MATLAB的数值运算

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

MATLAB数值运算

MATLAB数值运算
合就是从整体上使误差尽量的小一些。
四川师范大学数学与软件科学学院
3.2 插值和拟合
2、拟合
❖ 线性最小二乘拟合
polyfit
❖ 非线性最小二乘拟合
lsqcurvefit
四川师范大学数学与软件科学学院
3.2 插值和拟合
2、拟合
❖ 多项式拟合函数polyfit
p = polyfit(x,y,n)
❖ 常微分方程的数值解的思路
对求解区间进行剖分,然后对微分方程离散成在节点上
的近似公式或近似方程,最后结合给定条件求出近似解。
线性方程组的解法
❖ 直接法
通过有限步四则运算求得方程组准确解。主要有矩阵相
除和消去法。
❖ 迭代法
先给定一个解的初始值,然后按一定的法则逐步求出解
的近似值。
四川师范大学数学与软件科学学院
3.4 线性方程组的数值解
1、直接法
❖ 矩阵相除法
对线性方程组AX=B用矩阵除法来完成,即
X=A\B
若A为m × 矩阵,
当m=n且A可逆时,给出唯一解;
当n>m时,矩阵除给出方程的最小二乘解;
当n<同时,矩阵给出方程的最小范数解。
四川师范大学数学与软件科学学院
3.4 线性方程组的数值解
1、直接法
❖ 消去法
方程的个数和未知数的个不])化简为简化阶梯形,若系数矩阵的秩不等于
增广矩阵的秩,则方程组无解;若两者的秩相等,则方
在某海域测得一些点(x,y)处的水深z由下表给出,
船的吃水深度为5英尺,在矩形区域(75,200)
×(-50,150)里的哪些地方船要避免进入?
x
y
z
129 140 103.5 88 185.5 195

matlab数值运算和符号运算

matlab数值运算和符号运算

《深度探讨:从数值运算到符号运算的MATLAB应用》在科学计算领域中,MATLAB无疑是一个不可或缺的工具。

它被广泛应用于数学建模、数据分析、图形可视化和算法开发等领域。

在MATLAB中,数值运算和符号运算是两个核心概念,它们分别在不同的领域中发挥着重要作用。

本文将从数值运算和符号运算两个方面展开讨论,带您深入探索MATLAB的应用价值。

一、数值运算1. MATLAB中的数值数据类型在MATLAB中,常见的数值数据类型包括整数、浮点数和复数等。

它们在科学计算中有着广泛的应用,例如在矩阵运算、微分方程求解和优化算法中。

2. 数值计算函数的应用MATLAB提供了丰富的数值计算函数,包括线性代数运算、插值和拟合、统计分布和随机数生成等。

这些函数为科学计算提供了强大的支持,使得复杂的数值计算变得更加简单高效。

3. 数值方法在实际问题中的应用通过具体的案例,我们可以深入了解MATLAB在实际问题中的数值计算方法。

通过有限元分析解决结构力学问题、通过数值积分求解物理方程、通过数值微分求解工程问题等。

二、符号运算1. MATLAB中的符号计算工具MATLAB提供了符号计算工具包,可以进行符号变量的定义、代数运算、微分积分和方程求解等。

这为数学建模、符号推导和精确计算提供了强大的支持。

2. 符号计算函数的应用通过具体的例子,我们可以深入了解MATLAB中符号计算函数的应用。

利用符号计算求解微分方程、利用符号变量定义复杂的代数表达式等。

3. 符号计算在科学研究中的应用通过详细的案例,我们可以了解符号计算在科学研究中的应用。

利用符号计算推导物理模型、利用符号运算求解工程问题等。

总结与展望:通过本文的深度探讨,我们对MATLAB中的数值运算和符号运算有了全面的了解。

数值运算为我们提供了高效的数值计算工具,而符号运算则为我们提供了精确的符号计算工具。

这两者相辅相成,在不同的领域中发挥着重要的作用。

希望通过本文的阐述,读者可以更加深入地理解MATLAB中数值运算和符号运算的应用,提升科学计算的能力和水平。

matlab数学运算符

matlab数学运算符

matlab数学运算符一、加法运算符(+)加法运算符是Matlab中最基本的数学运算符之一,用于实现数值的相加操作。

在Matlab中,可以使用加法运算符计算两个或多个数值的和。

例如,使用加法运算符可以计算2和3的和,即2+3=5。

二、减法运算符(-)减法运算符用于实现数值的相减操作。

在Matlab中,可以使用减法运算符计算两个数值的差。

例如,使用减法运算符可以计算5和3的差,即5-3=2。

三、乘法运算符(*)乘法运算符用于实现数值的相乘操作。

在Matlab中,可以使用乘法运算符计算两个或多个数值的乘积。

例如,使用乘法运算符可以计算2和3的乘积,即2*3=6。

四、除法运算符(/)除法运算符用于实现数值的相除操作。

在Matlab中,可以使用除法运算符计算两个数值的商。

例如,使用除法运算符可以计算6和2的商,即6/2=3。

五、取模运算符(mod)取模运算符用于计算两个数值相除后的余数。

在Matlab中,可以使用取模运算符计算两个数值相除的余数。

例如,使用取模运算符可以计算7除以3的余数,即7 mod 3=1。

六、指数运算符(^)指数运算符用于实现数值的乘方操作。

在Matlab中,可以使用指数运算符计算一个数的指定次幂。

例如,使用指数运算符可以计算2的3次幂,即2^3=8。

七、开方运算符(sqrt)开方运算符用于计算一个数的平方根。

在Matlab中,可以使用开方运算符计算一个数的平方根。

例如,使用开方运算符可以计算16的平方根,即sqrt(16)=4。

八、绝对值运算符(abs)绝对值运算符用于计算一个数的绝对值。

在Matlab中,可以使用绝对值运算符计算一个数的绝对值。

例如,使用绝对值运算符可以计算-5的绝对值,即abs(-5)=5。

九、取整运算符(floor)取整运算符用于将一个数向下取整为最接近的整数。

在Matlab中,可以使用取整运算符将一个数向下取整。

例如,使用取整运算符可以将3.8向下取整为最接近的整数,即floor(3.8)=3。

第三章 MATLAB数值计算

第三章 MATLAB数值计算
all any isempty isequal isreal find
功 能
如果所有的元素都是非零值,返回1;否则,返回0。 如果有一个元素为非零值,那么返回1;否则,返回0 判断是否空矩阵 判断两矩阵是否相同 判断是否是实矩阵 返回一个由非零元素的下标组成的向量
常用的矩阵函数
矩阵的行列式、矩阵的秩、特征值等在现代控制理论 中有广泛的应用,Matlab提供了相应的函数求其值 • det(A) 方阵A的行列式 • eig(A) 方阵A的特征值和特征向量 • rank(A) 矩阵A的秩 • trace(A) 矩阵A的迹 • expm(A) 矩阵的指数 • sqrtm(A) 求矩阵的平方根 • funm(A,’fun’) 求一般的方阵函数
矩阵的修改
• (1)直接修改 可用↑键找到所要修改的矩阵,用←键移动到要 修改的矩阵元素上即可修改。
• (2)指令修改 可以用A(﹡, ﹡)=﹡ 来修改。 • (3)由矩阵编辑器修改 由Matlab提供工具栏按钮来查看工作区变量,单 击变量,可以打开或删除变量
• 例: 修改矩阵A中元素的数值 >>A=[1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]; >>A(1,1)=0;A(2,2)=A(1,2)+A(2,1);A(4,4)=cos(0); 则矩阵变为: • A= 0 2 3 4 5 7 7 8 9 10 11 12 13 14、控制理论、物理学等领域中的很多 问题都可以归结到下面的线性方程组
矩阵行列式
• 如N阶矩阵A的行列式不等于0,即时,称矩阵 A非奇异,否则A奇异。当线性方程系数矩阵 非奇异,则线性方程有唯一解。对N阶方阵A, MATLAB中由函数得到行列式

第四章_MATLAB的数值计算功能

第四章_MATLAB的数值计算功能

第四章MATLAB 的数值计算功能Chapter 4: Numerical computation of MATLAB数值计算是MATLAB最基本、最重要的功能,是MATLAB最具代表性的特点。

MATLAB在数值计算过程中以数组和矩阵为基础。

数组是MATLAB运算中的重要数据组织形式。

前面章节对数组、矩阵的特征及其创建与基本运算规则等相关知识已作了较详尽的介绍,本章重点介绍常用的数值计算方法。

一、多项式(Polynomial)`多项式在众多学科的计算中具有重要的作用,许多方程和定理都是多项式的形式。

MATLAB提供了标准多项式运算的函数,如多项式的求根、求值和微分,还提供了一些用于更高级运算的函数,如曲线拟合和多项式展开等。

1.多项式的表达与创建(Expression and Creating of polynomial)(1) 多项式的表达(expression of polynomial)_Matlab用行矢量表达多项式系数(Coefficient)和根,系数矢量中各元素按变量的降幂顺序排列,如多项式为:P(x)=a0x n+a1x n-1+a2x n-2…a n-1x+a n则其系数矢量(V ector of coefficient)为:P=[a0 a1… a n-1 a n]如将根矢量(V ector of root)表示为:ar=[ ar1 ar2… ar n]则根矢量与系数矢量之间关系为:(x-ar1)(x- ar2) … (x- ar n)= a0x n+a1x n-1+a2x n-2…a n-1x+a n(2)多项式的创建(polynomial creating)a,系数矢量的直接输入法利用poly2sym函数直接输入多项式的系数矢量,就可方便的建立符号形式的多项式。

例1:创建给定的多项式x3-4x2+3x+2poly2sym([1 -4 3 2])ans =x^3-4*x^2+3*x+2也可以用poly2str.求一个方阵对应的符号形式的多项式。

数学实验 第2章 MATLAB数值运算

数学实验 第2章 MATLAB数值运算




数学实验

例2.5 向量的点积和叉积运算.
>> A = [4 -2 1];
>> B = [1 -1 3];
>> C=dot(A,B)
%向量A和B的点积
C=
9
>> D = cross(A,B) %向量A和B的叉积
D=
-5 -11 -2


澡身浴德 修业及时
澡身浴德 修业及时
2.2 矩阵及其运算
① x(n)
表示向量中的第n个元素
② x(n1:n2)
表示向量中的第n1至n2个元素
例2.3 向量元素的引用、修改和扩展.
>> x=1:2:5
x=
1
3
5


数学实验

>> x(2)=6
%修改第2个元素为6
x=
1
6

>> x(5)=7
%增加第5个分量,第4个分量没有赋值,自动设为0
x=
1
6
5
0
7
>> x([1,end])
2
.
= ( , , . . . , )

1 2

.
.

叫做 n 维向量,向量的第 i 个分量称为 .


数学实验

2.1.1 向量的创建
MATLAB中向量可以由以下方法创建:
(1)元素输入法
在命令行窗口中直接输入,向量元素用“[ ]”括起来,元素之间用空格、逗号或分
号分隔.用空格和逗号分隔生成行向量,用分号分隔生成列向量.

matlab中的基本运算

matlab中的基本运算

matlab中的基本运算基本运算是MATLAB中最基础的操作之一,它涵盖了数值计算、数据处理和绘图等各个方面。

本文将详细介绍MATLAB中的基本运算,包括算术运算、矩阵运算、逻辑运算和位运算等。

一、算术运算算术运算是最基本的运算之一,MATLAB中支持的算术运算包括加法、减法、乘法和除法等。

例如,可以使用"+"符号进行两个数的加法运算,用"-"符号进行减法运算,用"*"符号进行乘法运算,用"/"符号进行除法运算。

此外,还可以使用"^"符号进行幂运算,使用"sqrt"函数进行开方运算。

二、矩阵运算MATLAB中的矩阵运算是其强大功能之一。

可以使用矩阵进行加法、减法、乘法和除法等运算。

例如,可以使用"+"符号进行矩阵的逐元素加法运算,用"-"符号进行逐元素减法运算,用"*"符号进行矩阵的乘法运算,用"./"符号进行矩阵的逐元素除法运算。

三、逻辑运算逻辑运算在MATLAB中广泛应用于判断条件和控制流程。

MATLAB 支持的逻辑运算有与、或、非和异或等。

例如,可以使用"&&"符号进行逻辑与运算,用"||"符号进行逻辑或运算,用"~"符号进行逻辑非运算,用"xor"函数进行逻辑异或运算。

四、位运算位运算是对二进制数进行逐位操作的运算。

MATLAB支持的位运算有与、或、非、异或、左移和右移等。

例如,可以使用"&"符号进行位与运算,用"|"符号进行位或运算,用"~"符号进行位非运算,用"xor"函数进行位异或运算,用"<<"符号进行左移运算,用">>"符号进行右移运算。

第2章 MATLAB数值计算

第2章  MATLAB数值计算

第2章 MATLAB数值计算MATLAB的数学计算=数值计算+符号计算其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。

2.1 变量和数据2.1.1数据类型数据类型包括:数值型、字符串型、元胞型、结构型等数值型=双精度型、单精度型和整数类整数类=无符号类(uint8、uint16、uint32、uint64)和符号类整数(int8、int16、int32、int64)。

2.1.2数据1. 数据的表达方式▪可以用带小数点的形式直接表示▪用科学计数法▪数值的表示范围是10-309~10309。

以下都是合法的数据表示:-2、5.67、2.56e-56(表示2.56×10-56)、4.68e204(表示4.68×10204)2. 矩阵和数组的概念在MATLAB的运算中,经常要使用标量、向量、矩阵和数组,这几个名称的定义如下:▪标量:是指1×1的矩阵,即为只含一个数的矩阵。

▪向量:是指1×n或n×1的矩阵,即只有一行或者一列的矩阵。

▪矩阵:是一个矩形的数组,即二维数组,其中向量和标量都是矩阵的特例,0×0矩阵为空矩阵([])。

▪数组:是指n维的数组,为矩阵的延伸,其中矩阵和向量都是数组的特例。

3. 复数复数由实部和虚部组成,MATLAB用特殊变量“i”和“j”表示虚数的单位。

复数运算不需要特殊处理,可以直接进行。

复数可以有几种表示:z=a+b*i或z=a+b*jz=a+bi 或z=a+bj(当b 为标量时) z=r*exp(i*theta)● 得出一个复数的实部、虚部、幅值和相角。

a=real(z) %计算实部 b=imag(z) %计算虚部 r=abs(z) %计算幅值 theta=angle(z) %计算相角 说明:复数z 的实部a=r*cos(θ); 复数z 的虚部b=r*sin(θ); 复数z 的幅值22b a r +=;复数z 的相角theta=arctg(b/a),以弧度为单位。

matlabMATLAB的数值计算

matlabMATLAB的数值计算

4. 矩阵的其它运算
inv —— 矩阵求逆 det —— 行列式的值 eig —— 矩阵的特征值 diag —— 对角矩阵
’ —— 矩阵转置 sqrt —— 矩阵开方
5.矩阵的一些特殊操作
矩阵的变维
a=[1:12];b=reshape(a,3,4) c=zeros(3,4);c(:)=a(:) 矩阵的变向 rot90:旋转; fliplr:上翻; flipud:下翻 矩阵的抽取 diag:抽取主对角线;tril: 抽取主下三角;
2. 数组乘除(,./,.\)
ab —— a,b两数组必须有相同的行
和列两数组相应元素相乘。
a=[1 2 3;4 5 6;7 8 9];
b=[2 4 6;1 3 5;7 9 10];
a.*b
ans =
2
8
18
4
15
30
49
72
90
a=[1 2 3;4 5 6;7 8 9]; b=[2 4 6;1 3 5;7 9 10];
save data a b ——将工作空间 中a和b变量存到data.mat文件中。 下次运行matlab时即可用load指 令调用已生成的mat文件。
load —— load data —— load data a b ——
即可恢复保 存过的所有 变量
mat文件是标准的二进制文件, 还可以ASCII码形式保存。
3. 数组乘方(.^) — 元素对元素的幂
例:
a=[1 2 3];b=[4 5 6];
z=a.^2
z=
1.00
4.00
9.00
z=a.^b
z=
1.00 32.00 729.00
四、 多项式运算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算

如何在MATLAB中进行数值计算1.基本数学操作:-加法、减法、乘法、除法:使用+、-、*、/操作符进行基本算术运算。

-幂运算:使用^或.^(点乘)操作符进行幂运算。

- 开平方/立方:可以使用sqrt(或power(函数进行开平方和立方运算。

2.矩阵操作:- 创建矩阵:可以使用矩阵构造函数如zeros(、ones(、rand(等创建矩阵。

- 矩阵运算:使用*操作符进行矩阵相乘,使用transpose(函数进行矩阵转置。

- 矩阵求逆和求解线性方程组:使用inv(函数求矩阵的逆,使用\操作符求解线性方程组。

3.数值积分和微分:- 数值积分:使用integral(函数进行数值积分。

可以指定积分函数、积分上下限和积分方法。

- 数值微分:使用diff(函数进行数值微分。

可以指定微分函数和微分变量。

4.解方程:- 一元方程:使用solve(函数可以解一元方程。

该函数会尝试找到方程的精确解。

- 非线性方程组:使用fsolve(函数可以求解非线性方程组。

需要提供初始值来开始求解过程。

-数值方法:可以使用牛顿法、二分法等数学方法来求解方程。

可以自定义函数来实现这些方法。

5.统计分析:- 统计函数:MATLAB提供了丰富的统计分析函数,如mean(、std(、var(等用于计算均值、标准差、方差等统计量。

- 直方图和密度估计:使用histogram(函数可以绘制直方图,并使用ksdensity(函数进行核密度估计。

- 假设检验:使用ttest(或anova(函数可以进行假设检验,用于比较多组数据之间的差异。

6.数值优化:- 非线性最小化:使用fminunc(函数可以进行非线性最小化。

需要提供目标函数和初始点。

- 线性规划:使用linprog(函数可以进行线性规划。

需要提供目标函数和限制条件。

- 整数规划:使用intlinprog(函数可以进行整数规划。

需要提供目标函数和整数约束。

7.拟合曲线:- 线性拟合:使用polyfit(函数进行线性拟合。

如何使用Matlab技术进行数值计算

如何使用Matlab技术进行数值计算

如何使用Matlab技术进行数值计算概述:Matlab是一种强大的数值计算和数据分析工具,广泛应用于科学、工程和金融等领域。

本文将介绍一些基本的Matlab技术,以帮助读者了解如何使用Matlab进行数值计算。

一、矩阵运算Matlab最大的优势之一是其强大的矩阵运算功能。

通过建立和操作矩阵,可以进行向量运算、线性方程组求解、特征值和特征向量计算等。

例如,假设我们需要解决一个线性方程组Ax=b,其中A是一个3x3的已知系数矩阵,b是一个已知向量,x是未知向量。

我们可以使用Matlab的“\”运算符来求解:x = A \ b;除此之外,Matlab还提供了许多其他的矩阵运算函数,如矩阵乘法(*)、矩阵转置(')、求逆矩阵(inv(A))等。

二、绘图和数据可视化Matlab提供了丰富的绘图函数,可以帮助我们对数据进行可视化分析。

通过绘制线图、散点图、柱状图、等高线图等,我们可以更直观地理解数据的规律和趋势。

例如,我们可以使用Matlab的“plot”函数来绘制一个简单的二维线图:x = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);此外,Matlab还支持自定义图形的样式、添加标题、轴标签和图例等。

通过适当的数据可视化,我们可以更好地理解和解释数据。

三、数值积分和微分在数学和工程领域,积分和微分是常见的数值计算问题。

Matlab提供了许多函数来计算数值积分和微分,如“quad”和“diff”。

例如,我们可以使用Matlab的“quad”函数来计算一个函数在给定区间上的数值积分:f = @(x) x^2 + 2*x + 1;integral = quad(f, 0, 1);类似地,我们可以使用“diff”函数来计算一个函数在给定点上的数值导数:f = @(x) exp(x);x = linspace(0, 1, 100);dx = diff(f(x))./diff(x);四、非线性方程求解非线性方程的求解在科学和工程中经常遇到。

第四章MATLAB的数值计算功能

第四章MATLAB的数值计算功能

第四章MATLAB的数值计算功能MATLAB是一种非常强大的数值计算环境,具有广泛的数值计算功能。

在本文中,我们将讨论MATLAB的一些常见数值计算功能,包括数值求解、数值积分和数值优化等。

首先,MATLAB可以进行数值求解。

数值求解是指通过数值方法来找到方程的根或函数的极值。

MATLAB提供了多种数值求解方法,包括牛顿法、割线法、二分法等。

用户可以根据具体的问题选择适当的数值求解方法,并使用MATLAB的相关函数进行求解。

例如,可以使用fzero函数来求解非线性方程的根,使用fsolve函数来求解非线性方程组的根。

其次,MATLAB还可以进行数值积分。

数值积分是指通过数值方法来计算函数的定积分。

MATLAB提供了多种数值积分方法,包括梯形法则、辛普森法则、高斯积分法等。

用户可以使用MATLAB的相关函数进行数值积分计算。

例如,可以使用trapz函数来进行梯形法则积分计算,使用quad函数来进行高斯积分法的计算。

此外,MATLAB还具有数值优化功能。

数值优化是指通过数值方法来寻找函数的最大值或最小值。

MATLAB提供了多种数值优化方法,包括梯度法、牛顿法、遗传算法等。

用户可以使用MATLAB的相关函数进行数值优化计算。

例如,可以使用fminbnd函数来进行单变量函数的最小值优化,使用fmincon函数来进行多变量函数的约束优化。

除了以上功能,MATLAB还具有其他一些重要的数值计算功能。

例如,MATLAB提供了矩阵计算、代数运算、数值微分、常微分方程求解等功能。

用户可以使用MATLAB的矩阵运算符进行矩阵计算,使用MATLAB的代数运算函数进行代数运算,使用MATLAB的diff函数进行数值微分计算,使用MATLAB的ode45函数进行常微分方程数值求解。

总而言之,MATLAB是一种功能强大的数值计算环境,具有广泛的数值计算功能。

无论是数值求解、数值积分还是数值优化等,MATLAB都提供了多种数值计算方法和相关函数,方便用户进行数值计算工作。

matlab的数值运算

matlab的数值运算

matlab的数值运算当使用MATLAB 进行数值运算时,可以使用各种内置函数和运算符进行计算。

下面是一些常见的数值运算操作的详细说明:基本数学运算:加法:使用"+" 运算符进行两个数的相加。

例如,计算2 和3 的和:2 + 3。

减法:使用"-" 运算符进行两个数的相减。

例如,计算5 减去2 的结果:5 - 2。

乘法:使用"*" 运算符进行两个数的相乘。

例如,计算4 乘以3 的结果:4 * 3。

除法:使用"/" 运算符进行两个数的相除。

例如,计算10 除以2 的结果:10 / 2。

取余数:使用"mod" 函数或"%" 运算符计算两个数的余数。

例如,计算11 除以3 的余数:mod(11, 3) 或11 % 3。

幂运算:使用"^" 运算符进行幂运算。

例如,计算2 的3 次幂:2^3。

数学函数:MATLAB 提供了许多内置的数学函数,可以进行各种数值计算和分析操作。

这些函数包括但不限于:abs(x):返回x 的绝对值。

sin(x):返回x 的正弦值。

cos(x):返回x 的余弦值。

exp(x):返回e 的x 次幂,其中e 是自然对数的底数。

log(x):返回x 的自然对数。

sqrt(x):返回x 的平方根。

round(x):返回x 的四舍五入值。

floor(x):返回不大于x 的最大整数。

ceil(x):返回不小于x 的最小整数。

max(x, y):返回x 和y 中的较大值。

min(x, y):返回x 和y 中的较小值。

数组运算:MATLAB 中的数值计算通常涉及数组操作。

可以对向量、矩阵和多维数组执行各种运算,例如:矩阵相加:使用"+" 运算符对两个相同大小的矩阵进行元素级别的相加。

矩阵相乘:使用"" 运算符对两个矩阵进行乘法运算。

matlab的数值运算

matlab的数值运算

matlab的数值运算Matlab是一种强大的数值计算和科学计算软件,它提供了丰富的数值运算功能,包括基本的数学运算、矩阵运算、符号计算以及常见的数值方法等。

在本文中,我们将讨论一些常见的数值运算方法和函数,并介绍它们的使用方法。

1. 基本的数学运算在Matlab中,可以使用基本的算术运算符进行数学运算,例如加法(+)、减法(-)、乘法(*)、除法(/)等。

例如,可以使用以下代码计算两个数的和:```a = 3;b = 4;c = a + b;disp(c);```这将输出结果为7。

此外,Matlab还提供了许多数学函数,可以进行各种复杂的数学运算。

例如,可以使用`sin`函数计算一个角度的正弦值,如下所示:```angle = pi/6;sin_value = sin(angle);disp(sin_value);```这将输出结果为0.5,表示30度的正弦值为0.5。

2. 矩阵运算Matlab中的矩阵运算非常方便,可以对矩阵进行加法、减法、乘法、转置等操作。

例如,可以使用以下代码计算两个矩阵的乘法:```A = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```这将输出结果为:```19 2243 50```表示两个2x2矩阵的乘积。

此外,Matlab还提供了许多专门用于矩阵运算的函数,例如`inv`函数可以计算一个矩阵的逆矩阵,`eig`函数可以计算一个矩阵的特征值和特征向量等。

3. 符号计算Matlab还提供了符号计算的功能,可以进行代数运算、求解方程、微积分等。

通过使用符号变量,并调用Matlab中的符号计算函数,可以进行复杂的数值计算。

例如,以下代码演示了如何计算方程的解:```syms x;eqn = x^2 - 3*x + 2 == 0;sol = solve(eqn, x);disp(sol);```这将输出结果为2和1,表示方程的两个解分别为2和1。

MATLAB的数值运算

MATLAB的数值运算
➢ 对角矩阵:对角元素向量 V=[a1,a2,…,an] A=diag(V)
➢ A为方阵,V=diag(A)提取A的对角元素 构成向量V。
➢ 随机矩阵:rand(m,n) m×n的均匀分布
3.利用冒号表达式建立向量
e1: e2: e3
a=[1:2:10]
a=
初始值 :步长: 终止值
13579
linspace(a,b,n)
49
72
90
85 133 172
矩阵的点除
例: a=[1 2 3];b=[4 5 6]; c1=a.\b; c2=b./a c1 = 4.0000 2.5000 2.0000
c2 = 4.0000 2.5000 2.0000
a./b=b.\a —— 给出a,b对应元素间的商. a.\b=b./a a./b=b.\a — 都是a的元素被b的对应元素除 a.\b=b./a — 都是a的元素被b的对应元素除
第三节 多项式运算
一、多项式的建立与表示方法
多项式 → 一个行向量
元素按多项式降幂排列
f(x)=anxn+an-1xn-1+……+a0
p=[an an-1 …… a1 a0]
x4 12x3 0x2 25x 116 p=[1 -12 0 25 116]
roots 多项式等于0的根,列向量
polynomial 已知多项式等于0的根,求 出相应多项式
第二章 MATLAB的数值运算
第一节 基本语法结构
一、变量与赋值
1.变量
命名 字母+任意字母(数字、下划线) 规则 字母的大小写、标点符号
存储
变量操作 命令窗口
命令、变量值
调用

MATLAB第三章数值数组及其运算

MATLAB第三章数值数组及其运算

行向量
如:array=[2, pi/2, sqrt(3), 3+5i]
x=[1,2,3,4,5都已知.如对 少量实验数据的处理可用此种方法.
4
(2) 冒号生成法: array=a: inc: b
<向量>
a---数组的第一个元素
inc---采样点之间的间隔, 即步长. 最后一个元素不一定等于b, 其大小为b’=a +inc*[(b-a)/inc]; 步长可以省略, 默认为 1; inc可以取正数或负数, 但要注意当取正时,要保证b>a, 数 组最后一个元素不超过b, 取负时b<a, 最后一个元素不小于b.
(2) 数值计算解法
delt=0.01; x=0:delt:4;
y=exp(-sin(x));
sx=delt*cumtrapz(y);
plot(x,y, 'r', 'LineWidth', 6); hold on;
plot(x, sx, '.b', 'MarkerSize', 15);
plot(x, ones(size(x)), 'k');
a inc>0 b
b inc>0 a
特点: 等差数列
方便对数据之间的间隔(步长)进行控制.但要注意三个数值之 间的关系,可能得到空数组.另外要注意生成的数组的元素的 个数.如x=a: (b-a)/n :b (b>a)得到n+1个元素的数组.
5
x=1:5x=[1,2,3,4,5]
y=5:-1:1y=[5, 4, 3, 2, 1]
2. 在命令窗中输入MyMatrix
11
3.5 二维数组的标识 (mxn, m>1, n>1)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章MATLAB 数值运算
多项式运算
☐多项式的表达和创建
⏹MATLAB 中,多项式用向量来表示
☐如:-----------[1 2 2]☐------------[2 0 4 1]
⏹在多项式表达式中,若有系数为0的多项式,必须在其对应位置补零
)22(2++s s
)142(3++s s
多项式的四则运算
☐多项式的加减法
⏹同阶多项式:两向量等长,直接用向量加减法
实现
⏹不同阶多项式:两向量不等长,必须将阶次短
的多项式前面补零,直到他们同阶次后再用向
量加减法实现。

☐多项式加法的MATLAB 程序
⏹function [poly]=polyadd(poly1,poly2)
⏹if length(poly1)<length(poly2)
☐short=poly1; long=poly2;
⏹else
☐short=poly2; long=poly1;
⏹end
⏹mz=length(long)-length(short);
⏹if mz>0 poly=[zeros(1,mz),short]+long;
⏹else poly=long+short; end
☐例:完成同阶多项式和
的加减运算。

☐例:完成不同阶多项式和的加减运算。

432)(2
3+++=x x x x a 1694)(23+++=x x x x b 432)(23+++=x x x x a 89)(+=x x b
☐多项式的乘法
⏹多项式相乘的实质:卷积(Convolution)
⏹向量序列u(长度为m)与向量序列v(长度为n)的卷积定义:⏹乘积结果w 向量序列的长度为(m+n-1)

w(1) = u(1)*v(1)☐
w(2) = u(1)*v(2)+u(2)*v(1)☐
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)☐
…☐w(n) = u(1)*v(n)+u(2)*v(n-1)+ …+u(n)*v(1)
⏹MATLAB 中的向量卷积函数:conv
∑=-
+=k
j j k v j u k w 1)1()()(
☐多项式的除法
⏹除法是乘法的逆
⏹MATLAB中的除法函数:deconv
⏹语法规则:[q,r]=deconv(a,b)
☐a和b分别代表被除数多项式与除数多项式
☐q和r分别代表整除多项式和余数多项式。

多项式运算
☐多项式求值和求根运算
⏹多项式求值
☐Polyval函数
☐函数格式:y=polyval(p,x)
☐其中p为代表多项式各阶系数的向量,x为要求值的点,y为多项式的返回值
☐当x为矩阵时,要用函数ployvalm函数实现
☐多项式求根
⏹多项式的根即多项式为零时的x值,即求一元多
次方程的数值解
⏹多项式的阶次不同,对应的根个数也不同,有
可能是实根,也有可能是复根
⏹roots函数:可以找出多项式所有的实根和复根
⏹MATLAB中多项式的根也用向量表示,规定多
项式是行向量,根是列向量
☐例:求解一元高次方程的根☐用roots 求出根后应该将各个根带入原多项式进行验证,可用polyval 实现
☐注意:如果得到的根本身是一个非精确解,而是一个约解,那么验证后得到的值将不等于0,而是一个非常小的、接近于0的数0821232
34=++-+x x x x
插值和拟合
☐多项式插值
⏹由插值函数interp1实现
⏹yi = interp1(x,y,xi)
☐返回插值向量yi,每一元素对应于参量xi,同时由向量x与y的内插值决定
☐参量x指定数据Y的点
☐若Y为一矩阵,则按Y的每列计算
☐多项式拟合
⏹由拟合函数polyfit实现
⏹p=polyfit(x,y,n)
⏹[p,s]=polyfit(x,y,n)
⏹x,y为已知的数据组,n为要拟合的多项式阶数,
向量p为返回的要拟合的多项式系数,向量s为调
用函数polyfit获得的错误预计值
⏹一般地,多项式拟合中,阶数越大,拟合的精度
就越高
数值微积分
☐微分和差分
⏹diff函数
⏹对一个自变量向量X和一个对应的应变量向量Y,
用diff(Y)/diff(X)表示微分
⏹利用符号运算求微分
线性方程组求解
☐直接法:在没有舍入误差情况下通过有限的四则运算求得方程组的精确解
⏹矩阵相除法
⏹消去法
☐迭代法:根据给定的初始值,按照一定的迭代法准则逐步求出近似解
☐直接法:可求得精确解
⏹矩阵相除法X=A\B :假设A为m*n阶矩阵
☐当m=n,且A可逆:唯一解
☐当n>m,给出最小二乘解
☐当n<m,给出最小范数解
⏹消去法:将增广矩阵化为阶梯矩阵(rref函数)
☐若系数矩阵的秩≠增广矩阵的秩:无解
☐若系数矩阵的秩=增广矩阵的秩:唯一解
作业
☐用roots 函数求方程的根☐利用polyval 和linspace 函数找出多项式
在[-1,4]间均匀分布的5个离散点的值。

☐假设有一个汽车发动机在转速为2000r/min 时,
温度(。

C )与时间的5个测量值如下表所示
试分别估计在t=2.5s 和t=4.3s 时的温度
012
=--x x 08742
3=-++s s s 时间012345温度
20
60
68
77
110
炼钢厂出钢时所用的钢包在使用中由于钢液及炉渣的腐蚀,重量会不断增大。

某钢厂钢包重量与使用次数的数据如下表所示:
次数23457810重量106.4108.3109.6109.8110.2110.4110.5次数11121415161819重量110.6110.7110.9111.3111.5111.8112.1试分别用4阶、5阶和6阶多项式对上表数据进行拟合,并画出拟合曲线进行比较。

☐假设
⏹试用plot 绘制该函数图像
⏹利用diff 函数求得该函数的一阶差分值,并绘制差分图

⏹用高等数学中的求导公式求得f ’(x),并绘制图像,与差
分图像进行比较
5
3783)(2
345-++--=x x x x x x f
用矩阵除法和rref 函数法求得以下线性方程组的解,并确定该方程组是否有唯一解。

⎪⎪⎩⎪⎪
⎨⎧=+=++=++=+0
50650651654343232121x x x x x x x x x x。

相关文档
最新文档