(学生2份) 2016年11中考数学模拟试卷

合集下载

2016年中考数学模拟试卷(含答案解析) (3)

2016年中考数学模拟试卷(含答案解析) (3)

2016年中考模拟试卷(二)数 学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置......上)7.计算: ( 13 )﹣2+(3+1)0= ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.某商场统计了去年1~5月A ,B 两种品牌冰箱的销售情况.A 品牌(台) 15 17 16 13 14B 品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A ”或“B ”).-3 -2 -1 2 1 0 A BECD 3(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线.③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间.其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解..... 18.(6分)化简:x -3x -2 ÷( x +2-5x -2).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.x … 1- 0 1 3 …y … 3- 1 3 1 …(第11题)12(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图年龄人数12-17岁30-35岁24-29岁18-23岁500400300200100330420450O30-35岁22%12-17岁24-29岁18-23岁全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B ,AB =2 5 , (1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(第23题)ABPE DCQFHGxyO AB(第25题)(3)连接OE 交BC 于点F ,若AB =10 ,求OE 的长度.27.(88分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C B(图2) A C B图ACBa(第26题)OEDCBA2016年中考模拟试卷(二) 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案ACABDD二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③…………………………………………………1分 将③代入②,得1-y +y 2=3. ……………………………………………2分 解这个方程,得y 1=2,y 2=-1. …………………………………………4分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………5分20.(8分)解:(1)1500,(图略);(每个2分)) ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)另外1人恰好选中副班长的概率是13;………………………………………3分(2)恰好选中班长和副班长的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2………………3分解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(每个1分)(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD ,∵D 为弧AB 的中点,∴AD =BD , .…………………1分 ∵AB 为直径, ∴∠ADB =90°.…………………2分 ∴∠DAB =∠DBA =45°,∴∠DCB =∠DAB =45°.…………………3分(2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180° ∴∠A =∠BD …………………4分又∵∠ACB =∠BED =90°, ∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2,又∵CE =BE ,∴DE :CE =1:2,∴D 为CE 的中点. …………………6分(3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC ,∴F 为OE 中点, 又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2,∵AC :BC =1:2,AB =10 ,∴AC = 2 ,BC =2 2 ,OEDC BAF (第26题)∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分说明:(即△ABC 的外接圆和线段BC 的中垂线的交点)(3)作图正确 (只要做出一个即可)…………………8分 说明:(按照(1)(2)的方法找到点E ,再以点E 为圆心,以EC 或EB 长为半径做圆,再以点B 为圆心,a 长为半径作圆,两圆的交点为点H ,再连接BH ,交△ABC 的外接圆于点F,则点F 为所求。

2016中考数学模拟试题含答案(精选5套)

2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2016中考模拟试题(数学)

2016中考模拟试题(数学)

2016年中考模拟考试(数学)数 学 试 卷(全卷总分150分,考试时间120分钟)一、(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1. 下列各数中是无理数的是( ▲ )A.13B.﹣ 2C. 0D.2. 如图所示,几何体的主视图是( ▲ )A B C D3.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ▲ )A. 0.25×10﹣5B. 2.5×10﹣5C. 2.5×10﹣6D. 2.5×10﹣74.如图,直解三角板的直角顶点落在直尺边上,若∠1=54°,则∠2的度数为( ▲) ) A.24° B.36° C.46° D.54° 5.计算2x 3•(﹣3x )2的结果是( ▲ )A. 18x 5 B .-18x 6C. ﹣6x 5 D .6x 66. 甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S 甲2=1.4,S 乙2=18.8,S 丙2=22,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( ▲ ) A. 甲队 B. 乙队 C. 丙队 D. 哪一个都可以7. 已知反比例函数xy 1=,下列结论中不正确的是( ▲ )A. 图象经过点(-1,-1)B. 图象在第一、三象限C. 当1>x 时,10<<yD. 当0<x 时,y 随着x 的增大而增大 8. 如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,下列结论中:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.正确的有( ▲ ) A .1个 B .2个 C .3个 D .4个 9. 将代数式x 2+6x +2化成(x +p)2+q 的形式为( ▲ )A .(x -3)2+11 B .(x +3)2-7 C .(x +3)2-11 D .(x +2)2+410. 如图, 点P 为平行四边形ABCD 边AD 上一点, 点E, F 分别为PB, PC 的中点, △PEF , △PDC , △PAB 的面积分别为S, S 1, S 2, 若S =3, 则S 1+S 2=( ▲ ) A.12 B.16 C. 9 D. 24 11. 如图所示,矩形纸片ABCD 中,6cm AB =,8cm BC =,现将其沿EF对折,使得点C 与点A 重合,则AF 长为( ▲ )A.25cm 2 B.25cm 8 C. 25cm 4D.8cm 12. 如图所示,已知11()2A y ,,2(2)B y ,为反比例函数1y x=图像上的D(C ) A B CEFD第11题图第10题图第8题图CBAE FDMN 第4题图两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达 到最大时,点P 的坐标是( ▲ )A.1(0)2,B.(10),C.3(0)2,D.5(0)2,二、填空题(本大题共6小题,每小题4分,共24分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上.)13. 已知:m 、n 为两个连续的整数,且m <<n ,则m+n= ▲ .14. 分解因式:2232xy y x x+-= ▲ .15. 已知(x -y +3)2+2-y =0,则2x +y = ▲ .16. 如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD 的中点,P 是线段BD 上的一个动点,则PM +PN 的最小值是 ▲ .17. 将1、2、3、6按如图所示的方式进行排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(21,10)表示的两数之积是 ▲ .18. 如图,扇形CAB 的圆心角∠ACB=90°,半径CA=8cm ,D 为弧AB 的中点,以CD 为直径的⊙O 与CA 、CB 相交于点E 、F ,则弧AB 的长为 ▲ cm ,图中阴影部分的面积是 ▲ cm 2.三、解答题(本大题共9小题,共90分。

2016年中考模拟考试数学试题及答案

2016年中考模拟考试数学试题及答案

2016年中考模拟考试数学试题时间120分钟 满分150分 2015.11.11一.选择题:(每小题4分,共48分)1.-3的绝对值为( ▲ )A .3B .﹣3C .31D .31-2.代数式21+y 中,y 的取值范围是( ▲ ) A .0y ≠ B .2y ≠ C .2y >- D .2y ≠- 3.下列因式分解中,正确的是( ▲ )A .2()ax ax x ax a -=-B .222()x y x y -=-C.222222(1)a b ab c b b a ac ++=++D .256(2)(3)x x x x --=--4.如图,已知AB ∥CD ,若︒=∠15E ,︒=∠55C ,则A ∠的度数为( ▲ )A .45°B .40°C .35°D .25° 5.下列欧洲足球俱乐部标志中,是中心对称图形的是( ▲ )A B C D6.若一个多边形的内角和是1080°,则这个多边形是( ▲ )A .六边形B .七边形C .八边形D .九边形 7.下列说法中不正确...的是( ▲ )A .要反映我市一周内每天的最低气温的变化情况宜采用折线统计图B .打开收音机正在播放TFBOYS 的歌曲是必然事件C .方差反映了一组数据的稳定程度D .为了解一种灯泡的使用寿命。

应采用抽样调查的办法 8.关于x 的方程1131=-+-xx k 有增根。

则k 的值为( ▲ ) A .1 B .2 C .3 D .4 9.“十一”黄金周,山西乔家大院迎来了全国各地的游客,小渝就是数万游客中的一个;他在游览过程中,对传统建筑非常感兴趣.并发现窗户的每个窗格上都贴有剪纸.如下图,其中“O ”代表的就是剪纸。

请问第6个图中剪纸的个数为( ▲ ).(1) (2) (3)A .20B .23C .25D .30 10.小梁报名参加了男子羽毛球双打,当他离开教室不远时发现拍子带错了.于是以相同的速度折返回去,换好拍子之后再花了一点时间仔细检查其他装备,这个时候广播里催促羽毛球双打选手尽快入场,小梁快步跑向了比赛场地.则小梁离比赛场地的距离y 与时间t 之问的函数关系的大致图象是( ▲ )A .B .C .D .11.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM,DN,若四边形MBND 是菱形。

2016年中考数学模拟试题精选

2016年中考数学模拟试题精选
(2)···························································································································7分
24.
25.解:过M作与AC平行的直线,与OA、FC分别相交于H、N,
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
10.(本题满分9分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1, ,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
(1)求b,k的值;(2)求△BDC的面积;
(3)在反比例函数 的图像上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.
7.(本题满分7分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα= .

最新)2016年中考模拟数学试题(含答案)

最新)2016年中考模拟数学试题(含答案)

最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。

A。

4/3443 B。

3443/3 C。

-4/3443 D。

-3443/42.右图是某几何体的三视图,该几何体是()。

A。

圆锥 B。

圆柱 C。

正三棱柱 D。

正三棱锥3.下列运算中正确的是()。

A。

π=1 B。

x2=x C。

2-2=-4 D。

--2=24.不等式组{x≤-2,x-2>1}的解集是()。

A。

x≤-2 B。

x>3 C。

3<x≤-2 D。

无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。

灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。

截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。

科学计数法表示为()元。

A。

8.01×107 B。

80.1×107 C。

8.01×108 D。

0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。

A。

19,15 B。

15,14.5 C。

19,14.5 D。

15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。

A。

115° B。

120° C。

100° D。

80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。

9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。

10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。

2016中考数学模拟试题含答案(精选5套)

2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2016年中考数学模拟试题(11)及答案

2016年中考数学模拟试题(11)及答案

2016年中考数学模拟试题(11)时间120分钟满分120分2015.8.25一、选择题(共10小题,每小题3分,满分30分)1.下列平面图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.数轴上的点A到原点的距离是6,则点A表示的数为()A. 6或﹣6 B. 6 C.﹣6 D. 3或﹣33.为了实现医药卫生改革的目标,经初步测算,2011﹣2015年各级政府一共需要投入人民币8500亿元,这个数据用科学记数法可表示为()A. 8.5×1012元 B. 8.5×1010元 C. 0.85×1012元 D. 8.5×1011元4.已知一组数据1,7,10,8,x,6,0,3,若,则x应等于() A. 6 B. 5 C. 4 D. 25.一个锐角的余角加上90°,就等于()A.这个锐角的两倍数 B.这个锐角的余角C.这个锐角的补角 D.这个锐角加上90°6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14 C. D.(x+3)2=47.如图,是一个几何体的三视图(主视图中的弧线是半圆),则该几何体的体积是()A.π B. 2π C. 4π D. 8π8.下列运算正确的是()A. 2a﹣2= B.(﹣a)9÷a3=a6C. D.(a2﹣a+)9.已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是()A. 2 B. 2 C. 4 D. 410.已知k1<0<k2,则函数y=k1x和y=的图象大致是()A. B. C. D.二、填空题(共6小题,每小题3分,共18分)11.函数y=中,自变量x的取值范围是.12.从1,2,3,4中任意取出两个不同的数,其和为5的概率是.13.一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为条.14.分解因式:2a3﹣8a= .15.已知圆锥的母线长为8,其侧面展开图是半圆,则这个圆锥的高为.16.已知a,b是方程x2+2x﹣5=0的两个实数根,则a2﹣ab+3a+b的值为.三、解答题(共9小题,满分72分)17.计算(1)解方程组(2)计算:(1﹣)0﹣tan30°+()﹣2.18.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.19.已知不等式组的解集包含两个正整数,求a的取值范围.20.如图,要测量小山上电视塔BC的高度,在山脚下点A测得:塔顶B的仰角为∠BAD=40°,塔底C的仰角为∠CAD=30°,AC=200米,求电视塔BC的高.(结果用含非特殊角的锐角三角函数及根式表示即可)21.某班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?22.某校初一年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5;2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图(在图中标出各组人数);(2)课堂发言次数的中位数落在哪个组;(3)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数.组别课堂发言次数nA 0≤n<3B 3≤n<6C 6≤n<9D 9≤n<12E 12≤n<15F 15≤n<1823.已知:如图.在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求△BOD的面积.24.如图,已知PA与圆O相切于点A,直径BC⊥OP,线段OP与圆O交于点E,连接AB交PO于点D.(1)求证:∠PAD=∠ACB;(2)求证:AC•AP=AD•OC.25.已知二次函数y=kx2﹣4kx+3k(k≠0)(1)当k=1时,求该抛物线与坐标轴的交点的坐标;(2)当0≤x≤3时,求y的最大值;(3)若直线y=2k与二次函数的图象交于E、F两点,问线段EF的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.参考答案一、选择题1.故选:B.2.选A.3.故选:D.4.故选B.5.故选C.6.故选A.7.故选A.8.故选:D.9.故选:D.10故选:A.二、填空题11.x≠2 .12..13.7 条.14.2a(a+2)(a﹣2).15.4.16.8 .三、解答题17.解答:解:(1)组,化简得:,②﹣①得:4x=8,解得:x=2,把x=2代入①得:y=3,所以方程组的解为:;(2)(1﹣)0﹣tan30°+()﹣2=1﹣×+9=1﹣1+9=9.18.解答:(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.19.解答:解:,∵解不等式①得:x>,解不等式②得:x≤a,∴不等式组的解集为<x≤a,∵不等式组的解集包含两个正整数,∴4≤a<5,即a的取值范围为:4≤a<5.20.解答:解:在Rt△ADC中,∠ADC=90°,∠CAD=30°,AC=200米.∴CD=100米,∴AD=AC•cos∠CAD=200×=100,在Rt△ADB中,∠ADB=90°,∠BAD=40°,AD=100,∴BD=AD•tan∠BAD=100tan40°,∴BC=BD﹣CD=100tan40°﹣100(米).21.解答:解:设原计划有x人参加植树活动,则实际参加人数为1.5x人,根据题意得:﹣=2,解得 x=30,经检验:x=30是方程的解,则实际参加这次植树活动的人数是:1.5x=45(人).答:实际有45人参加了这次植树活动.22解答:解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,∴样本容量为50人.F组人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×(1﹣90%)=50×10%,=5(人),C组人数为:50×30%=15(人),E组人数为:50×8%=4人补全的直方图如图;(2)发言次数的中位数在C组.(3)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:500×(8%+10%)=90(人).23.解答:解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E.tan∠ABO=.∴CE=3.(1分)∴点C的坐标为C(﹣2,3).(2分)设反比例函数的解析式为y=,(m≠0)将点C的坐标代入,得3=.(3分)∴m=﹣6.(4分)∴该反比例函数的解析式为y=﹣.(5分)(2)∵OB=4,∴B(4,0).(6分)∵tan∠ABO=,∴OA=2,∴A(0,2).设直线AB的解析式为y=kx+b(k≠0),将点A、B的坐标分别代入,得.(8分)解得 .(9分)∴直线AB 的解析式为y=﹣x+2.反比例函数的解析式y=﹣和直线AB 的解析式为y=﹣x+2联立可得交点D 的坐标为(6,﹣1),则△BOD 的面积=4×1÷2=2.故△BOD 的面积为2.(10分).24.解答: (1)证明:连接OA ,∵PA 与圆O 相切于点A ,∴OA ⊥AP ,∴∠OAD+∠DAP=90°,∵BC 是⊙O 的直径,∴∠OAD+∠OAC=90°,∵OC=OA ,∴∠ACB=∠OAC ,∴∠ACB=∠PAD ;(2)解:由(1)知∠PAD=∠ACB ,∵OP ⊥BC ,∴∠COA+∠AOP=90°,∵∠AOP+∠P=90°,∴∠COA=∠P ,∴△ADP ∽△COA ,∴,∴AC •AP=AD •OC .25.解答: 解:(1)当k=1时,该抛物线为:y=x 2﹣4x+3,x 2﹣4x+3=0,解得:x 1=1,x 2=3,抛物线与x 轴的交点的坐标为(1,0),(3,0),当x=0时,y=3,抛物线与y 轴的交点的坐标为(0,3);(2)对称轴为:x=﹣=﹣=2,当k >0时,x=0时,y 有最大值3k ,当k <0时,y 的最大值即顶点的纵坐标,为=k,(3),解得:,,E(2+,2k),F(2﹣,2k),EF=2,∴EF为定值.第11页(共11页)。

2016中考模拟数学试题及答案

2016中考模拟数学试题及答案

中考数学模拟试题(7)一、 选择题 1、数-中最大的数是()A 、1- B、0 D 、2 2、9的立方根是()A 、3±B 、3 C、3、一无二次方程总有实数根,则m 应满足的条件是()A 、mB 、mC 、D 、4、如图是某几何题的三视图,下列判断正确的是()A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为25、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°主视图左视图俯视图7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点 B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2016年中考数学模拟试卷及答案(精选两套)

2016年中考数学模拟试卷及答案(精选两套)

1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。

2016年中考模拟数学试题

2016年中考模拟数学试题

主视图 左视图 俯视图CAl 22016年中考模拟考试数学试题一、选择题(每小题3分,共30分) 1.21-的值是( ) A .21-B .21C .﹣2D .2 2.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-63.小亮领来n 盒粉笔,整齐地摆在讲桌上,其三视图如图,则n 的值是( )A .7B .8C .9D .104.下列运算正确的是( ) A .432a a ⋅12a =B .4222=⨯C . =34)2(a 78a D .=÷28a a 4a5.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:则关于这若干户家庭的月用水量,下列说法错误的是( ) A .众数是4 B .平均数是4.6月用水量(吨)3 4 5 8 户数2341xyxyxyxyOOO ODAB C 483333848448M OP'PDBACBxyAOxy 2=xy 1-= 第7题C .调查了10户家庭的月用水量D .中位数是4.56.如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为( ) A .60°B .45°C .40°D .30°交于B 、A 7.如图,在△AOB 中,∠BOA=90°,∠BOA 的两边分别与函数x y 1-=、xy 2=的图象两点,若6=AB ,则AO 的值为( )A .223 B .2C .3D .28.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=6,BD=8,动点P 从点B 出发,沿着B-A-D 在菱形ABCD 的边上运动,运动到点D 停止,点P '是点P 关于BD 的对称点,P P '交BD 于点M ,若BM=x ,P OP '∆的面积为y ,则y 与x 之间的函数图象大致为( )9.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E .下列结论不一定成立的是( ) A .△AOD 是等边三角形 B .=C .∠ACB=90°D .BC OE 21=10、如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB 、AO1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1 O 1的对角线交BD 于点O 2,同样以AB 、AO2为两邻边作平行四边形ABC 2O 2,……,依次类推,则平行四边形ABC 2016O 2016的面积为( ) A .201525B .201625 C .201425 D .201725二、填空题(每小题3分,共18分)11.化简(5﹣2)2015•(5+2)2016= .12.分解因式:(a +b )2﹣12(a +b )+36= .B x y AO x y 2= xy 1-= 第7题ABCDEF G E ’13.有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m ,则使关于x 的方程2112=-++-xm x x 的解为正数,且不等式组⎩⎨⎧<->+0532m x x 无解的概率是 .14.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的底面半径为______________15.如图所示,在完全重合放置的两张矩形纸片ABCD 中,AB=4,BC=8,将上面的矩形纸片折叠,使点C 与点A 重合,折痕为EF ,点D 的对应点为G ,连接DG ,则图中阴影部分的面积为 . 16.如图,平面直角坐标系中,分别以点A (﹣2,3),B (3,4)为圆心,1、2为半径作⊙A 、⊙B ,M 、N 分别是⊙A 、⊙B 上的动点,P 为x 轴上的动点,则PM+PN 的最小值等于 .三、解答题(第17-20题各8分,第21、22题各9分,第23题10分,第24题12分,共72分) 17.先化简,再求值⎪⎭⎫ ⎝⎛+-231x x x x 212+-÷1+-x x ,其中x 满足022=-x x .18.已知关于x 的一元二次方程x 2﹣2x+m =0. (1)若方程有两个实数根,求m 的范围.(4分)(2)若方程的两个实数根为x 1.x 2,且(x 1﹣1)2+(x 2﹣1)2+m 2=5,求m 的值.(4分)19.已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F . (1)求证:△BCG ≌△DCE ;(4分)(2)将△DCE 绕点D 顺时针旋转90°得到△DAE ′,判断四边形E ′BGD 是什么特殊四边形,并说明理由.(4分)A B FC D G E B AN M O P x y第15题 第16题30乒乓球篮球15%羽毛球排球跳绳 乒乓球 篮球 羽毛球 排球 跳绳 项目人数 70 60504030 20 10某校学生最喜欢的体育项目条形统计图70某校学生最喜欢的体育项目扇形统计图4012OA BD’ DC ’ CAB CDOP KQABC DOP K QNP K Q A B C DOM α图1 图2 图320.某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题: (1)这次抽样调查中,共调查了 名学生;(2)补全条形统计图,并求扇形统计图中表示“乒乓球”的扇形的圆心角度数; (3)若全校有1500名同学,估计全校最喜欢篮球的有多少名同学?21.星期天,小华到小明家邀请小明到新华书店看书,当小华到达CD(点D 是小华的眼睛)处时,发现小明在七楼A 处,此时测得仰角为45°,继续向前走了10m 到达C ′D ′处,发现小明在六楼B 处,此时测得仰角为60°,已知楼层高AB=2.7m,求OC ′的长. (参考数据:73.13≈,41.12≈)22.平面上,矩形ABCD 与直径为QP 的半圆K 如图1摆放,分别延长DA 和QP 交于点O ,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:如图2,当点P 恰好落在BC 边上时,求α的值和阴影部分的面积;拓展:如图3,当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设BM=x (x >0),用含x 的代数式表示BN 的长,并求x 的取值范围.OxyABC D 探究:当半圆K 与矩形ABCD 的边DC 、AD 相切时,分别求出sin α的值.23.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式; (2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?24.如图,抛物线y =ax 2+bx +3与x 轴相交于点A (﹣1,0)、B (3,0),与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式;(2)当四边形ODEF 是平行四边形时,求点P 的坐标;(3)过点A 的直线将(2)中的平行四边形ODEF 分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)APC E FOxy D参考答案一.BDA BA CBD A B 二、11.+2;12.(a+b ﹣6)2;13.;14.2;15.;16.74-3。

2016年中考数学模拟试卷(含答案解析) (4)

2016年中考数学模拟试卷(含答案解析) (4)

OACDE(第6题)2016年质量调研检测试卷(二)九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.在实数227,0,-2, 2π中,无理数的个数有(▲)A .0个B .1个C .2个D .3个2.下列各式计算正确的是(▲)A .a 6÷a 3 =a 2B .(a 3)2=a 5C .4=±2D .3-8 =-23.某课外兴趣小组为了了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是(▲)A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了100名小区内老年邻居的健康状况D .利用派出所户籍网随机调查了该地区10%的老年人的健康状况4.右图是由3个相同的正方体组成的一个立体图形,它的三视图是(▲)A .B .C .D .5. 某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是(▲)A .10%B .15%C .20%D .30%6.如图,AB 是半圆O 直径,半径OC ⊥AB ,连接AC ,∠CAB 的平分线AD 交OC 于点E ,交BC ︵于点D ,连接CD 、OD ,以下三个结论:①AC ∥OD ;②AC =2CD ;③线段CD 是CE 与CO 的比例中项.其中,所有正确结论的序号是(▲) A .①②B .①③C .②③D .①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直yx OAP(第15题)最高气温(℃) 25 26 27 28 天 数1213ABQCD(第16题)接填写在答题纸相应位置.......上) 7.PM2.5是指大气中直径小于或等于2.5 um (0.0000025m )的颗粒物,含有大量有毒、 有害物质,也称可吸入肺颗粒物,将0.0000025用科学记数法表示为 ▲ . 8.不等式组26,2 1.x x -<⎧⎨-+>⎩的解集是 ▲ .9.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则 他第三次抛这枚硬币时,正面向上的概率是 ▲ . 10. 函数y =3-x 中,自变量x 的取值范围是 ▲ .11.我市某一周的最高气温统计如下表:则这组数据的中位数是 ▲ .12.如图,在四边形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,S △AOD ∶S △BOC =1∶9,AD =2,则BC 的长是 ▲ .13.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB =4,则BC 边的长为 ▲ .14.将面积为32π的半圆面围成一个圆锥的侧面,则这个圆锥的底面半径为 ▲ . 15.如图,点P 在函数y =3x(x >0)的图像上运动,O 为坐标 原点,点A 为PO 的中点,以点P 为圆心,P A 为半径作⊙P , 则当⊙P 与坐标轴相切时,点P 的坐标为 ▲ . 16.矩形ABCD 中,AB =10,BC =4,Q 为AB 边的中点,P 为CD 边上的动点,且△AQP 是腰长为5的 等腰三角形,则CP 的长为 ▲ .三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)计算:(1)()212cos 4523π-⎛⎫︒+-- ⎪⎝⎭; (2)(1x +1-1x 2-1)÷x -2x 2-2 x +1 .18.(6分)已知关于x 的一元二次方程x 2-ax +2=0的两实数根x 1 、x 2满足x 1x 2=x 1+x 2-2. (1)求a 的值; (2)求出该一元二次方程的两实数根.A BCDO(第12题)AB CDOMN(第13题)第20题图噪声声级/dB测量点数610412108642(第20题)12 3 ①567②CEF19.(7分)为了增强环境保护意识,在“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,随机抽查了全市40个噪声测量点在某时刻的噪声声级(单位:dB )根据表中提供的信息解答下列问题:(1)频数分布表中的a = ▲ ,b = ▲ ,c = ▲ ; (2)补充完整频数分布直方图;(3)如果全市共有400个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?20.(8分)(1)甲、乙两人用如图所示的①、②两个转盘做游戏,规则是:转动两个转盘各1次,若两个转盘停止转动后,指针所在区域的两个数字之积为奇数,则甲获胜, 否则乙胜.试求出甲获胜的概率.(2)若利用除颜色外其余都相同的红、黄、白色乒乓球各一个设计一个摸球试验,试写 出一个与(1)中甲获胜概率相同的事件.(友情提醒:要说明试验的方案,不需说明理由)21.(8分)如图,D 是线段AB 的中点,C 是线段AB 的垂直平分线上的一点,DE ⊥AC于点E ,DF ⊥BC 于点F . (1)求证:DE =DF ;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.22.(8分)某玩具经销商用1.6万元购进了一批玩具,上市后一周全部售完.该经销商又用3.4万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该经销商两次共购进这种玩具多少套?(2)若第一批玩具销售完后总利润率为25%,购进的第二批玩具仍以第一批的相同售价出售,则第二批玩具全部售完后,这二批玩具经销商共可获利多少元?(第24题)yM NOt82a b ②① D 45° 北东(第23题) BC60°23.(7分)如图,大海中某岛C 的周围25km 范围内有暗礁.一艘海轮沿正东方向航行,在A 处望见C 在北偏东60°处,前进20 km 后到达点B ,测得C 在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.(参考数据: 2 ≈1.41, 3 ≈1.73)24.(8分)如图①,在矩形ABCD 中,动点P 从A 点出发沿折线AD –DC –CB 运动,当点P 运动到点B 时停止.已知动点P 在AD 、BC 上的运动速度为1cm /s ,在DC 上的运动速度为2 cm /s .△P AB 的面积y (cm 2)与动点P 的运动时间t (s )的函数关系图像如图②.(1)a = ▲ ,b = ▲; (2)用文字说明点N 坐标的实际意义; (3)当t 为何值时,y 的值为2 cm 2.25.(8分)如图,在△ABC 中,AB =AC .以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .过E 点作⊙O的切线,交AB 于点F . (1)求证:EF ⊥AB ;(2)若BD =2,BE =3,求AC 的长.26.(8分)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为 ▲ .(填写序号即可)① 矩形; ②有一个角为直角的任意凸四边形; ③有一个角为60°的菱形. (2)如图,将△ABC 绕顶点B 按顺时针方向旋转60°得到△DBE ,∠DCB =30°,连接AD ,DC ,CE .DC (第25题) ABC DF O①求证:△BCE 是等边三角形; ②求证:四边形ABCD 是勾股四边形.27.(12分)如图,已知二次函数y =ax 2+b x -5(a ,b 是常数,a >0)的图象与x 轴交于点A (-1,0)和点B ,与y 轴交于点C .动直线y =t (t 为常数)与抛物线交于不同 的两点P 、Q .(1)若a <5,试证明抛物线的对称轴一定在y 轴的右侧. (2)若点B 的坐标为(5,0).①求a 、b 的值及t 的取值范围. ②求当t 为何值时,∠PCQ =90 °.九年级数学参考答案及评分标准一、选择题(每小题2分,共12分,将正确答案的题号填在下面的表格中)题号 1 2 3 4 5 6 答案CDDACB二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.2.5×10-6 8.x >3 9.12 10.x ≤3 11.27℃12.6 13.6 14.4 15.(3,1) 或(1,3) 16. 2、7或8三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解:(1)原式=2×22+1-9 ……………………3分 (第27题) 备用图yCOAxB=2-8 ……………………4分(2) 原式=(1x +1-1x 2-1)÷x -2 (x -1)2……………………1分=x -2(x +1)(x -1)×(x -1)2x -2 ……………………3分 =x -1x +1……………………4分 18.(6分)解:(1)∵x 1+x 2=a ,x 1x 2=2,……………………1分 又x 1x 2=x 1+x 2-2, ∴a -2=2,a =4 ……………………2分 (2)x 2-4x +2=0.(x -2)2=2 ……………………4分x -2= 2 或x -2=-2 ……………………5分 x 1=2+2, x 2=2- 2 ……………………6分 (其它解法参照给分)19.(7分)解:(1)a =8,b =12,c =0.3.(答对一个给1分)……………………3分(2)略 (画对一个直方图给1分)…………………………………………………5分 (3)样本中噪声声级小于75dB 的测量点的频率是0.3 ………………………6分由0.3×400=120∴在这一时刻噪声声级小于75dB 的测量点约有120个. ……………7分20.(8分) (1)转动两个转盘各1次,所有可能出现的结果有(1,5)、(1,6)、(1,7)、 (2,5)、(2,6)、(2,7)、(3,5)、(3,6)、(3,7),共有9种可能. …………3分 它们出现的可能性相同,所有结果中,满足“积为奇数”的结果有4种, ……4分 所以转动两个转盘各1次,转出的两个数字之积为奇数的概率为49. …………5分(2)实验如:在一个不透明的袋子中放入除颜色外其余都相同的红、黄、白色乒乓球各1个,从袋子中取出一个球,记下颜色后放入袋中,再从袋子中取出一个球,记下颜色.事件:两次取出的球中有且只有一个球是红色球. ……………………8分21(2)当AB =2CD 时,四边形CEDF 为正方形.…………5分 理由:∵AD =BD ,AB =2CD , ∴AD =BD =CD . ∴∠ACD =45°,∠DCB =45°, …………6分 ∴∠ACB =∠ACD +∠BCD =90°,B(第21题)45° ABC60°D∴四边形DECF 是矩形.…………7分又∵DE =DF ,∴四边形CEDF 是正方形. …………8分22.(8分)解:(1)设第一次购进了x 套,则第二次购进了2x 套. ………1分依题意,列方程得:16000x +10=340002x ……………………………3分解得:x =100, ……………………………4分 经检验x =100是原方程的根,2x =200答:该经销商两次共购进这种玩具300套. ……………………5分(2)由(1)得第一批每套玩具的进价为16000100=160元,又因为总利润率为25%,∴售价为160(1+25%)=200元, ……………………6分 第二批玩具的进价为170元,售价也为200元.……………………7分 40×100+30×200=10000元. ……………………8分 答:这二批玩具经销商共可获利10000元.23.(7分)解:没有触礁危险.理由:过点C 作CD ⊥AB ,交AB 的延长线于点D . …1分 由题意可知: ∠ACD =60°,∠BCD =45°, 设CD =x . 在Rt △ACD 中,∵ tan ∠ACD =ADCD,∴AD = 3 x . …2分 在Rt △BCD 中,∵ tan ∠BCD =BDCD,∴BD =x ……3分 ∵AD -BD =AB ,∴ 3 x -x =20. …………5分 ∴x =203 -1≈27.4(km ). ……6分 ∵27.4>25,∴该海轮继续沿正东方向航行,没有触礁危险. …7分 24.(8分)(1)a =4,b =6;………………………2分(2)P 运动了4s 时到达点C ,此时△P AB 的面积为8cm 2, ……4分 (3)由题意AB =DC =2×2=4 cm ,要y 的值为2 cm 2,必须点P 在AD 或BC 上,且P A =1cm 或PB =1cm .当P A =1cm 时,点P 的运动时间t =1s ;当PB =1cm 时,点P 的运动时间为t =2+2+1=5s , 即当t 为1s 或5 s 时,y 的值为2 cm 2. ………8分 25.(8分)(1)证明:连结OE .∵AB =AC ,∴∠B =∠ACB .又∵OE =OC ,∴∠OEC =∠ACB ,∴∠OEC =∠ABC .………1分 ∴OE ∥AB .……………………………………2分AO∵EF 与⊙O 相切,∴OE ⊥EF ,∴∠OEF =90°.…………3分 ∵OE ∥AB ,∴∠AFE =90°,∴OE ⊥AB . …………4分 (2)连结DE 、AE .∵四边形ACED 为⊙O 的内接四边形,∴∠DEC +∠BAC =180°. 又∵∠DEB +∠DEC =180°,∴∠BED =∠BAC , ………5分 又∵∠B =∠B ,∴△BED ∽△BAC .∴BCBDAB BE =. ………6分 ∵AC 为⊙O 的直径,∴∠AEC =90°.∵在△ABC 中, AB =AC ,∴BE =CE =3,∴BC =6.………7分 ∴623=AB ,∴AB =9.即AC =AB =9. ………8分 26.(8分)(1)① ② ……………………………2分(2)①∵△ABC 绕点B 顺时针旋转了60°到△DBE ,∴BC =BE ,∠CBE =60° ……4分 ∵在△BCE 中,BC =BE ,∠CBE =60° ∴△BCE 是等边三角形.……5分②∵△BCE 是等边三角形,∴BC =CE ,∠BCE =60°, ∵∠DCB =30°,∴∠DCE =∠DCB +∠BCE = 90°,…6分 在Rt △DCE 中,有DC 2 +CE 2 =DE 2 ,∵DE =AC ,BC =CE ,∴DC 2 +BC 2 =AC 2 ,………7分 ∴四边形ABCD 是勾股四边形.………8分27.(12分)(1)∵A (-1,0)在抛物线上,∴a -b -5=0,b =a -5.………1分 ∴抛物线的对称轴为:x =-b 2a =5-a2a,……………………2分 ∵0<a <5,∴2 a >0,5-a >0,∴5-a2a>0,∴此时抛物线的对称轴一定在y 轴的右侧. ……………………3分 (2)①∵A (-1,0),B (5,0)在抛物线上,∴⎩⎨⎧a -b -5=0,25a +5b -5=0, ……………………4分 解得:⎩⎨⎧a =1,b =-4……………………5分∴二次函数关系式为y =x 2-4 x -5,由⎩⎨⎧y =x 2-4 x -5, y =t得:x 2-4 x -5=t ,即x 2-4 x -5-t =0, ABDCE∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴方程x 2-4 x -5-t =0有两个不相等的实数解,∴△=16+4(5+t )>0, 解得:t >-9. ……………………7分 (也可先求出二次函数的最小值为-9,然后结合图像,得出t 的取值范围为t >-9. 参照上述标准给分)②连接PC 、CQ ,∵y =x 2-4 x -5=(x -2)2-9,∴抛物线的对称轴为直线x =2, ∵当x =0时,y =-5,∴C (0,-5).设PQ 与y 轴交于点D ,点Q 的坐标为(m ,t )(m >0),则由P 、Q 关于直线x =2对称可得:点P 的坐标为(-m +4,t ).………8分 (Ⅰ)当t >-5时,点D 在点C上方,∵Q (m ,t )在抛物线上,∴t =m 2-4m -5,∴ t +5=m 2-4m ,∵t >-5, ∴m >4, ∴CD =t +5,DQ =m ,DP =m -4. …………9分 ∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°, ∴∠QCD =∠DPC ,又∠PDC =∠QDC =90°,∴△QCD ∽△CDP , ∴DQ DC =DC PD ,即m t +5=t +5 m -4,整理得(t +5)2=m 2-4m , ∴(t +5)2=t +5,解得t 1=-5(不合,舍去),t 2=-4,………………10分 (Ⅱ)当t =-5时,动直线y =t 经过点C ,由题意,不可能.……………………11分 (Ⅲ)当t <-5时,点D 在C 下方,P 、Q 都在y 轴右则,此时∠PCQ <∠DCQ <90 °,由题意无解.综上所述,当t =-4,∠PCQ =90 °. ……………………12分第27题备用图yC OAxBQPD。

2016中考数学模拟试卷(带答案)

2016中考数学模拟试卷(带答案)

2016年中考数学模拟试卷(带答案)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列运算正确的是()A.B.C.D.2.某种商品标价为1200元,售出价800元,则最接近打()折售出A.6折B.7折C.8折D.9折3.从五个点(-2,6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线上的概率是()A.B.C.D.4.平行四边形ABCD中,AC平分DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.125.若,则的值为()A.B.C.D.6.若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定7.如图,⊙O的直径AB=8,P是圆上任一点(A、B除外),APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.B.C.6D.8.给出四个命题:①正八边形的每个内角都是135②半径为1cm和3cm的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30④Rt△ABC中,C=90,两直角边a,b分别是方程x2-7x+12=0的两个根,则它外接圆的半径长为2.5以上命题正确的有()A.1个B.2个C.3个D.4个9.若直角三角形的两条直角边长为、,斜边长为,斜边上的高为,则有()A.B.C.D.10.直角坐标系xoy中,一次函数y=kx+b(kb0)的图象过点(1,kb),且b2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是()A.B.1C.D.不存在二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.点(-1,2)变换为(2,1),请描述一种变换过程.12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路与曙光路交叉口),沿街道走的最近距离是m.13.数据11,9,7,10,14,7,6,5的中位数是,众数是.14.在△ABC中,B=45,cosC=,AC=5a,则用含a的代数式表示AB是(第14题)(第15题)(第16题)15.如图,⊙O为△ABC的内切圆,C=90,BO的延长线交AC 于点D,若BC=3,CD=1,则⊙O的半径等于.16.如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:,若m是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留)19.在平面直角坐标系中,已知点A(6,),B(0,)(1)画一个圆M,使它经过点A、B且与y轴相切(尺规作图,保留作图痕迹);(2)若圆M绕原点O顺时针旋转,旋转角为(0),当圆M与x轴相切时,求圆心M走过的路程.(结果保留)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,(1)根据这规律可知第④个图中有多少个三角形?第n个图中有多少个三角形?(用含正整数n的式子表示);(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的抛物线三角形,[a,b,c]称为抛物线三角形系数.(1)若抛物线三角形系数为[-1,b,0]的抛物线三角形是等腰直角三角形,求的值;(2)若△OAB是抛物线三角形,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.22.如图,直角梯形ABCD,DAB=90,AB∥CD,AB=AD,ABC=60.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且EAD=EDA=15,连接EB、EF.(1)求证:EB=EF;(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)(2)若EF=6,求直角梯形ABCD的面积;23.如图1,抛物线与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且OB=,(O为坐标原点).(1)求实数k的值;(2)求实数a,b的值;(3)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,请直接写出所有满足△EOC∽△AOB的点E的坐标.参考答案一、选择:1-5CBCCD6-10BABCB二、填空:11、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下112、34013、8,714、15、16、三、解答题:17(6分)、化简得.--------------------------4分是一个非负数18(8分)L=13--------------------2分S侧面积=65---------------6分19(8分)(1)画法正确4分(其中无痕迹扣1分)(2)..2分或3..2分20、(1)10个------------------2分-----------------4分(2)不存在..4分(其中过程3分)21、(1)b=2或2..5分(其中点坐标求出适当给分)(2)..5分(其中点坐标求出适当给分)22、(1)证明完整..4分(2)菱形-------4分(写平行四边形3分)(3)S梯形=----------------4分23、(1)k=4..3分(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)(3)提示:发现OCOB,且OC=2OB所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分希望为大家提供的2016年中考数学模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。

【最新】2016浙江省杭州市数学中考模拟试卷及答案

【最新】2016浙江省杭州市数学中考模拟试卷及答案

x
2
A. a = b + 2k
B. a = b - 2k
C. k < b < 0
D. a < k < 0
8. 以下是某手机店 1~ 4 月份的统计图, 对 3、4 月份三星手机的销售情况四个同学得出的以下四
个结论,其中正确的为(

A. 4 月份三星手机销售额为 65 万元
B. 4 月份三星手机销售额比 3 月份有所上升 C. 4 月份三星手机销售额比 3 月份有所下降
2016
年中考模拟试卷数学卷
考试时间: 120 分钟 满分: 120 分
一 . 选择题 ( 本题有 10 小题,每小题 3 分,共 30 分.请选出各题中一个符合题意的正确选项,不 选、多选、错选,均不给分 )
1. (原创) 2015 年 11 月 22 日, “球冠杯”萧山戴村山地越野赛在戴村举行。此次越野赛以徒
D. 5 cos20
(第 4 题图 )
6. (改编) 设 a 5 3, b 2 2, c 6 2 ,则 a,b,c的大小关系式( )
A. a >b> c
B. c> b> a
C. c> a> b
D. b >c> a
7. (改编) 反比例函数 y = k 的图象经过二次函数 y = ax2 + bx 图象的顶点 (- 1 , m)( m > 0) ,则
A. a >b> c
B. c> b> a
C. c> a> b
D. b >c> a
7. (改编) 反比例函数 y = k 的图象经过二次函数 y = ax2 + bx 图象的顶点 (- 1 , m)( m > 0) ,则
x
2

2016年中考数学仿真试卷参考答案与试题解析

2016年中考数学仿真试卷参考答案与试题解析

2016年中考数学仿真试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)1.在﹣5,0,π,这四个数中,最大的有理数的是()A.﹣5 B.0 C.πD.【考点】实数大小比较.【分析】先找出四个数中的有理数,再比较大小即可.【解答】解:﹣5,0,π,这四个数中,有理数是﹣5,0,∵﹣5<0,∴这四个数中最大的有理数的是0.故选B.2.如图所示的几何体,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形的左上角去掉了一个小矩形,故选:C.3.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°【考点】平行线的性质.【分析】先根据平行线的性质得∠BEF=∠C=70°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.4.下列计算正确的是()A.3a﹣2a=1 B.|﹣5|=5 C.=±2 D.2﹣3=﹣6【考点】合并同类项;绝对值;算术平方根;负整数指数幂.【分析】根据合并同类项的法则、算术平方根以及负整数指数幂进行计算即可.【解答】解:A、3a﹣2a=a,故A错误;B、|﹣5|=5,故B正确;C、=2,故C错误;D、2﹣3=,故D错误,故选B.5.代数式有意义,则x的取值范围是()A.x≥﹣1且x≠1 B.x≠1 C.x≥1且x≠﹣1 D.x≥﹣1【考点】二次根式有意义的条件;分式有意义的条件.【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【解答】解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C7.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是()A.众数是35 B.中位数是34 C.平均数是35 D.方差是6【考点】方差;加权平均数;中位数;众数.【分析】根据众数、平均数、中位数和方差的计算公式分别进行计算即可得出答案.【解答】解:A、31和34出现了2次,出现的次数最多,则众数是31和34,故本选项错误;B、把这组数据从小到大排列,最中间的数是34,则中位数是34,故本选项错正确;C、这组数据的平均数是:(31+30+34+35+36+34+31)÷7=33,故本选项错误;D、这组数据的方差是:[2(31﹣33)2+(30﹣33)2+2(34﹣33)2+(35﹣33)2+(36﹣33)2]=,故本选项错误;故选B.8.若在△ABC中,∠BAC的平分线交BC于D,AC=AB+BD,∠C=30°,则∠B的度数为()A.90°B.75°C.60°D.45°【考点】全等三角形的判定与性质;三角形的外角性质;等腰三角形的性质.【分析】利用三角形全等的性质计算.根据已知条件中,两条线段的和等于其中一条线段,可以采用延长短线段或在长线段上截取的方法.综合运用了全等三角形的判定和性质;等腰三角形的性质以及三角形的外角的性质.【解答】解:延长AB至E,使BE=BD,又AC=AB+BD,∴AE=AC,在△ADE和△ADC中,AD=AD,∠EAD=∠CAD,AE=AC,∴△ADE≌△ADC,∴∠E=∠C=30°,∴∠BDE=∠E=30°,∴∠ABD=∠E+∠BDE=60°.故选C.9.从一块半径是4m的圆形铁片上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()A.m B.2m C.4m D.m【考点】圆锥的计算.【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,解得r=1,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以圆锥的高==(m).故选D.10.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则下列结论中正确的有()(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个【考点】函数的图象.【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【解答】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x﹣120)×[(50﹣30)÷]=0.4x﹣18;B:(1)当0≤x<200,y B=50,当x>200,y B=50+[(70﹣50)÷](x﹣200)=0.4x﹣30,所以当x≤120时,A方案比B方案便宜20元,故(1)正确;当x≥200时,B方案比A方案便宜12元,故(2)正确;当y=60时,A:60=0.4x﹣18,∴x=195,B:60=0.4x﹣30,∴x=225,故(3)正确;当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元,将y A=40或60代入,得x=145分或195分,故(4)错误;故选:C.二、填空题(本题有6个小题,每小题3分,共18分)11.“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物.2.5微米即0.0000025米,用科学记数法表示0.0000025为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6.故答案为:2.5×10﹣6.12.如果a的倒数是﹣1,那么a2016等于1.【考点】倒数.【分析】根据倒数的定义先求出a的值,再代入要求的式子即可得出答案.【解答】解:∵﹣1的倒数是﹣1,∴a=﹣1,∴a2016=(﹣1)2016=1;故答案为:1.13.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是(2,﹣2).【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故答案为:(2,﹣2).14.已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是AF=AC或∠AFE=∠ABC.(写出一个即可)【考点】相似三角形的判定.【分析】根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.【解答】解:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF=AC;②∵△AFE∽△ACB,∴∠AFE=∠ABC.∴要使以A、E、F为顶点的三角形与△ABC相似,则AF=AC或∠AFE=∠ABC.故答案为:AF=AC或∠AFE=∠ABC.15.如图,小聪同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为45.【考点】解直角三角形的应用-方向角问题.【分析】根据题意得到PB=AB=90,根据正弦的定义计算即可.【解答】解:由题意得,∠PAB=30°,∠PBC=60°,∴∠APB=∠PBC﹣∠PAB=30°,∴∠PAB=∠APB,∴PB=AB=90,∴PC=AB×sin∠PBC=45米.故答案为:45.16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.【考点】规律型:图形的变化类.【分析】由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.【解答】解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.三、解答题(本题有9个小题,共72分,解答写出必要的演算步骤、文字说明或证明过程)17.解不等式,并把它们的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式得到x<2和x≥﹣1,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示其解集.【解答】解:,解①得x<2,解②得x≥﹣1,所以不等式组的解集为﹣1≤x<2.用数轴表示为:.18.先化简,再求值:(x+1)2+y(y﹣2x)+2x2y÷(﹣xy),其中x﹣y=.【考点】整式的混合运算—化简求值.【分析】首先根据完全平方公式和单项式与多项式相乘的法则进行计算,再合并同类项,得出化简结果,然后代入x﹣y的值计算即可.【解答】解:(x+1)2+y(y﹣2x)+2x2y÷(﹣xy)=x2+2x+1+y2﹣2xy﹣2x=x2+1+y2﹣2xy=(x﹣y)2+1把x﹣y=代入得:原式=()2+1=4.19.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?【考点】分式方程的应用.【分析】将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可.【解答】解:设乙单独整理x分钟完工,根据题意得:=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.21.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图.【分析】(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b%=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;表示男生,用a、b表示女生,列表得:8种,∴P(一男一女)==.22.如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,点E为BC的中点,连接DE、AE,AE交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的直径为2,求AD•AC的值.【考点】切线的判定.【分析】(1)先连接OD和BD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)根据射影定理即可求得.【解答】(1)证明:连接OD,BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=90°,∵E为BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD,∵OD=OB,∴∠ODB=∠OBD,∵∠ABC=90°,∴∠EDO=∠EDB+∠ODB=∠EBD+∠OBD=∠ABC=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)解:∵在RT△ABC中,BD⊥AC.∴AB2=AD•AC,∵AB=2,∴AD•AC=4.23.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【考点】二次函数的应用.【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.24.感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E是AB 上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.【考点】正方形的性质;全等三角形的判定与性质;直角梯形.【分析】探究:求出CE=CF,DF=BE,∠ECG=∠FCG,证△ECG≌△FCG,推出EG=GF 即可;应用:过C作CH⊥AD于H,旋转△BCE到△CHM,推出四边形ABCH是正方形,CD平分∠ECM,由探究证明知:DE=BE+DH,在Rt△AED中,DE=10,AD=6,由勾股定理求出AE=8,设BE=x,根据BC=AB=x+8=AH 得出x+8=6+10﹣x,求出x=4即可.【解答】探究:证明:∵根据旋转的性质得:△EBC≌△FDC,∴CE=CF,DF=BE,∵CG平分∠ECF,∴∠ECG=∠FCG,在△ECG和△FCG中∴△ECG≌△FCG(SAS),∴EG=GF,∵GF=DG+DF=DG+BE,∴EG=BE+GD;应用:解:如图3,过C作CH⊥AD于H,旋转△BCE到△CHM,则∠A=∠B=∠CHA=90°,∵AB=BC,∴四边形ABCH是正方形,∵∠DCE=45°,AH=BC,∴∠DCH+∠ECB=90°﹣45°=45°,∵由已知证明知:△EBC≌△MHC,∴∠ECB=∠MCH,∴∠DCH+∠MCH=45°,∴CD平分∠ECM,∴由探究证明知:DE=BE+DH,在Rt△AED中,DE=10,AD=6,由勾股定理得:AE=8,设BE=x,则BC=AB=x+8=AH,即x+8=6+10﹣x,x=4,BE=4,AB=4+8=12,BC=AB=12,∴梯形ABCD的面积是×(6+12)×12=108.25.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD 折叠,使点B恰好落在OA边上的点E处,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求AE的长;(2)求经过O、D、C三点的抛物线的解析式;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据翻折的性质,可得CE与CB的关系,DE与BD的关系,根据勾股定理,OE的长,根据线段的和差,可得答案;(2)根据勾股定理,可得m的值,可得D点坐标,根据待定系数法,可得答案;(3)①以EN为对角线,根据对角线互相平分,可得CM的中点与EN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;②当EM为对角线,根据对角线互相平分,可得CN的中点与EM的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案;③当CE为对角线,根据对角线互相平分,可得CE的中点与MN的中点重合,根据中点坐标公式,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)∵CE=CB=OA=5,CO=AB=4,∴在Rt△COE中,OE==3,∵OE=3,∴AE=5﹣3=2,(2)在Rt△ADE中,设AD=m,则DE=BD=4﹣m,由勾股定理,得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(3)∵抛物线的对称为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,如图1,,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16∴M(2,16);②当EM为对角线,即四边形ECMN是平行四边形时,如图2,,则线段EM的中点,横坐标为,线段CN中点横坐标为=﹣3,∵EN,CM互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,如图3,,m+(﹣2)=﹣5+0,解得m=﹣3,当m=﹣3时,y=×(﹣3)2+×(﹣3)=﹣4,即M(﹣3,﹣4).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣3,﹣4).。

2016年中考数学模拟试题(一)及答案

2016年中考数学模拟试题(一)及答案

2016年中考数学模拟试题数学试卷(一)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比-1大1的数是( )A.2 B.1 C.0 D.-22.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5 B.1.05 C.1.05 D.0.1053.右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.4.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<C.(b-1)(a+1)>0 D.(b-1)(a-1)>05.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°16.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是( ) A.B.m≥0C.m≥1D.m≥27.方山镇2012年的蔬菜产量是1200吨,今年的产量达到1452吨,如果平均每年的增长率为x ,那么x 满足的方程是( ) A .1200(1+x )2=1452 B .1200(1+x %)2=1452 C .1200(1+2x )=1452D .1200(1+x %)=14528.同一直角坐标系中,函数xay -=与1+=ax y (a ≠0)的图象可能是( )9.小红制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被3整除的概率是( )A .B .C .D .10.如图,函数y=的图象经过点A (1,﹣3),AB 垂直x 轴于点B ,则下列说法正确的是( )A.k=3B. 函数图象关于y 轴对称C. S △AOB =3D. x <0时, y 随x 增大而增大11如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∠BCD =30°,下列结论:①AE =BE ;②OE =DE ;③AB =BC ;④.其中正确的是( )A .①B .①②③C .①③D .①②③④12. 如图,正方形OABC 边长为2,顶点A 、C 在坐标轴上,点P 在AB 上,CP 交OB 于点Q ,OQ=OC ,则﹣213.如图,在等腰D 是AC 上一点,若那么AD 的长为( )14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0; ②9a+c >3b ; ③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( ) A .1个 B . 2个 C . 3个 D . 4个15.已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具).以下是嘉淇、小刚两同学的作业:【嘉淇】①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1).【小刚】①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2).对于两人的作业,下列说法正确的是( )A .嘉淇对,小刚不对B .嘉淇不对,小刚对C .两人都对D .两人都不对 16.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )图2图1BA .A→O→B B .B→A→C C .B→O→CD .C→B→O二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.已知m 、n 是一元二次方程x 2-3x +1=0的两个根,那么代数式2m 2+4n 2-6n +2003的值是__________. 18.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是________. 19.右图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=___.20.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点P 1、A 1、A 2为顶点的△P 1A 1A 2的面积记为S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+S n =________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)(1(2)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.如图,在菱形ABCD 中,AB =2,∠ABC =60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角()090αα<< 后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F . (1)求证:△AOE ≌△COF ;(2)当=30α 时,求线段EF 的长度.DB第23题图甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.如图,边长为1的正方形ABCD一边AD在x负半轴上,直线lB(x,1)与x轴、y轴分别交于点H、F,抛物线y=-x2+bx+c顶点E在直线l上.⑴求A、D两点的坐标及抛物线经过A、D两点时的解析式.⑵当该抛物线的顶点E(m,n)在直线l上运动时,连接EA、ED,试求△EAD的面积S与m之间的函数解析式.并写出m的取值范围.⑶设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A、C、E、G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.26.如图14-1,矩形ABCD中,AB=8,BC=38,半径为3的⊙P与线段BD相切于点M,圆心P与点C在直线BD的同侧,⊙P沿线段BD从点B向点D滚动.发现:BD=______;∠CBD的度数为_______;拓展:①当切点M与点B重合时,求⊙P与矩形ABCD重叠部分的面积②在滚动过程中如图14-2,求AP的最小值;B(图14-1B图14-2探究:①若⊙P与矩形ABCD的两条对角线都相切,求此时线段BM的长,并直接写出tan∠PBC的值.Array②在滚动过程中如图14-3,点N是AC上任意一点,直接写出BP+PN的最小值.图14-3答案一、选择题1——16 CBBC B BA B DDDB ABCC 二、填空题17 2015 18 a≤-1且a≠-2 19 360°20 (2,1);1 nn-.三、解答题21.(1)2013(2) x=-222.(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;则P==.23.【答案】(1)∵四边形ABCD是菱形,∴OA=OC,AD∥BC.∴∠OAE=∠OCF,∠OEA=∠OFC.∴△AOE≌△COF(AAS).(2)∵AB=AC=2,∠ABC=60°,∴△ABC是等边三角形.∴∠AOAE=∠ACB=60°.又∵=30α =∠AOE,∴EF⊥BC.∵四边形ABCD 是菱形, ∴OA =OC =1.在Rt △OCF 中,由sin ∠OCF =OF OC ,得OF =OC sin60°=1 ∵△AOE ≌△COF , ∴OE =OF .∴EF24.【答案】(1)4.5,60(km/h);(2)y=28x+264.(7x 5.4≤≤)(3)1855小时和32209小时 【解析】解:(1)在途中的货站装货耗时半小时,说明a=4+0.5=4.5. 甲的速度:460÷(7+32)=60(km/h) (2)设直线OD 为y=mx,直线EF 为y=nx+b.由图像可知:⎩⎨⎧+=50m 460=4.5)n -(7+4m n 解得:⎩⎨⎧=28n 78=m 把n=28,(7,460)代入y=nx+b.中得:b=264. ∴y=28x+264.(7x 5.4≤≤) (3)相距15千米,两种:①78x-60(x+32)=15 解得:x=1855②28x+264-60(x+32)=15解得:x=32209答:乙出发1855小时和32209小时时与甲相聚15千米。

2016中考数学模拟试题(有答案)

2016中考数学模拟试题(有答案)

2016年中考数学模拟试题(有答案)科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了2016年中考数学模拟试题。

A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).希望为大家提供的2016年中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。

2016最新中考数学模拟试题及答案

2016最新中考数学模拟试题及答案

2016年最新中考数学模拟试题及答案同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇中考数学模拟试题,希望可以帮助到大家!1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.B级中等题7.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.10.如图7­2­3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树状图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.C级拔尖题11.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∴P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∴P(一黑一白)=612=12.图737.258.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∴他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∴P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.方法二,列表格如下:A1B2A2B2B1B2-A1B1A2B1-B2B1A1A2-B1A2B2A2-A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.图77一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.希望为大家提供的中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中2016届中考数学第十一次模拟
第Ⅰ卷(选择题 共45分)
一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个
选项中,只有一项是符合题目要求的.)
1.|-2 014|等于( )
A.-2 014
B.2 014
C.±2 014
D.2 014 2.下面的计算正确的是( )
A.6a -5a =1
B.a +2a 2=3a 3
C.-(a -b)=-a +b
D.2(a +b)=2a +b
3.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是
( )
A.a-c>b-c
B.a+c<b+c
C.ac>bc
D.
a c
b b
4.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是2
5
,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为
14
,则原来盒里有白色棋子( ) A.1颗 B.2颗 C.3颗 D.4颗
5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( ) A.10,10 B.10,12.5 C.11,12.5 D.11,10
6.一个几何体的三视图如图所示,则这个几何体是( )
7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是( )
8.对于非零的两个实数a ,b ,规定a b=
11
b a
-,若2(2x-1)=1,则x 的值为( )
5531A. B. C. D.6426
- 9.
已知
2
x y 30-++=(),则x+y 的值为( )
A.0
B.-1
C.1
D.5
10.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°,∠C = 50°,那么sin ∠AEB 的值为
( )
1D.
2 11.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是
( )
A.48
B.60
C.76
D.80
12.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线
6
y x
-=
于点C,则△ADC 的面积为
( )
A.9
B.10
C.12
D.15 13.2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( ) A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中 C.科比罚球投篮1次,命中的可能性较大 D.科比罚球投篮1次,不命中的可能性较小
14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( ) A.60° B.90° C.120° D.180°
15.如图,在正方形ABCD 中,AB=3 cm ,动点M 自A 点出发沿AB 方向以每秒1 cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运
动同时停止.设△AMN 的面积为y (cm 2
),运动时间为x (s ),则下列图象中能大致反映y 与x 之间的函数关系的是
第Ⅱ卷(非选择题 共75分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)
16.
a 10a
b -+=-,则=___________.
17.命题“相等的角是对顶角”是____命题(填“真”或“假”).
18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.
19.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(5,3),则这束光从点A 到点B 所经过的路径的长为______.
20.若圆锥的母线长为5 cm ,底面半径为3 cm ,则它的侧面展开图的面积为________cm 2
(结果保留π).
21.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B=∠F=72°,则∠D=______度.
三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)
22.(本小题满分7分)
(1)解方程组:
x3y1, 3x2y8.
+=-⎧

-=⎩
(2)解不等式组
2x31
2x0
+>


-≥
⎩,
并把解集在数轴上表示出来.
23.(本小题满分7分)
(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.
求证:AC是⊙O的切线;
(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.
24.(本小题满分8分)
一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.
(1)甲、乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
25.(本小题满分8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了多少名同学?
(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
26.(本小题满分9分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P 为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.
(1)求y与x的函数关系式;
(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;
(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.
27.(本小题满分9分)已知如图,一次函数1y x 12
=
+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1
y x 12
=+的图象交于B 、C 两点,
与x 轴交于D 、E 两点,且D 点坐标为(1,0).
(1)求二次函数的解析式.
(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.
(3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值;若不存在,说明理由.
28.(本小题满分9分)
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为
2 4
3
(,),且与y轴交于点C(0,2),
与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A,B两点的坐标.
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP 的最小值,若不存在,请说明理由.
(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.。

相关文档
最新文档