2月12第一轮2.3.初三数学总复习2――方程与不等式

合集下载

九年级中考总复习之2方程与不等式

九年级中考总复习之2方程与不等式

九年级中考总复习(2)方程与不等式内容概要2.1 方程的定义与解方程2.2 方程的解的问题2.3 不等式及其解的问题2.4 方程、不等式应用题复习笔记1、方程:含有未知数的等式叫做方程.(1)一元一次方程:只含一个未知数,且未知数的最高次数是1,这样的整式方程叫做一元一次方程.(2)二元一次方程:如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程.由两个一次方程组成且含有两个未知数的方程组叫做二元一次方程组.(3)分式方程:只含分式,或分式和整式,并且分母里含有未知数的方程叫做分式方程.(4)一元二次方程:只含一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.2、方程的解:使方程等号两边相等的未知数的值叫做方程的解.3、解方程:方程的类型从少元到多元,从低次到高次,由整式到分式等复杂的方程.解决方程的思想为复杂方程变为简单方程,解决方程的方法正好是消元和降次,化为整式方程.4、解方程的方法:(1)一元一次方程:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.(2)二元一次方程(组):①加减消元法;②代入消元法.(3)分式方程:化为整式方程,注意“增根”问题.(4)一元二次方程:①直接开平方法;②配方法:()200ax bx c a++=≠⇒2224c+=24b b axa a-⎛⎫⎪⎝⎭;③公式法:求根公式x=(240b ac-≥);④因式分解法.课堂例题1、方程22(1)(3)0a a a x a x a +++-+=.当a =__________时,它为一元一次方程;当它为一元二次方程时,a 为__________.2、解方程:3、小明同学解关于x 的一元一次方程21152x x a ++-=时,方程左边的1忘记乘以10了,解得方程为x =4,求a 的值和原方程正确的解.4、已知a ,b 为定值,关于x 的方程2136kx a x bk ++=-,无论k 为何值,它的解总是1,则a +b =__________.5、已知方程组135x y a x y a +=-⎧⎨-=+⎩的解x 为正数,y 为非负数,给出下列结论:①-3<a ≤1;②当a =53-时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解;④若x ≤1,则y ≥2.其中正确的是__________.(填写正确结论的序号)6、关于x 的两个方程22x x --=.7、(1)关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是__________; (2)已知方程3144a a a a --=--,且关于x 的不等式组x a x b>⎧⎨≤⎩只有4个整数解,那么b 的取值范围是__________.9、已知x 1,x 2是关于x 的一元二次方程224490x mx m -+-=的两实数根. (1)若这个方程有一个根为−1,求m 的值;(2)若这个方程的一个根大于−1,另一个根小于-1,求m 的取值范围;(3)已知直角∆ABC 的一边长为7,x 1、x 2恰好是此三角形的另外两边的边长,求m 的值.课堂练习1、已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a +bD .a −b2、解方程: 213011x x -=-- (3)7(3)x x x +=+ 2840x x --=22430x x +-= 2121111x x x x +-=--+4、(1)已知关于x 的分式方程111k x k x x ++=+-的解为负数,则k 的取值范围是__________; (2)使得关于x 的分式方程111x k k x x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k +≥-⎧⎨-≤⎩有5个整数解的所有k 的和为__________.5、若x 0是方程ax 2+2x +c =0(a ≠0)的一个根,设M =1−ac ,N =(ax 0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M =NC .M <ND .不确定6、当a ,b 都是实数,且满足2a -b =6,就称点P (a -1,2b +1)为完美点. (1)判断点A (2,3)是否为完美点; (2)已知关于x ,y 的方程组62x y x y m +=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (x ,y )是完美点,请说明理由.7、已知关于x ,y 的二元一次方程3x y a -=和34x y a +=-.(1)如果51x y =⎧⎨=-⎩是方程3x y a -=的一个解,求a 的值;(2)当a =1时,求两方程的公共解;(3)若00x x y y =⎧⎨=⎩是已知方程的公共解,当x 0≤1时,求y 0的取值范围.8、已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若方程组的解x 、y 满足x +y >5,求k 的取值范围;(3)若(4x +2)2y =1,直接写出k 的值;(4)若k ≤1,设m =2x -3y ,且m 为正整数,求m 的值.复习笔记1、方程的解的个数问题:①ax =b .(1)0a ≠,方程有唯一解;(2)0a b ==,方程有无数解;(3)0,0a b =≠,方程无解.②ax by c dx ey f +=⎧⎨+=⎩(0)def ≠. (1)a b d e≠,方程组有唯一解; (2)a b c d e f==,方程组有无数解; (3)a b c d e f =≠,方程组无解.③()200ax bx c a ++=≠,判断方程与根的个数的即为判别式:∆=24b ac -. (1)∆>0,方程有两个不等实根;(2)∆=0,方程有两个相等实根;(3)∆<0,方程无实根.2、我们学会了解方程的方法,也往往要学会通过“不解方程”来进行求值.通常不解方程求值的方法是通过恒等变形,再使用(1)整体代换;(2)降次求解;(3)一元二次方程的韦达定理(12b x x a +=-,12c x x a =,注意用韦达定理的前提是一元二次方程∆≥0)等方法.课堂例题1、已知关于x 的方程351x a bx -+=+有唯一的一个解,则a 与b 必须满足的条件为__________;若该方程没有解,则a 与b 必须满足的条件为__________.2、已知关于x 的方程||540x a -+=无解,||430x b -+=有两个解,||320x c -+=只有一个解,则化简||||a c c b a b ---+-的结果是__________.3、当a ,c 为何值时,方程+2124ax y x y c =⎧⎨+=⎩有一个解?有无数解?无解?4、(1)若关于x 的分式方程21111x k x x +-=--有增根,则增根可能是__________; (2)若关于x 的分式方程61(1)(1)1m x x x -=+--有增根,则它的增根是__________; (3)若关于x 的分式方程22024mx x x +=--有增根,则m 的值为__________; (4)若关于x 的分式方程2134416m m x x x ++=-+-无解,则m 的值为__________; (5)已知,关于x 的分式方程2222x x a x x x x x--+=--恰有一个实数根,则满足条件的实数a 的值为__________.5、对于一元二次方程20(0)ax bx c a ++=≠,下列四种条件:①240b ac -≥;②240b ac +>;③a 、c 异号;④0a b c ++=.满足其中条件之一的方程一定有实数根的有( )A .1种B .2种C .3种D .4种__________.7、已知关于x 的一元二次方程2()20a c x bx a c +++-=,其中a 、b 、c 分别为∆ABC 三边的长.下列关于这个方程的解和∆ABC 形状判断的结论错误的是( )A .如果x =−1是方程的根,则∆ABC 是等腰三角形B .如果方程有两个相等的实数根,则∆ABC 是直角三角形C .如果∆ABC 是等边三角形,方程的解是x =0或x =−1D .如果方程无实数解,则∆ABC 是锐角三角形8、对于一元二次方程()200ax bx c a ++=≠,下列说法中:①若0a c +=,方程20ax bx c ++=有两个不等的实数根;②若方程20a x b x c ++=有两个不等的实数根,则方程20cx b x a ++=一定有两个不等的实数根;③若c 是方程20a x b x c ++=的一个根,则一定有10ac b ++=成立;④若m 是方程20a x b x c ++=的一个根,则一定有()2242b ac am b -=+成立.正确的有__________.(填写正确结论的序号)9、已知关于x 的方程()()22200mx m x m -++=≠.(1)求证方程有两个实数根;(2)若方程的两根都是整数,求正整数m 的值.10、关于x 的方程2()0a x m b ++=的解是122,1x x =-=,(a ,m ,b 均为常数,a ≠0),则方程220a x m b +++=()的解是__________.11、三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是__________.12、阅读材料:善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法. 解:将方程②变形:4x +10y +y =5即2(2x +5y )+y =5③,把方程①代入③得:2×3+y =5,y =-1,把y =-1代入①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组2356119x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2-xy 的值.13、若a 是方程2201810x x -+=的根,则22201820171a a a -++的值为__________.14、(1)一元二次方程x 2−3x −2=0的两根为x 1,x 2,则下列结论正确的是( )A .x 1=−1,x 2=2B .x 1=1,x 2=−2C .x 1+x 2=3D .x 1x 2=2(2)一元二次方程x 2-3x -1=0与x 2-x +3=0的所有实数根的和为__________;(3)设12,x x 是方程22330x x --=的两个实数根,则1221x x x x +=__________; (4)设a 、b 是方程220180x x +-=的两个不相等的实数根,则22a a b ++=__________;(5)设关于x 的方程x 2-2x -m +1=0的两个实数根分别为α,β,若|α|+|β|=6,那么实数m 的取值是__________.15、(1)如果m ,n 是两个不相等实数,且23m m -=,23n n -=,则2222018n mn m +-+=__________;(2)若∆ABC 三边a ,b ,c 满足2420a a -+=,2420b b -+=,c =∆ABC 的面积为S ,则S 2=__________.16、定义运算:a ⋆b =a (1−b ).若a ,b 是方程x 2−x +14m =0(m <0)的两根,则b ⋆b −a ⋆a 的值为__________.17、若t 为实数,关于x 的方程x 2−4x +t −2=0的两个非负实数根为a 、b ,则代数式(a 2−1)(b 2−1)的最小值是__________.18、已知,关于x 的一元二次方程2220x mx n ++=有两个整数根且乘积为正,关于y 的一元二次方程2220y ny m ++=同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②22(1)(1)2m n -+-≥;③1221m n -≤-≤.其中正确的结论是__________.(填写正确结论的序号)19、关于x 的一元二次方程()222110x k x k ++++=有两个不等实根1x 、2x . (1)求实数k 的取值范围;(2)若方程两实根1x 、2x 满足1212·x x x x +=,求k 的值.课堂练习1、(1)方程111082x x +=-的根是10,则另一个根是__________; (2)如果方程211x bx m ax c m --=-+有等值异号的根,那么m =__________; (3)如果关于x 的方程2221511k k x x x x x --+=-+-,有增根x =1,则k =__________; (4)方程1110113x x x x +-+=-+的根是__________.2、关于x 的方程()2220ax a x ++=-只有一解(相同解算一解),则a 的值为__________.3、已知∆ABC 的一边为5,另外两边分别是方程260x x m -+=的两个根,则m 的取值范围是__________.4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为无实数根、有两个相等的实数根和两个不等的实数根三种5、关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解;②当0m ≠时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解.其中正确的是__________.(填写正确结论的序号)6、有两个一元二次方程M :20ax bx c ++=,N :20cx bx a ++=,其中0a c +=,以下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =7、已知关于x ,y 的二元一次方程组3511x ay x by -=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,那么关于x ,y 的二元一次方程组3(+)()5()11x y a x y x y b x y --=⎧⎨++-=⎩的解为__________.8、将关于x 的一元二次方程20x px q ++=变形为2x px q =--,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知210x x --=,可用“降次法”求得432018x x -+的值是__________.9、(1)若x 1,x 2是一元二次方程x 2−2x −1=0的两个实数根,则x 12−x 1+x 2=__________; (2)若x 1,x 2为一元二次方程2310x x ++=的两个实数根,则31282018x x ++=__________.10、若关于x 的一元二次方程x 2+2x -m 2-m =0(m >0),当m =1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则112220182018111111αβαβαβ+++++的值为__________.11、关于x 的一元二次方程x 2-(2k -3)x +k 2+1=0有两个不相等的实数根x 1、x 2. (1)求k 的取值范围; (2)求证:x 1<0,x 2<0;(3)若x 1x 2-|x 1|-|x 2|=6,求k 的值.12、已知方程x 2+px +q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1x 2=q ,反过来,如果x 1+x 2=-p ,x 1x 2=q ,那么以x 1,x 2为两根的一元二次方程是x 2+px +q =0.请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0(n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a 、b 满足a 2-15a -5=0,b 2-15b -5=0,求a bb a+的值; (3)已知a 、b 、c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.13、已知关于x 的方程x 2+2kx +k 2+k +3=0的两根分别是x 1、x 2,则(x 1-1)2+(x 2-1)2的最小值是__________.复习笔记(1)一元一次不等式:含有一个未知数,且未知数的次数是1的不等式. 常见不等号有:>、<、≥、≤、≠.(2)不等式的基本性质:①a b a c b c >⇒+>+,a b a c b c <⇒+<+; ②()()00ac bc c a b ac bc c ⎧>>⎪>⇒⎨<<⎪⎩; ③()()00a bc c ca b a b c c c⎧>>⎪⎪>⇒⎨⎪<<⎪⎩.(3)解不等式:解一次不等式的方法类似于解一次方程.步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化1.要特别注意的是不等式区别于方程在于变号(两边同乘以或者同除以一个负数不等号要变号).(4)不等式组的解:若a b >,分别在数轴上画出表示下列不等式组的解的情况:x ax b x b <⎧⇒<⎨<⎩(小小取小) x ax a x b >⎧⇒>⎨>⎩(大大取大)x ab x a x b <⎧⇒<<⎨>⎩(大小小大取中间) x ax b >⎧⇒⎨<⎩无解 (大大小小取不了)(5)含参(字母)的不等式问题:特别注意:①变号问题;②会利用数轴解决问题.课堂例题1、若a b >,0c <,则ac _____bc ,a b a -_____b b a-,2ac _____2bc ,||a c _____||b c .2、下列命题中,真命题是( )A .若a b >,则2a ab > B1m =-,则1m ≤ C .若a b >,则11a b < D .已知a ,b 为实数,若1a b +=,则14ab ≤3、解不等式(组):4、若不等式(2)2a x a ->-的解集是1x <-,则a 的取值范围是__________.5、若不等式组112123x ax x +<⎧⎪++⎨≤-⎪⎩的解是x < a −1,则实数a 的取值范围是__________.6、已知m ,n 为常数,若mx +n >0的解集为12x <,则nx +m <0的解集是__________.7、(1)若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩无解,则a 的取值范围是__________.(2)若关于x 的不等式组2011a x x ->⎧⎨-≤<⎩有解,则a 的取值范围是__________;(3)已知不等式组253(2)23x a x x a x+≤+⎧⎪-⎨<⎪⎩有解,且每一个解x 均不在-1≤x ≤4范围内,则a 的取值范围是__________.8、对x 、y 定义一种新运算▲,规定:x y ax by =+#(其中a 、b 均为非零常数),例如:10a =#.已知113=#,111-=-#.(1)求a 、b 的值;(2)若关于m 的不等式组3(12)42m m m m p -≤⎧⎨>⎩##恰有3个整数解,求实数p 的取值范围.9、已知关于x 的方程2m x =的解满足325x y n x y n-=-⎧⎨+=⎩(0<n <3),若y >1,则m 的取值范围是__________.10、(1)从−3,−1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组1(27)33x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的分式方程2133x a x x--=---有整数解,那么这5个数中所有满足条件的a 的值之和是__________;(2)若关于x 的不等式组2223x x x m +⎧≥-⎪⎨⎪<⎩的所有整数解的和是-9,则m 的取值范围是__________.11、阅读理解:我们把对非负实数x “四舍五入”到各位的值记为《x 》,即当n 为非负整数时,若1122n x n -≤<+,则《x 》=n .例如:《0.67》=1,《2.49》=2,…….给出下列关于《x》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m +2x 》=m +《2x 》;④若《2x -1》=5,则实数x 的取值范围是111344x ≤<;⑤满足《x 》=32x 的非负实数x 有三个.其中正确的结论是__________.(填写正确结论的序号)a b 有最大值2 D 89=3a +2b .则c .13、若不等式27125ax x x +->+对11a -≤≤恒成立,则x 的取值范围是__________.课堂练习1、已知a ,b ,c ,d 都是正实数,且a cb d <,给出下列四个不等式中,正确的有__________. ①a bcd b d ++<;②c d a b d b --<;③2ac c b d <;④b d a b c d<++.2、解不等式(组):13(21)(12)32x x --> 26321054x x x x -<⎧⎪+-⎨-≥⎪⎩ 2231x x -≤-≤+3、已知a ,b 为实数,则解可以表示为22x -<<的不等式组的是( )A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4、若不等式组x ax b>-⎧⎨≥-⎩ 的解为x b ≥-,则下列各式正确的是( )A .a >bB .a <bC .b ≤aD .ab >05、若关于x 的不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,则适合这个不等式组的整数a ,b 的有序数对(a ,b )的个数是__________个.6、若3a -22和2a -3是实数m 的平方根,且t则不等式2353212x t x t ---≥的解集为__________.7、如果关于x 的分式方程1311a xx x --=++有负分数解,且关于x 的不等式组2()43412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为x <−2,那么符合条件的所有整数a 的积是__________.8、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. (1)在方程①x -(3x +1)=-5;②23x+1=0;③3x -1=0中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是__________(填序号);(2)若不等式组2112x x x -<⎧⎨+>-+⎩的某个关联方程的根是整数,则这个关联方程可以是__________(写出一个即可); (3)若方程111222x x -=,3+x =2(x +12)都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出m 的取值范围.复习笔记运用方程解决应用题的基本步骤:①审题,搞清已知量和待求量,分析数量关系;(审题,寻找等量关系)②考虑如何根据等量关系设元,列出方程;(设未知数,列方程)③列出方程后求解,得到答案;(解方程)④检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)课堂例题1、《算法统宗》是我国明代的一部数学名著,记载了很多有趣的问题.其中有一道“李白饮酒”的数学诗谜,原诗如下:“今携一壶酒,游春郊外走,逢朋加一倍,入店饮斗九.相逢三处店,饮尽壶中酒.”诗文大意为:李白去郊外春游,带了一壶酒,每次遇见朋友,就先到酒馆里将壶里的酒增加一倍,然后喝掉其中的19升酒,这天他共三次遇到了朋友,恰好把壶中的酒喝光.根据诗中的叙述,若我们设壶中原有x 升酒,可以列出的方程为__________.2、某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“……”,设实际每天铺设管道x 米,则可得方程300030001510x x-=-,根据此情景,题中用“……”表示的缺失的条件应补为( ) A .每天比原计划多铺设10米,结果延期15天才完成 B .每天比原计划少铺设10米,结果延期15天才完成 C .每天比原计划多铺设10米,结果提前15天才完成 D .每天比原计划少铺设10米,结果提前15天才完成3、书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__________元.4时采用了下面的方法:由=)2-)2=(24-x )-(8-x )=16...=5.=5两边平方可解得x =-1. 经检验x =-1是原方程的解. 请你学习小明的方法,解下面的方程:(1的解是__________;(2x .5、阅读材料:小明在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是__________cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.6、(1)如图1.∆ABC中,∠C为直角,AC=6,BC=8,D,E两点分别从B,A开始同时出发,分别沿线段BC,AC向C点匀速运动,到C点后停止,他们的速度都为每秒1个单位,请问D点出发2秒后,∆CDE 的面积为多少?(2)如图2,将(1)中的条件“∠C为直角”改为∠C为钝角,其他条件不变,请问是否仍然存在某一时刻,使得∆CDE的面积为∆ABC面积的一半?若存在,请求出这一时刻,若不存在,请说明理由.7、某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?9、近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40,两种猪肉元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的34销售的总金额比5月20日提高了1a%,求a的值.10课堂练习1、古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为__________.2、某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为__________m2.3、为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为__________辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.4、凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的邛海空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)求每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1600m 3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200m 3,每辆小车每天运送沙石120m 3,大、小车每天每辆租车费用分别为1000元、700元,且要求每天租车的总费用不超过9300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?5、对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的中位数,用max {a ,b ,c }表示这三个数中最大数,例如:M {-2,-1,0}=-1,max {-2,-1,0}=0,max {-2,-1,a }=(1)1(1)a a a ≥-⎧⎨-<-⎩.解决问题:(1)填空:M {sin45°,cos60°,tan60°}=__________,如果max {3,5-3x ,2x -6}=3,则x 的取值范围为__________;(2)如果2•M {2,x +2,x +4}=max {2,x +2,x +4},求x 的值;(3)如果M {9,x 2,3x -2}=max {9,x 2,3x -2},求x 的值.6、实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm ,则开始注入__________分钟的水量后,甲与乙的水位高度之差是0.5cm .7、上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招−−“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准:【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600−500)=87元】(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.8、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2016年底的2万个增长到2018年底的2.88万个,求该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?。

“三轮”复习夯实 “双基”提高能力

“三轮”复习夯实 “双基”提高能力

“三轮”复习夯实“双基”提高能力搞好初三数学复习教学,对大面积提高数学教学质量起着重要作用。

初三数学总复习应达到以下目的:(1)使所学知识系统化、结构化、让学生将初中三年的数学知识连成一个有机整体,更利于学生理解;(2)少讲多练,巩固基本技能;(3)抓好方法教学,归纳、总结解题方法;(4)做好综合题训练,提高学生综合运用知识分析问题的能力。

如何在较短的时间内达到此目的,也是许多教师长期探究的问题。

结合我校实际情况,我们选用一本总复习资料,拟进行三轮复习,现就初三数学总复习的几点做法和同仁们进行交流:一、夯实基础融汇贯通(第一轮复习:2月中旬-3月中旬,数与式、方程与不等式、函数及其图象;3月中旬-4月中旬,统计与概率、图形的认识、三角形、四边形、相似形;5月上旬-中考前,专题复习与中考模拟;旨在摸清初中数学内容的脉络,开展基础知识系统复习)万丈高楼平地起。

根基扎实,高楼才坚固。

数学也一样,只有把基础知识、基本技能、基本方法学得扎实,运用娴熟,才能为知识的深化、能力的提高创造条件。

1、加强双基,全面复习复习中要依“纲”靠“本”,注重“双基”。

这是一个对知识进行条理化、系统化的过程。

回顾真题,可以发现:中考所有试题,包括最后的综合题,都注重对基础知识、基本技能和基本思想方法的考查。

在教学中,要立足课本,对课本中的数学概念、定理、公式、法则要引导学生从其发生、发展、形成的过程去理解和掌握,充分挖掘和发挥教材例、习题的潜在功能。

引导学生归纳,并达到熟练程度,从而使学生对课本知识有较强的发散、迁移能力和应用能力。

坚持克服那种重难题、重技巧、轻课本、轻基础、轻通法的做法。

2、抓住关键,突出重点根据重点知识重点考查的原则,中考试题中对于与基础知识、基本技能、基本方法相关的重点知识,出现的频率就更高。

可见,考前数学复习必须在坚持立足课本及教学大纲,全面复习的同时还要突出重点,加强能力的培养和提高。

突出重点,不仅仅指突出教材中的重点知识,还要突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

九年级数学中考第一轮复习方程和不等式冀教版知识精讲

九年级数学中考第一轮复习方程和不等式冀教版知识精讲

九年级数学中考第一轮复习—方程和不等式冀教版【本讲教育信息】一、教学内容:复习三:方程和不等式1. 整式方程和分式方程.2. 二元一次方程组.3. 一元一次不等式(组).4. 方程与不等式的应用问题.二、知识要点:1. 等式及其性质表示相等关系的式子,叫做等式.等式的性质:①等式两边都加上(或减去)同一个数或同一个等式,所得的结果仍是等式;②等式两边都乘以(或除以)同一个数(除数不为0),所得结果仍是等式.2. 不等式和不等式的基本性质用不等号连接起来的式子叫做不等式.不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.②不等式两边都乘以(或除以)同一个正数,不等号的方向不变.③不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3. 一元一次方程(1)在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程.ax+b=0(a≠0)是一元一次方程的标准形式.(2)解一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1.4. 一元一次不等式(组)的解法解不等式和解方程的步骤基本一样,相同点是:去分母,移项,合并同类项.不同点是:当不等式两边同时乘以或除以一个负数时,要注意改变不等号的方向;在数轴上表示不等式的解集时,要注意包括的点用实点,不包括的点用虚点.解不等式组的步骤:(1)分别求出各个不等式的解集;(2)借助数轴确定不等式的公共解集.5. 二元一次方程组含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.任何一个二元一次方程都有无数个解.二元一次方程组的常用解法是:代入消元法和加减消元法.6. 分式方程的解法解分式方程去分母时,方程两边要同时乘各分母的最简公分母,确定最简公分母时,如果分母能够因式分解的要先分解,这样才能确保公分母为最简;去分母时要注意防止漏乘不含分母的项.解分式方程时必须检验,检验时只要代入最简公分母看其是否为0即可,若能使最简公分母为0,则该解是原方程的增根;否则,该解是原方程的解.7. 一元二次方程(1)定义:只含有一个未知数,并且未知数的最高次数是2的整式方程就是一元二次方程,其一般形式为ax2+bx+c=0(a≠0).(2)解法:①直接开平方法:其理论依据是平方根的定义,这种方法适合解左边是一个完全平方式,而右边是一个非负数的方程,即形如(x +m )2=n (n ≥0)的方程.②配方法:其理论依据是完全平方公式.一般步骤是:(a )二次项系数化为1,也就是在方程左右两边同除以二次项系数;(b )移项,使方程的左边为二次项和一次项,右边为常数项;(c )配方:在方程两边都加上一次项系数一半的平方,把原方程化成(x +m )2=n 的形式;(d )开方,若n ≥0,则用直接开平方法求解;若n <0,则原方程无解.③公式法:该方法由配方法推导而来,一元二次方程ax 2+bx +c =0(a ≠0)的求根公式为x =-b ±b 2-4ac 2a. 当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.④分解因式法:其理论依据是几个数的积为0,那么这几个数中至少有一个为0.一般步骤是:(a )将方程右边化为0;(b )将方程左边分解成两个因式的积;(c )令每个因式分别为0,得到两个一元一次方程;(d )解这两个一元一次方程,它们的解就是原方程的解.三、重、难点:解方程或不等式是本讲的重点,运用方程思想与不等式(组)解决实际问题是本讲的难点.四、考点分析:本讲内容一直是中考的热点和重点,以方程和不等式的概念、解法为基本考点,多以填空题、选择题的形式出现;而考查方程和不等式的应用时多以解答题的形式出现,且与一次函数、二次函数等知识紧密结合,难度较大.今后几年中考仍会延续这一趋势.【典型例题】例1. 选择题:(1)关于x 的方程ax 2+5x +b =0一定是( )A .一定是一元二次方程B .一定是一元一次方程C .一定是整式方程D .也可能是分式方程分析:当a ≠0时,方程ax 2+5x +b =0是一元二次方程;当a =0时,方程ax 2+5x +b =0是一元一次方程,因为一元一次方程和一元二次方程都是整式方程,所以原方程一定是整式方程.故选C .(2)已知关于x 的方程4x -3m =2的解是x =m ,则m 的值是( )A .2B .-2C .27D .-27解析:由方程的解的定义知,把x =m 代入方程4x -3m =2中,得4m -3m =2,所以m =2.故选A(3)已知方程组⎩⎪⎨⎪⎧ax -by =4ax +by =2 的解为⎩⎪⎨⎪⎧x =2y =1 ,则2a -3b 的值为( ) A .4 B .6 C .-6 D .-4解析:将方程组的解代入方程组中转化为关于a 、b 的方程组⎩⎪⎨⎪⎧2a -b =42a +b =2 ,再求出a 、b .选B .(4)不等式-x -5≤0的解集在数轴上的表示正确的是( )A B C D解析:解不等式-x -5≤0,得x ≥-5,故选B(5)已知关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( ).A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠2 解析:方程有两个不相等的实数根,则b 2-4ac >0.即(2m +1)2-4(m -2)2×1>0.解得m >34.又∵二次项的系数(m -2)2≠0,∴m ≠2.∴m 的取值范围是m >34且m ≠2.故选C .例2. 填空题:(1)已知不等式组⎩⎪⎨⎪⎧3+2x ≥1x -a <0无解,则a 的取值范围是__________. 解析:由不等式3+2x ≥1,得x ≥-1,由不等式x -a <0,得x <a ,依据不等式组解集的确定法则,可知a ≤-1.解不等式组要熟记其确定法则(大大取大;小小取小;大小小大取中间;大大小小取不了).(2)已知方程14-x 2+2=k x -2有增根,则k =__________. 解析:∵方程14-x 2+2=k x -2有增根,∴由4-x 2=0或x -2=0得其增根可能为x 1=2,x 2=-2,分别将x 1=2,x 2=-2代入1+8-2x 2=-k (x +2)中,知当x =-2时,等式不成立.∴x =-2不是增根,∴方程的增根是x =2.∴k =-14. (3)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,由甲队单独完成此项工程需__________天,乙队单独完成需__________天.解析:设甲施工队单独完成此项工程需x 天,则乙队单独完成此项工程需45x 天,根据题意得10x +1245x =1.解这个方程得x =25.经检验:x =25是所列方程的根.当x =25时,45x =20.所以甲、乙两队单独完成此项工程分别需要25天和20天.例3. 若0是关于x 的方程(m -2)x 2+3x +m 2+2m -8=0的解,求实数m 的值,并讨论此方程解的情况.解:由题意知,(m -2)·02+3×0+m 2+2m -8=0,∴m 2+2m -8=0,即(m +4)(m -2)=0.∴m 1=-4,m 2=2,当m =2时,原方程为3x =0,此时方程只有一个解,为0;当m =-4时,原方程为-6x 2+3x =0.即3x (-2x +1)=0.∴x 1=0,x 2=12,即此时方程有两个解,分别为0,12. 评析:这是一道易错题,既确定选定系数m ,又讨论方程解的情况,不要一看到方程解的情况,就考虑b 2-4ac ,而应审明题意,当已知方程的一个解时,往往以把解代入原方程作为切入点.例4. 已知m 、n 为两圆的半径(m ≠n ),d 是两圆的圆心距,且方程x 2-2mx +n 2=d (n -m )有两个相等的实数根,求证:这两个圆相外切.证明:∵方程x 2-2mx +n 2=d (n -m )有两个相等的实数根,该方程整理,得x 2-2mx +n 2+(m -n )d =0,∴b 2-4ac =(-2m )2-4×1×[n 2+(m -n )d ]=4m 2-4n 2-4(m -n )d =0,即4(m -n )(m +n -d )=0.又∵m ≠n ,即m -n ≠0,∴m +n -d =0,即d =m +n ,∴两圆相外切.评析:证明两个圆相外切,就是证明两圆圆心距等于两圆半径之和,即d =m +n ,根据题意可由b 2-4ac =0来证明d =m +n .例5. 晓跃汽车销售公司到某汽车制造厂选购A 、B 两种型号的轿车,用300万元可购进A 型号轿车10辆,B 型号轿车15辆;用300万元也可以购进A 型轿车8辆,B 型轿车18辆.(1)求A 、B 两种型号轿车每辆分别为多少万元?(2)若该汽车销售公司销售1辆A 型号轿车可获利8000元,销售1辆B 型号轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A 、B 两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元?分析:本题中的问题(1)应用方程组解答.(2)中应根据条件,用不等式组的整数解来解答.解:(1)设A 型号的轿车每辆为x 万元,B 型号的轿车每辆为y 万元.根据题意,得⎩⎪⎨⎪⎧10x +15y =3008x +18y =300 . 解得⎩⎪⎨⎪⎧x =15y =10 . 所以A 、B 两种型号的轿车每辆分别为15万元、10万元.(2)设购进A 种型号轿车a 辆,则购进B 种型号轿车(30-a )辆.根据题意,得⎩⎪⎨⎪⎧15a +10(30-a )≤4000.8a +0.5(30-a )≥20.4. 解此不等式组得18≤a ≤20,∵a 为整数,∴a =18、19、20,∴有三种购车方案.方案一:购进A 型号轿车18辆,购进B 型号轿车12辆;方案二:购进A 型号轿车19辆,购进B 型号轿车11辆;方案三:购进A 型号轿车20辆,购进B 型号轿车10辆.汽车销售公司将这些轿车全部售出后:方案一获利18×0.8+12×0.5=20.4(万元);方案二获利19×0.8+11×0.5=20.7(万元);方案三获利20×0.8+10×0.5=21(万元).答:有三种购车方案,在这三种购车方案中,汽车销售公司将这些轿车全部售出后获利分别为20.4万元、20.7万元、21万元.例6. 2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.分析:本题为列方程(组)解应用题,解题关键是审题,弄清已知量与未知量之间的数量关系,列出方程,并求解.解:(1)该市政府2008年投入改善医疗卫生服务的资金是:6000-1250=4750(万元).(2)设市政府2008年投入“需方”x 万元,投入“供方”y 万元,由题意得⎩⎪⎨⎪⎧x +y =4750(1+30%)x +(1+20%)y =6000 解得⎩⎪⎨⎪⎧x =3000y =1750 . ∴2009年投入“需方”资金为(1+30%)x =1.3×3000=3900(万元),2009年投入“供方”资金为(1+20%)y =1.2×1750=2100(万元).答:该市政府2009年投入“需方”3900万元,投入“供方”2100万元.(3)设年增长率为x ,由题意得6000(1+x )2=7260,解得x 1=0.1,x 2=-2.1(不合实际,舍去).答:从2009~2011年的年增长率是10%.【方法总结】1. 本讲主要的数学思想方法有两个:一个是解方程和方程组时要注意消元和降次的思想;另一个是解决方程和不等式实际问题时的建模思想.2. 本讲有几个问题要格外注意:①方程变形时,两边尽量不要同除以一个含有未知数的式子;②不等式两边都乘以或除以一个负数时,注意不等号的方向要改变;③分式方程的验根.【预习导学案】(复习四:函数)一、预习前知1. 什么叫平面直角坐标系?2. 什么叫常量、变量、函数?3. 若两个变量x 、y 之间的关系为__________(k 、b 为常数,k ≠0),我们称y 是x 的一次函数.当b =0时,我们称y 是x 的__________函数.4. 若两个变量x 、y 之间的关系可以表示成__________(k 为常数,k ≠0)的形式,我们称y 是x 的反比例函数.5. 形如y =ax 2+bx +c (a 、b 、c 为常数)的函数中,若a __________,则其为二次函数.二、预习导学1. 分四种情况讨论一次函数的图像所经过的象限与k 、b 的符号的关系?2. 反比例函数图像的两个分支在平面直角坐标系中的分布情况与k 的符号有何关系?3. 写出二次函数y =ax 2+bx +c (a ≠0)的开口方向、对称轴、顶点坐标、最大(小)值. 反思:(1)平面直角坐标系中各象限内以及坐标轴上点的坐标有何特征?体会坐标平面内的点和有序实数对的一一对应关系.(2)如何用函数的观点看方程(组)和不等式(组)?【模拟试题】(答题时间:50分钟)一、选择题1. 如果5x -7与4x +9互为相反数,则x 等于( )A. 92B. -92C. 29D. -292. 已知y =1是方程2-(13m -y )=2y 的解,那么关于x 的方程m (x -3)-2=m (2x -5)的解是( )A. x =10B. x =0C. x =43D. 以上答案都不对 3. 方程x (x +3)=x +3的解是( )A. x =1B. x 1=0,x 2=-3C. x 1=0,x 2=3D. x 1=1,x 2=-34. 当x =2时,式子ax 3+bx +1的值为6,那么当x =-2时,ax 3+bx +1的值为( )A. 6B. 5C. -4D. 15. 如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )50kgA B D C6. 关于x 的方程x 2-kx +k -2=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 不能确定*7. 甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A. 8B. 7C. 6D. 58. 一副三角板按如图所示方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A. ⎩⎪⎨⎪⎧x =y -50x +y =180B. ⎩⎪⎨⎪⎧x =y +50x +y =180C. ⎩⎪⎨⎪⎧x =y -50x +y =90D. ⎩⎪⎨⎪⎧x =y +50x +y =9012*9. 如图所示,两个天平平衡,则3个球体的重量等于( )个正方体的重量.A. 2B. 3C. 4D. 5**10. 已知1-a a 2=1-a a ,则a 的取值范围是( ) A. a ≤0 B. a <0 C. 0<a ≤1 D. a >0二、填空题1. 将方程54x -14=1.5x 变形为5x -1=6x 的依据是__________,把方程两边都__________. 2. 已知一元二次方程有一个根为1,那么这个方程可以是__________(写出二次项系数不同的两个方程).3. 如果x =1是方程ax -b +1=-c 的根,则(a -b +c )2009的值为__________,a -b c +1的值为__________.*4. 阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=- b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为__________. 5. 若ax 2-2x -3=0是一元二次方程,不等式2a +4>0的解集是__________.*6. 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55cm ,此时木桶中水的深度是__________cm .**7. 已知关于x 的方程2x +m x -2=3的解是正数,则m 的取值范围为__________. **8. 如果2x +3y +z =130,3x +5y +z =180,迅速求出x +2y x +y +z的值是__________.三、解答题1. 解下列各题.。

初三数学总复习大纲

初三数学总复习大纲

初三数学总复习大纲
第一部分数与式
●实数
●平方根和立方根
●科学计数法、近似数和有效数字
●指数
●整式运算
●因式分解
●分式
●二次根式
第二部分方程(组)和不等式(组)
●一元一次方程、一元二次方程
●分式方程
●一次方程组
●不等式(组)
●一元二次方程根的判别式
●列方程或方程组解应用题
第三部分函数
●平面直角坐标系、自变量x的取值范围
●正(反)比例函数
●一次函数的图像和性质
●二次函数的图像和性质
第四部分概率统计
●统计初步
●随机事件与简单事件的概率
●用频率估计概率、用列举法计算概率
●统计图表
●数据的收集、样本估计总体
第五部分几何基本概念
●基本概念
●平行线
第六部分空间图形
●简单的几何图形
第七部分三角形
●一般三角形
●等腰三角形
●直角三角形
●锐角三角形
●解直角三角形
●全等三角形
第八部分四边形
●平行四边形
●矩形、菱形、正方形
●梯形
第九部分图形与变换
●图形的平移、旋转与轴对称第十部分相似形
●比例线段
●相似三角形的判定与性质第十一部分圆
●远的有关概念及一些性质●和圆有关的角
●直线和圆的位置关系
●圆与圆的位置关系
●与圆相关的某些图形的计算●作图题。

人教版中考数学第一轮复习第二章方程与不等式

人教版中考数学第一轮复习第二章方程与不等式

第二章 方程与不等式第七讲 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。

】四、二元一次方程组及解法:1、 解二元一次方程组的基本思路是: ;2.解方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解 2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【重点考点例析】 一、选择题1.一元一次方程2x=4的解是( )A .x=1 B .x=2 C .x=3 D.x=4x=ay=b 的形式2.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩二、填空题12.方程组31x yx y+=⎧⎨-=⎩的解是.13.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.三、解答题20.解方程组128 x yx y=+⎧⎨+=⎩.21.解方程组251x yx y+=⎧⎨-=⎩.【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax 2 =b 则X 2 = X1= X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax 2+bx+c=0(a≠0) 满足b 2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax 2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根方程有两个实数跟,则③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax 2 +bx+c=0(a±0)有两个根分别为X1、X2则x1+x2 = x1x2 =【重点考点例析】一、选择题1.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=0 2.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-23.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-17.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥08.若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>49.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-110.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 11.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2二、填空题三、解答题21.选择适当的方法解下列方程:(1)27(23)28x -=; (2)223990y y--= (3)221x +=; (4)2(21)3(21)20x x ++++= 23.关于x 的一元二次方程为(m-1)x 2-2mx+m+1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,如果篱笆的长为35m ,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a 对题目的解起着怎样的作用?第九讲 分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:转化 去分母 A B D E F在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。

中考数学一轮总复习讲解 第二章 方程与不等式

中考数学一轮总复习讲解 第二章 方程与不等式

中考数学一轮总复习讲解第二章方程与不等式第6讲一元一次方程与分式方程及其应用第7讲二元一次方程组及其应用第8讲一元二次方程及其应用第9讲方程(组)的应用第10讲不等式与不等式组第11讲一元一次不等式的应用第6讲一元一次方程与分式方程及其应用1.一元一次方程及解法2.分式方程及解法3.列方程解应用题的一般步骤1.(2016·杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )2.(2017·宁波)分式方程2x +13-x =32的解是____________________. 3.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:____________________.4.(2017·金华)解分式方程:2x +1=1x -1.【问题】给出以下五个代数式:2x -4,x -2,x ,12,3. (1)选取其中的几个代数式,组成一个一元一次方程和一个分式方程;(2)解出(1)中所选的一元一次方程和分式方程.【归纳】通过开放式问题,归纳、疏理一元一次方程和分式方程的概念,以及它们的解法.类型一 等式性质和方程的解的含义例1 (1)(2017·杭州)设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y (2)已知关于x 的方程2x +a -9=0的解是x =2,则a =________.(3)已知关于x 的方程3x +n 2x +1=2的解是负数,则n 的取值范围为______________.1.(1)已知等式3a =2b +5,则下列等式中不一定成立的是( )A .3a -5=2bB .3a +1=2b +6C .3ac =2bc +5D .a =23b +53(2)如果方程x +2=0与方程2x -a =0的解相同,那么a =____________________.(3)(2017·成都)已知x =3是分式方程kx x -1-2k -1x =2的解,那么实数k 的值为( ) A .-1 B .0 C .1 D .2类型二 一元一次方程的解法例2 解方程:x -x -12=2-x +23.2.解方程:(1)(2016·贺州)解方程:x 6-30-x 4=5;(2)7x -12⎣⎡⎦⎤x -12(x -1)=23(x -1).类型三 分式方程的解法例3 (2015·营口)若关于x 的分式方程2x -3+x +m3-x =2有增根,则m 的值是() A .m =-1 B .m =0 C .m =3 D .m =0或m =3例4 (1)(2017·湖州)解方程:2x -1=1x -1+1;(2)(2017·陕西模拟)解方程:2-x x -3=13-x -2.3.解分式方程:(1)x x -3=x -63-x+3;(2)x x +1-4x 2-1=1.类型四 一元一次方程和分式方程的应用例5 (2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?4.(2017·黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【探索规律题】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【方法与对策】根据寻找的规律,每增加1张这样的餐桌可增加4人求解即可.这是探索规律题(图形的变化类),并利用方程思想来解决.它是中考热点题之一.【解分式方程去分母时,漏乘整式项,忘记验根】解分式方程:x 2-4x x 2-1+1=2x x +1.第7讲二元一次方程组及其应用二元一次方程组及解法1.(2017·舟山)若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( ) A .1 B .3 C .-14D .742.(2016·温州)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =7x =2yB .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x3.(2016·金华)解方程组⎩⎪⎨⎪⎧x +2y =5,x +y =2.【问题】对于二元一次方程2x +y =10.(1)求其正整数解;(2)若x +y =7,求x ,y 的值;(3)对于(1)、(2)中的x ,y 值的求法,你有何体会?.类型一 二元一次方程(组)的有关概念例1 (1)(2016·永康模拟)已知⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程x -ay =3的一个解,则a 的值为( )A .1B .-1C .2D .-2(2)(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =________;(3)已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,则m =________,n =________.1.(1)(2016·毕节)已知关于x ,y 的方程x 2m-n -2+4y m+n +1=6是二元一次方程,则m ,n的值为( )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =43(2)已知x 、y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____________________.类型二 二元一次方程(组)的解法例2 解方程(组):(1)方程x +3y =9的正整数解是________;(2)(2015·成都)⎩⎪⎨⎪⎧x +2y =5,3x -2y =-1,(2)⎩⎪⎨⎪⎧2(x -y )3-x +y 4=-112,3(x +y )-2(2x -y )=3.2.解方程组:(1)(2015·聊城)⎩⎪⎨⎪⎧x -y =5,2x +y =4;(2)1-6x =3y -x 2=x +2y3.类型三 二元一次方程组的综合问题例3 已知方程组⎩⎪⎨⎪⎧2x -3y =3,ax +by =-1与⎩⎪⎨⎪⎧3x +2y =11,2ax +3by =3的解相同,求a ,b 的值.例4 (2016·枣庄)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =n (n -1)24·(n 2-an +b)(其中,a ,b 是常数,n ≥4)(1) 通过画图,可得四边形时,P 4= (填数字);五边形时,P 5= (填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.3.已知方程组⎩⎪⎨⎪⎧2x +3y =n ,3x +5y =n +2的解x ,y 的和为12,求n 的值.4.当m 取什么值时,方程x +2y =2,2x +y =7,mx -y =0有公共解.类型四 二元一次方程组的应用例5 (2015·佛山)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?5.八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知:A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际应用题】1.(2017·自贡)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组__________________.2.(2017·济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是____________.【二元一次方程的解,二元一次方程组的解理解不清】方程组⎩⎪⎨⎪⎧3x -7y =0,x -2y +1=0的解对方程2x -3y =-5而言( )A .是这个方程的唯一解B .是这个方程的一个解C .不是这个方程的解D .以上结论都不对第8讲一元二次方程及其应用1.一元二次方程的概念及解法2.一元二次方程根的判别式1.(2015·温州)若关于x的一元二次方程4x2-4x+c=0有两个相等实数根,则c的值是()A.-1 B.1 C.-4 D.42.(2017·舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2C.(x+2)2=3 D.(x+1)2=33.(2017·丽水)解方程:(x-3)(x-1)=3.【问题】给出以下方程①3x+1=0;②x2-2x=8;③1x-3-2x3-x=1.(1)是一元二次方程的是__________;(2)求出(1)中的一元二次方程的解,并联想还有其他的解法吗?(3)通过(1)(2)问题解决,你能想到一元二次方程的哪些知识?类型一 一元二次方程的有关概念例1 (1)关于x 的方程(a -6)x 2-8x +6=0有实数根,则整数a 的最大值是________. (2)若x =1是一元二次方程ax 2+bx -40=0的一个解,且a ≠b ,则a 2-b 22a -2b的值为________.(3)关于x 的方程a(x +m)2+b =0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a ≠0),则方程a(x +m +2)2+b =0的解是________.1.(1)(2016·南京模拟)关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )A .a ≠1B .a ≠-1C .a ≠±1D .为任意实数(2)已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为____________________.类型二 一元二次方程的解法例2 解下列方程: (1)(3x -1)2=(x +1)2; (2)2x 2+x -12=0.2.解方程:(1)(2x-1)2=x(3x+2)-7;(2)x(x-2)+x-2=0.类型三一元二次方程根的判别式例3(1)(2017·潍坊)若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________.(2)(2015·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).【解后感悟】在一元二次方程ax2+bx+c=0中,需要把握根的三种存在情况:b2-4ac≥0,方程有实数根(两个相等或两个不相等);b2-4ac<0,无实数根.3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例是()A.b=-1 B.b=2 C.b=-2 D.b=04.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是____________________.5.已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2的值.(a-2)2+b2-4类型四 与几何相关的综合问题例4在宽为20m ,长为32m 的矩形田地中央修筑同样宽的两条互相垂直的道路,把矩形田地分成四个相同面积的小田地,作为良种试验田,要使每小块试验田的面积为135m 2,则道路的宽为________m .(2)(2016·张家口模拟)如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a =1,则b =________.(3)(2015·广安)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是________.6.(1)(2016·台湾)如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A .12B .35C .2-3D .4-2 3(2)一个直角三角形的两条边长是方程x 2-7x +12=0的两个根,则此直角三角形的面积等于 .(3)有一块长32cm ,宽24cm 的长方形纸片,如图,在每个角上截去相同的正方形,再折起来做成一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是____________________cm .类型五一元二次方程在生活中的应用例5(1)(2017·济宁市任城区模拟)某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为________.(2)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都要赛一场)计划安排15场比赛,则参加比赛的球队应有________队.(3)商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是________.(4)将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货________个.7.(1)(2016·宁波市镇海区模拟)毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,全班共送贺卡1190张,则九年级(1)班人数为____________________人.(2)(2017·山西模拟)将一些半径相同的小圆按如图的规律摆放,请仔细观察,第____________________个图形有94个小圆.【探索研究题】1.(1)(2017·温州)我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-3(2)(2017·宁波市北仑区模拟)已知m是方程x2-2017x+1=0的一个根,则代数式m2-2018m+m2+12017+3的值是________.【忽视一元二次方程ax2+bx+c=0(a≠0)中“a≠0”】已知关于x的一元二次方程(m-1)x2+x+1=0有实数根,则m的取值范围是________.第9讲方程(组)的应用1.(2017·杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.82.(2017·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【问题】小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.(1)按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?(2)通过(1)解答,请你谈谈方程应用性问题,应注意哪些方面?解题的一般步骤怎样?类型一一元一次方程的应用例1(1)七年级(2)班有46人报名参加文学社或书画社.已知参加文学社的人数比参加书画社的人数多10人,两社都参加的有20人,则参加书画社的有________人.(2)有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是________小时.(3)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=________元.(4)自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水________吨.1.(1)(2016·聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51C.69 D.72(2)(2015·丽水模拟)诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:____________________.(3)如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要____________________个铁环.类型二二元一次方程组的应用例2(1)若买3支圆珠笔、1本日记本共需10元;买1支圆珠笔、3本日记本共需18元,则日记本的单价比圆珠笔的单价多________元.(2)如图,将图1的正方形剪掉一个小正方形,再沿虚线剪开,拼成如图2的长方形.已知长方形的宽为6,长为12,则图1正方形的边长为________.(3)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是________cm.2.(1)(2017·安徽模拟)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为____________________元.(2)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组是____________________.(3)为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如图表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意可列方程组____________________.类型三一元二次方程的应用例3(1)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.(2)某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.(3)美化环境,改善居住环境已成为城乡建设的一项重要内容,某区计划用两年时间使全区绿化面积增加21%,则这两年全区绿化面积的年平均增长率应是________.3.(1)(2017·宁海模拟)某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有____________________家商家参加了交易会.(2)平行四边形ABCD的边长如图所示,四边形ABCD的周长为____________________.(3)(2017·杭州模拟)两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程____________________.类型四分式方程的应用例4(1)(2017·慈溪模拟)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作________件.(2)(2017·瑞安模拟)在“校园文化”建设中,某校用8000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿色植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为________元.(3)(2017·宁波模拟)某感冒药用来计算儿童服药量y的公式为y=axx+12,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是________.4.(1)(2016·淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是____________________.(2)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为____________________.(3)(2017·绍兴模拟)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走____________________步.【实际应用题】(2017·衢州)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值;(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的年平均增长率.(精确到1%)【寻找等量关系欠仔细】要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x(x +1)=28B .12x(x -1)=28C .x(x +1)=28 D .x(x -1)=28第10讲不等式与不等式组1.不等式的概念及性质2.一元一次不等式(组)的解法及应用1.(2015·嘉兴)一元一次不等式2(x +1)≥4的解在数轴上表示为( )2.(2015·丽水)如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x>2C .x>-1D .-1<x ≤23.(2017·湖州)一元一次不等式组⎩⎪⎨⎪⎧2x>x -1,12x ≤1的解集是( )A .x >-1B .x ≤2C .-1<x ≤2D .x >-1或x ≤24.(2016·金华)不等式3x +1<-2的解集是____________________.5.(2017·衢州)解下列一元一次不等式组:⎩⎪⎨⎪⎧12x ≤2,3x +2>x.【问题】给出以下不等式:①2x +5<4(x +2),②x -1<23x ,③1x -1>0,④x -1≤8-4x.(1)上述不等式是一元一次不等式的是________;(2)上述不等式中,选取其中二个一元一次不等式,并求其公共解. (3)选取其中一个一元一次不等式,使其只有一个正整数解.(4)通过以上问题解答的体会,解一元一次不等式(组)要注意哪些问题?类型一 不等式的基本性质例1 (1)若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x 3>y3C .x +3>y +3D .-3x >-3y(2)若实数a ,b ,c 在数轴上对应位置如图所示,则下列不等式成立的是( )A .ac >bcB .ab >cbC .a +c >b +cD .a +b >c +b(3)设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c1.(2016·大庆)当0<x<1时,x 2、x 、1x 的大小顺序是( )A .x 2<x<1xB .1x <x<x 2C .1x <x 2<xD .x<x 2<1x类型二 一元一次不等式的解法例2 解不等式:x +12+x -13≤1.2.(1)(2016·绍兴)不等式3x +134>x3+2的解是____________________.(2)(2015·南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.类型三 一元一次不等式组的解法例3 解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.3.解不等式组:(1)(2015·泰州)⎩⎪⎨⎪⎧x -1>2x ,12x +3<-1;(2)⎩⎪⎨⎪⎧3(x +2)>x +8,x 4≥x -13,并把它的解集在数轴上表示出来.类型四 不等式的解的应用例4 (1)(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤2(2)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-234.(1)(2016·通州模拟)如果不等式(a -3)x>a -3的解集是x>1,那么a 的取值范围是( ) A .a<3 B .a>3 C .a<0 D .a>0(2)(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( )A .m ≥5B .m >5C .m ≤5D .m <5【阅读理解题】(2017·湖州)对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b.例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2011,求x 的值; (2)若x ⊗3<5,求x 的取值范围.【求不等式组中字母系数范围出错】如果一元一次不等式组⎩⎪⎨⎪⎧x>3,x<a 关于x 的整数解为4,5,6,7,则a 的取值范围是( )A .7<a ≤8B .7≤a<8C .a ≤7D .a ≤8第11讲 一元一次不等式的应用1.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为____________________元/千克.2.(2016·衢州)光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).【问题】铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm ,长与宽的比为3∶2.(1)请你根据以上信息,求出该行李箱的长的最大值;(2)通过问题(1)的解决,请你从分析问题和解决问题角度谈谈看法.【归纳】通过开放式问题,归纳、疏理利用不等式(组)解决实际问题的分析方法和一般步骤,以及要注意的问题.类型一列不等式求字母的取值范围的应用例1 (1)(2017·江西)函数y =x -2中,自变量x 的取值范围是________. (2)(2015·临海模拟)点(a ,a +2)在第二象限,则a 的取值范围是________.(3)(2017·上海市杨浦区模拟)若一次函数y =(1-2k)x +k 的图象经过第一、二、三象限,则k 的取值范围是________.(4)对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若⎣⎡⎦⎤x +410=5,则x 的取值是________.1.(1)(2016·兰州)双曲线y =m -1x在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是 .(2)(2017·济宁模拟)已知二次函数y =kx 2-7x -7的图象与x 轴没有交点,则k 的取值范围为____________________.(3)(2015·武威)定义新运算:对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x<13的解集为____________________.类型二不等式的应用例2(1)(2017·南京模拟)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为________cm;(2)(2017·杭州模拟)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打________折;(3)(2017·株洲模拟)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,则孔明买球拍________个.2.(1)如图是某机器零件的设计图纸,在数轴上表示该零件长度(L)合格尺寸,正确的是()(2)(2017·绍兴模拟)小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元(3)(2017·杭州市江干区模拟)某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对____________________道题,成绩才能在80分以上.类型三不等式与方程(组)结合的应用例3(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举。

初三数学中考第一轮复习⑵ 方程(组)与不等式(组)知识精讲

初三数学中考第一轮复习⑵ 方程(组)与不等式(组)知识精讲

初三数学中考第一轮复习⑵方程(组)与不等式(组)华东师大版【本讲教育信息】一. 教学内容:中考第一轮复习⑵方程(组)与不等式(组)二. 重点、难点扫描:1. 一元一次方程、二元一次方程(组)、一元二次方程的定义、方程的解的概念;2. 一元一次方程、二元一次方程(组)、一元二次方程的解法;3. 一元一次方程、二元一次方程(组)、一元二次方程的简单应用;4. 可化为一元一次方程的分式方程及简单应用;5. 不等式的性质;6. 一元一次不等式(组)的概念;一元一次不等式(组)的解集的概念;7. 一元一次不等式(组)的解法与应用。

三. 知识梳理:(一)一元一次方程1. 会对方程进行适当的变形解一元一次方程解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一是方程两边不能乘(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。

2. 正确理解方程的解的定义,并能应用等式性质巧解考题方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。

3. 正确列一元一次方程解应用题列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。

4. 可化为一元一次方程的分式方程的应用会根据具体情景列出分式方程,并会求解,注意验根这一步不可少。

(二)一元二次方程1. 灵活运用四种解法解一元二次方程一元二次方程的一般形式:ax2+bx+c=0(a≠0)四种解法:直接开平方法,因式分解法,配方法,公式法。

公式法:x(b2-4ac≥0)注意:掌握一元二次方程求根公式的推导;主要数学方法有:配方法,换元法,“消元”与“降次”。

2. 一元二次方程的应用解应用题的关键是把握题意,找准等量关系,列出方程。

中考数学第一轮复习专题二--方程与不等式

中考数学第一轮复习专题二--方程与不等式

第5章 一元一次方程与二元一次方程组【考点提示】本章主要考查的内容是一元一次方程与二元一次方程组的概念及解法,列一元一次方程或二元一次方程组解应用题,题型多以解答题的形式出现,应多关注二元一次方程组的解法和列二元一次方程组解应用题.【知识归纳】1.含有 的等式叫做方程,使方程两边的值 的值叫做方程的解, 求方程的 的过程叫做解方程.2.只含有 ,并且 是1的方程叫做一元一次方程. 3.解一元一次方程的依据是等式的两条基本性质:等式基本性质1:等式的两边都加上或减去 ,等式任成立;等式基本性质2:等式的两边都乘以或除以 ,等式任成立.4.解一元一次方程的一般步骤(五步法): (1) ;(2) ;(3) ;(4) ;(5) .5.含有 ,并且 的次数是1的方程叫做二元一次方程,使二元一次方程两边的值相等的 叫做这个二元一次方程的解. 6.由几个二元一次方程组成的一组方程叫做二元一次方程组.在两个二元一次方程组成的二元一次方程组中,各个方程的公共解,叫做二元一次方程组的解. 7.解二元一次方程组的思路是消元,具体方法是:(1)代入消元法:先将一个方程变形,用含有一个未知数式子表示另一个未知数, 再将这个式子代入另一个式子,即可消去一个未知数;(2)加减消元法:先将方程组中某一个未知数的系数化成相等的数或互为相反数, 再通过相加或相减的方法消去这个未知数.8.列一次方程(组)解决实际问题的基本过程:列方程(组)解应用题,关键是寻找题中的等量关系,可采用图示.列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义. 【题型讲解】 例1、(1)已知3x是方程43()2x a x a 的解,那么a 的值为 ;(2)已知12x y 是方程3axy的解,则a 的值为例2、解方程: (1)213148x x (2)1235x x x .x a )例3、解方程组:(1)3523x yx y(2)240360x yx y.例4、一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.例5.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?例6.(2010江苏南通中考)某校初三(2)班40名同学为希望工程捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,请你根据已有的信息求出捐款2元和3元的人数分别是多少?【过关检测】1.已知3x 是方程230x a 的解,则a 的值为 . 2.已知35x y -=,用含x 的式子表示y 为 .3.某服装店一套西服的进价为300元,按标价的80%销售可获利100元,若设标价为x 元,则可列出的方程为 . 4.已知实数m 、n 满足22280m n m n ,则_______mn .5.方程组325429x y x y的解为6.在解方程()()032312=---x x 时,去括号正确的是( ) A .09612=+--x x ; B .03622=---x x ; C .09622=---x x ; . D .09622=+--x x . 7.以11x y 为解的二元一次方程组是( )A .01x y xy; B .02x y xy; C .01x y xy; D .02x y xy.8.已知方程组222310x y xy,由②-①得到的方程是( ) A .28y ; B .48y ; C .212y ; D .412y .9.某班共有学生49名,一天,该班某男生请假,当天的男生数恰为女生数的一半.设男生数为x ,女生数为y ,则下列所列的方程组中,正确的是( ) A .492(1)x y y x ; B .492(1)x y y x ;C .492(1)x yyx ; D .492(1)x yyx .10.某蔬菜公司收购的满足蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务.该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工,为解决这个问题,所列方程组正确的是( ) A .14016615x y x y ; B .140161615x y x y ; C .15166140x y xy; D .15616140x y x y11.解下列方程: (1)13262x x; (2)5(3)3(21)y y ; (3)232162x xx.①②12.解下列方程组: (1)32528x y xy(2)2622x y xy(3)222310x y xy(4)11233210x y x y13.解答下列应用题:(1)某车间计划在15天内加工420个零件,最初三天每天加工24个,以后每天至少加工多少个零件,才能在规定的时间内完成任务?(2)如图所示,A .B 两地相距8km ,甲从B 地出发,以4km /h 的速度步行去C 地,1小时后,乙骑自行车以12km /h 的速度从A 地去C 地,问乙经多少时间可追上甲?(3)某车间加工螺丝和螺母,一个螺丝配两个螺母就可以包装进库,车间现有工人60人,一个工人每小时可以加工15个螺丝或10个螺母,60个工人应怎样分配工作才能保证生产出的产品及时运进仓库?(4)甲.乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,A B C 乙 甲乙服装按40%的利润定价.在实际出售时,应顾客的要求,两件服装均按9折出售,这样商店共获利157元,求甲.乙两件服装的成本各是多少元?(5)某停车场的收费标准如下:中型汽车为6元/辆,小型汽车为4元/辆,现在停车场有50辆中.小型汽车,这些汽车共缴纳停车费230元,问中.小型汽车各多少辆?(6)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户去年计划生产小麦和玉米共18吨,实际生产了20吨,其中,小麦超产12%,玉米超产10%,该专业户去年实际生产小麦和玉米各多少吨?(7)王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元.其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元.问王大伯一共获纯利多少元?第6章 一元一次不等式(组)【考点提示】一元一次不等式(组)的考查热点是不等式的基本性质,解一元一次不等式(组)及解集的数轴表示,求不等式(组)的特殊解,利用不等式(组)解简单的实际问题.题型有选择题、填空题和解答题.【知识归纳】1.表示 的式子叫做不等式,含有 未知数,并且未知数的次数是1的不等式叫做一元一次不等式,使不等式成立的 叫做不等式的一个解,不等式的所有解组成的集合叫做不等式的 .求不等式解集的过程叫做解不等式.2.不等式的解集可以用数轴来表示:如图(1)所示的解集可表示为 ;如图(2)所示的解集可表示为 ;如图(3)所示的解集可表示为 . 3.解一元一次不等式的依据是不等式的三条基本性质:(1)不等式基本性质1:不等式两边都加上或减去 ,不等号的方向 ;(2)不等式基本性质2:不等式两边都乘以或除以 ,不等号的方向 ; (3)不等式基本性质2:不等式两边都乘以或除以 ,不等号的方向 .4.解一元一次不等式的步骤与解一元一次方程大致相同,不同的是最后一步(系数化为1)要注意不等号的方向是否要改变. 5.不等式组中,各个不等式的的解集的公共部分叫做这个不等式组的解集.因此,解不等式组时,应先把各个不等式的解集求出来,并把解集表示在数轴上,通过观察数轴,写出不等式组的解集. 6.如果一个应用题中含有表示不等关系的关键词,如“不大于”.“不小于”.“不足”.“超过”.“至少”.“最多”等等.则需要列不等式或不等式组来解决.要注意应用题中的不等式(组)往往取整数解.【例题解析】例1、已知ab,用不等号“”或“”填空:(1)3____3a b ;(2)5____5a b ;(3)11____22a b ;(4)12____12a b .例2.解下列不等式或不等式组:(1)121132xx ; (2)2(21)413212x x xx ;例3.求不等式组331213(1)8x x xx的整数解(1)(1) (2) b (3)例4.已知关于x 的不等式组41320xx xa的解集如图所示,求a 的取值范围例5、某校安排寄宿生住宿,如果每间宿舍住7人,那么有一间宿舍虽有人住,但没有住满;如果每间宿舍住 4人,那么有100名学生住不下,问该校有多少名住宿生?【基础训练】 1.“5与x 的和比x 的3倍小”用不等式表示为 .2.不等式132≤-x 的解集是 .3.不等式0103≤-x 的正整数解是 .4.一元一次不等式组213233x x x的解集是 ( )A .23x ;B .32x ;C .3x ;D .2x .5.解集在数轴上表示如图所示的不等式组是( )A .32xx ; B .32x x ;C .32x x; D .32x x .6.下列不等式组中,解集是26x 的是( )A .26x x ; B .6020x x ; C .6020x x ; D .602xx .37.解下列不等式(组):(1)41223x x;(2)132113xxx;(3)1235x.8.某连队在一次执行任务中将战士编成8个组,若每组分配的人数比预定人数多1名,则战士总人数将超过100人;若每组人数比预定人数少1名,则战士总人数将不到90人,求预定每组分配战士的人数.9.某校准备组织290学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费分别为2000元、1800元,请你选择最省钱一种的租车方案.10.暑假期间,小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内行程就超过2200公里,如果汽车每天行驶的路程比原计划少12公里,那么行驶同样的路程需要9天多的时间.求这辆汽车原来每天计划的行程范围(单位:公里)第7章 一元二次方程【考点提示】一元二次方程的考查热点是它的解法,题型以选择题、填空题为主,有时也出列一元二次方程解应用题.【知识归纳】1.一元二次方程的一般形式:200axbx c a2.一元二次方程的解法(降次): (1)直接开平方法; ①20x a a xa ;②20mxnk k mx n k(2)配方法;2200ax bxcamxnk(3)公式法;224402bb acxb ac a(4)因式分解法.1122112200m x n m x n m x n m x n 或3.24b ac 称为一元二次方程的根的判别式.一元二次方程有无实数根,取决于判别式的符号,当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程没有实数根4*.一元二次方程的根与系数的关系设1x 、2x 是方程200axbx ca 的两个根,则12b x x a ,12c x x a特别的,当二次项系数为1时,一元二次方程为20xpx q ,此时有:12x x p ,12x x q5.实际问题与一元二次方程(1)计数问题:112x x m(2)增长率问题:21a xb(3)面积问题:长方形面积=长×宽(4)营销利润问题:总利润=每件利润×销量带*号的内容为选学内容,一般不考.【例题讲解】例1、解方程: (1)2220x x ; (2)22150x x(3))15(3)15(2-=-x x (4)2(1)57xx例2、在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.(2012 年临沂市)若不等式组 ,则 a 的取值范围为( ) C.
的解集为
4、 (2013•荆门) 若关于 x 的一元一次不等式组 有解,则 m 的取值范围为
A.
a>0
B.
a=0
a>4
D. a=4
13.(黄石)若不等式组 5、 、 (2013•烟台)不等式 的最小整数解是 取值范围是( A. 6、 (2013•包头)不等式 (x﹣m)>3﹣m 的解集为 x>1, 则 m 的值为 . 14.已知关于 的不等式组 则 的取值范围 7、(2013•宁夏)若不等式组 取值范围是 . 有解,则 a 的 15.( 湖北 天门)已知不等式组
x+ (2m+3) x+m =0 的两个不相等的实数根, 且满足 ﹣1,则 m 的值是( A. 3 或﹣1 B.3 ) C.1
2
2
+
=
D.﹣3 或 1
10. (2012 绥化市) 已知关于 x 的分式方程 非正数,则 a 的取值范围是_________.
a2 1 的解是 x 1
11. (兰州市) 关于 x 的一元二次方程 (m 1) x x 1 0
2008
有实数解,则实数

) C. D.
B.
的整数解共有 2 个,
的解集为
-1<x<2,则(m+n)
=_______________.
方程与不等式常见题
2
难点题
新型题
16.已知满足不等式 A.1≤a<
8. 方程ax bx c 0(a 0)解为 1 ,则a b c
3 2
x 1 ≤a+1 的正整数只有 3 个, 则 ( ) 2 3 3 3 B.1<a≤ C.1≤a≤ D.1<a< 2 2 2
3.无锡市)若关于 x 的方程 x +2x+k=0 有两个相等的实 数根,则 k 满足 A.k>1 B.k≥1 ( C.k=1 ) D.k<1
2
x 2 4 x 2k 0 有两个实数根,则 K
5. (安徽省芜湖市) 关于 x 的方程 (a 5) x 4 x 1 0 有
2
4. (常州) 关于 x 的一元二次方程 x (2k 1) x k 1 0
典型题重点题基础题――双基必会 1.解方程:
3. ( 山东省烟台市 ) 设 a, b 是方程 x x 2009 0 的两
2
个实数根,则 a 2a b 的值为(
2
) D.2009
x 2 x 1 2 x 3 2
A.2006
B.2007
C.2008
2.【湘潭】 m=
关于 x 的方程 mx+4=3x+5 的解是 x=1,则 。 4. (成都市) 已知 k 为非负整数,若关于 x 的一元二次方程
x 2 是二元一次方程组 y 1

(
x x 2 x y ) 2( ) 30 x 1 ,则原方程 x 1 x 1 时,若设
) B.y -2y+3=0
2
m x ny 8 的解,则 2 m n 的算术平方根为( nx m y 1
A.4 B.2 C. 2 D. ±2
2
实数根,则 a 满足( A. a ≥ 1 C. a ≥1且a 5
)
根的情况是(

B. a 1且a 5 D. a 5
(A)有两个不相等实数根 (B)有两个相等实数根 (C)没有实数根 (D)根的情况无法判定
5.换元法【北京市海淀区】当使用换元法解方程
6. ( 山 东 省 莱 芜 市 ) 已 知
树诚精品中考资料.
8904777
1.方程及解法。2.不等式。3.根与系数关系与判别式。4.整数解问题。5.无解增根问题。
总第 2 讲
(m 1) x2 5x m2 3m 2 0 有一根是 0,则 m 的值等
于( A.1 ) B.2 C.1 或 2 D.0
-m2 的两实数根为 x1,x2. (1)求 m 的取值范围; (2)设 y = x1 + x2,当 y 取得最小值时,求相应 m 的值, 并求出最小值.
2
不等式与不等式组 列不等式: 1.掌握表示不等关系的记号
有实数根,则 m 的取值范围是

13. (2013•孝感)已知关于 x 的一元二次方程 x ﹣(2k+1)
2
2.掌握有关概念的含义,并能翻译成式子. (1)和、差、积、商、幂、倍、分等运算. (2)“至少”、“最多”、“不超过”、“不少于”等
2
树诚精品中考资料.
2
8904777
2
1.方程及解法。2.不等式。3.根与系数关系与判别式。4.整数解问题。5.无解增根问题。
总第 2 讲
(4) 由 xz > yz ,得 x>y;(

整数是方程 2 x-ax=3 的解,求代数式 4a-
14 的值. a
3、 (2013 泰安)不等式组 ( )
的解集为
9. 方程 5x 6 x 的解是„„( (A)x1=6,x2=-1(B)x=-6 (C)x=-1(D)x1=2,x2=3

17(呼和浩特 2013) (1)解不等式:5(x﹣2)+8<6(x﹣ 1)+7; (2)若(1)中的不等式的最小整数解是方程 2x﹣ ax=3 的解,求 a. (2010 甘 肃 省 天 水 市 ) 若 关 于 x 的 一 元 二 次 方 程
1
树诚学校中考总复习:三轮复习 1. 双基过关(基础知识+三年中考型题专项+呼市三年中考分析训练) 2.专项提高(板块训练:数式方程计 算、图形变换、函数综合、动态综合、数形综合、图表信息)3 得分手感训练(强化考点类型训练+强化得分训练+强化分析解题技巧训练)
8. (2011 黑龙江鸡西市) 若关于 x 的分式方程
xa 3 1 x 1 x
有增根,则 a =

9. (2012 成都市) 设 x1 , x2 是一元二次方程 x 3x 2 0
2
16. (2013 呼和浩特)已知 α,β 是关于 x 的一元二次方程
的 两 个 实 数 根 , 则 x12 3x1 x2 x22 的 值 为 __________________.
x+k +2k=0 有两个实数根 x1,x2. (1)求实数 k 的取值范围; (2)是否存在实数 k 使得 ≥0 成立?
2
词语.不等式组:求解集口诀:同大取大,同小取小,交叉 中间,分开两边
若存在,请求出 k 的值;若不存在,请说明理由.
2.求不等式组 2≤3x-7<8 的整数解。
3.判断下列不等式的变形是否正确: (1) 由 a<b,得 ac<bc;( . )
树诚精品中考资料.
8904777
1.方程及解法。2.不等式。3.根与系数关系与判别式。4.整数解问题。5.无解增根问题。
总第 2 讲
初三数学总复习――方程与不等式
复习及考点分析: 1.一元、二次方程,二元一次方程组及分式方程的解法 2.分式方程检验及增根问题无解问题 3.一元二次方程根的判别式与根与系数的关系 4.方程的有关应用题 (审:统一单位 设:带单位 列:找等量关系 解:检:分
x y (2) 由 x>y,且 m 0,得- m < m ;(
(3) 由 x>y,得 xz > yz ;(
2 2


2
14. (绵阳市) 已知关于 x 的一元二次方程 x = 2(1-m)x
树诚学校中考总复习:三轮复习 1. 双基过关(基础知识+三年中考型题专项+呼市三年中考分析训练) 2.专项提高(板块训练:数式方程计 算、图形变换、函数综合、动态综合、数形综合、图表信息)3 得分手感训练(强化考点类型训练+强化得分训练+强化分析解题技巧训练)
C.y +2y-3=0
2
D.y -2y-3=0
2
三年中考考点重点分析
1. (德阳 2013 年)已知关于 x 的方程
2x m =3 的解是 x2
正数,则 m 的取值范围是
_
2. (2013•牡丹江) 若关于 x 的分式方程 数,那么字母 a 的取值范围是 .
的解为正
式方程双检验 答:带单位) 5.不等式(组)的性质与解法
10. (2011 湖北襄樊) 当 m=_________时,关于 x 的分式方程
2x m 1 x3 无解.
11.已知满足不等式 3(x-2)+5<4(x-1)+6 的最小
树诚学校中考总复习:三轮复习 1. 双基过关(基础知识+三年中考型题专项+呼市三年中考分析训练) 2.专项提高(板块训练:数式方程计 算、图形变换、函数综合、动态综合、数形综合、图表信息)3 得分手感训练(强化考点类型训练+强化得分训练+强化分析解题技巧训练) 3
相关文档
最新文档