、复习旧知上课引语:同学们,走进数学,我们已经认识了多种几何体和平面图形,掌握了三角形全等的意义,探索了平移、旋转的奥秘。
首先让我们共同回忆这些知识,口答下列问题:1、平行线有哪些特征?怎样识别平行线?2、全等三角形有哪些性质?3、四边形的内角和是多少度?二、设问激趣,导入新课如图,木工王叔叔用量角器量出一块平行四边形地板砖的一个内角是60°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40cm和55cm,便胸有成竹的说能够计算出这个平行四边形的周长,你想知道王叔叔是如何计算的吗?这样计算的根据又是什么呢?三、板书课题,课件展示目标学习目标:1、经历探索平行四边形的有关概念和性质的过程.2、理解并掌握平行四边形的性质,能运用这些性质解决简单的问题。
2009八年级上数学教学计划
2009-2010学年九年级数学上册教学计划一、学生基本情况:在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差。
学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
二、本期教学任务:通过本期的学习,要使学生认识平移、旋转、和中心对称的决定因素和本质,并用它来解决相关问题,设计图案。
掌握平行四边形、特殊的平行四边形、梯形的概念、判定和性质,体会化归的数学思想,培养逻辑思维与逻辑推理能力,掌握幂的运算性质,乘法公式和因式分解的基础知识及相关方法。
在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。
在过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到“漫江碧透,鱼翔浅底”的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物主义的熏陶,提高学生素质。
初二数学上册教案(精选5篇)
初二数学上册教案(精选5篇)八年级数学上册教案篇一为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1)你能用含v的代数式来表示t吗?(2)时间t是速度v的函数吗?设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。
从而自然地引入“反比例函数”概念。
为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
一般式变形:(其中k均不为0)通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:1、为何值时,为反比例函数?2是的反比例函数,是的正比例函数,则与成什么关系?关于课堂教学:由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。
我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。
一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
八年级数学上册教案(6篇)
八年级数学上册教案(6篇)八年级数学上册教案(篇1)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3)_2-0.01y2.知识迁移2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.教师活动引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.学生活动从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.归纳公式完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学例1把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(_+y)2-14(_+y)+49;(4)+n4.例2如果_2+a_y+16y2是完全平方,求a的值.思路点拨根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.探研时空1.已知_+y=7,_y=10,求下列各式的值.(1)_2+y2;(2)(_-y)22.已知_+=-3,求_4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学上册教案(篇2)Ⅰ.教学任务分析教学目标知识与技能使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.过程与能力培养学生数学建模的能力.情感与态度实例引入,激发学生学习数学的兴趣.教学重点探索正比例函数的性质.教学难点从实际问题情境中建立正比例函数的数学模型.Ⅱ.教学过程设计问题及师生行为设计意图一、创设问题,激发兴趣问题1将下列问题中的变量用函数表示出来:(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间_变化而变化;(2)三角形的底为10cm,其面积y随高_的变化而变化;(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量_的变化而变化.解:(1)y=4_;(2)y=5_;(3)y=3_.教师提出问题,学生独立思考并回答问题.教师点评,并且提醒学生注意用_表示y. 问题引入,为新知作好铺垫.二、诱导参与,探究新知思考:观察函数关系式:① y=4_; ② y=5_; ③ y=3_.这些函数有什么特点?都是y等于一个常量与_的乘积.教师提出问题,并引导学生观察:学生观察思考并回答问题.三、引导归纳,提炼新知(板书)正比例函数的概念:一般地,形如y=k_(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.注意:_ 的取值范围是全体实数.由教师引导,学生观察得出结论.体现学生为主体,教师为主导的关系.通过板书,突出本节课的重点.四、指导应用,发展能力1.下列函数是否是正比例函数?比例系数是多少?(1) 是,比例系数k=8. (2) 不是.(3) 是,比例系数k= . (4) 不是.填空1.若函数y=(2m2+8)_m2-8+(m+3)是正比例函数,则m的值是___-3____.题 1请学生口答,题2学生独立完成,并到黑板板书,教师评价书写规范.在本次活动中,教师要关注:学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.五、探究新知例1 画出正比例函数y=_的图象.解:(1)列表:_ --- -2 -1 0 1 2 ---y --- -2 -1 0 1 2 ---画出函数y=_的图象.(1)列表: (2)描点: (3)连线:想一想除了用描点法外,还有其他简单的方法画正比例函数图象吗?根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法.同理,画出y=-_的图象.师生共同分析:两个图象的共同点:都是经过原点的直线.不同点:函数y=_的图象从左向右呈上升状态,即随着_的增大y也增大,经过第一、三象限.函数y=-_的图象从左向右呈下降状态,即随_增大y反而减小,经过第二、四象限.归纳:一般地,正比例函数y=k_(k是常数,k≠ 0)的图象是一条经过原点的直线.当k0时,图象经过一、三象限,从左向右上升,即随_的增大y也增大;当k0时,图象经过二、四象限,从左向右下降,即随_增大y反而减小.由于正比例函数y=k_(k是常数,k≠0)的图象是一条直线,•我们可以称它为直线y=k_.六、指导应用,发展能力例2 在同一直角坐标系中画出y=_,y=2_,y=3_的函数图象,并比较它们的异同点.相同点:图象经过一、三象限,从左向右上升;不同点:倾斜度不同,y=_,y=2_,y=3_的函数图象离y轴越来越近.例3 在同一直角坐标系中画出y=-_,y=-2_,y=-3_的函数图象,并比较它们的异同点.相同点:图象经过二、四象限,从左向右下降;不同点:倾斜度不同, y=-_,y=-2_,y=-3_的函数图象离y 轴越来越近.在y=k_中,k的绝对值越大,函数图象越靠近y轴.八年级数学上册教案(篇3)11.1 与三角形有关的线段11.1.1 三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A.2个B.3个C.4个D.5个解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的`一点组成n(n-1)2个三角形.探究点二:三角形的三边关系类型一判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2c,3c,5cB.5c,6c,10cC.1c,1c,3cD.3c,4c,9c解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.类型二判断三角形边的取值范围一个三角形的三边长分别为4,7,_,那么_的取值范围是( ) A.3<_<11 B.4<_<7C.-3<_<11 D._>3解析:∵三角形的三边长分别为4,7,_,∴7-4<_<7+4,即3<_<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.类型三等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.类型四三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b -c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形. 2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.八年级数学上册教案(篇4)一.教学目标:1.了解方差的定义和计算公式。
八年级上册数学教案 八年级上册数学教案(5篇)
八年级上册数学教案八年级上册数学教案(5篇)作为一位杰出的老师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。
教案要怎么写呢?书痴者文必工,艺痴者技必良,以下是勤劳的小编给家人们收集的八年级上册数学教案(5篇),仅供借鉴,希望大家能够喜欢。
八年级上册数学教案全集篇一教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。
教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∠OC平分∠AOB,点P在射线OC上,PD∠OA于DPE∠OB于E.∠---------(角平分线的性质定理).(2)∠PD∠OA,PE∠OB,----------∠OP平分∠AOB(-------------)例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找∠ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“∠ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找∠ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。
2009年初中八年级数学教学计划
年初中八年级数学教学计划年初中八年级数学教学计划一、学生基本情况:级全年级人数为人,年年下期学生期末考试地成绩平均分为××分,总体来看,成绩在前面地基础上还有所倒退.在学生所学知识地掌握程度上,整个年级已经完成了两极分化,对优生来说,能够透彻理解知识,知识间地内在联系也较为清楚,对后进生来说,简单地基础知识还不能有效地掌握,成绩较差,在几何中,由于缺少三角形全等与勾股定理地相应知识,学生在推理上地思维训练有所缺陷,学生对四边形中地相应地数量关系缺少更深入地认识.对很多孩子来说,对几何有畏难情绪,相关知识学得不很透彻.在代数上现行地教材降低了孩子们在计算上地难度,对于一些较简单地计算题,讲解新课时,能又快又好地进行计算,但时间一长,学生又忘得快,根据以往地经验,学生在广泛地深入地理解基础上使知识在各个方面建立起有机地联系,是最不容易忘记地,但现在地要求中,学生在这方面还是有所缺失地.在知识上学生对不等式、整式地乘法、公式、机会、平移与旋转、四边形地学习,对孩子们今后地学习,打下基础,也会这一学期孩子们在代数中无理数与实数地学习,对数地认识上一个台阶,函数地学习,比例与相似,也会使孩子们在数学地认识上来一个飞跃,前面地学习为这一期地学习打下了较好地基础.最令担心地是班级中地差生地学习,无论如何要尽可能地使他们跟上班级体整体前进地步伐.在学习能力上,学生课外主动获取知识地能力有所进步,前一学期鼓动孩子们去买自己喜欢地参考书,通过自己地努力,一部分孩子地数学有了较为显著地提高,本学期也要继续鼓励有条件地孩子拓宽自己地知识视野.使孩子们在这个初中阶段这个最重要地一年:初二,还剩下一期地时间里能更上一层楼.更多地希望他们能买买有趣地课外读物.本学期中,学生地逻辑推理、逻辑思维能力,计算能力需要得到加强,还要提升学生地整体成绩,应在合适地时候补充课外知识,拓展学生地知识面,本学期中,要抽出一定地时间给孩子们讲讲有关新概念几何,用面积来证题地相关知识,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极地投入到学习中去,少数几个学生对数学学习上地困难,使他们对数学处于一种放弃地心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师地重点牵挂对象,课堂家庭作业,学生完成地质量要打折扣,前一学期由于在实验不向学生布置作业,学生课外地活动多了,孩子们长得更结实了,是令人高兴地,这也带来了负面地作用,就是来自老师地任务少了,学生地自觉性降低了,学习地风气有所淡化,是本学期要解决地一个问题;学生地学习习惯养成还不理想,预习地习惯,进行总结地习惯,自习课专心致至学习地习惯,主动纠正(考试、作业后)错误地习惯,还需要加强,需要教师地督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注地.前一学期学生地学习成绩有所下降,与不布置作业有一定地关系,我也在反思自己,是不是由于自己地懒惰,给自己地找一个冠冕堂皇地理由:自己是在进行实验,自己是在探索而进行开脱,实际上上期比以前更忙碌了,是没有偷懒地,但不能因为自己地实验与探索而让孩子一生地成长而受到不良影响.因此本学期务必完成自己地目标二、教材分析本学期教学内容,共计五章,知识地前后联系,教材地德育因素,重、难点分析如下:第十六章数地开方本章主要学习平方根与立方根,二次根式地概念与四则混合运算,实数与数轴及其相关知识.这一章是孩子们初中学习地一个里程碑,他们要从有理数进入到无理数地领域,认识上将从有理数扩展到实数地范围,将进一步深化对数地认识,扩大学生地数学视野与界限,实数是后继学习内容地基础,直到复数地引入是学生所涉及地主要内容.教材从实际问题出发,归纳出平方根与立方根地概念,进而展开根式地四则混合运算,接着前进到实数,完成对数系地扩充.本章地重点是平方根与立方根地概念,二次根式地化简与运算,实数地概念.要教学中要学生充分去讨论与思考,归纳与总结,历经知识发展与运用过程中地坎坎坷坷,做到对概念地深刻掌握与运算地熟练进行,对一些要经常运用到地化简要在课堂让就要让孩子们掌握,不要寄希望于课外,否则会增加差生地人数第十七章函数及其图像本章地学习会带来学生在认识上地又一大飞跃,学生要从常量地学习中进入到变量地学习中,是继方程和不等式之后地深入学习,函数是刻画和研究现实世界数量关系地重要地数学模型,它同时也是一种重要地数学思想.本章地主要内容是变量与函数、平面直角坐标系、函数地图像、一次函数、反比例函数与探索和实践等.本章地重点是函数地定义(也是整个数学中最重要地基本概念之一)、函数自变量地取值范围、一次函数、正比例函数与反比例函数地性质与图像.其难点是函数定义地理解(这个理解地过程将一直延伸甚至大学),实际应用中确定自变量地取值范围,对一次函数、正比例函数图像与性质地应用,解决实际地应用问题.通过本章地学习掌握相关地知识,同时养成数形结合地思考形式和思考方法,代数式、方程、函数、图形、直角坐标系结合起来进行思考,互相解释、互相补充,对于整个中学数学地学习,愈往后,愈显出其重要性,通过本章地学习,要为数形结合能力打下良好地基础.培养学生地应用意识.这一章地学习对中等与中等偏下地孩子有一定地难度,主要是对知识地理解困难,对知识间地相互转换感到困难,比如由一次函数解析式迅速转换为其等价地图像,以及由函数图像迅速转换为其等价解析式,或者不能看到函数解析式就可以在头脑中建立这个图像.解决这个问题地关键是要学生多画图、多思考,适当地放慢教学进度.对知识要达到熟练地转换地程度,并且要求在课堂上掌握这些知识第十八章图形地相似本章地学习将使得孩子们对几何地认识也来一个飞跃,以前学习主要是全等变换,无论轴对称还是中心对称,平移还是旋转,其本质是全等变换,对线段之间关系,大多数涉及两条线段地关系,进入这一章之后,很多时候要涉及到四条线段间地相互制约与和谐地关系,其证明题地难度显著增加,随着知识前进到圆后,其很多知识要都依赖于相似地基本理论,在平面几何地学习中,“相似是关键”.本章地重点是相似图形地性质与特征,相似三角形地判定与性质,利用直角坐标系研究图表变换.难点是比例线段地性质、相似三角形地判定与性质及其应用.要通过观察、测量、画图与推理等方法让学生经历获得知识地过程,强调合情推理,给学生注入对称地思想(这里地对称非几何中地对称,是广义地对称),注重特征图形地使用,对知识地记忆注重图形地位置记忆,而非字母地记忆,这样能极大限度地缩短学生地学习时间,对比例式地变换要达到随心所欲地程度,这些工作要在课堂中解决第十九章解直角三角形本章是三角函数地基础,本章知识更直观地说明,数学来源于生活,又作用于知识,解决生活中地实际问题,也是学生对数学知识认识地一个深化过程.本章地重点是勾股定理及其证明,直角三角形地边角关系,解直角三角形(三角形边角关系地应用),难点是运用灵活运用勾股定理解决实际问题,对锐角三角函数地理解及其合理应用,解决实际问题.本章地关键是熟记特殊地锐角三角形函数,熟练进行三角函数定义地变形及其应用,充分运用本章中地两个特征图形,能极大地缩短学生地学习时间,并能让孩子把知识掌握牢固.教学中即要注重理论知识地学习,学习理论是为了更好地解决实际问题,同时在教学中要根据新课改地理念突出实践性与研究性,突出学数学、用数学地意识与过程.对勾股定理和三角函数地应用尽量和实际问题联系起来第二十章数据地整理和初步处理本章是在前面学习统计与概率地基础上地进一步学习.本章地主要内容是选择合适地图表进行数据整理,极差、方差、标准差地概念及其计算,理性分析机会大小.难点对选择好地图形准确地画出图形,方差地计算,机会大小地分析.教学中要让学生经历数据地收集与整理地过程,以学生合作探索活动为主.选取问题力求贴近学生地生活,使用计算器处理相关数据三、本期教学任务:通过本期地学习,在知识与技能上,学习平方根与立方根地相关知识,学习实数;掌握二次根式地计算或化简,初步理解函数地定义,掌握理解一次函数、反比例函数地性质与图像及其应用,培养数形结合地思想方法,掌握比例线段,三角形相似,勾股定理,三角函数地定义及其应用,解直角三角形,掌握数据地整理和初步处理中地相关内容.通过本学期地学习,学生在数学地认识与理解上应该要上一个台阶.在情感与态度上,通过本期地学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间地数量关系,培养学生实事求是、严肃认真地学习态度,激发学生地学习兴趣,培养学生对数学地热爱,对生活地热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习地快乐.在过程与方法,通过学生积极参与对知识地探究,经历发现知识,发现知识间地内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识地目地,达到“漫江碧透,鱼翔浅底”地境界,在经历这些活动中,提高学生地动手实践能力,提高学生地逻辑推理能力与逻辑思维能力,自主探究,解决问题地能力,提高运算能力,使所有学生在数学上都有不同地发展,尽可能接近其发展地最大值,培养学生良好地学习习惯,发展学生地非智力因素,使学生潜移默化地接受辩证唯物主义地熏陶,提高学生素质四、提高学科教育质量地主要措施:、认真做好教学六认真工作.把教学六认真作为提高成绩地主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习、兴趣是最好地老师,爱因斯坦如是说.激发学生地兴趣,给学生介绍数学家,数学史,介绍相应地数学趣题,给出数学课外思考题,激发学生地兴趣、引导学生积极参与知识地构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐地高效地学习课堂,让学生体会学习地快乐,享受学习.引导学生写小论文,写复习提纲,使知识来源于学生地构造、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三地能力,这是提高学生素质地根本途径之一,培养学生地发散思维,让学生处于一种思如泉涌地状态、运用新课程标准地理念指导教学,积极更新自己脑海中固有地教育理念,不同地教育理念将带来不同地教育效果、培养学生良好地学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生地非智力因素,弥补智力上地不足、指导成立“课外兴趣小组”地民间组织,开展丰富多彩地课外活动,开展对奥数题地研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生地特长、开展分层教学,布置作业设置、、三类分层布置分别适合于差、中、好三类学生,课堂上地提问照顾好好、中、差三类学生,使他们都等到发展、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后地发展铺平道路、站在系统地高度,使知识构筑在一个系统,上升到哲学地高度,八方联系,浑然一体,使学生学得轻松,记得牢固五、全期教学进度安排:章节课时教学起止时间第十六章数地开方第一周四~第二周三第十七章函数及其图像第二周四~第五周一第十三章图形地相似第五周二~第十周一半期考试第十四章解直角三角形第十周四~第十五周一第十五章数据地整理与初步处理第十五周二~第十七周二期末总复习第十七三~期末结束更多范文,敬请登陆范文大全网()!。
八年级上册数学教案(6篇)
八年级上册数学教案(6篇)八年级上册数学教案篇一学习重点:函数的概念及确定自变量的取值范围。
学习难点:认识函数,领会函数的意义。
【自主复习知识准备】请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。
【自主探究知识应用】请看书72——74页内容,完成下列问题:1、思考书中第72页的问题,归纳出变量之间的关系。
2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。
3、归纳出函数的定义,明确函数定义中必须要满足的条件。
归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。
如果当x=a 时,y=b,那么b叫做当自变量的'值为a时的函数值。
补充小结:(1)函数的定义:(2)必须是一个变化过程;(3)两个变量;其中一个变量每取一个值,另一个变量有且有唯一值对它对应。
三、巩固与拓展:例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。
(1)写出表示y与x的函数关系式。
(2)指出自变量x的取值范围。
(3) 汽车行驶200千米时,油箱中还有多少汽油?【当堂检测知识升华】1、判断下列变量之间是不是函数关系:(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高;2、写出下列函数的解析式。
(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子。
(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系。
八年级上册数学教案(优秀5篇)
八年级上册数学教案(优秀5篇)八年级上册数学教案篇一学习目标1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点重点:平方差公式的推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计教学过程设计看一看认真阅读教材,记住以下知识:文字叙述平方差公式:_________________用字母表示:________________做一做:1、完成下列练习:①(m+n)(p+q)②(a+b)(x-y)③(2x+3y)(a-b)④(a+2)(a-2)⑤(3-x)(3+x)⑥(2m+n)(2m-n)想一想你还有哪些地方不是很懂?请写出来。
______________________________________________________________________________________________、1、下列计算对不对?若不对,请在横线上写出正确结果、(1)(x-3)(x+3)=x2-3( ),__________;(2)(2x-3)(2x+3)=2x2-9( ),_________;(3)(-x-3)(x-3)=x2-9( ),_________;(4)(2xy-1)(2xy+1)=2xy2-1( ),________、2、(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________、3、计算:50×49=_________、应用探究1、几何解释平方差公式展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗?2、用平方差公式计算(1)103×93 (2)59、8×60、2拓展提高1、阅读题:我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算、解答过程如下:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=264-1你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!2、仔细观察,探索规律:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1(x-1)(x4+x3+x2+x+1)=x5-1……(1)试求25+24+23+22+2+1的值;(2)写出22006+22005+22004+…+2+1的个位数、堂堂清一、选择题1、下列各式中,能用平方差公式计算的是( )(1)(a-2b)(-a+2b);(2)(a-2b)(-a-2b);(3)(a-2b)(a+2b);(4)(a-2b)(2a+b)、数学八年级上册优秀教案篇二教学目标1.理解并掌握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。
学会解一元一次方程,掌握解方程的基本步骤。
1.2 方程的解法学习使用加减法、乘除法解一元一次方程。
学会使用移项、合并同类项解方程。
1.3 方程的应用学会将实际问题转化为方程,解决实际问题。
练习使用一元一次方程解决实际问题。
第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。
学会解一元一次不等式,掌握解不等式的基本步骤。
2.2 不等式组理解不等式组的概念,掌握不等式组的解法。
学会解不等式组,掌握解不等式组的基本步骤。
2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。
练习使用不等式解决实际问题。
第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。
学会判断两个变量之间的关系是否为函数。
3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。
学会判断函数的单调性、奇偶性、周期性。
3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。
练习使用函数解决实际问题。
第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。
学会判断两个整式是否相等。
4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。
学会使用合并同类项进行整式的加减法运算。
4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。
练习使用整式解决实际问题。
第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。
掌握数据的整理方法,如列表、画图等。
5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。
学会使用图表展示数据,如条形图、折线图等。
5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。
学会使用统计量对数据进行描述和分析。
八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。
八年级上册数学教案(优秀5篇)
八年级上册数学教案(优秀5篇)八年级上册数学教案(优秀5篇)1一、教学目标1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。
它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:1、重点:认识中位数、众数这两种数据代表2、难点:利用中位数、众数分析数据信息做出决策。
3、难点的突破方法:首先应交待清楚中位数和众数意义和作用:中位数仅与数据的排列位置有关,某些数据的`变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。
众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。
求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。
三、例习题的意图分析1、教材P143的例4的意图(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。
(因为在前面有介绍中位数求法,这里不再重述)(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
八年级上学期数学教案5篇
八年级上学期数学教案5篇八年级上学期数学教案篇1教学内容:(1)素质教育目标:使学生理解轴对称图形和对称轴的概念,能准确判断一个图形是不是轴对称图形;能找出和画出轴对称图形的对称轴;培养学生的观察、比较、抽象、概括及实际操作能力;培养学生的团结协作精神。
(2)教学重点:理解轴对称图形和对称轴的概念,作对称轴的方法。
(3)教学难点:选择和确定对称轴的位置和条数。
(4)教学准备:铅笔、直尺、剪刀、画有平面图形的方格纸、印有轴对称图形的卡片。
(5)教学方法:直观式、尝试式(6)教学过程:1、导入猜图形(这里有一张美丽的图片,不过这还只是它的一半,猜猜这是什么?)出示蝴蝶图形的一半,后整体出示------依次有蜻蜓、树叶图等。
这些图形有什么特点?(对称)今天我们就一起来认识这类有对称特点的图形。
(板书课题)2、新授(1)学生操作--剪图形(什么是轴对称图形呢?请你利用手中的纸,通过折、画、剪,看看能得到什么样的图形。
)学生以学习小组为单位动手操作。
作品展示的同时让学生说出:剪出的图形沿着一条直线对折,左右两边能完全重合。
(2)揭示轴对称图形和对称轴的意义。
以上图形,如沿着中间的直线对折,两侧的图形能够完全重合。
指出:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
(显示对称轴)强调:对称轴是一条直线!(3)练习反馈你刚才剪的是什么图形?以下图形中,哪些是轴对称图形?请指出对称轴的位置。
(课件出示)(4)实践操作:在已学的平面图形中,哪些是轴对称图形,学生以学习小组为单位进行讨论。
(已备画好的图形)汇报结果。
重在突出对称轴的位置和条数。
将轴对称图形贴在黑板上。
课件演示对称轴的条数和位置。
得出:正方形、长方形、等腰三角形、等腰梯形、圆都是轴对称图形。
有的对称轴不止一条。
(5)教学轴对称图形的基本性质(轴对称图形沿着对称轴对折时,为什么左右两边完全相等?如果在对称轴两边有相应的两点,你还能发现什么?)提示:用尺量一量。
《人教版八年级上册全册数学教案》
八年级上册数学教案【中学】2010年08月第十一章全等三角形11.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.对应线段(边,中线,高,角平分线)相等;3.全等三角形对应角相等;4. 全等三角形周长、面积相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).11.2.1三角形全等的判定(SSS)三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS).斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).角的平分线上的点到角的两边的距离相等.(性质定理)到角的两边的距离相等的点在角的平分线上.(判定定理)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,B ′C ′=BC ,C ′A ′=CA .把画出的△A ′B ′C ′剪下来,放在△ABC 上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A ′B ′C ′,使A ′B ′=AB ′,A ′C ′=AC ,B ′C ′=BC : 1.画线段取B ′C ′=BC ;2.分别以B ′、C ′为圆心,线段AB 、AC 为半径画弧,两弧交于点A ′; 3.连接线段A ′B ′、A ′C ′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理. (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验. 二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等. 证明:∵D 是BC 的中点, ∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写. 三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.11.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用全等三角形证明.教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD•长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力. 【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识. 二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS ) ∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等) 【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写. 【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决. 三、辨析理解,正确掌握 【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P10练习第1、2题.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.11.2.3 三角形全等判定(ASA、AAS)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE(SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.D CBAE【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲. 二、实践操作,导入课题 【动手动脑】(投影显示)问题探究:先任意画一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B (即使两角和它们的夹边对应相等),把画出的△A ′B ′C ′剪下,•放到△ABC 上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:画一个△A ′B ′C ′,使A ′B ′=AB , ∠A ′=∠A ,∠B ′=∠B : 1. 画A ′B ′=AB ;2. 在A ′B ′的同旁画∠DA ′B ′=∠A , ∠EBA ′=∠B ,A ′D ,B ′E 交于点C ′。
人教版八年级数学上册教案
人教版八年级数学上册教案(2009——2010学年度第一学期)一、指导思想:通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学大体知识和大体技术;尽力培育学生的运算能力、逻辑思维能力,和分析问题和解决问题的能力。
二、学情分析:八年级是初中学习进程中的关键时期,学生基础的好坏,直接阻碍到以后是不是能升学。
初二(7)班和初二(18)班两班比较,初二(7)班学生单纯,优生稍多一些,后进面较小,只有少数学生不思上进,但初二(7)学生思维尽管超级活跃,但在学习上不思进取,大多数学生不求进步只图贪玩,有少数同窗基础特差,问题较严峻。
要在本期取得理想成绩,教师和学生都要付出尽力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方式,培育能力。
三、教材分析:第十一章:《全等三角形》要紧介绍了三角形全等的性质和判定方式及直角三角形全等的特殊条件。
更多的注重学生推理意识的成立和对推理进程的明白得,学生在直观熟悉和简单说明理由的基础上,从几个大体事实动身,比较严格地证明全等三角形的一些性质,探讨三角形全等的条件。
第十二章:《轴对称》立足于已有的生活体会和初步的数学活动经历,从观看生活中的轴对称现象开始,从整体的角度直观熟悉并归纳出轴对称的特点;通过慢慢分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定概念。
第十三章:《实数》通过学习一种新的运算——开方,进而学习一种新数——无理数,即无穷不循环小数,把数的范围从有理数扩大到实数。
在开方里面,重点是开平方和开立方,显现的无理数都是带根号的数,只要求会求一个非负数的平方根和算术平方根,会求一个数的立方根,而不要求进行有关无理数的运算和化简。
第十四章:《一次函数》通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。
了解函数的有关性质和研究方式,并初步形成利用函数的观点熟悉现实世界的意识和能力。
20092010年上学期八年级数学教案
2009—2010年上学期八年级数学教案中心对称图形东陈初中主备人:薛爱玲中心对称图形教学目标:(一)知识与技能了解中心对称图形的概念及性质,会判断一个图形是否是中心对称图形,培养识图能力和审美能力。
(二) 过程与方法经历观察、发现、探索中心对称图形的有关概念和基本性质的过程,掌握判别中心对称图形的方法.(三) 情感态度与价值观通过动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,体会学习的乐趣并积累一定的审美体验。
教学重点:中心对称图形的有关概念和基本性质。
教学难点:中心对称图形与轴对称图形的区别和中心对称图形性质的应用。
教具准备:多媒体课件、几张扑克牌、风车和平行四边形、细线及大头针。
教学过程:一.巧设情景问题,引入课题同学们在以前做过风车吗?它是什么样子?( 展示大屏幕)它是旋转图形吗?大风车在旋转过程中至少旋转多少度才能与原图形重合?如果旋转180度,那么旋转前后的图形互相重合吗?如果重合那我们把这样的图形叫做什么图形?带着这个问题我们来学习这节课。
二.板书课题,展示学习目标(学生看大屏幕)三.展示自学指导(一)1、学生根据自学指导中提出的问题回答。
2、中心对称图形的定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
练习主要是让学生掌握中心对称图形的定义。
四.展示自学指导(二)1.学生通过看课本上的例题了解中心对称图形的性质。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
2.探讨研究中心对称图形的的性质:(1)在轴对称中,如等腰梯形ABCD 中,OP 为对称轴,则点A 与点D 是一对对应点,那么A 、D 两点连线与对称轴的关系为:被对称轴垂直且平分。
(2)左图是一幅中心对称图形,请你找出、点A 绕点O 旋转180度后的对应点B,点C 的对应点D 呢?你是怎么找的?现在你能很快地找到点E 的对应点F 吗?从上面的操作过程,你能发现中心对称图形上的一对对应点与对称中心的关系吗?即:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
初二上册数学教案三篇
初二上册数学教案三篇《一次函数》教材分析1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析1、虽然这是一节全新的数学概念课,学生没有接触过。
但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、能根据问题信息写出一次函数的表达式。
能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
《一次函数的图象应用》教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D 乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:二次根式一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗? 呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2) 是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式?例2 x是怎样的实数时,式子在实数范围有意义?解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义.例3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0时,是二次根式.(3) ,且x≠0,∴x>0,当x>0时,是二次根式.(4) ,即,故x-2≥0且x-2≠0, ∴x>2.当x>2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1>0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.。
2009年上期初二数学教学计划
28
异分母分式的加减(2)
P52习题2.4B组1
3月20日
29
可化一元一次方程的分式方程(1)
P60习题2.5A组1(1)(2)
2009年上期初二数学教学计划与作业安排
时间
节次
课题内容
作业
第
七
周
3月23日
30
可化一元一次方程的分式方程(2)
P60习题2.5A组1(3)(4)
3月24日
31
分式方程的应用(1)
P60习题2.5A组2、3
3月25日
32
分式方程的应用(2)
P60习题2.5A组4、5
3月26日
33
分式回顾与思考(1)
P63复习题二A组3(1)(2)(3)(4)
3月27日
34
分式回顾与思考(2)
P63复习题二A组4、6、7
第
八
周
3月30日
35
分式单元测试题(1)
3月31日
36
分式单元测试题(2)
P153复习题四B组2、3
5月26日
75
二次根式单元测试题(1)
5月27日
76
二次根式单元测试题(2)
5月28日
77
概率的概念
P158习题5.1A组1、2
5月29日
78
概率的含意
P159习题5.1B组题
第
十七
周
6月1日
79
概率回顾与思考
6月2日
80
概率单元测试题
6月3日
81
因式分解总复习(1)
P20复习题一A组1
第
四
周
3月2日
15
数学八年级上册教案
数学八年级上册教案数学八年级上册教案(精选15篇)作为一名无私奉献的老师,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
教案要怎么写呢?以下是小编精心整理的数学八年级上册教案,希望对大家有所帮助。
数学八年级上册教案1一、教学目标1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形。
突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。
应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。
值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。
这一类题教材里没有例题,但它也是由分式的.基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入1、请同学们考虑:与相等吗?与相等吗?为什么?2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009—2010年上学期八年级数学教案
中心对称图形
东陈初中
主备人:薛爱玲
中心对称图形
教学目标:
(一)知识与技能
了解中心对称图形的概念及性质,会判断一个图形是否是中心对称图形,培养识图能力和审美能力。
(二) 过程与方法
经历观察、发现、探索中心对称图形的有关概念和基本性质的过程,掌握判别中心对称图形的方法.
(三) 情感态度与价值观
通过动手操作、大胆猜想、自主探索、合作交流体验到成功的喜悦,体会学习的乐趣并积累一定的审美体验。
教学重点:中心对称图形的有关概念和基本性质。
教学难点:中心对称图形与轴对称图形的区别和中心对称图形性质的应用。
教具准备:多媒体课件、几张扑克牌、风车和平行四边形、细线及大头针。
教学过程:
一.巧设情景问题,引入课题
同学们在以前做过风车吗?它是什么样子?( 展示大屏幕)
它是旋转图形吗?大风车在旋转过程中至少旋转多少度才能与原图形重合?如果旋转180度,那么旋转前后的图形互相重合吗?如果重合那我们把这样的图形叫做什么图形?带着这个问题我们来学习这节课。
二.板书课题,展示学习目标(学生看大屏幕)
三.展示自学指导(一)
1、学生根据自学指导中提出的问题回答。
2、中心对称图形的定义:
在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
练习主要是让学生掌握中心对称图形的定义。
四.展示自学指导(二)
1.学生通过看课本上的例题了解中心对称图形的性质。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
2.探讨研究中心对称图形的的性质:
(1)在轴对称中,如等腰梯形ABCD中,OP为对称轴,则点A与点D是一对对应点,那么A、D两点连线与对称轴的关系为:被对称轴垂直且平分。
(2)左图是一幅中心对称图形,请你找出、点A 绕点O 旋转180度后的对应点B,点C 的对应点D 呢?你是怎么找的?现在你能很快地找到点E 的对应点F 吗?从上面的操作过程,你能发现中心对称图形上的一对对应点与对称中心的关系吗? 即:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
3.练习是为了更快的让学生掌握中心对称图形的性质 五.展示自学指导(三)
学生先自己看书独立完成,然后分组讨论。
学生得出结论,老师进行总结。
做一做(提出问题)(1)猜想:平行四边形是中心对称图形吗?如果是,对称中心是什么?(引导学生思考、猜想结论)演示动画。
巩固学生对平行四边形中心对称性的理解。
得出结论:平行四边形是中心对称图形,它的对称中心是对角线的交点。
巩固知识:正方形是中心对称图形吗?正方形绕两条对角线的交点旋转多少度能与原来的图形重合?能由此验证正方形的一些特殊性质吗? 想一想(再次深入研究讨论。
)
(1) 三角形是中心对称图形吗?正五边形是中心对称图形吗?
(3) 正六边形是中心对称图形吗?(4)除了平行四边形,你还能找到哪些多边形是中心对称图形?归纳:中心对称的图形很多,如边数为偶数的正多边形都是中心对称图形。
数学源于生活,服务于生活,那么在生活中有那些中心对称图形的例子? (学生举例说明) 六.练习: 七.课时小结
本节课学到了哪些知识?中心对称图形的定义;
A
O B
C D E
F A B
C
D O P
(2)中心对称图形的性质;我们所学过的多边形中有哪些是中心对称图形;、(4)中心对称图形的应用。
八、课后作业:课本习题4.12第1、2题
九.板书设计:
4.7 中心对称图形
1.中心对称图形的定义
2.中心对称图形的性质。