2020-2021学年人教版七年级下学期数学练习题及答案 (200)
2020-2021学年七年级数学下学期期末测试卷03(解析版)
2020-2021学年七年级数学下学期期末测试卷【人教版03】数学(答案卷)一.选择题(共12小题,满分48分,每小题4分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.2.(4分)(﹣7)2的算术平方根是()A.7B.±7C.﹣49D.49【分析】先求出式子的结果,再根据算术平方根的定义求出即可.【解答】解:∵(﹣7)2=49,=7,∴(﹣7)2的算术平方根是7,故选:A.3.(4分)据科学家统计,目前地球上已经被定义、命名的生物约有1500万种左右,数字1500万用科学记数法表示为()A.1.5×103B.1.5×106C.1.5×107D.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500万=15000000=1.5×107.故选:C.4.(4分)下列各式正确的是()A.B.(﹣3)2=9C.﹣22=4D.=2【分析】根据平方根、立方根的意义计算.【解答】解:A.=2,故A错误,不符合题意;B.(﹣3)2=9,故B正确,符合题意;C.﹣22=﹣4,故C错误,不符合题意;D.=﹣2,故D错误,不符合题意;故选:B.5.(4分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE=2∠EBF,HD交BE于点E,则∠E的度数为()A.45°B.55°C.60°D.无法确定【分析】设∠CDH=x,∠EBF=y,得到∠HDG=2x,∠DBE=2y,根据平行线的性质得到∠ABD=∠CDG=3x,求得x+y=60°,根据三角形的内角和即可得到结论.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∵∠ABD+∠DBE+∠EBF=180°,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:C.6.(4分)已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.【分析】把x与y的值代入方程计算,即可求出m的值.【解答】解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,结合各选项中解集在数轴上的表示即可.【解答】解:解不等式﹣2x+5≥3,得:x≤1,解不等式3(x﹣1)<2x,得:x<3,故选:B.8.(4分)甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.【解答】解:从折线图来看:乙种品牌的方便面销售量呈上升趋势,甲种品牌的方便面销售量不稳定,有上升有下降,故A错误,不符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B错误,不符合题意;在2017到2018年期间,甲品牌方便面销售量高于乙品牌,C正确,符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:C.9.(4分)下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行.其中是真命题有()A.1个B.2个C.3个D.4个【分析】根据平行公理、平行线的判定定理、对顶角的概念判断即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题;②在同一平面内,垂直于同一条直线的两条直线互相平行,故本小题说法是假命题;③相等的角不一定是对顶角,故本小题说法是假命题;④平行于同一条直线的两条直线互相平行,本小题说法是真命题;故选:A.10.(4分)已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y【分析】根据已知求出x>0,y<0,再根据不等式的性质逐个判断即可.【解答】解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.11.(4分)如图,把一张长方形纸条折叠成如图所示的形状,若已知∠2=65°,则∠1为()A.130°B.115°C.100°D.120°【分析】先根据翻折变换的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠2=65°,∴∠3=180°﹣2∠2=180°﹣2×65°=50°,∵矩形的两边互相平行,∴∠1=180°﹣∠3=180°﹣50°=130°.故选:A.12.(4分)为庆祝建党100周年,更加深入了解党的光荣历史,我校团委计划组织全校共青团员到曾家岩周公馆、红岩村纪念馆、烈士墓渣滓洞一线开展红色研学之旅.计划统一乘车前往,若调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位.设计划调配30座客车x辆,全校共青团员共有y人,则根据题意可列出方程组为()A.B.C.D.【分析】根据“调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位”列出方程即可.【解答】解:设计划调配30座客车x辆,全校共青团员共有y人,根据题意得:,故选:A.二.填空题(共4小题,满分16分,每小题4分)13.(4分)比较大小:<6﹣(填“>”“<”或“=”).【分析】分别判断出、6﹣与4的大小关系,即可判断出、6﹣的大小关系.【解答】解:∵<,=4,∴<4;∵6﹣>6﹣2=4,∴<6﹣.故答案为:<.14.(4分)若关于x、y的方程组的解满足x+y=2k,则k的值为﹣.【分析】根据等式的性质,可得答案.【解答】解:②+①,得2x+2y=2k﹣3,∴x+y=k﹣,∵关于x,y的方程组的解满足x+y=2k,∴2k=k﹣,解得k=﹣.故答案为:﹣.15.(4分)若关于x的不等式组.只有4个整数解,则a的取值范围是.【分析】先解不等式组得到2﹣3a<x<21,再利用不等式组只有4个整数解,则x只能取17、18、19、20,所以16≤2﹣3a<17,然后解关于a的不等式组即可.【解答】解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.(4分)如图,平面直角坐标系中O是原点,等边△OAB的顶点A的坐标是(2,0),动点P从点O出发,以每秒1个单位长度的速度,沿O→A→B→O→A…的路线作循环运动,则第2021秒时,点P的坐标是(,).【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【解答】解:由题意得,第1秒结束时P点的坐标为P1(1,0);第2秒结束时P点的坐标为P2(2,0);第3秒结束时P点的坐标为P3(2﹣1×cos60°,1×sin60°),即P3(,);第4秒结束时P点的坐标为P4(1,2×sin60°),即P4(1,);第5秒结束时P点的坐标为P5(,);第6秒结束时P点的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……由上可知,P点的坐标按每6秒进行循环,∵2021÷6=336……5,∴第2021秒结束后,点P的坐标与P5相同为(,),故答案为:(,).三.解答题(共8小题,满分86分)17.(8分)(1)计算;(2)解方程组.【分析】(1)利用实数混合运算的法则计算即可;(2)利用代入法可解.【解答】解:(1)原式=9+(﹣3)+2+2﹣=10﹣;(2).①+②得:20x+20y=60.∴x+y=3 ③.由③得:y=3﹣x④,把④代入①得:11x+9(3﹣x)=36.解得:x=4.5.把x=4.5代入④得:y=﹣1.5.∴原方程组的解为:.18.(8分)按要求解下列不等式(组).(1)解关于x的不等式1﹣≤,并将解集用数轴表示出来.(2)解不等式组,将解集用数轴表示出来,并写出它的所有整数解.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)1﹣≤,去分母得:6﹣2(2x﹣1)≤3(1+x),去括号得:6﹣4x+2≤3+3x,移项得:﹣4x﹣3x≤3﹣6﹣2,合并同类项得:﹣7x≤﹣5,系数化成1得:x≥,在数轴上表示为:;(2),解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x≤1,在数轴上表示不等式组的解集为:,所以不等式组的整数解是﹣2,﹣1,0,1.19.(10分)已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.【分析】(1)根据立方根,算术平方根,平方根的概念即可求出答案;(2)根据(1)中所求a、b、c的值代入代数式3a+10b+c中即可求出答案.【解答】解:(1)根据题意可知,3a+21=27,解得a=2,4a﹣b﹣1=4,解得b=3,c=0,所以a=2,b=3,c=0;(2)因为3a+10b+c=3×2+10×3+0=36,36的平方根为±6.所以3a+10b+c的平方根为±6.20.(10分)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG =∠HFD,求证:∠G=∠H.证明:∵∠BEF+∠EFD=180°,(已知).∴AB∥CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE.∴EG∥FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠AEF=∠EFD,求出∠GEF=∠HFE,根据平行线的判定推出EG∥FH,根据平行线的性质得出答案即可.【解答】证明:∵∠BEF+∠EFD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠AEF=∠EFD(两直线平行,内错角相等),又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行),∴∠G=∠H(两直线平行,内错角相等),故答案为:已知,CD,同旁内角互补,两直线平行,∠AEF,两直线平行,内错角相等,∠GEF,∠HFE,EG,内错角相等,两直线平行,两直线平行,内错角相等.21.(12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如图两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数为1000人,图2中,n=35;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.【分析】(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A组”所占的百分比,进而可求“B组”所占的百分比,确定n的值;(2)计算出“B组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”.【解答】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=×100%=28%,n%=1﹣20%﹣17%﹣28%=35%∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.答:“D.不太了解”的市民约有153万人.提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.22.(12分)如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P (m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)画出平移后的三角形A1B1C1;(2)写出A1、B1、C1三点的坐标;(3)求三角形A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点的位置确定坐标即可.(3)利用分割法求解即可.【解答】解:(1)如图,三角形A1B1C1即为所求作.(2)A1(﹣4,3),B1(0,0),C1(1,4).(3)三角形A1B1C1的面积=4×5﹣×1×5﹣×3×4﹣×1×4=9.5.23.(12分)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:进价(元/台)售价(元/台)200250便携榨汁杯酸奶机160200(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的,这家商店有哪几种进货方案?说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?【分析】(1)设购进x台便携榨汁杯,y台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的,且总费用不超过9000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.【解答】解:(1)设购进x台便携榨汁杯,y台酸奶机,依题意得:,解得:,∴(250﹣200)x+(200﹣160)y=(250﹣200)×20+(200﹣160)×10=1400(元).答:销售这两种电器赚了1400元.(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250﹣200)×23+(200﹣160)×27=2230(元);方案2获得的利润为(250﹣200)×24+(200﹣160)×26=2240(元);方案3获得的利润为(250﹣200)×25+(200﹣160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.24.(14分)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=n∠EMF.(1)如图1,当n=1时.①试证明AB∥CD;②点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(2)如图2,∠PEM=∠PME,∠PFM+∠PNF=70°.若∠EMF=20°时,直接写出n的值为.【分析】(1)①当n=1时.∠PFM=∠EMF,因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;②分H在线段MF上和H在MF的延长线上两种情形解答即可;(2)利用已知,根据三角形的外角等于和它不相邻的两个内角之和求出∠EFM的度数即可得出结论.【解答】解:(1)①依题意,当n=1时.∠PFM=∠EMF.∵FM平分∠PFN,∴∠EFM=∠MFN.∴∠MFN=∠EMF.∴AB∥CD.②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN.理由:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN.∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°.如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN.∴∠GHF=∠FMN.(2)∵∠PEM是△EFM的外角,∴∠PEM=∠EFM+∠EMF.∵∠EMF=20°,∴∠PEM=∠EFM+20°.∵∠PMF是△NFM的外角,∴∠PMF=∠MFN+∠FNM.∴∠PME+∠EMF=∠MFN+∠FNM.∴∠PME+20°=∠MFN+∠FNM.∵∠PEM=∠PME,∴∠EFM+20°+20°=∠MFN+∠FNM.∵∠PFM+∠PNF=70°,∠PFM=∠MFN,∴∠EFM+20°+20°=70°.∴∠EFM=30°.∴∠PFM=∠EMF.故答案为:.。
专题16 专项训练卷(三) 图表信息应用题-2020-2021学年度人教版七年级数学下册(解析版)
2020-2021学年度人教版七年级数学下册新考向多视角同步训练专项训练卷(三) 图表信息应用题1.(2020独家原创试题)2020年4月,某校为做好九年级复课工作,积极准备防疫物资,计划从A药房购买消毒液和酒精共40瓶,在获知B超市有促销活动后,决定从B超市购买这些物品已知消毒液和酒精在这两家店的售价如下表所示,且在A药房购买这些物品需花费900元(1)求出需要购买的消毒液和酒精的数量分别是多少;(2)从B超市购买这些物品可以节省多少元?2.(2019安徽宣城期末,20,★☆☆)根据小敏、小聪、小东、小强四人的对话内容,请你设计一下,分别安排多少立方米的木料做桌面,多少立方米的木料做桌腿,才能使生产出来的桌面和桌腿及库存的桌腿恰好全部配套?3.(2019江苏南京一模,19,★☆☆)【阅读材料】京市地铁公司规定:自2019年3月31日起普通成人持储值卡乘坐地铁出行,每个自然月份内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(如图)地铁出行消费累计金额月底清零,次月重新累计比如:李老师二月份无储值卡消费260元,若采用新规定持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额共300元(甲的消费金额超过150元,但不超过200元).若两人采用新规定持储值卡消费,则共需付费283.5元求甲、乙两个成人二月份无储值卡乘坐地铁的消费金额各是多少元4.(2020贵州贵阳七中期末,22,★☆☆)学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买2件A 种文化衫和3件B种文化衫需要170元;购买4件A种文化衫和1件B种文化衫需要190元(1)求A、B两种文化衫的单价;(2)恰逢商家搞促销,现有两种优惠活动,如图所示,学校决定向该商家购买A、B两种文化衫共100件,其中A种文化衫a件(a<50)①若按活动一购买,共需付款多少元?若按活动二购买,共需付款多少元?(用含a的代数式表示)②若按活动二购买比按活动一购买更优惠,求a的所有可能值5.(2019辽宁大连模拟,19,★☆☆)越来越多的人在用微信付款、转账把微信账户里的钱转到银行卡叫做提现.自2016年3月1日起,每个微信账户终身享有1000元的免费提现额度,当累计提现金额超过1000元时,累计提现金额超出1000元的部分需支付0.1%的手续费,以后每次提现支付的手续费为提现金额的0.1%(1)小刚在今天第一次进行了提现,提现金额为1800元,他需支付手续费元;(2)小明自2016年3月1日至今,用自己的微信账户共提现3次,3次提现金额和手续费分别如下表所示:小明3次提现的金额共计多少元?6.(2020山西太原十五中期末,21,★★☆)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度第一阶梯电费单价收费,超过200度的部分按第二阶梯电费单价收费,如图是刘鹭家2019年2月和3月所交电费的收据(度数均取整数)(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)刘鹭家4月份家庭支出计划中电费不超过120元,则她家4月份的最大用电量为多少度?7.(2020山东威海一模,21,★★☆)下表是小丽在某路口统计20分钟各种车辆通过情况的记录表,其中空格处的字迹已模糊.(单位:辆)(1)根据表格信息,在表格中填写第一时段电瓶车和货车的数量(用含m、n的代数式表示);(2)在第二时段内,电瓶车和公交车的数量之和恰好是第二时段车流总量的一半,且两个时段的电瓶车的数量之和为170辆①求m,n的值;②因为第二时段内车流总量较多,造成了交通拥堵现象,据估计,该时段内,每增加1辆公交车,可减少8辆小轿车和5辆电瓶车,若要使得第二时段和第一时段的车流总量最接近,则应增加几辆公交车?8.(2019重庆南开中学期末,23,★★★)近年来青少年中近视眼和肥胖的案例日趋增多,人们普遍意识到健康的身体是学习的保障,所以体育活动越来越受重视某商店分两次购进跳绳和足球两种商品进行销售,每次购进同一种商品的进价相同,具体情况如下表所示:(1)跳绳和足球两种商品的进价分别是每件多少元?(2)该商店计划用不多于5300元的资金进行第三次进货,购进跳绳和足球两种商品共100件,其中要求足球的数量不少于跳绳的数量,有哪几种进货方案?9.(2020浙江杭州萧山期末,22,★★★)某电器超市销售每台进价为80元、200元的A、两种型号的电风扇,下表是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为800元的目标?若能,请给出相应的采购方案;若不能,请说明理由10.(2020江苏南通期末,22,★★★)小李在某商场购买A,B两种商品若干次(每次A,B都买),其中前两次按标价购买,第三次购买时,A,B两种商品同时打折,三次购买A,B商品的数量和费用如下表所示:(1)求A,B商品的单价各是多少元;(2)若小李第三次购买,A,B商品的折扣相同,则商场是打几折出售这两种商品的?(3)在(2)的条件下打折,若小李第四次购买AB商品共花去960元,则小李的购买方案可能有哪几种?【参考答案及解析】 专项训练卷 (三)图表信息应用题1.解析:(1)设需要购买消毒液x 瓶,酒精y 瓶,根据题意得⎩⎨⎧x+y =4024x+20y =900 ,解得⎩⎨⎧x =25y =15.答:需要购买消毒液25瓶,酒精15瓶。
2020-2021学年新人教版七年级下期末数学试题(含答案解析)
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
2020-2021学年人教版七年级数学下册第五章 相交线与平行线 解答题常考题训练(二)
人教版七年级数学下册第五章《相交线与平行线》解答题常考题训练(二)1.如图,BC⊥AE于点C,∠A+∠BCD=90°,∠B=55°,求∠ECD的度数.2.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.3.如图,已知AB∥DE.∠ABC=70°,∠CDE=140°,求∠C的度数.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.6.如图,已知AB∥CD∥PN,∠ABC=50°,∠CPN=150°,求∠BCP的度数.7.如图,AC∥BD,BC平分∠ABD,设∠ACB为α,点E是射线BC上的一个动点.(1)若α=30°时,且∠BAE=∠CAE,求∠CAE的度数;上方,且满足∠BAE=100°,∠BAE:∠CAE=5:1,求a的值;(2)若点E运动到l1(3)若∠BAE:∠CAE=n(n>1),求∠CAE的度数(用含n和α的代数式表示).8.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM ∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.9.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.10.如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)请说明∠A与∠EDF相等的理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.11.如图,AB∥DG,AD∥EF.(1)试说明:∠1+∠2=180°;(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.12.探究:如图①,AB∥CD∥EF,试说明∠BCF=∠B+∠F.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解:∵AB∥CD,(已知)∴∠B=∠1.()同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.()应用:如图②,AB∥CD,点F在AB、CD之间,FE与AB交于点M,FG与CD交于点N.若∠EFG=115°,∠EMB=55°,则∠DNG的大小为度.拓展:如图③,直线CD在直线AB、EF之间,且AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ=度.13.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.14.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.15.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.16.已知:MN∥PQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB.(1)如图1,求证:∠C=∠MAC+∠PBC;(2)如图2,AD,BD,AE,BE分别为∠MAC,∠PBC,∠CAN,∠CBQ的角平分线,求证∠D与∠E互补;(3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,∠FDA =2∠FDB,FD的延长线交EA的延长线于点H,若3∠C=4∠E,猜想∠H与∠GDB的倍数关系并证明.17.综合与探究如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.解:∵AM∥BN,∴∠ABN+∠A=180°∵∠A=60°,∴∠ABN=,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=,()∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.18.已知,如图,∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:∠1+∠4=180°.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF,DE分别平分∠ABC与∠ADC,(已知)∴∠1=∠ABC,∠2=∠ADC.().∵∠ABC=∠ADC,()∴∠1=∠2().∵∠1=∠3(已知)∴∠2=∠.(等量代换)∴AB∥CD,().∴∠1+∠4=180°.()19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.参考答案1.解:因为BC⊥AE,所以∠BCE=∠BCD+∠ECD=90°,因为∠BCD+∠A=90°,所以∠DCE=∠A,所以CD∥AB,所以∠BCD=∠B,因为∠B=55°,所以∠BCD=55°,所以∠ECD=90°﹣55°=35°.2.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.3.解:如图,延长ED到M,交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°.4.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.5.解:(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.6.解:∵AB∥CD∥PN,∴∠BCD=∠ABC=50°,∠DCP=180°﹣∠CPN=180°﹣150°=30°,∴∠BCP=∠BCD﹣∠DCP=50°﹣30°=20°.7.解:(1)∵α=30°,AC∥BD,∴∠CBD=30°,∵BC平分∠ABD,∴∠ABE=∠CBD=30°,∴∠BAC=180°﹣∠ABE﹣α=180°﹣30°﹣30°=120°,又∵∠BAE=∠CAE,∴∠CAE=∠BAC==60°;(2)根据题意画图,如图1所示,∵∠BAE=100°,∠BAE:∠CAE=5:1,∴∠CAE=20°,∴∠BAC=∠BAE﹣∠CAE=100°﹣20°=80°,∵AC∥BD,∴∠ABD=180°﹣∠BAC=100°,又∵BC平分∠ABD,∴∠CBD=∠ABD=×100°=50°,∴α=∠CBD=50°;(3)①如图2所示,∵AC∥BD,∴∠CBD=∠ACB=α,∵BC平分∠ABD,∴∠ABD=2∠CBD=2α,∴∠BAC=180°﹣∠ABD=180°﹣2α,又∵∠BAE:∠CAE=n,∴(∠BAC+∠CAE):∠CAE=n,(180°﹣2α+∠CAE):∠CAE=n,解得∠CAE=;②如图3所示,∵AC∥BD,∴∠CBD=∠ACB=α,∵BC平分∠ABD,∴∠ABD=2∠CBD=2α,∴∠BAC=180°﹣∠ABD=180°﹣2α,又∵∠BAE:∠CAE=n,∴(∠BAC﹣∠CAE):∠CAE=n,(180°﹣2α﹣∠CAE):∠CAE=n,解得∠CAE=.综上∠CAE的度数为或.8.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.9.(1)证明:方法一:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF, BFG,∴∠EBF=∠CFB,∴BE∥CF;方法二:∵∠1=∠2,∠1=∠ABF,∠2=∠BFG,∴∠ABF=∠BFG,∵∠ABF的平分线是BE,∠BFG的平分线是FC,∴∠EBF=∠ABF, BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.10.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∵DE∥AB,∴∠BAC=∠DEC,∵DF∥AC,∴∠EDF=∠DEC,∴∠BAC=∠EDF;(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.11.解:(1)∵AD∥EF,∴∠BAD+∠2=180°,∵AB∥DG,∴∠BAD=∠1,∴∠1+∠2=180°.(2)∵∠1+∠2=180°且∠2=138°,∴∠1=42°,∵DG是∠ADC的平分线,∴∠CDG=∠1=42°,∵AB∥DG,∴∠B=∠CDG=42°.12.解:探究:∵AB∥CD,∴∠B=∠1.(两直线平行内错角相等)同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.(等量代换)故答案为:两直线平行,内错角相等,等量代换.应用:由探究可知:∠MFN=∠AMF+∠CNF,∴∠CNF=∠DNG=115°﹣55°=60°.故答案为60.拓展:如图③中,当的Q在直线GH的右侧时,∠AGQ+∠EHQ=360°﹣70°=290°,当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°.故答案为70或290.13.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.14.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.15.解:(1)如图1,∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠D,∴∠DAE=∠D,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.16.证明:(1)如图1,过C作EF∥MN,∵MN∥PQ,∴MN∥EF∥PQ,∴∠MAC=∠ACF,∠BCF=∠PBC,∴∠ACF+∠BCF=∠MAC+∠PBC,即∠ACB=∠MAC+∠PBC;(2)如图2,∵AD,AE分别为∠MAC,∠CAN的角平分线,∴∠DAC=,∠EAC=∠NAC,∴∠DAE===90°,同理可得:∠DBE=90°,∵∠D+∠E+∠DAE+∠DBE=360°,∴∠D+∠E=180°,即∠D与∠E互补;(3)猜想:∠H=3∠GDB,理由:由(1)可知:∠C=2∠ADB,∵3∠C=4∠E,∴6∠ADB=4∠E,∴3∠ADB=2∠E,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG⊥DA,∴∠GDB=18°,∵∠FDA=2∠FDB,∴∠ADF=144°,∴∠HDA=36°,∵DA⊥AE,∴∠H=54°,∴∠H=3∠GDB.17.解:(1)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=60°,∴∠ABN=120°∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP、∠PBN=2∠PBD,(角平分线的定义),∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°.故答案为120°,2∠PBD,角平分线的定义,60°.(2)∠APB与∠ADB之间数量关系是:∠APB=2∠ADB.不随点P运动变化.理由是:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN(两直线平行内错角相等),∵BD平分∠PBN(已知),∴∠PBN=2∠DBN(角平分线的定义),∴∠APB=∠PBN═2∠DBN=2∠ADB(等量代换),即∠APB=2∠ADB.(3)结论:∠ABC=30°.理由:∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°18.证明:∵BF,DE分别平分∠ABC与∠ADC(已知),∴∠1=∠ABC,∠2=∠ADC(角平分线的定义),∵∠ABC=∠ADC(已知),∴∠1=∠2(等量代换),∵∠1=∠3(已知),∴∠2=∠3,(等量代换),∴AB∥CD,(内错角相等,两直线平行),∴∠1+∠4=180°(两直线平行,同旁内角互补),故答案为:角平分线的定义,已知,等量代换,3,内错角相等,两直线平行,两直线平行,同旁内角互补.19.证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.第21页(共21页)。
2020-2021学年七年级数学人教版下册9.2一元一次不等式(实际应用)(含答案)
9.2一元一次不等式(实际应用)一、单选题1.缤纷节临近,小西在准备爱心易物活动中发现班级同学捐赠的一个布偶的成本为60元,定价为90元,为使得利润率不低于5%,在实际售卖时,该布偶最多可以打( )折. A .8B .7C .7.5D .8.52.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x 元,并列出关系式为0.8(2x ﹣100)<1500,则下列哪一项可能是妈妈告诉爸爸的内容( ) A .买两件等值的商品可减100元,再打2折,最后不到1500元 B .买两件等值的商品可打2折,再减100元,最后不到1500元 C .买两件等值的商品可减100元,再打8折,最后不到1500元 D .买两件等值的商品可打8折,再减100元,最后不到1500元3.王老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步( )分钟? A .4B .5C .6D .74.一辆匀速行驶的汽车在8点20分的时候距离某地60km ,若汽车需要在9点以前经过某地,设汽车在这段路上的速度为x (/km 小时),列式表示正确的是( ) A .60x >B .4060x >C .2060x <D .2603x > 5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为( ) A .()3530100x x +-≤B .()3305100x x -+≤C .()5301003x x -≤+D .()5100330x x ≤-+6.在世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( ) A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负7.某校要购买一批羽毛球拍和羽毛球,现有经费850元,已知羽毛球拍150元/套,羽毛球30元/盒,若该校购买了4套羽毛球拍,x 盒羽毛球,则下列不等式列式正确的是( ) A .150304x +⨯≤850B .150304850x +⨯<C .150430x ⨯+≤850D .150430850x ⨯+<8.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距14千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式( ) A .80x+200(10-x)≤1.4 B .80x+200(10-x)≤1400C .200x+80(10-x)≥1.4D .200x+80(10-x)≥14009.太原市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( ) A .至少20户B .至多20户C .至少21户D .至多21户10.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分 D .某参赛选手得分可能为负数二、填空题11.某超市从厂家以每件50元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过_________元.12.迪士尼乐园开门前已经有400名游客在排队检票.检票开始后,平均每分钟又有120名游客前来排队.已知一个检票口每分钟能检票15人,若要使排队现象在开始检票10分钟内消失,则至少开放___个检票口.13.一个工程队原定在10天内至少要挖土3600m ,前两天一共完成了3120m ,由于工程调整工期,需要提前两天完成挖土任务,则以后的几天内每天至少要挖土__________3m.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多21元,小红说:“你们两个人都猜错了。
【人教版】数学七年级下册《期末检测试题》有答案解析
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12小题,共36.0分)1. 下列实数中,最小的数是( )A .B . 0C . 1D . 2. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指( )A . 400B . 被抽取的400名考生C . 被抽取的400名考生的中考数学成绩D . 内江市2018年中考数学成绩3. 在平面直角坐标系内,点P (A ,A +3)的位置一定不在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 4. 若a b >,则下列式子一定成立的是( )A . 0a b +>B . 0a b ->C . 0ab >D . 0a b> 5. 下列长度的三条线段,能组成三角形的是( )A . 4C m ,5C m ,9C mB . 8C m ,8C m ,15C m C . 5C m ,5C m ,10C mD . 6C m ,7C m ,14C m 6. 规定以下两种变换::①f(m ,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)=--g m n m n ,如(2,1)(2,1)=--g .按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A . (2-,3-) B . (2,3-) C . (2-,3) D . (2,3) 7. 《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A .25031502x y y x⎧+=⎪⎪⎨⎪+=⎪⎩B . 15022503x y y x⎧+=⎪⎪⎨⎪+=⎪⎩C . 15022503x y y x⎧-=⎪⎪⎨⎪-=⎪⎩D . 25031502x y y x⎧-=⎪⎪⎨⎪-=⎪⎩8. 如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( ) A . 120︒ B . 105︒ C . 60︒ D . 45︒9. 如图,,A B的坐标为()()1,0,0,2,若将线段AB平移至11A B,则-a b的值为()A . 1- B . 0 C . 1 D . 210. 已知关于x的方程2x-A =x-1的解是非负数,则A 的取值范围为()A . 1a≥ B . 1a> C . 1a≤ D . 1a<11. 某超市销售一批节能台灯,先以55元/个价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( ) A . 44个 B . 45个 C . 104个 D . 105个12. 如图,动点P从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A . ()1,4B . ()5,0C . ()7,4D . ()8,3二、填空题(本大题共6小题,共18.0分)13. 若将三个数3-、7、11表示在数轴上,则其中被墨迹覆盖的数是_______.14. 在平面直角坐标系中,若点P (2x +6,5x )在第四象限,则x 的取值范围是_________;15. 如图所示:在AEC 中,A E 边上的高是______.16. 若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.17. 如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.18. 对于实数A ,B ,定义运算”◆”:A ◆B =22a b a b ab a b⎧⎪+≥⎨⎪⎩,,<,例如4◆3,因为4>3.所以4◆2243+.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◆y=_____________. 三、解答题(本大题共7小题,共56.0分)19. (1)求x 的值:4x 2-9=0;(2)计算:36-327+2(2)-.20. 为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.21. 如图,在ABC 内,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,25ABE ∠=︒,求DAC ∠的度数.22. 已知在平面直角坐标系中有 A (-2,1), B (3, 1),C (2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.23. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2=222121()()x x y y -+-.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形A B C 的形状吗?说明理由.24. 某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.()1若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元? ()2在()1的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?25. 已知在四边形A B C D 中,A x ∠=,C y ∠=,(0180,0180)x y <<<<.()1ABC ADC ∠+∠=______(用含x 、y 的代数式直接填空);()2如图1,若90.x y DE ==平分ADC ∠,B F 平分CBM ∠,请写出D E 与B F 的位置关系,并说明理由;()3如图2,DFB ∠为四边形A B C D 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角. ①若120x y +=,20DFB ∠=,试求x 、y .②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.答案与解析选择题(本大题共12小题,共36.0分)1. 下列实数中,最小的数是()A .B . 0C . 1D .【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<:故选A .【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指()A . 400B . 被抽取的400名考生C . 被抽取的400名考生的中考数学成绩D . 内江市2018年中考数学成绩【答案】C【解析】【详解】分析:直接利用样本的定义,从总体中取出的一部分个体叫做这个总体的一个样本,进而进行分析得出答案.详解:为了了解内江市2018年中考数学学科各分数段成绩分布情况,从中抽取400名考生的中考数学成绩进行统计分析,在这个问题中,样本是指被抽取的400名考生的中考数学成绩.故选C .点睛:此题主要考查了样本的定义,正确把握定义是解题的关键.3. 在平面直角坐标系内,点P(A ,A +3)的位置一定不在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】【分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当A 为正数的时候,A +3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当A 为负数的时候,A +3可能为正数,也可能为负数,所以点P 可能在第二象限,也可能在第三象限,故选D .【点睛】本题考查了点的坐标的知识点,解题的关键是由A 的取值判断出相应的象限.4. 若a b >,则下列式子一定成立的是( )A . 0a b +>B . 0a b ->C . 0ab >D . 0a b> 【答案】B【解析】【分析】根据不等式的基本性质进行解答即可.【详解】A 、若0>A >B 时,A +B <0.故A 选项错误;B 、在A >B 的两边同时减去B ,不等式仍成立,即A -B >0.故B 选项正确;C 、若A >0>B 时,A B <0.故C 选项错误;D 、若B =0时,该不等式不成立.故D 选项错误.故选B .【点睛】本题考查了不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5. 下列长度的三条线段,能组成三角形的是( )A . 4C m ,5C m ,9C mB . 8C m ,8C m ,15C m C . 5C m ,5C m ,10C mD . 6C m ,7C m ,14C m 【答案】B【解析】【详解】分析:结合”三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论. 详解:A 、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B 、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C 、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D 、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B .点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.6. 规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)=--g m n m n ,如(2,1)(2,1)=--g .按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( ) A . (2-,3-)B . (2,3-)C . (2-,3)D . (2,3) 【答案】D【解析】【分析】根据f (m ,n )=(m ,-n ),g (2,1)=(-2,-1),可得答案.【详解】g[f(−2,3)]=g[−2,−3]=(2,3),故D 正确,故选D .【点睛】此题考查点的坐标,解题关键在于掌握其变化规律.7. 《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x ,乙持钱为y ,则可列方程组( )A . 25031502x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B . 15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩C . 15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D . 25031502x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】B【解析】 【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的23给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩, 故选B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.8. 如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )A . 120︒B . 105︒C . 60︒D . 45︒【答案】B【解析】 【详解】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B .点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 9. 如图, ,A B 的坐标为()()1,0,0,2,若将线段AB 平移至11A B ,则-a b 的值为( )A . 1-B . 0C . 1D . 2【答案】B【解析】【分析】直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为2、4,可得B 点向上平移了2个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了2个单位,由此得线段A B 的平移的过程是:向上平移2个单位,再向右平移2个单位,所以点A 、B 均按此规律平移,由此可得A =0+2=2,B =0+2=2,∴A -B =2-2=0,故选:B .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10. 已知关于x 的方程2x-A =x-1的解是非负数,则A 的取值范围为( )A . 1a ≥B . 1a >C . 1a ≤D . 1a <【答案】A【解析】【分析】本题首先要解这个关于x 的方程,然后根据解是非负数,就可以得到一个关于A 的不等式,最后求出A 的取值范围.【详解】解:原方程可整理为:(2-1)x=A -1,解得:x=A -1,∵方程x 的方程2x-A =x-1的解是非负数,∴A -1≥0,解得:A ≥1.故选A .点睛:本题综合考查了一元一次方程的解与解一元一次不等式.解关于x 的不等式是本题的一个难点. 11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A . 44个B . 45个C . 104个D . 105个 【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x 个,根据题意得5500×60+5000(x -60)>550000∴5000(x -60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D .【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式. 12. 如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A . ()1,4B . ()5,0C . ()7,4D . ()8,3【答案】C【解析】 【分析】理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.二、填空题(本大题共6小题,共18.0分)13. 若将三个数3-、7、11表示在数轴上,则其中被墨迹覆盖的数是_______.【答案】7【解析】【分析】首先利用估算的方法分别得到3-、7、11前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【详解】解:∵-2<3-<-1,2<7<3,3<11<4,且墨迹覆盖的范围是1-3,∴能被墨迹覆盖的数是7.故答案为:7.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度不大.14. 在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;【答案】﹣3<x<0【解析】【分析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】∵点P(2x-6,x-5)在第四象限,∴2+6050xx⎧⎨⎩><解得-3<x<0.故答案为-3<x<0.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.15. 如图所示:在AEC中,A E边上的高是______.【答案】C D .【分析】根据三角形中高线的概念即可作答.【详解】由题意可得:△A EC 中,A E 边上的高是C D ,故答案为C D .【点睛】本题考查了三角形高线的概念,三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.16. 若关于x 的一元一次不等式组{202x m x m ->+<无解,则m 的取值范围为______.【答案】2m ≥-【解析】 【分析】根据一元一次方程组的解法结合题意可求出m 的取值范围作答即可.【详解】202x m x m -⎧⎨+⎩<①>② ,解不等式①得,x <2m ,解不等式②得,x >m-2,∵不等式组无解,∴2m≥m -2,∴m≥-2,故答案为m≥-2. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟知:同大取大;同小取小;大小小大中间找;大大小小不用找的原则. 17. 如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【分析】由角平分线定义和已知可求出∠B A C ,由AD 是BC 边上的高和已知条件可以求出∠C ,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B +∠C =180°∴∠B =180°-60°-70°=50° 故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.18. 对于实数A ,B ,定义运算”◆”:A ◆B =a b ab a b≥⎪⎩,<,例如4◆3,因为4>3.所以4◆.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◆y=_____________. 【答案】60【解析】 【详解】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案. 详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩. ∵x <y ,∴原式=5×12=60. 故答案为60. 点睛:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型. 三、解答题(本大题共7小题,共56.0分) 19. (1)求x 的值:4x 2-9=0;(2)计算:36-327+2(2)-.【答案】(1)32±;(2)5. 【解析】【分析】(1)方程变形后,开方即可求出解;(2) 首先化简每个二次根式,然后合并同类项即可【详解】()21490x -=, 249x =,294x = 32x =±; ()2原式6325=-+=.【点睛】本题考查了实数的运算和二次根式的混合运算,熟练掌握运算法则是解本题的关键.20. 为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:.A 只愿意就读普通高中;.B 只愿意就读中等职业技术学校;.C 就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:()1本次活动一共调查的学生数为______名;()2补全图一,并求出图二中A 区域的圆心角的度数;()3若该校八、九年级学生共有2800名,请估计该校八、九年级学生只愿意就读中等职业技术学校的人数.【答案】(1)800;(2)216°;(3) 840人. 【解析】【分析】(1)根据C 的人数除以其所占的百分比,求出调查的学生总数即可;(2)用总数减去A 、C 区域的人数得到B 区域的学生数,从而补全图一;再根据百分比=频数总数计算可得A 所占百分比,再乘以,从而求出A 区域的圆心角的度数;(3)求出B 占的百分比,乘以2800即可得到结果.【详解】(1)根据题意得:80÷36360=800(名), 则调查的学生总数为800名.故答案为800;(2)B 的人数为:800-(480+80)=240(名),A 区域的圆心角的度数为480800×360°=216°, 补全统计图,如图所示:(3)根据题意得:240800240800×2800=840人.所以估计该校八、九年级学生只愿意就读中等职业技术学校的有840人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.21. 如图,在ABC 内,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,25ABE ∠=︒,求DAC ∠的度数.【答案】20°.【解析】【分析】先根据角平分线的定义求出∠A B C 的度数,再根据直角三角形的性质求出∠B A D 的度数,然后根据角的和差计算即可.【详解】解:BE 平分ABC ∠,12ABE CBE ABC ∴∠=∠=∠, 25ABE ∠=︒,50ABC =∴∠︒,AD 是BC 边上的高,90ADB ∴∠=︒,则在ABD △中,90BAD ABD ∠=︒-∠9050=︒-︒40=︒,DAC BAC BAD ∠=∠-∠,60BAC ∠=︒,604020DAC ∴∠=︒-︒=︒.【点睛】本题考查了角平分线的定义、直角三角形两锐角互余的性质等知识,属于基础题型,熟练掌握基本知识是解题关键.22. 已知在平面直角坐标系中有 A (-2,1), B (3, 1),C (2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△A B C 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A (-2,1),B (3,1),∴A B =5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P (0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.23. 先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点间的距离P 1P 2222121()()x x y y -+-同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2-x 1|或|y 2-y 1|.(1)已知点A (2,4),B (-3,-8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y轴,点A 的纵坐标为5,点B 的纵坐标为-1,试求A ,B 两点间的距离;(3)已知一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),你能判断三角形A B C 的形状吗?说明理由.【答案】(1) A ,B 两点间的距离是13;(2) A ,B 两点间的距离是6;(3)三角形A B C 是等腰三角形.理由见解析.【解析】【分析】(1)根据两点间的距离公式P1P2来求A 、B 两点间的距离;(2)根据两点间的距离公式|y2-y1|来求A 、B 两点间的距离;(3)先将A 、B 、C 三点置于平面直角坐标系中,然后根据两点间的距离公式分别求得A B 、B C 、A C 的长度;最后根据三角形的三条边长来判断该三角形的形状.【详解】(1)∵A (2,4),B (-3,-8),∴A B ,∵132=169,=13,即A ,B 两点间的距离是13;(2)∵点A ,B 所在的直线平行于y轴,点A 的纵坐标为5,点B 的纵坐标为-1,∴A B =|-1-5|=6,即A ,B 两点间的距离是6;(3)三角形A B C 是等腰三角形,理由:∵一个三角形各顶点的坐标分别为A (0,6),B (-3,2),C (3,2),∴A B ,B C ,A C =5,∴A B =A C ,∴三角形A B C 是等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24. 某电器经营业主两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇;第二次购进10台空调和30台电风扇.()1若第一次用资金17400元,第二次用资金22500元,求挂式空调和电风扇每台的采购价各是多少元?()2在()1的条件下,若该业主计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该经营业主最多可再购进空调多少台?【答案】()1挂式空调每台的采购价是1800元,电风扇每台的采购价是150元;()2该经营业主最多可再购进空调11台.【解析】【分析】(1)设挂式空调每台的采购价是x 元,电风扇每台的采购价是y 元,根据采购价格=单价×数量,可列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设再购进空调A 台,则购进风扇(70﹣A )台,根据采购价格=单价×数量,可列出关于A 的一元一次不等式,解不等式即可求解.【详解】()1设挂式空调每台的采购价是x 元,电风扇每台的采购价是y 元,根据题意,得82017400103022500x y x y +=⎧+=⎨⎩, 解{1800150x y ==. 答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.()2设再购进空调A 台,则购进风扇()70a -台,由已知,得()18001507030000a a +-≤,解得:91111a ≤, 故该经营业主最多可再购进空调11台.【点睛】本题考查了二元一次方程组的应用以及解一元一次不等式,根据数量关系列出方程(方程组或不等式)是关键.25. 已知在四边形A B C D 中,A x ∠=,C y ∠=,(0180,0180)x y <<<<.()1ABC ADC ∠+∠=______(用含x 、y 的代数式直接填空); ()2如图1,若90.x y DE ==平分ADC ∠,B F 平分CBM ∠,请写出D E 与B F 的位置关系,并说明理由; ()3如图2,DFB ∠为四边形A B C D 的ABC ∠、ADC ∠相邻的外角平分线所在直线构成的锐角. ①若120x y +=,20DFB ∠=,试求x 、y . ②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.【答案】(1)360x y --; (2)DE BF ⊥,理由见解析;(3) ①x=40°,y=80°;②∠D FB 不存在,理由见解析.【解析】【分析】(1)利用四边形的内角和进行计算即可;(2)由三角形外角的性质及角的平分线性质得出B F 和D E 的位置关系,进而作答;(3)①利用角平分线的定义以及三角形内角和定理,得出113022DFB y x ∠=-=︒ ,进而得出x ,y 的值;②当x=y 时,D C ∥B F ,即∠D FB =0,进而得出答案. 【详解】()1360A ABC C ADC ∠+∠+∠+∠=,A x ∠=,C y ∠=, 360ABC ADC x y ∴∠+∠=--.故答案为360x y --.()2DE BF ⊥.理由:如图1,DE 平分ADC ∠,B F 平分MBC ∠,12CDE ADC ∴∠=∠,12CBF CBM ∠=∠, 又()180180180CBM ABC ADC ADC ∠=-∠=--∠=∠, CDE CBF ∴∠=∠,又DGC BGE ∠=∠,90BEG C ∴∠=∠=,DE BF ∴⊥;()3①由()1得:()360360CDN CBM x y x y ∠+∠=---=+, BF 、D F 分别平分CBM ∠、CDN ∠,()12CDF CBF x y ∴∠+∠=+, 如图2,连接D B ,则180CBD CDB y ∠+∠=-, ()111180180222FBD FDB y x y y x ∴∠+∠=-++=-+, 112022DFB y x ∴∠=-=, 解方程组:120112022x y y x ⎧+=⎪⎨-=⎪⎩, 可得:4080x y ⎧=⎨=⎩; ②当x y =时,1118018022FBD FDB y x ∠+∠=-+=, ABC ∴∠、ADC ∠相邻的外角平分线所在直线互相平行,此时,DFB ∠不存在.【点睛】本题主要考查了多边形的内角和角平分线的定义以及三角形内角和定理等知识,正确应用角平分线的定义是解题关键.。
最新人教版数学七年级下册《期末测试卷》含答案解析
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是( )A . 5AB . A 5C . A 6D . A 82. 已知∠A =30°,则∠A 的余角的度数为( )A . 60°B . 90°C . 150°D . 180°3. 下列图形是四个银行的标志,其中是轴对称图形的共有( )A . 1个B . 2个C . 3个D . 4个4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数6. 如图一个三角形有三条对称轴,那么这个三角形一定是( )A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量0 34 67 101 135 202 259 336 404 471/kg土豆产量/t 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED =A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .1211. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”)13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm(1nm=10﹣9m).110nm用科学记数法表示为______m.14. 从某玉米种子中抽取6批,同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1000 2000 5000发芽种子粒数85 298 652 793 1604 4005 发芽频率0.850 0.745 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)与已行驶路程x (千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x ≤150时,行驶1千米的平均耗电量是多少;当150≤x ≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF ,A B =A C ,D E =D F .[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E 和C F .他们发现B E 与C F 之间存在着一定的数量关系,这个关系是 . [探究二](2)创新小组同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F ,A ,D ,C 在同一直线上,连接B F 和C E ,他们发现了B F 和C E 之间的数量和位置关系,请写出这些关系并说明理由; [探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF ,不写作法,保留作图痕迹. A .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论. B .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.参考答案一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是()A . 5AB . A 5C . A 6D . A 8【答案】B【解析】【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即A m•A n=A m+n.【详解】解:A 2•A 3=A 5.故选:B .【点睛】本题考察的是底数幂的乘法运算,掌握同底数幂乘法法则是解题的关键.2. 已知∠A =30°,则∠A 的余角的度数为()A . 60°B . 90°C . 150°D . 180°【答案】A【解析】【分析】根据余角定义直接解答.【详解】解:∠A 的度数是90°﹣∠A =90°﹣30°=60°.故选:A .【点睛】本题比较容易,考查互余角的数量关系.互余的两个角的和等于90°.3. 下列图形是四个银行的标志,其中是轴对称图形的共有()A . 1个B . 2个C . 3个D . 4个【答案】C【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有3个.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm【答案】A【解析】【分析】根据三角形的三边关系”任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、3+3=6>5,能摆成三角形;B 、1+2=3,不能摆成三角形;C 、2+3=5,不能摆成三角形;D 、3+5<9,不能摆成三角形.故选:A .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数【答案】C【解析】【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A 、是随机事件,故此选项不符合题意;B 、是随机事件,故此选项不符合题意;C 、是必然事件,故此选项符合题意;D 、是随机事件,故此选项不符合题意,故选:C .【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6. 如图一个三角形有三条对称轴,那么这个三角形一定是()A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形【答案】D【解析】【分析】直接利用直角三角形、等腰直角三角形、钝角三角形、等边三角形的特点分析得出答案.【详解】解:A 、一般直角三角形,没有对称轴,不合题意;B 、等腰直角三角形,有1条对称轴,不合题意;C 、一般钝角三角形,没有对称轴,不合题意;D 、等边三角形,有3条对称轴,符合题意.故选:D .【点睛】本题考查了轴对称的性质,解题的关键是了解各类三角形的特征.7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg【答案】C【解析】【分析】A 、表格反映的是土豆的产量与氮肥的施用量的关系;B 、直接从表格中找出施用氮肥时对应的土豆产量;C 、根据表格中土豆产量的增长和减少数量来说明氮肥的施用量对土豆产量的影响;D 、从表格中找出土豆的产量为39.45t时,氮肥对应的施用量.【详解】解:A 、氮肥施用量大于336时,土豆产量逐渐减少,故选项不符合题意;B 、当氮肥的施用量是110kg时,土豆产量为32.29t~34.03t,故选项不符合题意;C 、当氮肥的施用量低于336kg时,土豆产量随施肥量的增加而增加,故选项符合题意;D 、土豆产量为39.45t时,氮肥的施用量可能是202kg,故选项不符合题意.故选:C .【点睛】本题考查函数的定义和结合实际土豆产量和施用氮肥量确定函数关系,解题的关键是掌握函数的定义.8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .【答案】A【解析】【分析】根据高线的定义即可得出结论.的边BC上的高,【详解】B,C,D都不是ABC故选:A.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED=A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”【答案】B【解析】【分析】由”A SA ”可证△ED C ≌△A B C .【详解】解:由题意可得∠A B C =∠C D E=90°,在△ED C 和△A B C 中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ED C ≌△A B C (A SA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .12【答案】C【解析】【分析】直接利用直角三角形的定义结合概率求法得出答案.【详解】解:如图所示:第三枚棋子所在格点恰好是直角三角形顶点有6个,故这三枚棋子所在格点恰好是直角三角形顶点的概率为:614=37.故选:C .【点睛】此题主要考查了概率公式以及直角三角形的定义,正确得出符合题意的点是解题关键.11. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23【答案】C【解析】【分析】利用概率公式求解可得.【详解】解:由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47,故选:C .【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A )=事件A 可能出现的结果数÷所有可能出现的结果数.二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”) 【答案】不一定 【解析】【分析】根据直角三角形全等的判定定理判断即可. 【详解】解:当还有一条边对应相等时,两直角三角形全等, 当三角形的边不相等时,两直角三角形不全等, 即两个锐角分别相等的直角三角形不一定全等, 故答案为:不一定.【点睛】本题考查全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm (1nm =10﹣9m ).110nm 用科学记数法表示为______m .【答案】1.1×10﹣7 【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为A ×10-n ,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:110nm=110×10-9m=1.1×10-7m , 故答案为:1.1×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为A ×10-n ,其中1≤|A |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1). 【答案】0.8 【解析】【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.801,故可以估计种子发芽的概率为0.801,精确到0.1,即为0.8,故本题答案为:0.8.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.【答案】3【解析】【分析】当D E⊥A B 时,线段D E的长度最小,根据角平分线的性质得出C D =D E,代入求出即可.【详解】解:当D E⊥A B 时,线段D E的长度最小(根据垂线段最短),∵A D 平分∠C A B ,∠C =90°,D E⊥A B ,∴D E=C D ,∵C D =3,∴D E=3,即线段D E的长度的最小值是3,故答案为:3.【点睛】本题考查了角平分线的性质和垂线段最短,能灵活运用性质进行推理是解此题的关键.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.【答案】30°【解析】【分析】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【详解】解:∵A B =A C ,∠B A C =40°,∴∠B =12(180°﹣40°)=70°,∵A B 的垂直平分线交直线B C 于点D ,∴D B =A D ,∴∠B A D =∠B =70°,∴∠C A D =∠B A D ﹣∠B A C =70°﹣40°=30°.故答案为:30°.【点睛】本题主要考查等腰三角形的性质和垂直平分线的性质,解答本题的关键是会综合运用等腰三角形的性质和和垂直平分线的性质进行答题,此题难度一般.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)【答案】32α﹣90°【解析】【分析】【详解】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【解答】解:∵A B =A C ,∠B A C =α,∴∠B =12(180°﹣α)=90°﹣12α,∵A B 的垂直平分线交直线B C 于点D ,∴∠B A D =90°﹣12α,∴∠C A D =∠B A C ﹣∠B A D =α﹣(90°﹣12α)=32α﹣90°.故答案为:32α﹣90°.【点睛】本题考查了线段垂直平分线的性质和等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题.三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.【答案】(1)x2﹣3y2+xy;(2)3A +2B ;(3)9【解析】【分析】(1)根据平方差公式和单项式乘以多项式的运算法则展开括号,再合并即可求出答案.(2)原式先去小括号合并后再根据多项式除以单项式的运算法则进行计算即可求出答案.(3)原式先计算负整数指数幂和零次幂,然后再计算除法,最后计算加法即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+y(x+y)=x2﹣4y2+xy+y2=x2﹣3y2+xy;(2)[(3A +B )2﹣B 2]÷3A=(9A 2+6A B +B 2﹣B 2)÷3A=(9A 2+6A B )÷3A=3A +2B .(3)2÷(﹣2)﹣2+20=2÷14+1=24+1=8+1=9.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.【答案】105°【解析】【分析】由同位角相等,两直线平行判定A ∥B ,然后根据两直线平行,同位角相等,对顶角相等的性质求解【详解】∵∠1=70°,∠2=70°,∴∠1=∠2,∴A ∥B ,∴∠3=∠5.又∠3=105°,∴∠5=105°,∴∠4=∠5=105°.【点睛】本题考查平行线的判定和性质以及对顶角相等,理解相关性质正确推理是解题关键.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?【答案】(1)小明获胜概率851,小颖获胜概率4051;(2)小颖获胜的概率是0,小明获胜的概率是1617【解析】【分析】(1)小明已经摸到的牌面为4,而小4的结果为4×2,大于4的结果数为4×10,然后根据概率公式求解;(2)小明已经摸到的牌面为2,而小于2的结果为0,大于2的结果数为4×12,然后根据概率公式求解;小明已经摸到的牌面为A ,而小于A 的结果为4×12,大于2的结果数为0,然后根据概率公式求解.【详解】解:(1)由题意知,去掉大王、小王的扑克牌共有52张,其中比4小的牌有2,3,所以,小明获胜的概率是2451=851;小明与小颖摸到的相同的牌面的概率为3 51,所以,小颖获胜的概率是1﹣851﹣351=4051;(2)若小明已经摸到的牌面为2,比2小的牌没有,所以小明获胜的概率是0,小颖获胜的概率是1﹣351=1617;若小明已经摸到的牌面为A ,没有比A 更大的牌,所以小颖获胜的概率是0,小明获胜的概率是1﹣351=1617.【点睛】本题考查了概率公式:某随机事件的概率=这个随机事件发生的情况数除以总情况数.21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)【答案】见解析【解析】【分析】根据全等三角形的判定和性质解答即可.【详解】证明:如图所示:通过图可知:D F=B E=2,C F=EA =5,∠D FC =∠B EA =90°,∴△D FC ≌△B EA (SA S),∴∠A =∠C ,∵∠A GH=∠C GP,∴∠A HG=∠A PC =90°,∴直线C D 为线段A B 的垂线.【点睛】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定与性质.22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)【答案】(1)至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy+y×2x+2y×4x=xy+2xy+8xy=11xy(m2).11xy•B =11B xy(元).答:至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)由题意得:2y•h×2+4x•h×2+2x•h×2+2y•h×2=4hy+8hx+4hx+4hy=(12hx+8hy)m2.(12hx+8hy)×A +(12hx+8hy)×5=(12A hx+8A hy+60hx+40hy)元;答:至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.【答案】(1)①见解析;②见解析;(2)∠D A E12∠D A C =40°【解析】【分析】(1)根据垂直平分线与角平分线的尺规作图方法即可求解;(2)根据垂直平分线的性质得到D B =D A ,求出∠C A D =80°,再利用角平分线的性质即可求解.【详解】解:(1)如图,点D ,射线A E即为所求.(2)∵D F垂直平分线段A B ,∴D B =D A ,∴∠D A B =∠B =30°,∵∠C =40°,∴∠B A C =180°﹣30°﹣40°=110°,∴∠C A D =110°﹣30°=80°,∵A E平分∠D A C ,∴∠D A E12∠D A C =40°.【点睛】此题主要考查垂直平分线与角平分线,解题的关键是熟知尺规作图的方法.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)与已行驶路程x(千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x≤150时,行驶1千米的平均耗电量是多少;当150≤x≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.【答案】(1)当0≤x≤150时,行驶1千米的平均耗电量是16千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是12千瓦时;(2)当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,进而解答即可;(2)把x=120代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,A 点表示充满电后行驶150千米时,剩余电量为35千瓦时;当0≤x≤150时,行驶1千米的平均耗电量是1 (6035)1506-÷=千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是1 (3510)(200150)2-÷-=千瓦时;(2)6011206-⨯=40(千瓦时),35203012-=(千米),150+30=180(千米)答:当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF,A B =A C ,D E=D F.[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E和C F.他们发现B E与C F之间存在着一定的数量关系,这个关系是.[探究二](2)创新小组的同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F,A ,D ,C 在同一直线上,连接B F和C E,他们发现了B F和C E之间的数量和位置关系,请写出这些关系并说明理由;[探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF,不写作法,保留作图痕迹.A .如图4,利用△ABC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论.B .如图4,利用△A BC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.。
2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷及答案解析
2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.106.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.87.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.19.在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,P A,若∠POA=m°,∠P AO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(,)的“双角坐标”为;(2)若点P到x轴的距离为,则m+n的最小值为.20.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A1OB1,使∠A1OB1=90°,使∠B1=30°;作OA2⊥A1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,……,以同样的作法可得到Rt△A n OB n,则当n=2018时,点B2018的纵坐标为.21.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2017B2018C2018的顶点B2018的坐标是.22.如图,已知正方形A1A2A3A4,A5A6A7A8,A9A10A11A12…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A2018的坐标为.23.如图,点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后动点P的坐标是.24.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,P4,…P2018的位置,则P2018的横坐标x2018=.25.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为.26.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M(6,m)表示单车停放点,且满足M到A,B的“实际距离”相等,则m=.若点N表示单车停放点,且满足N到A,B,C的“实际距离”相等,则点N的坐标为.27.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0),当点P第2018次碰到长方形的边时,点P的坐标为.28.在平面直角坐标系中,将点(﹣b,﹣a)称为点(a,b)的“关联点”(例如点(﹣2,﹣1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第象限.29.如图,在△ABO中,A(﹣4,0),B(0,3),OC为AB边的中线,以O为圆心,线段OC长为半径画弧,交x轴正半轴于点D,则点D的坐标为.30.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时,记为点P1,第2次碰到矩形的边时,记为点P2,…第n次碰到矩形的边时,记为点P n,则点P4的坐标是;点P125的坐标是.31.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.32.已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为.33.已知平面直角坐标系xOy中,点A(8,0)及在第一象限的动点P(x,),设△OP A 的面积为S.则S随x的增大而.(填“增大”,“不变”或“减小”)34.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),AB=AC =13,则点A的坐标为.35.无论m为何值,点A(m﹣1,m+1)不可能在第象限.36.对于任意实数x,点P(x,x2﹣4x)一定不在第象限.37.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.38.在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,﹣x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(a,b),对于任意的正整数n,点A n均在y轴的右侧,则a,b应满足的条件是.39.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,若△AOB内部(不包括边)的整点个数为3,则点B的横坐标的所有可能值是.40.平面直角坐标系中,点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的坐标是(任意写一个,正确即可).41.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.三.解答题(共9小题)42.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(﹣2,1)、F(0,6),则这3点的“矩面积”=.(2)若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标.43.若点P(2a﹣4,a+2)是第二象限内的整点(横纵坐标都是整数),求满足条件的所有P点坐标.44.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.45.(1)在数轴上,点A表示数3,点B表示数﹣2,我们称A的坐标为3,B的坐标为﹣2;那么A、B的距离AB=;一般地,在数轴上,点A的坐标为x1,点B的坐标为x2,则A、B的距离AB=;(2)如图,在直角坐标系中点P1(x1,y1),点P2(x2,y2),求P1、P2的距离P1P2;(3)如图,△ABC中,AO是BC边上的中线,利用(2)的结论证明:AB2+AC2=2(AO2+OC2).46.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.47.已知A(0,a),B(﹣b,﹣1),C(b,0)且满足﹣|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y 轴交于点(0,﹣5).48.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y 轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连结O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.49.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为50.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(﹣1,6)的“2属派生点”P′的坐标为;(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.2020-2021学年人教版数学七年级下学期《第7章平面直角坐标系》测试卷参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2A3,…,A n,…若点A1的坐标为(2,4),点A2019的坐标为()A.(﹣3,3)B.(﹣2,﹣2)C.(3,﹣1)D.(2,4)【分析】据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【解答】解:观察发现:A1(2,4),A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),A6(﹣3,3)…∴依此类推,每4个点为一个循环组依次循环,∵2019÷4=504余3,∴点A2019的坐标与A3的坐标相同,为(﹣2,﹣2),故选:B.【点评】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.2.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)【分析】根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【解答】解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.3.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A(x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为()应用:设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为()A.(﹣1,1)B.(﹣2,4)C.(﹣2,1)D.(﹣1,4)【分析】根据线段的中点坐标公式即可得到结论.【解答】解:设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=1,∴D(﹣1,1),故选:A.【点评】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.4.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为()A.(1,﹣2)B.(2,﹣1)C.(,﹣1)D.(3.0)【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故选:A.【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.5.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知P A⊥PB,则线段PC的最大值为()A.3B.5C.8D.10【分析】根据直角三角形斜边上中线的性质,即可得到OP=AB=3,依据OC﹣OP≤CP≤OP+OC,即可得出当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长.【解答】解:如图所示,连接OC,OP,PC,∵P A⊥PB,∴∠APB=90°,又∵AO=BO=3,∴Rt△ABP中,OP=AB=3,∵OC﹣OP≤CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,∴线段PC的最大值为OP+OC=3+5=8,故选:C.【点评】本题主要考查了坐标与图形性质,判断点P在以O为圆心,AB长为直径的圆上是解决问题的关键.6.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的纵坐标为()A.5B.6C.7D.8【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点评】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.7.如图,在平面直角坐标系中,将正整数按箭头所指的顺序排列,则正整数2019所在的点的坐标是()A.(45,7)B.(45,39)C.(44,6)D.(44,39)【分析】观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.依此先确定2025的坐标为(45,1),再根据图的结构求得2019的坐标.【解答】解:观察图的结构,发现所有奇数的平方数都在第1象限的y=1直线上.12=1的坐标为(1,1),32=9的坐标为(3,1),52=25的坐标为(5,1),…452=2025的坐标为(45,1),图中横坐标为45的数共有45个数,∵2025﹣2019=6,∴2019的坐标为(45,7).故选:A.【点评】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点C对应的点C1的坐标是()A.C1(3,2)B.C1(2,1)C.C1(2,3)D.C1(2,2)【分析】根据点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,据此根据平移的定义和性质解答可得.【解答】解:由点B(﹣4,1)的对应点B1坐标为(﹣4+5,1+1),即(1,2),∴点C(﹣2,1)对应的点C1的坐标为(﹣2+5,1+1),即(3,2),故选:A.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是根据对应点的坐标得出平移的方向和距离及平移的定义和性质.二.填空题(共33小题)9.如图,在平面直角坐标系中,已知四个定点A(﹣3,0)、B(1,﹣1)、C(0,3)、D(﹣1,3),点P在四边形ABCD内,则到四边形四个顶点的距离的和P A+PB+PC+PD最小时的点P的坐标为(﹣,).【分析】设AC与BD交于F点,则由不等式的性质可得,|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,可求最小值.【解答】解:如图,设AC与BD交于F点,则|P A|+|PC|≥|AC|=|F A|+|FC|,|PB|+|PD|≥|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|P A|+|PB|+|PC|+|PD|≥|AC|+|BD|=,此时P的坐标为:(﹣,)故答案为:(﹣,)【点评】本题主要考查了轴对称问题,关键是根据不等式的性质在求解最值中的应用解答.10.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2019的横坐标为﹣()2018.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,即可得出结果.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x轴的负半轴上,∵2019÷4=504…余数是3,∴A2019在x轴的负半轴上,横坐标为﹣()2018,故答案为:﹣()2018.【点评】本题考查了图形与坐标、规律型等知识,找出序号除以4被整除的在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上的规律是解题的关键.11.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2019的坐标为(﹣1008,0).【分析】根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.【解答】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,﹣1),A3(0,0),A4(2,2),A5(4,0),A6(1,﹣3),A7(﹣2,0),A8(2,4),A9(6,﹣1),A10(1,﹣5),A11(﹣4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是﹣(2019﹣3)÷2=﹣1008,纵坐标是0,∴A2019的坐标为(﹣1008,0).故答案为:(﹣1008,0).【点评】本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.12.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y 轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2019的坐标为(0,﹣21010).【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2019的坐标.【解答】解:∵正方形OABC边长为1,∴OB=,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(2,0),同理可知OB2=2,B2点坐标为(2,﹣2),同理可知OB3=4,B3点坐标为(0,﹣4),B4点坐标为(﹣4,﹣4),B5点坐标为(﹣8,0),B6(﹣8,8),B7(0,16)B8(16,16),B9(32,0),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2019÷8=252…3,∴B2019的横坐标,与点B3的相同为0,横纵坐标都是负值,∴B2013的坐标为(0,﹣21010).故答案为:(0,﹣21010).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,此题难度较大.13.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC于点A1,过点作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;…,按着这个规律进行下去,点A n的坐标是(,).【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A n(,),即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),故答案为:(,).【点评】本题考查了点的坐标,等边三角形的性质,关键是能根据求出的数据得出规律,题目比较好,但是有一定的难度.14.如图,直线l1经过点A(3,),过点A且垂直于l1的直线与x轴交于点B,与直线l2交于点C,且∠BOC=30°,则BC的长等于4.【分析】根据点A的坐标可以求得∠AOB和OA的长度,再根据锐角三角函数可以求得AC和AB的长,从而可以求得BC的长.【解答】解:∵点A(3,),∴tan∠AOB=,OA=,∴∠AOB=30°,∵AC⊥OA于点A,∠BOC=30°,∴∠OAC=90°,∠AOC=60°,∴tan∠AOB=,tan∠AOC=,即tan30°=,tan60°=,解得,AB=2,AC=6,∴BC=AC﹣AB=4,故答案为:4.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2019的坐标是(﹣21009,21009).【分析】利用等腰直角三角形的性质可得出部分点A n的坐标,根据点的坐标的变化可得出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”,结合2019=252×8+3即可得出点A2019的坐标.【解答】解:由等腰直角三角形的性质,可知:A1(1,1),A2(0,2),A3(﹣2,2),A4(0,﹣4),A5(﹣4,﹣4),A6(0,﹣8),A7(8,﹣8),A8(16,0),A9(16,16),A10(0,32),A11(﹣32,32),…,∴点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数).∵2019=252×8+3,∴点A2019的坐标为(﹣24×252+1,24×252+1),即(﹣21009,21009),故答案为:(﹣21009,21009).【点评】本题考查了等腰直角三角形以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点A8n+3的坐标为(﹣24n+1,24n+1)(n为自然数)”是解题的关键.16.如图,在平面直角坐标系中,点M、A、B、N依次在x轴上,点M、A的坐标分别是(1,0)、(2,0).以点A为圆心,AM长为半径画弧,再以点B为圆心,BN长为半径画弧,两弧交于点C,测得∠MAC=120°,∠CBN=150°.则点N的坐标是(4+,0).【分析】根据含30°的直角三角形的性质和坐标特点解答即可.【解答】解:∵MAC=120°,∴∠CAB=60°,∵∠CBN=150°,∴∠ABC=30°,∴∠C=90°,∵MA=AC=2﹣1=1,∴AB=2AC=2,∴BC=,∴ON=1+1+2+=4+,∴点N的坐标为(4+,0),故答案为:(4+,0),【点评】此题考查坐标与图形,关键是根据含30°的直角三角形的性质和坐标特点解答.17.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是(673,0).【分析】由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,据此可解.【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故答案为(673,0).【点评】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上.18.如图,点P是第一象限内一点,OP=4,经过点P的直线l分别与x轴、y轴的正半轴交于点A、点B,若OP平分∠AOB,则=.【分析】过点P作PD⊥向x轴于D,PE⊥y轴于E,根据角平分线的性质,角平分线上的点到这个角两边的距离相等,求出PD和PE,再根据三角形OAB的面积=三角形OAP 的面积+三角形OPB的面积,此题便可求解【解答】解:如图,过点P作PD⊥向x轴于D,PE⊥y轴于E,则∠PEO=∠PDO=90°∵若OP平分∠AOB∴PD=PE,∵∠AOB=90°,∴∠PEO=∠PDO=∠AOB=90°,∴四边形EPDO是矩形,又PD=PE∴矩形EPDO为正方形,∵OP=4,∴PD=PE=,∵三角形OAB的面积=三角形OAP的面积+三角形OPB的面积,∴,∴,。
2020--2021学年人教版七年级数学下册 第8章二元一次方程组 优生辅导训练(附答案)
2021年度人教版七年级数学下册第8章二元一次方程组单元综合优生辅导训练(附答案)1.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元购买A,B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,购买方案共有()A.2种B.3种C.4种D.5种2.已知关于x,y的二元一次方程组的解为,则k的值是()A.3B.2C.1D.03.不考虑优惠,买1本笔记本和3支水笔共需14元,买4本笔记本和6支水笔共需38元,则购买1本笔记本和1支水笔共需()A.3元B.5元C.8元D.13元4.小明步行速度为5千米/时,骑车速度为15千米/时.如果小明先骑车2小时,然后步行3小时,那么他的平均速度是()A.5千米/时B.9千米/时C.10千米/时D.15千米/时5.八块相同的长方形地砖拼成一个长方形,每块长方形地砖的长等于()A.15cm B.30cm C.40 cm D.45 cm6.若方程组的解x与y的和为2,则m的值为()A.﹣2B.2C.﹣1D.17.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.88.已知关于x,y的方程组,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的个数是()A.0个B.1个C.2个D.3个9.在解方程组由于粗心,甲看错了方程组中的a,得到的解为,乙看错了方程组中的b,得解,则原方程组中的正确的解为()A.B.C.D.10.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()A.15B.﹣15C.16D.﹣1611.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为.12.母亲和女儿的年龄之和是80岁,当母亲的年龄是女儿现在年龄的2倍时,女儿的年龄是母亲现在年龄的,则女儿现在的年龄是岁.13.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y两,根据题意可列方程组为.14.若方程组的解是,则方程组的解是x=,y =.15.若关于x,y的二元一次方程组的解互为相反数,则k的值为.16.为支持贫困地区的卫生服务建设,某公益组织准备了2595块香皂,1058包消毒纸巾和若干瓶洗手液,志愿者将这些物资分成了A、B、C三类包裹进行发放,一个A类包裹里有20块香皂,8包消毒纸巾和5瓶洗手液,一个B类包裹里有15块香皂,10包消毒纸巾和3瓶洗手液,一个C类包裹里有30块香皂,8包消毒纸巾和4瓶洗手液.已知A、B、C三类包裹的数量都为正整数,并且A类的个数低于45个,B类个数低于49个,那么所有包裹里洗手液的总瓶数为瓶.17.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款元.18.现有八个大小相同的长方形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小长方形的长是.19.若关于x,y的二元一次方程的解也是二元一次方程x+y=4的解,则k的值为.20.在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是m2.21.解方程组:22.已知关于x,y的方程组(1)方程x+2y=5中,用含x的式子表示y;(2)若方程组的解满足x+y=0,求m的值.23.阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组,则x﹣y=,x+y=;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.24.2月8日,新世纪超市举办大型年货节.此次年货节活动特别准备了A、B两种商品进行特价促销,已知购进了A、B两种商品,其中A种商品每件的进价比B种商品每件的进价多40元.购进A种商品2件与购进B种商品3件的进价相同.(1)求A、B两种商品每件的进价分别是多少元?(2)该超市从厂家购进了A、B两种商品共60件,所用资金为5800元.出售时,A种商品在进价的基础上加价30%进行标价;B商品按标价出售每件可获利20元.若按标价出售A、B两种商品,则全部售完共可获利多少元?(3)在(2)的条件下,年货节期间,A商品按标价出售,B商品按标价先销售一部分商品后,余下的再按标价降价6元出售,A、B两种商品全部售出,总获利比全部按标价售出获利少了120元,则B商品按标价售出多少件?25.某景点的门票价格如下表所示:购票人数(人)1~5051~100100以上每人门票(元)12108某校七年级(1),(2)两班计划去游览该景点,两班总人数之和多于100人,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.若两班都以班为单位单独购票,则一共需支付1118元;若两班联合起来作为一个团体购票,则只需花费816元.(1)问:两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?26.一个电器超市购进A、B两种型号的电风扇进行销售,已知购进2台A型号和3台B型号共用910元,购进3台A型号比购进2台B型号多用260元.(1)求A、B两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A种型号电风扇每台售价260元,B种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A、B两种型号的电风扇各多少台?参考答案1.解:设购买了A种奖品x个,B种奖品y个,根据题意得:15x+25y=200,化简整理得:3x+5y=40,得y=8﹣x,∵x,y为正整数,∴,,∴有2种购买方案:方案1:购买了A种奖品5个,B种奖品5个;方案2:购买了A种奖品10个,B种奖品2个.故选:A.2.解:把x=3,y=﹣3代入方程3x+2y=k+1,得9﹣6=k+1,解得k=2.故选:B.3.解:设笔记本的单价为x元,水笔的单价为y元,依题意,得:,解得:,∴x+y=8,即购买1本笔记本和1支水笔共需8元,故选:C.4.解:设小明走的总路程为x千米,平均速度是为y千米/时,由题意得:,解得:,即小明的平均速度是9千米/时,故选:B.5.解:设每块长方形地砖的长为xcm,宽为ycm.依题意得,解得.即:长方形地砖的长为45cm.故选:D.6.解:解方程组,得,因为x+y=2,所以m+1+=2,解得m=1.则m的值为1.故选:D.7.解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.8.解:①(1)×3+(2)得:4x+8y=12∴x+2y=3 (3)将x=5,y=﹣1代入(3),左边=5+2×(﹣1)=3=右边故①正确;②将a=﹣2代入方程组得:解得:x,y的值互为相反数,故②正确;③将a=1代入方程组得:解得:当a=1时,方程x+y=4﹣a化为:x+y=3∴x=3,y=0是方程x+y=3的解,故③正确.故选:D.9.解:将代入x+by=7,将代入ax+y=10,得,∴,∴原方程组为解得,故选:C.10.解:∵是关于x、y的方程组的解,∴,解得,∴(a+b)(a﹣b)=(﹣1+4)×(﹣1﹣4)=﹣15.故选:B.11.解:设左下角的小正方形边长为x,左上角最大的正方形的边长为y,由题意得:,解得:,∴矩形的长=2+2+2+3=9,宽=2+5=7,S矩形=7×9=63,故答案为:63.12.解:设女儿现在年龄是x岁,母亲现在的年龄是y岁,根据题意得:,解得:,即女儿现在的年龄是25岁,故答案为:25.13.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故答案是:.14.解:把代入方程组得,,所以c1﹣c2=2(a1﹣a2),c1﹣2a1=3,方程组,①﹣②得,(a1﹣a2)x=a1﹣a2﹣(c1﹣c2),所以(a1﹣a2)x=﹣(a1﹣a2),因此x=﹣1,把x=﹣1代入方程组中的方程①得,﹣a1+y=a1﹣c1,所以y=2a1﹣c1=﹣(c1﹣2a1)=﹣3,故答案为:﹣1,﹣3.15.解:因为关于x,y的二元一次方程组的解互为相反数,所以x+y=0,方程组,②﹣①,得x﹣y=2,解方程组,得,将x=1,y=﹣1代入①得,1﹣2=k﹣1,解得k=0.故答案为:0.16.解:设A类包装有x个,B类包装有y个,C类包装有z个,洗手液有w瓶,根据题意得,解得,∵x<45,y<49,∴,解得36<z<44,∵z为整数,∴z=37或38或39或40或41或42或43,∵x=126﹣为整数,∴z=40,x=36,∴y=z+5=45,∴洗手液的总瓶数为:w=5x+3y+4z=5×36+3×45+4×40=475,故答案为:475.17.解:设购买一支中性笔x元,购买一本笔记本y元,则.由①+②,得11(x+y)=88.所以x+y=8.即:购买一支中性笔和一本笔记本一共需要付款8元.故答案是:8.18.解:设小长方形的长为x,宽为y,根据题意得:,解得:,则每个小长方形的长是10;故答案为:10.19.解:∵关于x,y的二元一次方程的解也是二元一次方程x+y=4的解,∴①+②得x+y=2k∴2k=4∴k=2故答案为2.20.解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为8m,宽为4m.答:一个小矩形花圃的面积32m2,故答案为:3221.解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.22.解:(1)∵x+2y=5,∴y=﹣,(2)根据题意得x+2y=5,x+y=0,∴y=5,x=﹣5,代入x﹣2y+mx+9=0得,﹣5﹣10﹣5m+9=0,解得:m=﹣,答:m的值为﹣.23.解:(1),由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.24.解:(1)设A种商品每件的进价是x元,则B种商品每件的进价是(x﹣40)元,由题意得2x=3(x﹣40),解得:x=120,120﹣40=80(件).答:A种商品每件的进价是120元,B种商品每件的进价是80元;(2)设购买A种商品a件,则购买B商品(60﹣a)件,由题意得120a+80(60﹣a)=5800,解得a=25,60﹣a=35.120×30%×25+20×35=1630(元).答:全部售完共可获利1630元;(3)设销售B商品按标价售出m件,由题意得:120×30%×25+20m+(20﹣14)(35﹣m)=1630﹣120,解得m=15.答:销售B商品按标价售出15件.25.解:(1)∵两班都以班为单位单独购票,一共支付1118元,可知人数大于90人,两班联合起来作为一个团体购票,则只需花费816元.可知人数大于90人,∴(1)(2)两班的人数之和超过100人.设(1)班有x名学生,(2)班有y名学生,依题意得:,解得:,答:(1)班有49名学生,(2)班有53名学生;(2)(1)班节约的钱数为(12﹣8)×49=196(元),(2)班节约的钱数为(10﹣8)×53=106(元).答:团体购票与单独购票相比较,(1)班节约了196元,(2)班节约了106元.26.解:(1)设A、B两种型号的电风扇每台进价分别是x元、y元,依题意,得,解得:,答:A、B两种型号的电风扇每台进价分别是200元和170元;(2)设购进A种型号的电风扇a台,则设购进B种型号的电风扇(30﹣a)台,依题意,得60a+20(30﹣a)=1400,解得:a=20,则30﹣a=10,答:该超市本次购进A、B两种型号的电风扇各是20台和10台.。
人教版七年级下册数学《期中检测试题》(附答案解析)
A.a= bB. a=3bC.a= bD. a=4b
∴阴影部分面积之差 .
∵S始终保持不变,∴3b﹣a=0,即a=3b.
故选B.
【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
【答案】
【解析】
【分析】
根据整式的混合运算法则进行计算即可.
【详解】
故答案为: .
【点睛】本题考查了整式的运算问题,掌握整式的混合运算法则是解题的关键.
A.a= bB. a=3bC.a= bD. a=4b
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
12.已知 是方程ax-y=3的解,则a的值为________.
13.已知方程 ,用含x的代数式表示y,则 _______.
14.若已知公式.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为______.
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
8.如图,从边长为( )cm的正方形纸片中剪去一个边长为( )cm的正方形( ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B. C. D.
2020-2021学年度人教版数学七年级下学期综合检测卷三【含答案】
2020-2021学年度人教版数学七年级下学期综合检测卷三【含答案】一、单选题(18分)1.(3分)下列等式正确的是()A.B.C.D.2.(3分)如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么的值为()A.1B.2C.3D.03.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)在同一平面内,不相交的两条线段必平行;(3)相等的角是对顶角;(4)两条直线被第三条直线所截,所得到同位角相等;(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个4.(3分)在平面直角坐标系中,已知点A(-4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B的坐标是()A.(0,-2)B.(4,6)C.(4,4)D.(2,4)5.(3分)已知点P(,y)在第四象限,且||=3,|y|=5,则点P的坐标是()A.(-3,-5)B.(5,-3)C.(3,-5)D.(-3,5) 6.(3分)有下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无限不循环小数是无理数;④π是无理数.其中正确的说法有()A.4个B.3个C.2个D.1个二、填空题(18分)7.(3分)已知,则.8.(3分)若是方程x-2y=0的解,则3a-6b-3= .9.(3分)已知点P(2-a,3a+10)且点P到两坐标轴距离相等,则a= .10.(3分)按照下图所示的操作步骤,若输出y的值为22,则输入的值x为.11.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.12.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1= ;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n-1BC与∠A n-1CD 的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为.三、解答题(84分)13.(6分)解不等式组:并在数轴上表示它的解集.14.(6分)某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆) 40 25日租金(元/辆) 320 200车辆数(辆) a b(1)求a、b的值.(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.①最多能租用A型客车多少辆?②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.15.(6分)求不等式组的非负整数解.16.(6分)化简:(1)=0,= ,= ,= .(2)=0,= ,= ,= .(3)根据以上信息,观察a,b所在位置,完成化简:.17.(6分)解不等式组,把解集在数轴上表示出来,并写出它的非负整数解.18.(8分)A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,则称点C是(A,B)的奇异点,例如图1中,点A表示的数为-1,点B 表示的数为2,表示1的点C到点A的距离为2,到点B的距离为1,则点C是(A,B)的奇异点,但不是(B,A)的奇异点.(1)在图1中,直接说出点D是(A,B)还是(B,C)的奇异点.(2)如图2,若数轴上M、N两点表示的数分别为-2和4,(M,N)的奇异点K在M、N两点之间,请求出K点表示的数.(3)如图3,A、B在数轴上表示的数分别为-20和40,现有一点P从点B出发,向左运动.①若点P到达点A停止,则当点P表示的数为多少时,P、A、B中恰有一个点为其余两点的奇异点?②若点P到达点A后继续向左运动,是否存在使得P、A、B中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB的距离;若不存在,请说明理由.19.(8分)解答题:(1)如图1,请证明∠A+∠B+∠C=180°.(2)如图2的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D.(3)如图3,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明.(4)如图4,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD 于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4-∠1-∠2不变,选择正确的并给予证明.20.(8分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1.(3)若(m,n)是“相伴数对”,求代数式m--[4m-2(3n-1)]的值.21.(9分)【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组;(2)已知,求x+y+z的值.解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为.(2)①×2得:8x+6y+4z=20③,②-③得:x+y+z=5.(1)【类比迁移】(1)若,则x+2y+3z=____.(2)解方程组(2)【实际应用】打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?22.(9分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”, (填“是”或“否”).(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由.(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.23.(12分)计算:(1)-32+|-3|+.(2)-+-.答案一、单选题1.【答案】D【解析】选项A、原式,错误;选项B、原式=,错误;选项C、原式没有意义,错误;选项D、原式,正确.故答案为:D.2.【答案】A【解析】根据题意得,解得.故答案为:A。
2020-2021人教版数学七年级下册 专项测试卷(二)新定义数学问题
人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。
2020-2021学年人教版七年级数学下册第八章二元一次方程组常考题提高专练(一)【含答案】
2020-2021学年七年级下册第8章《二元一次方程组》常考题提高专练(一)1.在2月份“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.求每只A 型口罩和B型口罩的销售利润.2.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?3.滴滴快车是一种便捷的出行工具,计价规则如表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里加收0.8元.小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为 元(用含x的代数式表示),小亮乘车费为 元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的少2分钟,问他俩谁先出发?先出发多少分钟?4.某星期天,八(1)班开展社会实践活动,第一小组花90元从蔬菜批发市场批发了黄瓜和茄子共40kg,到蔬菜市场去卖,黄瓜和茄子当天的批发价与零售价如表所示:品名黄瓜茄子批发价/(元/kg) 2.42零售价/(元/kg) 3.6 2.8(1)黄瓜和茄子各批发了多少kg?(2)该小组当天卖完这些黄瓜和茄子可赚多少钱?5.某景点的门票价格如下表:购票人数(人)1~5051~99100以上(含100)门票单价(元)484542(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?6.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.7.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?8.某体育经销商计划用45000元从省体彩中心购进20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的,进价分别是A每张1.5元,B每张2元,C每张2.5元.(1)若经销商同时购进两种不同型号的20扎,用去45000元,请你设计进票方案;(2)若销售A型一张获手续费0.2元,B型一张获手续费0.3元,C型一张获手续费0.5元.在购进两种的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种20扎,请你设计进票方案.9.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?10.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a 元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级400024八年级420033九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.11.如图,在3×3的方格内,填写了一些代数式和数.(1)在图中各行、各列及对角线上三个数之和都相等,请你求出x,y的值.(2)把满足(1)的其它6个数填入图(2)中的方格内.12.某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?13.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).14.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?15.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.答案1.解:设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元.2.解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.3.解:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x﹣y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:=﹣2,解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为=3(分钟),∴小明比小亮先出发,先出发的时间=15﹣6﹣3=6(分钟),答:明比小亮先出发,先出发6分钟.4.解:(1)设黄瓜批发了xkg,茄子批发了ykg,根据题意,得,解得,答:黄瓜批发了25kg,茄子批发了15kg.(2)(3.6﹣2.4)×25+(2.8﹣2)×15=42(元).答:该小组当天卖完这些黄瓜和茄子可赚42元.5.解:(1)设七年级1班有x名学生,2班有y名学生,由题意得:,解得:,答:七年级1班有49名学生,2班有53名学生;(2)设八年级报名a人,九年级报名b人,分两种情况:①若a+b<100,由题意得:,解得:,(不合题意舍去);②若a+b≥100,由题意得:,解得:,符合题意;答:八年级报名48人,九年级报名58人.6.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.7.解:设该厂第一季度计划生产甲机器x台,乙机器y台,由题意可知,解得:,(1+10%)x=1.1×200=220;(1+20%)y=1.2×250=300.答:该厂第二季度生产甲机器220台,乙机器300台.8.解:(1)若设购进A种x张,B种y张,根据题意得:x+y=1000×20;1.5x+2y=45000,解得:x=﹣10000,y=30000,∴x<0,不合题意;若设购进A种x张,C种y张,根据题意得:x+y=1000×20;1.5x+2.5y=45000,解得:x=5000,y=15000,若设购进B种x张,C种y张,根据题意得:2x+2.5y=45000;x+y=1000×20.解得:x=10000,y=10000,综上所述,若经销商同时购进两种不同型号的共有两种方案可行,即A种5扎,C种15扎或B种与C种各10扎;(2)若购进A种5扎,C种15扎,销售完后获手续费为0.2×5000+0.5×15000=8500(元),若购进B种与C种各10扎,销售完后获手续费为0.3×10000+0.5×10000=8000(元),∴为使销售完时获得手续最多选择的方案为A种5扎,C种15扎;(3)若经销商准备用45000元同时购进A、B、C三种20扎.设购进A种m扎,B种n扎,C种h扎.由题意得:m+n+h=20;1.5×1000m+2×1000n+2.5×1000h=45000,即h=m+10,∴n=﹣2m+10,∵m、n都是正数∴1≤m<5,又m为整数共有4种进票方案,具体如下:方案1:A种1扎,B种8扎,C种11扎;方案2:A种2扎,B种6扎,C种12扎;方案3:A种3扎,B种4扎,C种13扎;方案4:A种4扎,B种2扎,C种14扎.9.解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.10.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.11.解:(1)由题意得,解得.(2)填图如下:12.解:(1)设甲种节能灯进了x只,乙种节能灯进了y只,,得,答:甲、乙两种节能灯各进40只,60只;(2)由题意可得,该商场获利为:(40﹣30)×40+(50﹣35)×60=400+900=1300(元),答:该商场获利1300元.13.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据题意得:,解得:.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a+4b=31,∴b=.∵a,b均为整数,∴有、和三种情况.故共有三种租车方案,分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.14.解:设购进甲商品x件,乙商品y件,根据题意可得:,解得:,答:购进甲商品240件,乙商品72件.15.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.。
人教版2020-2021学年第二学期期中考试试卷七年级数学试题及答案
2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等DCBA DCBA ABCDDC BA21122112A B C D6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 .12.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 .13.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.如图,已知90ACB ∠=°.CD AB ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长.2345ODC B A图1DCBAA 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx16.52-+的绝对值是 .17.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,则该主板的周长是_____mm .三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩21.(5分) 完成下面的证明.(在序号后面横线上填写合适的内容) 已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(① ) ∴∠ACB +∠EF D=180°∴② (③ ) ∴∠A=∠2.∠3=∠1.(④ ) 又∵∠A=∠1,∴∠2=∠3(⑤ ) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值.23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8. (1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为多少.25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨?27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t), 如图所示.若三角形ABC 的面积为9,求点D 的坐标.2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 【答案】B2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 【答案】C ;3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 【答案】B ;4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【答案】A5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )DCBA DCBA ABCDDC BA21122112A B C DA .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等 【答案】A 6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个【答案】A7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 【答案】B8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-【答案】C9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩【答案】D10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,【答案】C2345A 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 . 【答案】312.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 . 【答案】-113.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图【答案】72︒14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____. 【答案】(-2,-2)15.如图,已知.,垂足为,则点到直线的距离为线段 的长;【答案】AC16.52-+的绝对值是 . 【答案】5-217.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图 【答案】34°18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,90ACB ∠=°CD AB ⊥D A CB ODC B A图1DCBA则该主板的周长是_____mm . 【答案】330三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 =4×12+(−2)+(−√2) (x-2)2=9=2−2−√2 x-2=3或x-2=-3 =−√2 x=5或x=-1 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩ 【答案】(1){x =2y =−1 (2){x =6y =521.(5分) 完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(①垂直的定义) ∴∠ACB +∠EF D=180°∴②EF ∥AC .(③同旁内角互补,两直线平行) ∴∠A=∠2.∠3=∠1.(④两直线平行,内错角相等) 又∵∠A=∠1, ∴∠2=∠3(⑤等量代换) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值. 解:由题意得:(2a-3)+(5-a)=0,解得:a=-2;x=49. 所以 x=(2a-3)2=(-7)2=49 23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.解:由题意得:x+y=0,联立方程组{2x +7y =−10x +y =0,解得:{x =2y =−2, 把{x =2y =−2代入3x-5y=2a, 得:2a=16,解得:a=8 24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为________. 【答案】(1)设魔方的棱长为x,由x 3=8,解得x=2, 所以魔方的棱长为2;(2)因为魔方的棱长为2,所以魔方每个面的面积为4,正方形ABCD 的面积为魔方每个面的面积的一半,所以阴影部分的面积为2,正方形ABCD 的边长为√2;(3)正方形ABCD 的边长为√2,点A 与1-重合,所以点D 在数轴上表示的数为−1−√2 25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.【答案】(1)根据题意,他们以中心广场为坐标原点,100m 为单位长度建立直角坐标系: y y(2) 张明在游乐园,王励在望春亭,李华在湖心亭; (3)中心广场(0,0),牡丹亭(300,300)26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨? 【答案】解:设1辆大货车可以一次运货x 吨, 1辆小货车可以一次运货y 吨. {3x +2y =175x +4y =29 解得:{x =5y =1 2x +y =2×5+1×3=13(吨)所以2辆大货车与3辆小货车可以一次运货13吨.27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t),如图所示.若三角形ABC 的面积为9,求点D 的坐标.xy【答案】(1)根据题意{2a −b −1=0a +2b −8=0解得:{a =2b =3 所以A 、B 两点的坐标分别为(0,2),(3,0);(2)如图所示,过A 点作x 轴平行线,过B 点作y 轴平行线,过C 点作x 轴,y 轴平行线,交点为P ,Q,R ,根据题意,点C 在第三象限,所以t<0, P(3,t),R(3,2),Q(-2,2),CP=5,CQ=2-t,AQ=2,AR=3,BR=2,BP=- tS ∆ABC =5(2−t )−12×2(2−t )−12×2×3−12×5×(−t )=9, 解得:t =−83所以线段CD 是由线段AB 向左平移2个单位,向下平移143个单位得到的; 所以D 点坐标为(1,-143)PQ1、三人行,必有我师。
【精品】人教版数学七年级下学期《期末检测试题》有答案解析
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题:(共10小题,满分30分,每小题3分)1. 如图,若A B ∥C D ,则∠A 、∠E 、∠D 之间的是( )A . ∠A +∠E +∠D =180°B . ∠A +∠E -∠D =180°C . ∠A -∠E +∠D =180° D . ∠A +∠E +∠D =270°2. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若155∠=︒,则2∠的度数是()A . 35°B . 40°C . 45°D . 50°3. 若x 3x x 则x 的值为( )A . 1B . 0C . 0或1D . 0或±1 4. 若m 、n 满足()21150m n --m n +的平方根是( )A . 4±B . 2±C . 4D . 25. 将点()2,24P m m ++向右平移1个单位长度得到点Q ,且点Q 在y 轴上,那么点Q 坐标是( )A . ()2,0-B . ()1,0C . ()0,2-D . ()0,1 6. 若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A . 1 B . 2 C . 3 D . 47. 若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A . 3- B . 0 C . 3 D . 68. 如图所示为一个不等式组的解集,则对应的不等式组是( )A . 42x x ≥-⎧⎨<⎩B . 42x x <-⎧⎨<⎩C . 42x x >-⎧⎨≥⎩D . 42x x ≤-⎧⎨>⎩ 9. 不等式组104x x x +≥⎧⎨->⎩的所有整数解的和是( ) A . 0 B . 1 C . 2 D . 310. 某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示 上述分布情况,已知老人有160人,则下列说法不正确的是( )A . 老年所占区域的圆心角是72︒B . 参加活动的总人数是800人C . 中年人比老年人多80D . 老年人比青年人少160人 二、填空题(共5小题,满分15分,每小题3分)11. 已知OA OC ⊥,过点O 作射线OB ,且30AOB ∠=︒,则BOC ∠的度数为__________.12. 若x 、y ()21310x y x +--=,则25y x -的平方根是__________. 13. 点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是_______. 14. 333的值为__________. 15. 要使342x -的值不小于35x +,则满足条件的x 最小整数是__________. 三、解答题 (共8小题,满分75分)16. (1)计算:()220191423--(2)解方程组425x y x y -=⎧⎨+=⎩17. 求满足不等式组()328 131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.18. (每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.19. 如图,已知//DC FP,12∠=∠,30FED∠=︒,80AG F∠=︒,FH平分EFG(1)说明://DC AB;(2)求PFH∠的度数.20. 如图,BED B D∠=∠+∠,猜想AB与CD有怎样位置关系,并说明理由.21. 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)22. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?23. 如图1,将一副直角三角板放在同一条直线A B 上,其中∠ONM=30°,∠OC D =45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)参考答案一、选择题:(共10小题,满分30分,每小题3分)1. 如图,若A B ∥C D ,则∠A 、∠E、∠D 之间的是( )A . ∠A +∠E+∠D =180°B . ∠A +∠E-∠D =180°C . ∠A -∠E+∠D =180° D . ∠A +∠E+∠D =270°【答案】B【解析】【分析】作EF∥A B ,则EF∥C D ∥A B ,根据平行线的性质即可求解.【详解】作EF∥A B ,则EF∥C D ∥A B ,∴∠A +∠A EF=180°,∠D =∠D EF,又∠A ED =∠A EF+∠D EF,故∠A +∠E-∠D =180°选B .【点睛】此题主要考查平行线的性质,解题的关键是熟知平行线的性质.∠=︒,则2∠的度数是() 2. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若155A . 35°B . 40°C . 45°D . 50°【答案】A【解析】【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【详解】解:如图由题意可得:∠1=∠3=55°∠2=∠4=90°-55°=35°故选:A【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.3. 若x3x x则x的值为( )A . 1B . 0C . 0或1D . 0或±1【答案】C【解析】【分析】根据平方根和立方根性质判断即可.3x x且x≥0,∴x=0或1.【点睛】此题主要考查了平方根和立方根,掌握它们的性质是解题的关键.4. 若m、n满足()21150+的平方根是( )--m nm nA . 4±B . 2±C . 4D . 2【答案】B【解析】【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键. 5. 将点()2,24P m m ++向右平移1个单位长度得到点Q ,且点Q 在y 轴上,那么点Q 的坐标是( )A . ()2,0-B . ()1,0C . ()0,2-D . ()0,1 【答案】C【解析】【分析】将点P (m+2,2m+4)向右平移1个单位长度后点Q 的坐标为(m+3,2m+4),根据点Q 在y 轴上知m+3=0,据此知m=-3,再代入即可得.【详解】解:将点P (m+2,2m+4)向右平移1个单位长度后点Q 的坐标为(m+3,2m+4),∵点Q (m+3,2m+4)在y 轴上,∴m+3=0,即m=-3,则点Q 的坐标为(0,-2),故答案为(0,-2).【点睛】此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y 轴上的点横坐标为0的特征. 6. 若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A . 1B . 2C . 3D . 4【答案】C【解析】【分析】根据x 与y 互为相反数,得到x+y=0,与方程组第一个方程联立求出x 与y 的值,代入第二个方程求出A 的值即可. 【详解】根据题意得:2350x y x y -=⎧⎨+=⎩①② ①+②×3得:5x=5,解得:x=1,把x=1代入②得:y=-1,把x=1,y=-1代入29ax ay -=得:A +2A =9,解得:A =3,故选C .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7. 若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A . 3-B . 0C . 3D . 6 【答案】C【解析】【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得A 、B 的值,即可求得A +B 的值. 【详解】∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴A +B =3.故选C .【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.8. 如图所示为一个不等式组的解集,则对应的不等式组是( )A . 42x x ≥-⎧⎨<⎩B . 42x x <-⎧⎨<⎩C . 42x x >-⎧⎨≥⎩D . 42x x ≤-⎧⎨>⎩【答案】A【解析】【分析】根据数轴上表示的解集确定出所求即可.【详解】解:数轴上表示的解集对应的不等式组是42xx≥-⎧⎨<⎩,故选A .【点睛】此题考查了在数轴上表示不等式的解集,弄清不等式组表示解集的方法是解本题的关键.9. 不等式组104xx x+≥⎧⎨->⎩的所有整数解的和是( )A . 0B . 1C . 2D . 3【答案】A【解析】【分析】分别求出各不等式的解集,再求出其公共解集即为此不等式组的解集,在此解集范围内得出符合条件的x 的整数值即可.【详解】解:104xx x+≥⎧⎨->⎩①②,解不等式①得x≥-1.解不等式②得x<2,所以原不等式组的解集为-1≤x<2,所以原不等式组的整数解为:-1,0,1,则所有整数解的和=-1+0+1=0.【点睛】本题考查的是解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示上述分布情况,已知老人有160人,则下列说法不正确的是( )A . 老年所占区域的圆心角是72︒B . 参加活动的总人数是800人C . 中年人比老年人多80D . 老年人比青年人少160人【答案】D【解析】【分析】 因为某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:5:3,即老年的人数是总人数的212355=++,利用来老年为160人,即可求出三个地区的总人数,进而求出青年的人数,分别判断即可. 【详解】解:A 、老年的人数是总人数的212355=++,老年所占区域的圆心角是1360725︒︒⨯=,故此选项正确,不符合题意;B 、参加活动的总人数是11608005÷=,故此选项正确,不符合题意; C 、中年人数是380024010⨯=,老年人数是160,中年人比老年人多80,故此选项正确,不符合题意; D 、青年人数是480040010⨯=,老年人比青年人少400-160=240人,故此选项错误,符合题意. 故选D .【点睛】此题主要考查了扇形图的应用,先求出总体的人数,再分别乘以各部分所占的比例,即可求出各部分的具体人数是解题关键.二、填空题(共5小题,满分15分,每小题3分)11. 已知OA OC ⊥,过点O 作射线OB ,且30AOB ∠=︒,则BOC ∠的度数为__________.【答案】60︒或120︒【解析】【分析】根据角的和差,分两种情况讨论可得答案.【详解】OA ⊥OC ,∴∠A OC =90°.分两种情况讨论:①OB 在∠A OC 的外部,如图1,∠B OC =A OC +∠A OB =30°+90°=120°;②OB 在∠A OC 的内部,如图2,∠B OC =∠A OC ﹣∠A OB =90°﹣30°=60°.故答案为60〫或120〫.【点睛】本题考查了垂线,利用角的和差是解题的关键,又利用了垂线的定义.12. 若x 、y ()21310x y x +--=,则25y x -的平方根是__________. 【答案】3±【解析】【分析】先由x 、y 2x 1(y 3x 1)0+--=得出x+1=0,y-3x-1=0,从而求出x 、y 的值,然后再代入y 2-5x 求出平方根即可得出答案.【详解】解:∵x 、y 2x 1(y 3x 1)0+--=,∴x+1=0,y-3x-1=0,∴x=-1,y=2,则y 2-5x=9,y 2-5x 的平方根是±3.【点睛】本题考查了二次根式,完全平方的性质,此题比较简单,解题的关键是求出x 、y 的值,再代值计算.13. 点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是_______.【答案】(2,4)-【解析】【分析】设点P 的坐标为(,)a b ,首先根据点到x,y 轴的距离求出,a b ,然后根据第四象限内点的坐标的特点求出A ,B 的值,进而可确定P 点的坐标.【详解】设点P 的坐标为(,)a b ,∵点P 距离x 轴4个单位长度,距离y 轴2个单位长度,∴2,4==a b , ∴2,4a b =±=± .∵点P 在第四象限,∴0,0a b >< ,∴2,4a b ==-,∴点P 的坐标为(2,4)-.故答案为:(2,4)-.【点睛】本题主要考查点到x,y 轴的距离及每个象限内点的坐标的特点,掌握每个象限内点的坐标的特点是解题的关键.14. 333⎛+ ⎪⎝⎭的值为__________. 【答案】4【解析】【分析】先去括号相乘然后再相加即可.【详解】解:333⎛+ ⎪⎝⎭=3+1=4.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15. 要使342x -的值不小于35x +,则满足条件的x 最小整数是__________. 【答案】7【解析】【分析】根据代数式342x -的值不小于3x+5的值,即可得出关于x 的一元一次不等式,解不等式即可得出x 的取值范围,取期内最小的整数,此题得解.【详解】解:由已知得:342x -≥3x+5,解得:13x2,13672<<,∴x的最小整数为7.故答案为7.【点睛】本题考查了一元一次不等式的整数解,解题的关键是根据代数式342x-的值不小于3x+5的值找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.三、解答题 (共8小题,满分75分)16. (1)计算:201912-(2)解方程组425x yx y-=⎧⎨+=⎩【答案】(1)1(2)31xy=⎧⎨=-⎩.【解析】【分析】(1)根据乘方的意义,二次根式的性质,绝对值的性质,可得答案;(2)根据代入消元法,可得方程组的解.【详解】解:(1)原式=-1+4-((2)425 x yx y-=⎧⎨+=⎩①②②代入①得x+2x=9,解得x=3,把x=3代入②得y=-1.故方程组的解31 xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和实数的混合运算,(2)中利用代入消元法是解题关键.17. 求满足不等式组()328131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.【答案】不等式组的解集:-1≤x<2,整数解为:-1,0,1.【解析】分析:先求出不等式组的解集,然后在解集中找出所有的整数即可.详解:解不等式x-3(x-2)≤8,得:x≥-1,解不等式12x-1<3-32x,得:x<2,则不等式组的解集为-1≤x<2,所以不等式组的整数解为-1、0、1.点睛:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.18. (每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.【答案】(1)50,18;(2)见解析;(3)108.【解析】【分析】(1)根据统计图化学对应数据和百分比可以求得这次调查的学生数,进而求得m的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数.【详解】解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生, m%=9÷50×100%=18%,故答案为50,18;(2)选择数学的有;50-9-5-8-10-3=15(名),补全的条形统计图如右图所示:(3)扇形统计图中,“数学”所对应的圆心角度数是:1536010850︒︒⨯=, 故答案为108.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19. 如图,已知//DC FP ,12∠=∠,30FED ∠=︒,80AG F ∠=︒,FH 平分EFG(1)说明://DC AB ;(2)求PFH ∠的度数.【答案】(1)见解析;(2)25PFH ∠=︒.【解析】【分析】(1)由D C ∥FP 知∠3=∠2=∠1,可得D C ∥A B ;(2)由(1)利用平行线的判定得到A B ∥PF ∥C D ,根据平行线的性质得到∠A GF=∠GFP ,∠D EF=∠EFP ,然后利用已知条件即可求出∠PFH 的度数.【详解】解:(1)∵D C ∥FP ,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴D C ∥A B ;(2)∵D C ∥FP ,D C ∥A B ,∠D EF=30°,∴∠D EF=∠EFP=30°,A B ∥FP ,又∵∠A GF=80°,∴∠A GF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH 平分∠EFG , 1GFH GFE 552︒∴∠=∠=, ∴∠PFH=∠GFP-∠GFH=80°-55°=25°.【点睛】此题主要考查了平行线的性质与判定,首先利用同位角相等两直线平行证明直线平行,然后利用平行线的性质得到角的关系解决问题.20. 如图,BED B D ∠=∠+∠,猜想AB 与CD 有怎样的位置关系,并说明理由.【答案】//AB CD ,见解析.【解析】【分析】延长B E 交C D 于F ,通过三角形外角的性质可证明∠B =∠EFD ,则能证明A B ∥C D .【详解】解:延长B E 交C D 于F .∵∠B ED =∠B +∠D ,∠B ED =∠EFD +∠D ,∴∠B =∠EFD ,∴A B ∥C D .【点睛】本题主要考查三角形外角的性质及两直线平行的判定,可围绕截线找同位角、内错角和同旁内角. 21. 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)【答案】乙的速度为150米/分,甲的速度为375米/分,环形场地的周长为900米.【解析】【分析】由“4分钟后两人首次相遇”,可知跑步4分钟后,甲比乙多跑一圈,即可得到相等关系;设乙的速度为x 米/分,则甲的速度是2.5x 米/分,根据等量关系列出方程进行求解,即可得到乙和甲的速度;然后由乙跑了4分钟之后还差300米便可跑完一整圈,即可求出场地的周长.【详解】设乙的速度为x m/min ,则甲的速度为2.5x m/min.由题意,得2.5x ×4-4x =4x +300.解得x =150.所以2.5x =2.5×150=375,4x +300=4×150+300=900.答:乙的速度为150米/分,甲的速度为375米/分,环形场地的周长为900米.22. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【答案】小明至少答对18道题才能获得奖品.【解析】 试题分析:设小明答对x 道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可. 试题解析: 设小明答对x 道题,根据题意得, 6x-2(25-x)>90解这个不等式得,,∵x 为非负整数∴x 至少为18 答:小明至少答对18道题才能获得奖品.考点:一元一次不等式的应用.23. 如图1,将一副直角三角板放在同一条直线A B 上,其中∠ONM=30°,∠OC D =45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中的三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)【答案】(1)105°;(2)150°;(3)75°或255°【解析】【分析】(1)根据三角形的内角和定理可得∠C EN=180°-∠D C N-∠MNO ,代入数据计算即可得解; (2)根据角平分线的定义求出∠D ON=45°,利用内错角相等两直线平行求出C D ∥A B ,再根据两直线平行,同旁内角互补求解即可;(3)当C D 在A B 上方时,C D ∥MN ,设OM 与C D 相交于F ,根据两直线平行,同位角相等可得∠OFD =∠M=60°,然后根据三角形的内角和定理列式求出∠MOD ,即可得解;当C D 在A B 的下方时,C D ∥MN ,设直线OM 与C D 相交于F ,根据两直线平行,内错角相等可得∠D FO=∠M=60°,然后利用三角形的内角和定理求出∠D OF ,再求出旋转角即可.【详解】解:(1)在△C EN 中,∠C EN=180°-∠D C N-∠MNO =180°-45°-30°=105°;(2)∵OD 平分∠MON,∴∠D ON=12∠MPN=12×90°=45°,∴∠D ON=∠D =45°,∴C D ∥A B ,∴∠C EN=180°﹣∠MNO=180°﹣30°=150°;(3)如图1,C D 在A B 上方时,设OM与C D 相交于F,∵C D ∥MN,∴∠OFD =∠M=60°,在△OD F中,∠MOD =180°-∠D -∠OFD ,=180°-45°-60°,=75°,当C D 在A B 的下方时,设直线OM与C D 相交于F,∵C D ∥MN,∴∠D FO=∠M=60°,在△D OF中,∠D OF=180°-∠D -∠D FO=180°-45°-60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC 旋转75°或255°时,边C D 恰好与边MN平行.故答案为:75或255.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.。
2020-2021学年人教版数学七年级下册第八章《二元一次方程组》实际应用常考题专练(一)
2020--2021学年七年级下册第八章《二元一次方程组》实际应用常考题专练(一)1.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 502.在元旦期间,某商场投入13800元资金购进甲、乙两种商品共500件,两种商品的成本价和销售价如下表所示:成本价销售价商品单价(元/件)甲24 36乙33 48(1)该商场购进两种商品各多少件?(2)这批商品全部销售完后,该商场共获利多少元?3.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.4.在疫情防控期间,某中学为保障广大师生生命健康安全购进一批免洗手消毒液和84消毒液.如果购买100瓶免洗手消毒液和150瓶84消毒液,共需花费1500元;如果购买120瓶免洗手消毒液和160瓶84消毒液,共需花费1720元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)某药店出售免洗手消毒液,满150瓶免费赠送10瓶84消毒液.若学校从该药店购进免洗手消毒液和84消毒液共230瓶,恰好用去1700元,则学校购买免洗手消毒液多少瓶?5.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房24 20北国超市20 18(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?6.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.7.某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?普通(元/间/天)豪华(元/间/天)三人间150 300双人间140 4008.宝应县是江苏省青少年足球训练基地,每年都举行全县中小学生足球联赛.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分.2004年的联赛中某校足球队参加了16场比赛,共得30分.已知该队只输了2场,那么这个队胜了几场平了几场?9.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上的觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上、树下的鸽子有一样多了.”你知道树上、树下各有多少只鸽子吗?10.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?参考答案1.解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.2.解:(1)设商场购进甲种商品x件,购进乙种商品y件,由题意得:,解得:,答:商场购进甲种商品300件,购进乙种商品200件.(2)根据题意得:300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.3.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x=21,∴毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y=44.5 (不符合题意).∴陈老师肯定搞错了.②设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25(105﹣z)=2447﹣a.∴4z=178+a,∵a、z都是整数,∴178+a应被4整除,∴a为偶数,又因为a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为:2元或6元.4.解:(1)设每瓶免洗手消毒液的价格为x元,每瓶84消毒液的价格为y元,依题意,得:,解得:.答:每瓶免洗手消毒液的价格为9元,每瓶84消毒液的价格为4元.(2)设学校从该药店购买免洗手消毒液a瓶,则购买84消毒液(230﹣a)瓶.①当a<150时,9a+4(230﹣a)=1700,解得:a=156>150,∴a=156不符合题意,舍去;②当a≥150时,9a+4(230﹣a﹣10)=1700,解得:a=164.答:学校从该药店购买免洗手消毒液164瓶.5.解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.6.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.7.解:设三人普通房和双人普通房各住了x、y间.根据题意,得化简得:,②﹣①×5得:y=13,将y=13代入①得:x=8,∴(7分)答:三人间普通客房、双人间普通客房各住了8、13间.8.解:方法一:设这个队胜了x场,平了y场,根据题意得解得答:这个队胜了8场,平了6场.方法二:设这个队胜了x场,则平了(14﹣x)场,根据题意得3x+(14﹣x)=30解得x=8则14﹣x=6答:这个队胜了8场,平了6场.9.解:设树上有x只鸽子,树下有y只鸽子.由题意可:,整理可得:,解之可得:.答:树上原有7只鸽子,树下有5只鸽子.10.解:设该厂第一季度生产甲种机器x台,乙种机器y台.依题意得:,解得.故该厂第一季度生产甲种机器220台,乙种机器260台.。
2020-2021学年人教版七年级下学期数学练习题及答案 (422)
2020-2021学年人教版七年级下学期数学练习题及答案
2.(3分)点P(1,﹣2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为()
A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,﹣1)【分析】根据平面直角坐标系中对称点的规律解答.
【解答】解:点P(1,﹣2)关于x轴的对称点是P1(1,2),P1关于y轴的对称点坐标P2的坐标为(﹣1,2),
故选:B.
【点评】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
第1页共1页。
2020-2021学年人教版七年级下册数学 8.3实际问题与二元一次方程组(含答案)
8.3实际问题与二元一次方程组一、单选题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x岁,小明今年y岁,根据题意列方程得()A.345x y yx y x-=-⎧⎨-=-⎩B.345x y yx y x-=+⎧⎨-=-⎩C.345x y yx y x-=-⎧⎨-=+⎩D.345x y yx y x-=+⎧⎨-=+⎩2.某校运动员按规定组数进行分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则可列出的方程组为()A.7385y xy x=+⎧⎨=-⎩B.7385y xy x=+⎧⎨=+⎩C.7385y xy x=-⎧⎨=-⎩D.7385y xy x=-⎧⎨=+⎩3.某校八(3)班40名同学为“希望工程”捐款,共捐款510元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组()A.x y406x8y510+=⎧⎨+=⎩B.x y406x8y416+=⎧⎨+=⎩C.x y276x8y416+=⎧⎨+=⎩D.x y2986320x y+=⎧⎨+=⎩4.《九章算术》第八卷方程第十问题:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50元,如果乙得到甲所有钱的23,那么乙也共有钱50元,问甲、乙各自带了多少钱?设甲原有钱x元,乙原有钱y元,可列方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y+=⎧⎪⎨+=⎪⎩5.父子二人并排站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.3.2111173x yx y+=⎧⎪⎨⎛⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭⎩B.3.2111173x yx y+=⎧⎪⎨⎛⎫⎛⎫-=-⎪ ⎪⎪⎝⎭⎝⎭⎩C.3.21137x yx y+=⎧⎪⎨=⎪⎩D.3.2111137x yx y+=⎧⎪⎨⎛⎫⎛⎫-=-⎪ ⎪⎪⎝⎭⎝⎭⎩6.《九章算术》是我国古代数学的经典著作,书中记:今有上禾七乘,损实一斗,益之下禾两秉,而实一十斗;下禾八秉,益实一斗,于上禾二秉,而实一十斗.问上、下禾实一秉各几何?其意思为:现有七捆上等稻子和两捆下等稻子打成谷子,再减去一斗谷子,最后得到十斗谷子;八捆下等稻子和两捆上等稻子打成谷子,再加上一斗谷子,最后得到十斗谷子,问一捆上等稻子和一捆下等稻子各打谷子多少斗?设一捆上等稻子和一捆下等稻子分别打成谷子x斗,y斗,则可建立方程组为()A.72110 28110 x yx y-+=⎧⎨++=⎩B.7211028110x yx y+-=⎧⎨+-=⎩C.72(1)1028(1)10x yx y+-=⎧⎨++=⎩D.7211028110x yx y+-=⎧⎨++=⎩7.元代数学家朱世杰撰写的《四元玉鉴》中记载了一个问题,大意是:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可买苦果七个,十一文钱可买甜果九个,问甜果、苦果各几个?设买了甜果x个,苦果y个,根据题意可列方程组()A.100041199979x yx y+=⎧⎪⎨+=⎪⎩B.100011499997x yx y+=⎧⎪⎨+=⎪⎩C.100079999411x yx y+=⎧⎪⎨+=⎪⎩D.100097999114x yx y+=⎧⎪⎨+=⎪⎩8.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容积各是多少斛?”设1个大容器的容积为x斛,1个小容器的容积y斛,则根据题意可列方程组()A.5352x yx y+=⎧⎨+=⎩B.3552x yx y+=⎧⎨+=⎩C.5325x yx y+=⎧⎨=+⎩D.5235x yx y+=⎧⎨=+⎩9.某运输队接到给武汉运输物资的任务,该队有A型卡车和B型卡车,A型卡车每次可运输6t物资,每天可运输5次,B型卡车每次可运输8t物资,每天可运输4次,若每天派出20辆卡车,刚好运输620t物资,设该运输队每天派出A型卡车x辆,B型卡车y 辆,则所列方程组正确的是()A.542068620x yx y+=⎧⎨+=⎩B.2068620x yx y+=⎧⎨+=⎩C.205648620x yx y+=⎧⎨⨯+⨯=⎩D.54205648620x yx y+=⎧⎨⨯+⨯=⎩10.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x元,一头牛价钱为y元,则符合题意的方程组是()A.2+10000210000(2)2xx yyx y⎧-=⎪⎪⎨⎪-+=⎪⎩B.2+1000022100002xx yyx y⎧-=⎪⎪⎨⎪+-=⎪⎩C.2++1000022100002xx yyx y⎧=⎪⎪⎨⎪+-=⎪⎩D.210000210000(2)2xx yyx y⎧++=⎪⎪⎨⎪-+=⎪⎩二、填空题11.某班20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,可列方程组为___________.12.有大小两种笔记本,3本大笔记本和2本小笔记本的售价是14元,2本大笔记本和3本小笔记本的售价为11元.设大笔记本为x元/本,小笔记本为y元/本,根据题意,列方程组正确的是____.13.某果园现有桃树和杏树共500棵,计划一年后桃树增加3%,杏树增加4%,这样果园里这两种果树将增加3.6%,如果设该果园现有桃树和杏树分别为x棵,y棵,则可列方程组_________.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为______.15.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是__分钟.三、解答题16.某生产车间生产A,B两种零件,现有55名工人,每人每天生产A零件12个,每人每天生产B零件8个,若一个A需搭配3个B才能成一套产品.那么应该分配多少人做A零件,多少人做B零件,才能使每天做出的产品刚好配套?17.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?18.列方程解应用题:在庆祝深圳经济特区建立40周年的活动中,八年级组购买了“小红旗”装饰各班教室,家委会先后两次在同一家商店以相同的单价购买了两种材质的“小红旗”,第一次购买300个塑料材质的“小红旗”,200个涤纶材质的“小红旗”,共花费660元;第二次购买100个塑料材质的“小红旗”,300个涤纶材质的“小红旗”共花费570元,求这两种材质的“小红旗”单价各为多少元?参考答案1.A 2.D 3.C 4.B 5.D 6.D 7.B 8.A 9.C 10.A11.20 3252 x yx y+=⎧⎨+=⎩12.3214 2311 x yx y+=⎧⎨+=⎩13.500,3%4%500 3.6% x yx y+=⎧⎨+=⨯⎩14.4648 2538 x yx y+=⎧⎨+=⎩15.416.应该分配10人做A零件,45人做B零件,才能做出刚好配套的产品.17.这些消毒液应该分装20000大瓶,50000小瓶18.塑料材质的“小红旗”的单价为1.2元,涤纶材质的“小红旗”的单价为1.5元。
专题04 二元一次方程组【压轴题专项训练】-2020-2021学年七年级数学下学期(人教版)(解析版
专题04 二元一次方程组【压轴题专项训练】一、单选题1.(2021·北京二中七年级期末)已知关于x ,y 的二元一次方程组的解满足23x y -=,则m 的值是( )A .2B .-2C .1D .-1 【答案】D【解析】解:用①-②,得:()234x m y m +--=-,即212x y m -=-又∵23x y -=∴12=3m -,解得:故选:D .2.(2021·北京二中七年级期末)已知关于x ,y 的二元一次方程组的解为,则2a b -的值为( )A .23B .2C .-2D .-3【答案】B【解析】解:将代入,可得:将①-②,得:()231a b a b --+=-,即2=2a b -故选:B .3.(2020·浙江七年级期末)一个数a 在数轴上表示的点是A ,当点A 在数轴上向左平移了3个单位长度后到点B ,点A 与点B 表示的数恰好互为相反数,则数a 是( )A .1.5B .3C . 1.5-D .3-【答案】A【解析】解:设B 点表示的数是b ,根据题意得:a -3=b ,a =-b ,解得:a =1.5,b =-1.5.故选:A .4.(2020·四川眉山市·七年级期末)如果2150x y x y -+++-=,则x 、y 的值分别是( )A .B .C .D .【答案】C【解析】 解:∵2150x y x y -+++-=,∴ ,解此方程组得:.故选:C .5.(2020·四川眉山市·七年级期末)若是方程31ax y -= 的一个解,则a 的值是( )A .B .2C .1-D .5-【答案】B【解析】解:由题意可得:2a-3×1=1,解之可得:a=2,故选B .6.(2020·广东惠州市·七年级期末)用代入法解方程组使得代入后,化简比较容易的变形是()A .由①得72yx += B .由①得27y x =-C .由②得343y x +=D .由②得334x y -=【答案】B【解析】解:观察可知,由①得27y x =-代入后化简比较容易.故选:B .7.(2021·北京二中七年级期末)《孙子算经》是中国古代最重要的数学著作,现在传世的共有三卷,卷中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x 尺,木长y 尺,可列方程组为______________.【答案】【解析】解:设绳子长x 尺,长木长y 尺,依题意,得:,故答案为:.8. 若()2352280x y x y -++-+=,则x y +的值为___.【答案】3【解析】∵()2352280x y x y -++-+=∴∴解得:∴3x y +=故答案为:3.9. 已知是二元一次方程26x y -=的一组解,那么a =_____.【答案】2【解析】∵是二元一次方程26x y -=的一组解∴246a ⨯-=∴2a =故答案为:2.10.(2020·湖北荆州市·七年级期末)如果是方程3x ﹣ay =10的一个解,那么a =_____.【答案】1.解:∵是方程3x ﹣ay =10的一个解,∴3×3+a =10,解得a =1,故答案为:1.11.(2021·湖南邵阳市·七年级期末)如果4a 2x ﹣3y b 4与﹣23a 3b x+y 是同类项,则xy =_____. 【答案】3【解析】解:∵4a 2x ﹣3y b 4与﹣23a 3b x +y 是同类项, ∴,解得:,则xy =3.故答案为:3.12. 已知是二元一次方程组的解,则3m n +的算术平方根为__________.【答案】3【解析】解:把代入方程组得:,解得:,∴3m n +==9,∴3m n +的算术平方根为3,故答案为:3.三、解答题13.(2021·北京二中七年级期末)解方程(组):(1);(2).【答案】解:(1)去分母,得:去括号,得:42516x x +-+=移项,合并同类项,得:3x -=系数化1,得:3x =-(2)将①×2,得:228x y -=③③+②,得:55=x ,解得:1x =将1x =代入①,得:14y -=,解得:3y =-∴方程组的解为【解析】(1)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1求解;(2)用加减消元法解二元一次方程组.14.(2020·四川眉山市·七年级期末)解方程组:【答案】解:①+②得,31x y -=④,②×2+③得,731x y -=⑤④与⑤组成方程组得 ,解方程组得,,把代入①得,124z +-=,解得,1z =-∴原方程组的解为:,【解析】先消去z ,把三元一次方程组变成二元一次方程组,解二元一次方程组即可.15.(2021·安徽安庆市·七年级期末)某校开展校园艺术节系列活动,校学生会代表小亮到文体超市购买文具作为奖品.(1)小亮第一次购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小亮的对话图片,求小亮原计划购买文具袋多少个?(2)小亮第二次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,钢笔和签字笔合计288元,问小亮购买了钢笔和签字笔各多少支?【答案】解:(1)设小亮原计划购买文具袋x 个,依题意得:()10100.85111x x -⨯+=,解得:13x =.答:小亮原计划购买文具袋13个.(2)设小亮购买了钢笔m 支,签字笔n 支,依题意得:,解得:.答:小亮购买了钢笔30支,签字笔20支.【解析】(1)设小亮原计划购买文具袋x 个,根据题意列一元一次方程求解即可;(2)设小亮购买了钢笔m 支,签字笔n 支,根据题意列二元一次方程组求解即可.16.(2020·湖北荆州市·七年级期末)两位同学在解方程组时,甲同学正确解得,乙同学因写错c 解得,试求a 、b 、c 的值.【答案】解:把与分别代入ax +by =﹣2得:,①+②得:a =﹣4,把a =﹣4代入①得:b =﹣5,把代入cx ﹣7y =20得:3c +14=20,解得:c =2,则a 、b 、c 的值分别是a =﹣4,b =﹣5,c =2.【解析】把甲乙两名同学的结果代入ax+by =﹣2中求出a 与b 的值,把甲的结果代入cx ﹣7y =﹣2中求出c 的值即可.17.(2021·湖南邵阳市·七年级期末)2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资.某口罩厂现安排A 、B 两组工人共150人加工口罩,A 组工人每人每小时可加工口罩70个,B 组工人每人每小时可加工口罩50个,A 、B 两组工人每小时一共可加工口罩9300个.试问:A 、B 两组工人各多少人?【答案】设A 组工人有x 人,B 组工人有y 人,依题意得:,解得:.答:A组工人有90人,B组工人有60人.【解析】设A组工人有x人,B组工人有y人,根据A、B两组工人共150人每小时可加工口罩9300个,即可得出关于x,y的二元一次方程组,解之即可得出结论.。