离心式压缩机特性曲线和喘振现象初探精选30页PPT
离心式压缩机特性曲线与喘振现象初探共31页文档
只有两曲线的交点A才是压缩机的实际工作点。
四、离心式压缩机喘振曲线
离心式压缩机在不同转速n下都有一条出口压力P (或压比ε)与流量Q之间的曲线。
当冲角达到某一值时,旋转分离区域联成一片, 占据流道。压缩机不再排气,管路中气体就会 倒回来,弥补流量不足,经叶轮压缩重新流出。 这一股气打出后,流量又没了,气体又倒回来。 这样周而复始的改变流向,机器和管线中就会 产生“低频高振幅”的压力脉动,并发出如 “牛吼叫”般的噪音。
这实际上是气流在交替倒流和排气时产生的强 大的气流冲击。这种冲击引起机器强烈的振动, 如不及时采取措施,将使压缩机遭到严重破坏。 这就是“喘振”。
五、产生、影响喘振的因素
当压缩机的性能曲线与管网性能曲线两者 或两者之一发生变化时,交点就要变动, 也就是说压缩机的工况将有变化,从而出 现变工况操作。
离心压缩机的变工况有时并不是在人们有 意识的直接控制下(例如调节阀门等)发 生的,而是间接地接受到生产系统乃至驱 动机的意外干扰而发生。
离心压缩机工作性能图
喘振线
控制线
速度线
PD/PS 入口流量 (hx)
止回线
四、离心式压缩机喘振曲线
喘振的实质
喘振又叫“飞动”,是离心压缩机的实际工作流量到一定程 度时,气流进入叶片的方向与叶片进口角度不一致,即冲角 i>0,这时在叶片的非工作面产生气体分离(旋转分离)。
四、离心式压缩机喘振曲线
三、离心压缩机的工作点
把压缩机的性能曲线Pκ-Qj同管路特性曲线Pe-Qj画在同一坐 标上,横轴以Qj表示,纵轴以压力P表示,则两曲线的交点 M即为压缩机的工作点。
离心式压缩机的喘振分析与控制探讨
离 心式 压缩 机属 于 速度 形式 的 压缩 机 ,因为它 具 备 了排 气 量 大 、
旦 防空 消声器 被堵 ,就 会使 得气 体无 法 成功排 出 ,也 会在 很大 程度 上
形 成压缩 机喘振 的现 象 ;
效 率 高 、结构 简 约 、体 积小 、气 体不 会被 油污 染 、在 正常 的工作 下运
一
、
1 . 性能 曲线 离 心式 压缩 机透 过叶 轮的快 速 转动 ,将 叶轮 核心 部位 的气 体 利用 离 心力 的作用 抛向外 部 ,让气 体可 以获 得较 高 的速度 ,在 透过 扩压 器
还 有 以下几个 方面 :
2 . 1 进 口的 导 叶 开 度 在 设 置 上 过 小 ,并 没有 符 合 机 器 运 转 时 的 标准 ; 2 . 2 压 缩机 在工作 之前 ,相关 人员 并没 有对 机器 进行 全 面 的检 查 , 而 自身 存在 的 问题 及 其容 易 引发 P I C 、C I C以及 I I C三 者之 间 的调 节 以及 调节 区域产生 重叠 的现象 ,从而 引起压 缩机产 生喘振 现象 ; 2 . 3 P I C 、C I C 、I I C三者在 进行 参数 控制 时 ,会 产生整 定不 合理 的 现 象 ,使得 三者在 调节 上 出现 一些 冲突 ,从 而使 得机 器 在工 作期 间 出
现 喘振 的现象 。
把气 体 的速度 转变成 压 力能 。并且 ,叶轮核 心部 位构 成 了负压 区 ,可 以把气体持 续 的吸入流道 ,形成 升压和 连续传 导的过程 。
2 . 管 路特性 曲线 管路 特性 曲线 指 的是如 果在 管路 的某 种状 况下 ,气 流通 过此 管路 时所需 要 的管路 流量 的管 弦 。对 于 离心式 压缩 机 来讲 ,管 路仅仅 是 指
离心式压缩机PPT课件
34
配中间迷宫的串联密封
工艺侧
清洁隔离气
火炬
惰性隔离气
大气侧
2019/10/20
35
中间进气串联密封
二
过 滤 工 艺 气
一 级 放 空
缓 冲
第二级隔离气 级
排放
隔 离
气
器
去
气
火
炬
工艺气
轴承
2019/10/20
36
动环- 双向螺旋槽
旋向
气体向中心泵送
密封坝
气体受压,压力升高,产生间隙
2019/10/20
2019/10/20
8
石化行业中压缩机的应用场合
压缩气体用于合成及聚合 在化学工业中,气体压缩至高压,常有利于合成和聚合。例如氮 和氢合成氨、氢与二氧化碳合成甲醇,二氧化碳与氨合成尿素等。 又如在化学工业中,聚乙烯工业发展很快,所用聚合压力范围很 广,有些甚至达到3200公斤/平方厘米。 压缩气体用于油的加氢精制 石油工业中,用人工办法把氢加热加压后与油反应,能使碳氢化 合物的重组份裂化成碳氢化合物的轻组份,如重油的轻化、润滑 油加氢精制等。 压缩气体用于气体输送 用与管道输送气体的压缩机,加压后便于气体输送。要视管道的 长短以及输送气体的成分决定起压力。
37
动环-单向螺旋槽
旋向 转 方向
气体向中心泵送
气体受压,压力升高,产生间隙
密封坝
2019/10/20
38
迷宫密封
为了尽量减少漏气损失,在固定部件与轮盖、隔板 与轴套,以及整机轴的端部需要设置密封件。常用 的有梳齿式(亦称迷宫式)的密封结构。 其工作原理是每经过一个梳齿密封片, 等于节流一次,多次的节流减压能有效地减少漏气 量
喘振原理介绍演示教学
防喘措施
防喘振的原理就是针对着引起喘振的原因,在喘振将 要发生时,立即设法把压缩机的流量加大,防喘振具
单参数法--部分气流放空法
体方法如下:
单参数法--部分气流回流法
双参数法
双参数法
双参数法机理就是测取不同转速下,喘振流量构建喘 振边界线—>将边界线扩大5%,得到喘振防护线—> 根据防护线建立数学模型—建立防护条件,否则喘振, 防喘振控制线方程可表示为
入口温度 如上图6所示,恒压恒转速下进行的离心式压
缩机在不同入口气体温度时的进行曲线,从曲线上可以看 出在恒压运行工况下,气体入口温度越高,越容易发生喘 振。因此,对同一台离心式压缩机来说,夏季比冬季更容 易发生喘振。
E 转速
透平式驱动的压缩机,往往根据外界不同流量要求而运行在不同 转速下,从图3可以知道,在外界用气量一定的情况下,转速越 高,越容易发生喘振。 综上所述,出现喘振的根本原因是压缩 机的流量过小,小于压缩机的最小流量(或者说由于压缩机的背 压高于其最高排压)导致机内出现严重的气体旋转分离;外因则 是管网的压力高于压缩机所提供的排压,造成气体倒流,并产生 大幅度的气流脉动。
烟并导在风 列 叶 低回流级如期道运执出来量后此性积行行力的减的周的灰时机下气少压而气堵导构运体,力复体塞叶连转压于气始振或开杆。出是体,荡烟度在去压又在现风偏升道差降。力倒系象挡过负这又流统,板大荷样突回中这开使时产又 然 级 种度开脱生使 下 中 现不度出了级 降 来 象足小,周中 , , 称引的使起风两系机风统落机阻入导力喘叶过振调大区节。运不行同(我步(们我引有们起碰常大到碰的过到偏但的差不情)多况;风是)机;两风长风机期机
越低。产品一般都附有压力-流量特性曲线,据此可确定喘振点、喘振边界线或喘振区。流体机械的 喘振会破坏机器内部介质的流动规律性,产生机械噪声,引起工作部件的强烈振动,加速轴承和密封 的损坏。一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。为防止喘振,必须使流体 机械在喘振区之外运转。在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制 式防喘振调节系统。当多台机器串联或并联工作时,应有各自的防喘振调节装置。
离心式压缩机的失速和喘振
引起系统喘振的问题 是什么?
引起系统喘振的问题是什么?
• • • • • • 较高的排气压力 较低的吸气压力 PRV开度太小 较高的吸气温度 热气旁通阀不工作 吸气压力保护值太低
1.
离心式冷水机组会发生哪种失速主要取决于下列因素 1. 流量 2. 压头 3. 压缩机几何形状 4. PRV的位置 的位置 5. 叶轮的齿尖速度
叶轮和有导叶的扩散器发生失速
叶轮和有导叶的扩散器发生失速时, 叶轮和有导叶的扩散器发生失速时,流 量和压头都非常接近喘振点。因此, 量和压头都非常接近喘振点。因此,一旦有 该种失速发生, 该种失速发生,不允许离心机继续运行哪怕 是很短的时间,因为在这种情况下, 是很短的时间,因为在这种情况下,只要流 量略有减小或压头稍有升高, 量略有减小或压头稍有升高,离心机就会走 出失速,进入喘振区。 出失速,进入喘振区。 无导叶的扩散器发生失速 无导叶的扩散器发生失速时, 无导叶的扩散器发生失速时,其运行工况远离 喘振点。因此,当该种失速发生时, 喘振点。因此,当该种失速发生时,仍可让离 心式冷水机组运行很长一段时间。 心式冷水机组运行很长一段时间。 约克的单级离心压缩机配有无导叶的扩散器。 约克的单级离心压缩机配有无导叶的扩散器。 无导叶的扩散器
Normal Flow
Impeller
Volute
Diffuser
ห้องสมุดไป่ตู้
Partial Recirculation
Impeller
Volute
Diffuser
Complete Recirculation
Impeller
Volute
离心式压缩机的防喘振控制
离心式压缩机的防喘振控制摘要:与其他类型的压缩机相比,离心压缩机在正常情况下体积小、流量大、运行效率高,尤其是维修方便。
因此离心压缩机在现代工业生产中得到广泛应用。
但是,实际上,由于离心压缩机本身对气体压力和流量变化非常敏感,所以在实际应用中会出现喘振现象。
为了更好地保障安全生产运行,研究离心式压缩机防喘振控制措施显得尤为重要。
关键词:离心式压缩机;防喘振;性能曲线1引言当压缩机进气流量足够小时,扩散器整个流动通道将出现严重的旋转停滞,压缩机的出气压力会突然降低,使管网压力大于压缩机的出气压力,迫使气流返回压缩机;当管网压力低于压缩机出口压力时,压缩机将再次为管网供电。
当管网压力恢复到原始压力时,压缩机会产生旋转间隙,出口压力会降低,管网中的气流会返回到压缩机。
如此反复,压缩机流量和出口压力周期性波动,这种现象被称为突现现象,是离心压缩机固有的现象,是压缩机损坏的主要原因之一。
防喘振控制程序是控制系统制造商基于机组制造商提供的实验数据开发的具有防喘振控制功能的标准功能模块。
这样可以确保压缩机的安全运行,提高机组的运行效率,但如果应用不当,会使机组发生喘振,破坏设备,导致停产等事故。
2离心式压缩机概述2.1离心式压缩机运行原理在正常运行期间,压缩机随着压缩机叶轮旋转,同时气体在离心力的作用下排放,排放的气体大量进入压缩机膨胀器,然后进入叶轮位置形成真空带,同时一部分未经过处理的外部空气也流入叶轮,随着叶轮的不断旋转,气体持续吸入和排放,使气体来回循环保持流动。
2.2离心式压缩机喘振成因造成喘振现象的直接和间接因素有很多种,在很多情况下,是由于多种因素结合而形成的喘振问题。
2.2.1流量因素离心式压缩机在运行过程中,当压缩机流量下降时,压缩机出口压力增加,当在该转速下达到最大出口压力时,机组进入喘振区,同时压缩机出口压力下降,导致压缩机喘振。
同时,在一定流量下,压缩机转速越高,喘振发生越容易。
离心式压缩机喘振的发生,其主要原因是流量小,因此压缩机运行中压缩机流量的增加是防止离心式压缩机喘振的重要条件。
离心式压缩机喘振现象与调节方法
离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。
离心式压缩机喘振及防喘振系统研究
离心式压缩机喘振及防喘振系统研究辛文俊(胜利油田石化总厂重油催化车间,山东东营257000)协%要]介绍了离心式压缩机的喘振机理及防喘振的条件,并具体分析了胜利油田化工总厂80万吨/年催化裂化装置富气压缩机防喘振控制系统的特点、存在的问题屈相应的改进措施,并总结了几项防喘振措施.,保障了枳纽的平稳运行及装置的安全生产。
泼罐嗣]压缩机;喘振;防喘振;控制系统1离心式压缩机的喘振1.1喘振机理如果压缩机在输送气体介质的过程中,其流量不断减小,当压缩机流量小到一定值时,则气体在整个扩压器流道中产生分离涡流:流量进一步减小,气体在扩压器流道内的分离涡流区进一步扩大,并形成严重的旋转脱离现象。
气体流动状态严重恶化,压缩机出口压力大幅度下降,使管网的压力比压缩机出口压力高,迫使气流倒回压缩机,一直到管网压力下降至l低于压缩机出口压力时,压缩机又开始向管网供气,压缩机又恢复正常工作。
如此周而复始,使压缩机的流量和出口压力周期性的大幅波动,引起压缩机强烈的气流波动,这种现象就叫压缩机的喘振。
从以上分析可以看出喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。
当外界条件适合内在因素时,便发生喘振。
12防止喘振的条件离心式压缩机的喘振工况是在进口流量减少到一定程度是产生的,该流量统称为压缩机的喘振流量,也是维持压缩机运行的最小流量,以Q。
表示之,为确保压缩机平稳运行,则进口实际流量Q必须大于最小流量Q。
即Q>Q.。
2胜利油田石化总厂重催富气压缩机防喘振系统研究胜利油田石化总厂80万吨/年催化裂化装置富气压缩机,是引进美国德莱塞兰(D R E SSE R—RA N D)公司产品3M8—9型单缸两段9级离心式压缩机,背压式蒸汽透平驱动。
额定入口压力160kPa,出口压力1600kPa,蒸汽压力35M Pao背压1.O M Pa,额定功率2474 kW,流量22831N m3/h。
压缩机特性曲线PPT课件
(bar)
0
( C)
1
.990
2
.990
3
.990
4
.990
5
.990
30.0 30.0 30.0 30.0 30.0
.760 .760 .760 .760 .760
28.963 28.963 28.963 28.963 28.963
5599.2 4800.0 5200.0 5800.0 6000.0
240
260
容 积 流 量 V(Nm3/min) 干 *101
AV型轴流压缩机性能曲线
.
13
14
A型轴流压缩机性能曲线
福抗A56-9轴流压缩机性能曲线(年平均工况)
基准点(*)参数
参考曲线
1
风机转数No (r/min) 5599
内功率Po*
(kW) 8614.385
曲线号 进气压力 进气温度 相对湿度 分子量(干) 转 数
.
12
0 1 2 排气压力 3p2(bar) 4 5 6 7 8 9
喘 振 线
等 效 率 线 (相 对 )
7
4.7
5.9 .8
11.1 1.0
6
1.2
1.3
D
1.4 .98
.99 .96 .94 ..9920
.6
.85
3.5
.80
2
.4
C
等 功 率 线
60
80
100
120
140
160
180
200
220
内 功 率 Po*
(kW) 7704.397
2 3
.993 .993
4 .993
离心式压缩机喘振及控制
离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。
如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。
喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。
但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。
二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。
离心压缩机的性能曲线
喘振点qs
设计点qd
堵塞点qc
一. 特性曲线
3. 离心压缩机的性能曲线
离心压缩机整机在不同流量时的压比ε(或者排压) 、整机效率η 、功率P与进口流 量qv的关系曲线称为离心压缩机的性能曲线。 离心压缩机整机具有与离心压缩机级相类似的性能曲线。下图为单级、两级和三级 压缩的离心压缩机整机ε- qv曲线,由图可以看出: a. 多级串联工作与单级工作相比,整机的 喘振流量增大,堵塞流量减小。 b. 多级串联工作与单级工作相比,整机性 能曲线的形状变陡,稳定工况范围变窄。 c. 串联的级数越多,整机的性能曲线就越 陡,稳定工况范围也就越窄。 当级间带有中间冷却时,以上的现象会更 加明显。
第 五 章 离心压缩机的性能曲线
一. 特性曲线
二. 喘振
三. 稳定工作区
上一章 下一章
一. 特性曲线
1. 级的能量损失
在离心压缩机的流道中,气流流动的现象非常复杂。其能量损失基本上包括流动损 失、轮阻损失和漏气损失三部分。而流动损失又包括了摩擦损失、分离损失、二次 流损失和尾迹损失四部分。
2. 级的性能曲线
二. 喘振
1. 旋转失速
离心压缩机的级在非设计工况下,由于工况变化(流量减小) 导致叶片通道中产生严重的气流脱离,形成旋转脱离现象, 而使级性能明显恶化的情况,称为旋转失速。
根据强烈程度,旋转失速可以分为渐进失速和突变失速。根 据右图可以看出,渐进失速时,性能曲线平滑而连续;而突 变失速时,性能曲线出现跳跃,表现为不连续性。
2. 喘振的定义
在离心压缩机的流道中,由于工况改变,流量显著减小,形成突变失速,此时的流 动情况会大大恶化。这时叶轮虽仍在旋转,对气体作功,但却不能提高气体的压力, 于是压缩机出口压力显著下降。这时可能出现管网中压力反大于压缩机出口处压力 的情况,因而管网中的气体就向压缩机倒流,一直到管网中的压力下降至低于压缩 机出口压力为止。这时倒流停止,气流又在叶轮作用下正向流动,压缩机又开始向 管网供气。但当管网压力回升到原有水平时,压缩机正常排气又受到阻碍,流量又 下降,系统中的气体又产生倒流。如此周而复始,在整个系统中发生了周期性的轴 向低频大振幅的气流振荡现象,这种现象称之为压缩机的“喘振”。
第四讲_离心式压缩机_第6节_级的特性曲线
“喘振工况”的发生可借助于冲角、边界层分离来分析。
负冲角:叶片工作面产生边界层分离,出现旋涡区,但稳 定不易继续发展——影响不大 正冲角:叶片非工作面产生边界层分离,旋涡一旦产生会 继续发展恶化,出现气流脉动——过大正冲角引起“喘振”
四. 堵塞工况
➢ Q↑→Δβ↓→-Δβ,→ 叶片工作面发生边界层分 离,但不易扩展;当 Q↑↑→hf↑、hs↑→理论 能头全部消耗在损失上→ 压力提不高、流量不能继 续增大;
二. η—Qs曲线:
(1)设计点(额定工况) Qd下η最高; (2)Q>Qd时,hf和hs增加,随Q增大而η下降; (3)Q<Qd时,hs急剧增加,随Q减小而η下降;
曲线完全由实验测试以及进行相似换算获得。
三. 喘振工况
离心压缩机当流 量减小到某一个值时 压缩机工作不稳定, 发生强烈振动及噪音, 称“喘振工况”,此 时的流量称“喘振流 量”。
➢ 当Q=Qmax时,叶道喉部截面 气流达音速,Q不能再增大。
五. 稳定工矿区
Qmin与Qmax
KQ
Qmax Qmin Qd
稳定工况区的宽窄也是衡量压缩 机性能好坏的标志之一,主要与 叶片出口角有关。
END
第四讲 离心式压缩机
第六节 级的特性曲线
压缩机级的性能曲线 是指在进气状态(进气压
力ps,进气温度Ts)一定和
转速不变的条件下,级的
压比ε、多变效率ηpol以 及功率Hpol随该级进气量 Qs而变化的关系曲线,即 包括ε-Qs、η-Qs和Hpol -Qs 等三条曲线。
一. ε—Qs曲线:
⑴结构参数、转速一定时:HT随Qs的增大而呈线性下降 ⑵流动损失对多变压缩功的影响较复杂,近似认为摩阻损失 和冲击损失起主要影响作用。 ⑶进气条件一定的情况下,ε-Qs曲线形状与Hpol-Qs曲线形状 相似,是一条随流量增大而压力比减小的曲线。 ⑷ε-Qs曲线由实测获得,曲线必须注明转速、条件和介质。
离心式压缩机喘振现象与调节方法
离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。