推荐中考数学真题分类解析汇编26梯形

合集下载

中考数学试题分类大全梯形

中考数学试题分类大全梯形

一、选择题1.2010安徽芜湖如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于A .9B .10C .11D .12答案B2.2010山东日照已知等腰梯形的底角为45o ,高为2,上底为2,则其面积为 A2 B6 C8 D12答案C3.2010山东烟台如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是 A 、等腰梯形 B 、矩形 C 、菱形 D 、正方形答案C4.2010山东威海如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为A .24B .4C .33D .52答案A5.2010台湾如图十五梯形ABCD 的两底长为AD =6,BC =10,中线为EF , 且B =90,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相 同的两区域,则△EFP 与梯形ABCD 的面积比为何 A 1:6 B 1:10 C 1:12 D 1:16 ;答案DD CBAEFP 图十五CABDO6.2010 浙江省温州用若干根相同的火柴棒首尾顺次相接围成一个梯形提供的火柴棒全部用完,下列根数的火柴棒不能围成梯形的是▲ . A .5 B .6 C .7 D .8答案B7.2010 浙江台州市梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是▲ A .3 B .4 C . 23 D .2+23 答案B8.2010浙江金华 如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60o,BC =2cm ,则梯形ABCD 的面积为 ▲ A .33cm 2 B .6 cm 2C .36cm 2D .12 cm 2答案A9.2010湖北省咸宁如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成, 则线段AC 的长为 A .3B .6C .33D .63答案D10.2010湖北恩施自治州如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面 积为7,则图中阴影部分的面积为:A. 7B. 14C. 21D. 28答案B11.2010四川内江2010四川内江,12,3分如图,梯形ABCD 中,AD ∥BC , 点E 在BC 上,AE =BE ,点F 是CD 的中点,且AF ⊥AB ,若AD =,AF =4,AB =6,则CE 的长为AB C DEFACBD第10题图A.2错误!B.2错误!-1 C.D.答案D12.2010 湖南湘潭在△ABC中,D、E分别是AB、AC的中点,若DE=2cm,则BC的长是A.2cm B.3cm C.4cm D.5cm答案C13.2010湖北十堰如图,已知梯形ABCD的中位线为EF,且△AEF的面积为6cm2,则梯形ABCD的面积为A DE FB C第7题A.12 cm2 B.18 cm2C.24 cm2D.30 cm2答案C14.2010 湖北咸宁如图,菱形ABCD由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC的长为A.3 B.6 C.33D.63答案D15.2010四川达州如图4,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路M、N分别是AB、CD中点.极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪, 实际上他们仅少走了图4A. 7米B. 6米C. 5米D. 4米图4答案B16.2010湖南娄底下列说法中错误的是A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 等腰梯形的对角线相等答案B1二、填空题1.2010甘肃兰州如图,直角梯形ABCD 中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时针旋转90°至DE,连接AE 、CE,△ADE 的面积为3,则BC 的长为 .答案52.2010浙江宁波如图,在等腰梯形ABCD 中,AD ∥BC ,AB =AD =CD . 若∠ABC =60°,BC =12,则梯形 ABCD 的周长为 ▲ .DCBA答案303.2010湖南长沙等腰梯形的上底是4cm,下底是10cm,一个底角是60,则等腰梯形的腰长是 cm .60°4cm 6cm AB CDE 4cm答案64.2010江苏无锡如图,梯形ABCD 中,AD ∥BC ,EF 是梯形的中位线,对角线AC 交EF 于G ,若BC =10cm,EF =8cm,则GF 的长等于 ▲ cm .答案35.2010 黄冈如图,在等腰梯形ABCD 中,AC ⊥BD,AC =6cm,则等腰梯形ABCD 的面积为_____cm 2.答案18 6.2010湖北武汉如图,在直角梯形ABCD 中,A D ∥BC,∠ABC=90°,BD ⊥DC,BD=DC,CE 平分∠BCD,交AB 于点E,交BD 于点H,EN ∥DC 交BD 于点N,下列结论:①BH=DH ;②CH=)21EH ;③EBH ENH S EHS EC∆∆=.其中正确的是 GF E D CBA 第17题A 、①②③B 、只有②③C 、只有②D 、只有③答案 B7.2010湖南怀化如图5,在直角梯形ABCD 中,AB ∥CD,AD ⊥CD,AB=1cm, AD=6cm,CD=9cm,则BC= cm .答案108.2010江苏扬州如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC+PD 的和最小时,PB 的长为__________.答案39.2010湖北随州如图,在等腰梯形ABCD 中,AC ⊥BD,AC =6cm,则等腰梯形ABCD 的面积为_____cm 2.答案1810.2010云南昆明如图,在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,若△ABC 的周长为10 cm ,则△DEF 的周长是 cm .答案511.2010陕西西安如图,在梯形ABCD 中,DC ∥AB,∠A +∠B=90°;若AB=10,AD=4,DC=5,则梯形ABCD 的面积为 ;ABC DEF第11题图A BC D第18题 P答案18 12.2010湖北十堰如图,n +1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,通过逐一计算S 1,S 2,…,可得S n = .13.2010广东清远如图3,DE 是△ABC 的中位线,若△ADE 的周长是18, 则△ABC 的周长是 .答案3614.2010四川攀枝花如图6,在梯形ABCD 中,A B ∥DC,DB ⊥AD,AD=DC=BC=2cm, 那么梯形ABCD 的面积是 .答案33cm231321n -+15.2010 重庆江津已知:在面积为7的梯形ABCD 中,AD ∥BC ,AD =3,BC =4,P 为边AD 上不与A 、D 重合的一动点,Q 是边 BC 上的任意一点,连结AQ 、DQ ,过P 作PE ∥DQ 交 AQ 于E ,作PF ∥AQ 交DQ 于F .则△PEF 面积的最大 值是_______________.图6DCB A第16题AN 1N 2N 3N 4N 5M 1M 2M 3M 4…答案3416.2010四川攀枝花如图1,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC=∠DCE, 下列结论不正确的是 A .S△AFD =2S△EFB B .BF=21DF C .四边形AECD 是等腰梯形 D .∠AEB=∠ADC答案A17.2010湖北黄石如图,直角梯形ABCD 中,AD ∥BC ,∠ADC =∠BAC =90°,AB =2,CD =3,则AD 的长为 A.323D. 32答案C 三、解答题 1.2010安徽芜湖本小题满分8分如图,直角梯形ABCD 中,∠ADC =90°,AD ∥BC ,点E 在BC 上,点F 在AC 上,∠DFC =∠AEB .1求证:△ADF ∽△CAE ;2当AD =8,DC =6,点E 、F 分别是BC 、AC 的中点时,求直角梯形ABCD 的面积 1证明:BA图1CEDF答案2.2010广东广州,18,9分如图5,在等腰梯形ABCD中,AD∥BC.求证:∠A+∠C=180°DAB C答案证明:∵梯形ABCD是等腰梯形,∴∠B=∠C又∵AD∥BC,∴∠A+∠B=180°∴∠A+∠C=180°3.2010江苏南京7分如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD;求证:1OA=OB;2AB∥CD.答案4.2010江苏盐城本题满分8分如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.1求sin∠DBC的值;2若BC 长度为4cm,求梯形ABCD 的面积.答案解:1∵AD =AB ∴∠ADB =∠ABD∵AD ∥CB ∴∠DBC = ∠ADB =∠ABD ……………1分 ∵在梯形ABCD 中,AB =CD ,∴∠ABD +∠DBC =∠C =2∠DBC ∵BD ⊥CD ∴3∠DBC =90o ∴∠DBC =30o ……3分∴sin ∠DBC =错误! ……………………4分2过D 作DF ⊥BC 于F …………………………5分在Rt △CDB 中,BD =BC ×c os ∠DBC =2错误!cm …………………6分 在Rt △BDF 中,DF =BD ×sin ∠DBC =错误!cm …………………7分 ∴S 梯=错误!2+4·错误!=3错误!cm 2………………………………………8分 其它解法仿此得分5.2010江苏盐城本题满分12分如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的等边△DCE 的另一顶点E 在腰AB 上. 1求∠AED 的度数; 2求证:AB =BC ;3如图2所示,若F 为线段CD 上一点,∠FBC =30o . 求 错误!的值.答案B A CD F第22题图B ACD6.2010 重庆已知:如图,在直角梯形ABCD 中,AD ∥BC ,90ABC ∠=︒.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足AD CF =,MF MA =. 1若120=∠MFC ,求证:MB AM 2=; 2求证:FCM MPB ∠-=∠2190 .答案证明:1连结MD . ························································································ 1分∵点E 是DC 的中点,ME DC ⊥,∴MD MC =. ············································· 2分 又∵AD CF =,MF MA =,∴AMD ∆≌FMC ∆. ············································· 3分 ∴MAD MFC ∠=∠120=︒. ······································································ 4分 ∵AD ∥BC ,90ABC ∠=︒.∴90BAD ∠=︒,∴30MAB ∠=︒. ································································· 5分 在Rt AMB ∆中,30MAB ∠=︒,∴12BM AM =,即2AM BM =. ································································· 6分 2∵AMD ∆≌FMC ∆,∴ADM FCM ∠=∠.∵AD ∥BC ,∴ADM CMD ∠=∠. ∴CMD FCM ∠=∠. ············································································· 7分∵MD MC =,ME DC ⊥,∴DME CME ∠=∠12CMD =∠. ······························ 8分∴12CME FCM ∠=∠. ··········································································· 9分在Rt MBP ∆中,190902MPB CME FCM ∠=︒-∠=︒-∠. 10分7.2010 四川南充如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD . 求证:四边形ABCD 是等腰梯形.答案证明:∵ MA =MD ,∴ △MAD 是等腰三角形,∴ ∠DAM =∠ADM . ∵ AD ∥BC ,∴ ∠AMB =∠DAM ,∠DMC =∠ADM .∴ ∠AMB =∠DMC . 又∵ 点M 是BC 的中点,∴ BM =CM . 在△AMB 和△DMC 中,,,,AM DM AMB DMC BM CM =⎧⎪∠=∠⎨⎪=⎩∴ △AMB ≌△DMC .24题图MPFEDCBA∴ AB =DC ,四边形ABCD 是等腰梯形.8.2010年上海已知梯形ABCD 中,AD1在图7中,用尺规作∠BAD 的平分线AE 保留作图痕迹,不写作法,并证明四边形ABED 是菱形;2∠ABC =60°,EC=2BE,求证:ED ⊥DC .答案证明:1如图∵AB=AD,AE 为∠BAD 的平分线,∴BG=DG ,∵AD2∵四边形ABED 是菱形, ∠ABC =60°,∴∠DBE=∠BDE=30°,∠BGE=90°,设GE=a ,∴,BE=2a ,CE=4a ,BC=6a ,∴BD BE BC BD ==∵∠DBE 为公共角, ∴ΔBDE ∽ΔBCD, ∴∠BDE=∠C,∴∠C=30°,∵DE ∥AB,∴∠DEC=∠ABC=60°,∴∠CDE=90°,∴ ED ⊥DC .9.2010重庆綦江县如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =AD =6,DE ⊥DC 交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . 1证明:EF =CF ;2当tan ∠ADE =13时,求EF 的长.FEDCBA答案解:1如图,过D 作DG ⊥BC 于G ,连结EF 由已知可得四边形ABGD 为正方形 ∵DE ⊥DC∴∠ADE +∠EDG =90°=∠GDC +∠EDG ∴∠ADE =∠GDC又∵∠A =∠DGC 且AD =GD ∴△ADE ≌△GDC ∴DE =DC 且AE =GC 在△EDF 和△CDF 中∠EDF =∠CDF ,DE =DC ,DF 为公共边 ∴△EDF ≌△CDF SAS ∴EF =CFGF EDCBA图7 GE D C BAABECD图 1ABCD图22∵ta n ∠ADE =13AE AD = ∴AE =GC =2 设EF =x ,则BF =8-CF =8-x ,BE =4 由勾股定理x 2=28x (-)+42解得:x =5,∴EF =5.10.2010 江苏连云港本题满分10分如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线. 1三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;2如图1,梯形ABCD 中,AB ∥DC ,如果延长DC 到E ,使CE =AB ,连接AE ,那么有S 梯形ABCD =S △ABE .请你给出这个结论成立的理由,并过点A 作出梯形ABCD 的面积等分线不写作法,保留作图痕迹;3如图,四边形ABCD 中,AB 与CD 不平行,S △ADC >S △ABC ,过点A 能否作出四边形ABCD 的面积等分线若能,请画出面积等分线,并给出证明;若不能,说明理由.答案11.2010 河北如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD =6,BC =8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止.设点P ,Q 运动的时间是t 秒t >0.1设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式不必写t 的取值范围. 2当BP =1时,求△EPQ 与梯形ABCD 重叠部分的面积.3随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段若能,直接..写出t 的取值范围;若不能,请说明理由.答案解:1y =2t ;2当BP =1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB =BC 21= 4,MP =MQ =3,∴PQ =6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM. ∵AB =33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ =BM +M Q -BP =8,PC =7.设PE 与AD 交于点F ,Q E 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP =33,AH =1.在Rt △HPF 中,∠HPF =30°, ∴HF =3,PF =6.∴FG =FE =2.又∵FD =2,∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCDP Q 图16备用图图7图6的重叠部分就是梯形FPCG ,其面积为3227.3能.4≤t ≤5.12.2010浙江湖州如图,已知在梯形ABCD 中,DC ∥AB ,AD =BC ,BD 平分∠ABC ,∠A =60°,1求∠ABD 的度数;2若AD =2,求对角线B D 的长.答案1∵DC ∥AB ,AD =BC ,∴梯形ABCD 是等腰梯形,∴∠ABC =∠A =60°,又∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =30°. 2∵∠A =60°,∠ABD =30°,∴∠ADB =90°,∴AB =2AD =4,∴对角线BD =224223-= 13.2010 山东滨州如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 1请判断四边形EFGH 的形状并说明为什么.2若使四边形EFGH 为正方形,那么四边形ABCD 的对角线应具有怎样的性质答案解:1 四边形EFGH 为平行四边形.....................................1分连接AC .............................................. ..............2分∵E 、F 分别是AB 、BC 的中点,EF ∥AC,EF=21AC. 同理HG ∥AC,HG=21AC. ∴EF ∥HG, EF=HG.∴四边形EFGH 是平行四边形. .................... ..............4分2 四边形ABCD 的对角线垂直且相等.14.2010广东中山已知两个全等的直角三角形纸片ABC 、DEF,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G,∠C=∠EFB=090,∠E=∠ABC=030,AB=DE=4.1求证:ΔEGB 是等腰三角形;2若纸片DEF 不动,问ΔABC 绕点F 逆时针旋转最小 度时,四边形ACDE 成为以ED 为底的梯形如图2.求此梯形的高.答案1证明:在Rt ΔEFB 中,∠E=030 ∴∠EBF=060 又∵∠ABC=030 ∴∠EBG=∠E=030 ∴EG=BG∴ΔEGB 是等腰三角形 2解:答案填30,设CB 交DE 于点M,当∠BFD=030时,∠FMD=090 所以,AC ∥DE,即四边形ACDE 成为以ED 为底的梯形在Rt ΔABC 和Rt ΔDEF 中,∠E=∠ABC=030,AB=DE=4, ∴BC=32,DF=2 ∴CF=32-2在Rt ΔFDM 中,求得FM=3 ∴CM=32-2+3=33-2 故梯形的高为33-2.15.2010湖北荆州如图,直角梯形OABC 的直角顶点O 是坐标原点,边OA,OC 分别在x 轴、y 轴的正半轴上,OA ∥BC,D 是BC 上一点,BD=41OA=2,AB=3,∠OAB=45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持∠DEF=45°. 1直接写出....D 点的坐标;2设OE=x,AF=y,试确定y 与x 之间的函数关系;3当△AEF 是等腰三角形时,将△AEF 沿EF 折叠,得到△EF A ',求△EF A '与五边形OEFBC 重叠部分的面积.答案解:1D 点的坐标是)223,223(. 2连结OD,如图1,由结论1知:D 在∠COA 的平分线上,则∠DOE=∠COD=45°,又在梯形DOAB 中,∠BAO=45°,∴OD=AB=3 由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45° ∴∠1=∠2, ∴△ODE ∽△AEF ∴AEODAF OE =,即:x y x -=243∴y 与x 的解析式为:x x y 324312+-=3当△AEF 为等腰三角形时,存在EF=AF 或EF=AE 或AF=AE 共3种情况.① 当EF=AF 时,如图2.∠FAE=∠FEA=∠DEF=45°,∴△AEF 为等腰直角三角形.D 在A ’E 上A ’E ⊥OA, B 在A ’F 上A ’F ⊥EF∴△A ’EF 与五边形OEFBC 重叠的面积为 四边形EFBD 的面积.∵22522324=-=-=-=CD OA OE OA AE∴252222545sin 0=⨯=⋅=AE AF 825)25(21AF EF 21S 2AEF =⨯=⋅=∆ ∴421223)2252(21DE AE)(BD 21AEDB =⨯+⨯=⋅+=梯形S ∴817825-421S -S S AEF AEDB BDEF ===∆梯形四边形也可用BD A'EF A'S -S S ∆∆=阴影②当EF=AE 时,如图3,此时△A ’EF 与五边形OEFBC 重叠部分面积为△A ’EF 面积.∠DEF=∠EFA=45°, DE ∥AB , 又DB ∥EA ∴四边形DEAB 是平行四边形 ∴AE=DB=2 ∴EF AE 21S S AEF EFA'⋅==∆∆ 1)2(21S 2EF A /=⨯=∆ ③当AF=AE 时,如图4,四边形AEA ’F 为菱形且△A ’EF 在五边形OEFBC 内. ∴此时△A ’EF 与五边形OEFBC 重叠部分面积为△A ’EF 面积.由2知△ODE ∽△AEF,则OD=OE=3 ∴AE=AF=OA-OE=324- 过F 作FH ⊥AE 于H,则()22342232445sin -=⨯-=︒•=AF FH ∴()448-241223-43-2421FH AE 21S S AEF EF A'=⎪⎪⎭⎫ ⎝⎛•⨯=•==∆∆综上所述,△A ’EF 与五边形OEFBC 重叠部分的面积为817或1或448-24116.2010湖北省咸宁如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t 秒.1当0.5t =时,求线段QM 的长;2当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;3当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ是否为定值,若是,试求这个定值;若不是,请说明理由.答案解:1过点C 作CF AB ⊥于F ,则四边形AFCD 为矩形.∴4CF =,2AF =.此时,Rt △AQM ∽Rt △ACF .……2分∴QM CFAM AF =. 即40.52QM =,∴1QM =. 2∵DCA ∠为锐角,故有两种情况:①当90CPQ ∠=︒时,点P 与点E 重合.此时DE CP CD +=,即2t t +=,∴1t =. ②当90PQC ∠=︒时,如备用图1,此时Rt △PEQ ∽Rt △QMA ,∴EQ MAPE QM=. 由1知,42EQ EM QM t =-=-,而()(2)22PE PC CE PC DC DE t t t =-=--=--=-, ∴421222t t -=-. ∴53t =. 综上所述,1t =或53.3CQ RQ为定值. 当t >2时,如备用图2,4(2)6PA DA DP t t =-=--=-.由1得,4BF AB AF =-=. ∴CF BF =. ∴45CBF ∠=︒. ∴6QM MB t ==-. ∴QM PA =. ∴四边形AMQP 为矩形. ∴PQ ∥AB . ∴△CRQ ∽△CAB .∴63CQ BC RQ AB === 17.2010北京已知:如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD =2,BC =4.求∠B 的度数及AC 的长.ABCD备用图1ABCD备用图2Q ABCDl MP 第24题E ABCD 备用图1QP E lMABC D 备用图2M QRFPQ ABCDl M P 第24题E F答案解法一:分别作AF⊥BC,DG⊥BC,F、G是垂足.∴∠AFB=∠DGC=90°.∵AD∥BC,∴四边形AFGD是矩形.∴AF=DG.∵AB=DC,∴Rt△AFB≌Rt△DGC.∴BF=CG.∵AD=2,BC=4,∴BF=1.在Rt△AFB中,∵cos B=BFAB=12,∴∠B=60°.∵BF=1.∴AF=3.由勾股定理,得AC=23.∴∠B=60°,AC=23.解法二:过A点作AE∥DC交BC于点E.∵AD∥BC,∴四边形AECD是平行四边形.∴AD=EC,AE=DC.∵AB=DC=AD=2,BC=4,∴AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC 中,AC =AB ·tan60°=23. ∴∠B =60°,AC ==23.18.2010北京问题:已知△ABC 中,∠BAC =2∠ACB ,点D 是△ABC 内的一点,且AD =CD ,BD =BA ,探究∠DBC 与∠ABC 度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. 1当∠BAC =90°时,依问题中的条件补全右图. 观察图形,AB 与AC 的数量关系为 ;当推出∠DAC =15°时,可进一步推出∠DBC 的度数为 ; 可得到∠DBC 与∠ABC 度数的比值为 .2当∠BAC ≠90°时,请你画出图形,研究∠DBC 与∠ABC 度数的比值是否与1中的结论相同,写出你的猜想并加以证明.答案解:1相等;15°;1:3.2猜想:∠DBC 与∠ABC 度数的比值与1中的结论相同.证明:如图2,作∠KCA =∠BAC ,过B 点作BK ∥AC ,交CK 于点K ,连结DK . ∵∠BAC ≠90°∴四边形ABKC 是等腰梯形. ∴CK =AB , ∵DC =DA , ∴∠DCA =∠DAC . ∵∠KCA =∠BAC , ∴∠KCD =∠3. ∵△KCD ≌△BAD . ∴∠2=∠4,KD =BD , ∵BK ∥AC , ∴∠ACB =∠6. ∵∠KCA =2∠ACB , ∴∠5=∠ACB , ∴∠5=∠6. ∴KC =KB , ∴KD =BD =KB . ∴∠KBD =60°.CBA∵∠ACB =∠6=60°-∠1, ∴ ∠BAC =2∠ACB =120°-2∠1.∵∠1 +60°-∠1 +120°-2∠1+ ∠2=180° ∴∠2=2∠1.∴∠DBC 与∠ABC 度数的比值为1:3.19.2010河南如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=045,点P 是BC 边上一动点,设PB 长为x.1当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. 2当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行网边形.3点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形试说明理由.答案13或8; 21或11;3由2知,当BP = 11时,以点P 、A 、D 、E 为顶点的四边形是平行四边形. ∴EP = AD = 5.过D 作DF ⊥BC 于F ,则DF = FC = 4 ,∴ FP = 3. ∴ DP 2222345FP DF +=+=.∴ EP = DP ,故此时平行四边形PDAE 是菱形. 即以点P 、A 、D 、E 为顶点的四边形能构成菱形.20.2010四川乐山在△ABC 中,D 为BC 的中点,O 为AD 的中点,直线l 过点O .过A 、B 、C 三点分别做直线l 的垂线,垂足分别是G 、E 、F ,设AG =h 1,BE =h 2,CF =h 3.1如图,当直线l ⊥AD 时此时点G 与点O 重合.求证:h 2+h 3= 2h 1; 2将直线l 绕点O 旋转,使得l 与AD 不垂直.①如图,当点B 、C 在直线l 的同侧时,猜想1中的结论是否成立,请说明你的理由;②如图,当点B 、C 在直线l 的异侧时,猜想h 1、h 2、h 3满足什么关系.只需写出关系,不要求说明理由答案25.1证明:∵BE ⊥l ,GF ⊥l ,∴四边形BCFE 是梯形. 又∵GD ⊥l ,D 是BC 的中点, ∴DG 是梯形的中位线, ∴BE +CF =2DG .h 2h 1 E F GO C ABDh 3 lh 3 h 1 h 2 E FlCABDOGO h 2h 1 h 3 F E G lCABD图图 图又O 为AD 的中点,∴AG =DG , ∴BE +CF =2AG . 即h 2+h 3= 2h 1. 2成立.证明:过点D 作DH ⊥l ,垂足为H ,∴∠AGO =∠DHO =Rt ∠,∠AOG =∠DOH ,OA =OD , ∴△AGO ≌△DHO , ∴DH =AG .又∵D 为BC 的中点,由梯形的中位线性质, 得2 DH =BE +CF ,即2 AG =BE +CF , ∴h 2+h 3= 2h 1成立.3h 1、h 2、h 3满足关系:h 2-h 3= 2h 1. 说明:3问中,只要是正确的等价关系都得分 21.2010黑龙江哈尔滨如图,在平面直角坐标系中,点O 是坐标原点,四边形AOCB 是梯形,AB ∥OC,点A 的坐标为0,8,点C 的坐标为10,0,OB =OC . 1求点B 的坐标;2点P 从C 点出发,沿线段CO 以5个单位/秒的速度向终点O 匀速运动,过点P 作PH ⊥OB,垂足为H,设△HBP 的面积为SS ≠0,点P 的运动时间为t 秒,求S 与t 之间的函数关系式直接写出自变量t 的取值范围;3在2的条件下,过点P 作PM ∥CB 交线段AB 于点M,过点M 作MR ⊥OC,垂足为R,线段MR 分别交直线PH 、OB 于点E 、G,点F 为线段PM 的中点,连接EF,当t 为何值时,25EG EF =答案解:1如图1,过点B 作BN ⊥OC,垂中为N由题意知OB=OC=10,BN=OA=8622=-=∴BN OB ON …………1分 ∴B6,82如图1,︒=∠=∠∠=∠90OHP ONB POHBONBOH ∆∴∽PHBNOH ON PO BO POH ==∴∆ t PH t OH t OP t PC 48,36,510,5-=-=∴-=∴=∴ 43)36(10+=--=-=∴t t OH OB BH)20(1646)48)(43(212<≤++-=-+=∴t t t t t S3①当点G 在点E 上方时,如图2,过点B 作OC BN ⊥',垂足为'N54'',4',8'22=+=∴==CN BN CB CN BNPM BC PC BM //,// ∴四边形BMPC 是平行四边形54==∴BC PM OBC OCB OB OC t PC BM ∠=∠∴===,5∵PM ∥CB ∴∠OPD=∠OCB ∠ODP=∠OBC∴∠OPD=∠ODP ∵∠OPD+∠RMP=90° ∠ODP+∠DPH=90° ∴∠RMP=∠DPH ∴EM=EF ∵点F 为PM 的中点 ∴EF ⊥PM∵∠EMF=∠PMR ∠EFM=∠PRM=90° ∴△MEF ∽△MPR分分其中13252255514852222=-=-=∴=∴===∴=-======∴EG EM MG EG EG EF EF ME MR PM PR MR PMMF PREFMR MF MP ME∵AB49=∴'='∴BM O N MB B N MG 209495=∴=∴t t 20214215=∴==∴t t BM .25,2021209==∴EG EF t 时或当答案23.2010云南昆明已知:如图,在梯形ABCD 中,AD ∥BC,∠DCB = 90°,E 是AD 的中点,点P 是BC 边上的动点不与点B 重合,EP 与BD 相交于点O.1当P 点在BC 边上运动时,求证:△BOP ∽△DOE ; 2设1中的相似比为k ,若AD ︰BC = 2︰3. 请探究:当k 为下列三种情况时,四边形ABPE 是什么四边形①当k = 1时,是 ;②当k = 2时,是 ;③当k = 3时,是 . 并证明...k = 2时的结论.答案1证明:∵AD ∥BC∴∠OBP = ∠ODE 在△BOP 和△DOE 中 ∠OBP = ∠ODE∠BOP = ∠DOE ∴△BOP ∽△DOE 有两个角对应相等的两三角形相似2① 平行四边形② 直角梯形③ 等腰梯形证明:∵k = 2时,BP2DE∴ BP = 2DE = AD又∵AD ︰BC = 2︰3 BC = 32AD PC = BC - BP =32AD - AD =12AD = ED ED ∥PC , ∴四边形PCDE 是平行四边形 ∵∠DCB = 90°∴四边形PCDE 是矩形 ∴ ∠EPB = 90° 又∵ 在直角梯形ABCD 中 AD ∥BC, AB 与DC 不平行 ∴ AE ∥BP, AB 与EP 不平行四边形ABPE 是直角梯形ABC DE PO24.2010广东东莞已知两个全等的直角三角形纸片ABC 、DEF ,如图⑴放置,点B 、D 重合,点F 在BC 上,AB 与EF交于点G .∠C =∠EFB =90°,∠E =∠ABC =30°,AB =DE =4. ⑴求证:△EGB 是等腰三角形;⑵若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小 度时,四边形ACDE 成为以ED 为底的梯形如图⑵.求此梯形的高图(2)AB DFGECEGF (D )CBA图(1)答案⑴∵∠EFB =90°,∠ABC =30°∴∠EBG =30° ∵∠E =30° ∴∠E =∠EBG ∴EG =BG∴△EGB 是等腰三角形⑵在Rt △ABC 中,∠C =90°,∠ABC =30°,AB =4∴BC =32;在Rt △DEF 中,∠EFD =90°,∠E =30°,DE =4 ∴DF =2∴CF =232-.∵四边形ACDE 成为以ED 为底的梯形 ∴ED ∥AC ∵∠ACB =90° ∴ED ⊥CB∵∠EFB =90°,∠E =30° ∴∠EBF =60° ∵DE =4∴DF =2 ∴F 到ED 的距离为3∴梯形的高为2333232-=+- 25.2010江苏 镇江探索发现本小题满分9分如图,在直角坐标系OCD Rt OAB Rt xOy ∆∆和中,的直角顶点A,C 始终在x 轴的正半轴上,B,D 在第一象限内,点B 在直线OD 上方,OC=CD,OD=2,M 为OD 的中点,AB 与OD 相交于E,当点B 位置变化时,.21的面积恒为OAB Rt ∆试解决下列问题:1填空:点D 坐标为 ;2设点B 横坐标为t,请把BD 长表示成关于t 的函数关系式,并化简;3等式BO=BD 能否成立为什么4设CM 与AB 相交于F,当△BDE 为直角三角形时,判断四边形BDCF 的形状,并证明你的结论.答案1)2,2(;1分2),1,(,21tt B OAB Rt 得的面积为由∆,)(222CD AB AC BD -+=4)1(221)21()2(22222++-+=-+==∴t t tt t t BD ① 2分.)21(2)1(22)1(22-+=++-+=tt t t t t 3分.21|21|-+=-+=∴tt t t BD ② 4分注:不去绝对值符号不扣分3法一若OB=BD,则.22BD OB =,1,22222tt AB OA OB OAB Rt +=+=∆中在 由①得,4)1(2212222++-1+=+t t t t t t 5分)6(..,024)2(,012,2122分此方程无解得BD OB t t tt ≠∴∴<-=-=∆=+-∴=+法二若OB=BD,则B 点在OD 的中垂线CM 上.),22,22(,),0,2(M OCM Rt C 可求得中在等腰∆ ∴直线CM 的函数关系式为2+-=x y , ③ 5分,1,21xy B OAB Rt =∆点坐标满足函数关系式得的面积为由 ④联立③,④得:0122=+-x x ,)6(..,024)2(2分此方程无解BD OB ≠∴∴<-=-=∆法三若OB=BD,则B 点在OD 的中垂线CM 上,如图27 – 1 过点B 作,,H y CM G y BG 轴于交轴于⊥)6(..)5(,2121222121,210分矛盾显然与分而BD OB S S S S S S S BG HNO DOC MOC OMH OAB OBG ≠∴>=⨯⨯⨯=====∆∆∆∆∆∆∆4如果45,=∠∆BED BDE 因为为直角三角形,①当三点重合此时时M E F EBD ,,,90=∠,如图27 – 2.//,,DC BF x DC x BF ∴⊥⊥轴轴∴此时四边形BDCF 为直角梯形.7分 ②当,90时=∠EBD 如图27 – 3.//,,.//,DC BF x DC x AB CF BD OD CF ∴⊥⊥∴⊥轴轴又∴此时四边形BDCF 为平行四边形.8分 下证平行四边形BDCF 为菱形:法一在222,BD OD OB BDO +=∆中,,221,4)1(221412222=+∴++-++=+∴t t t t tt t t 方法①OD BD t t 在 ,01222=+-上方121,12;21,12-=+=+=-=tt t t 或解得舍去.得),12,12(+-B方法②由②得:.222221=-=-+=tt BD此时,2==CD BD∴此时四边形BDCF 为菱形9分 法二在等腰EDB Rt OAE Rt ∆∆与等腰中)9(.,2].[.221,122,22)22(2.22,2,分为菱形此时四边形此时法一以下同即则BDCF CD BD tt t t t t t BE AE AB T BD ED t OE t AE OA ∴===+=-∴-=-+=+=∴-=====26.2010 广东汕头已知两个全等的直角三角形纸片ABC 、DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C =∠EFB =90o,∠E =∠ABC =30o,AB =DE =4. 1求证:△EGB 是等腰三角形;2若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED 为底的梯形如图2.求此梯形的高.答案1证明:∵∠C =∠EFB =90o,∠E =∠ABC =30o,∴∠EDF =60o,∠GBE =∠E =30o, ∴GB =GE∴△EGB 是等腰三角形.第20题图1 A B C E F F BD G G A E D 第20题图22解:在Rt △BEF 中,由∠E =30o 得BF =21BE =2,EF =BC =4,BC =32 ∴CF =232-∵四边形ACDE 是以ED 为底的梯形 ∴AC ∥DE ∵AC ⊥BC∴DE ⊥BC∴∠DFB =90o -∠EDF =30o ∴旋转的最小角是30o设图2中CB 交DE 于点M ,则FM =3∴CM =CF +FM =232-+3=233-,即此梯形的高为233-.27.2010 四川泸州在△ABC 中,D 、E 分别是AB 、AC 的中点,DE=4,则BC= . 答案828.2010 湖南湘潭如图,在直角梯形ABCD 中,AB ∥DC ,∠D =90o ,AC ⊥BC ,AB =10cm,BC =6cm,F 点以2cm /秒的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm /秒的速度在线段BC 上由B 向C 匀速运动,设运动时间为t 秒0<t<5. 1求证:△ACD ∽△BAC ; 2求DC 的长;3设四边形AFEC 的面积为y ,求y 关于t 的函数关系式,并求出y 的最小值.B答案 解:1∵CD ∥AB ,∴∠ BAC =∠DCA ……………………1分又AC ⊥BC , ∠ACB =90o∴∠D =∠ACB = 90o……………………2分 ∴△ACD ∽△BAC ……………………3分 2822=-=∆BC AB ,AC ABC Rt 中 ……………………4分∵△ACD ∽△BAC ∴ABAC ACDC = ……………………5分 即1088=DC 解得:4.6=DC ……………………6分(3) 过点E 作AB 的垂线,垂足为G ,O ACB EGB 90,B ∠=∠=∠公共∴△ACB ∽△EGB ……………………7分∴ EG BE AC AB= 即108t EG = 故t EG 54= …………………8分BEF ABC S S y ∆∆-==()24454542102186212+-=⋅--⨯⨯t t t t ……………………9分 25题图=19)25(542+-t 故当t=52时,y 的最小值为19 ………………10分29.2010 广西玉林、防城港等腰梯形ABCD 中,DC ∥AB,对角线AC 与BD 交于点O ,AD =DC,AC =BD =AB ; 1若∠ABD =α,求α的度数; 2求证:OB 2= OD ⋅BD答案1∵DC ∥AB ∴∠BDC =∠ABD 又ABCD 是等腰梯形∴∠BDC =∠DB C ∴∠BDC =∠ABD =∠DB C 又AC =BD =AB ∴∠ABC =∠ACB =2α又AD =BC,AB =AB AC =BD ∴△ABD ≌△BAC ∠BAC =∠ABD 在三角形ABC 中有:α+2α+2α=180°,解得:α=36° 2∵∠COB =2α==∠BCO ∴OB =BC =CD在△COD 和△BCD 中,∠BDC =∠BDC ∠DCA =∠CAB =∠DBC =α∴△COD ∽△BCD ∴CD BDOD CD= 又OB =BC =CD ∴OB 2= OD ⋅BD30.2010 湖北咸宁如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t 秒.1当0.5t =时,求线段QM 的长;2当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;3当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ是否为定值,若是,试求这个定值;若不是,请说明理由.答案解:1过点C 作CF AB ⊥于F ,则四边形AFCD 为矩形.∴4CF =,2AF =.此时,Rt △AQM ∽Rt △ACF .……2分∴QM CFAM AF =. 即40.52QM =,∴1QM =.……3分 2∵DCA ∠为锐角,故有两种情况:①当90CPQ ∠=︒时,点P 与点E 重合.此时DE CP CD +=,即2t t +=,∴1t =.……5分 ②当90PQC ∠=︒时,如备用图1,ABCD备用图1ABCD备用图2Q ABCDl MP 第24题E CD QP E lQ ABCDl M P 第24题E F此时Rt △PEQ ∽Rt △QMA ,∴EQ MAPE QM=. 由1知,42EQ EM QM t =-=-,而()(2)22PE PC CE PC DC DE t t t =-=--=--=-, ∴421222t t -=-. ∴53t =. 综上所述,1t =或53.……8分说明:未综述,不扣分3CQ RQ为定值.……9分 当t >2时,如备用图2,4(2)6PA DA DP t t =-=--=-.由1得,4BF AB AF =-=. ∴CF BF =. ∴45CBF ∠=︒. ∴6QM MB t ==-. ∴QM PA =.∴四边形AMQP 为矩形. ∴PQ ∥AB .……11分 ∴△CRQ ∽△CAB .∴22422263CQ BC CF BF RQ AB AB +====.……12分 31.2010鄂尔多斯如图,在梯形ABCD 中,AD ∥BC,∠C=90°,E 为CD 的中点,EF ∥AB 交于点F; 1求证:BF=AD+CF;2当AD=1,BC=7,且BE 平分∠ABC 时,求EF 的长;答案1证法一:如图1,延长AD 交FE 的延长线于N∵∠NDE=∠FCE=90° ∠DEN=∠FEC DE=EC∴△NDE ≌△FCE ∴DN=CF∵AB ∥FN,AN ∥BF∴四边形ABFN 是平行四边形 ∴BF=AD+DN=AD+FC (1) 解:∵AB ∥FN∴∠1=∠BEFABCD 备用图2M QRFP∵∠1=∠2 ∴∠2=∠BEF∴EF=BE ∴EF=AD+CF=42712=+=+BC AD 1证法2:如图2过D 点作DN ∥AB 交BC 于N ∵ADBN,AB ∥DN ∴AD=BN ∵EF ∥AB,∴DN ∥EF ∴△CEF ∽△CDN∴CN CFDC CE =∵,21=DC CE ∴21=CN CF 即NF=CF ∴BF=BN+NF=AD+FC=432.2010年山西在直角梯形OABC中,CB 90=∠COA 。

全国中考数学真题解析120考点汇编 梯形

全国中考数学真题解析120考点汇编 梯形

全国中考数学真题解析120考点汇编梯形一、选择题1.(2011•宁夏,3,3分)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是()A、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。

专题:计算题。

分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm.故选B.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键.2.(2011新疆乌鲁木齐,9,4)如图.梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,若BC=6,则此梯形的面积为()A、2B、1+3C、62 D、2+3考点:等腰梯形的性质;垂线;三角形内角和定理;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理。

专题:计算题。

分析:过O作EF⊥AD交AD于E,交BC于F,根据等腰梯形的性质得出∠ABC=∠DCB,证△ABC≌△DCB,推出∠DBC=∠ACB,求出∠DBC=∠ACB=45°,根据直角三角形性质求出OF,根据勾股定理求出OB、OA,OE、AD,根据面积公式即可求出面积.解答:解:过O作EF⊥AD交AD于E,交BC于F,∵等腰梯形ABCD ,AD∥BC,AB =CD ,∴∠ABC=∠DCB,∵BC=BC ,∴△ABC≌△DCB,∴∠DBC=∠ACB, ∵AC⊥BD,∴∠BOC=90°,∴∠DBC=∠ACB=45°,∴OB=OC , ∵OF⊥BC,∴OF=BF =CF =21BC =26,由勾股定理得:OB =3, ∵∠BAC=60°,∴∠ABO=30°,由勾股定理得:OA =1,AB =2, 同法可求OD =OA =1,AD =2,OE =22, S 梯形ABCD =21(AD +BC )•EF=21×(62 )×(22+26)=2+3 故答案为:2+3.点评:本题主要考察对等腰梯形的性质,全等三角形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,垂线,勾股定理,直角三角形斜边上的中线性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.3.(2011•贵港)如图所示,在梯形ABCD 中,AB∥CD,E 是BC 的中点,EF⊥AD 于点F ,AD=4,EF=5,则梯形ABCD 的面积是( )A 、40B 、30C 、20D 、10考点:梯形;全等三角形的判定与性质。

中考数学试题章节汇编-第27章梯形

中考数学试题章节汇编-第27章梯形

全国各地100份中考数学试卷分类汇编第27章 梯形一、选择题A. 1个B. 2个C. 3个D. 4个【答案】B 2. (山东滨州,12,3分)如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线DE 剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为( )A.1B.2C.3D.4【答案】C3. (山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B4. (浙江台州,7,4分)如图,在梯形ABCCD 中,AD ∥BC ,∠ABC=90º,对角线BD 、AC 相交于点O 。

下列条件中,不能判断对角线互相垂直的是( )A . ∠1=∠4B . ∠1=∠3C . ∠2=∠3D .OB 2+OC 2=BC 2【答案】B5. (台湾台北,15)图(五)为梯形纸片ABCD ,E点在BC 上,且︒=∠=∠=∠90D C AEC ,AD =3,BC=9,CD =8。

若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何?ED CB A(第12题图)A B CDEF(第6题图)A . 4.5B 。

5C 。

5.5D .6【答案】B6. (2011山东潍坊,11,3分)已知直角梯形ABCD 中, A D ∥BC ,∠BCD=90°, BC = CD=2AD , E 、F 分别是BC 、CD 边的中点,连接BF 、DE 交于点P ,连接CP 并延长交AB 于点Q ,连接AF ,则下列结论不正..确.的是() A . CP 平分∠BCDB. 四边形 ABED 为平行四边形C. CQ 将直角梯形 ABCD 分为面积相等的两部分D. △ABF 为等腰三角形【答案】C7. (山东临沂,12,3分)如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =2,BC =6,∠B =60°,则梯形ABCD 的周长是( )A .12B .14C .16D .18 【答案】CA.2B. 243cmAC. 2233cm D. 223cm【答案】A9. (湖北武汉市,7,3分)如图,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是A.40°.B.45°.C.50°.D.60°.【答案】C10.(湖北宜昌,12,3分)如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( ).A. ∠HGF = ∠GHEB. ∠GHE = ∠HEFC. ∠HEF = ∠EFGD. ∠HGF = ∠HEF(第12题图)【答案】D12.二、填空题1.(福建福州,13,4分)如图4,直角梯形ABCD中,AD∥BC,90C∠=,则A B C∠+∠+∠=度.【答案】2702. ( 浙江湖州,14,4)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是.【答案】33. (湖南邵阳,16,3分)如图(六)所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,则上底DC的长是_______cm。

初三总复习-四边形2梯形

初三总复习-四边形2梯形

利用已知条件求解未知量
已知两腰和底角求面积
通过已知的两腰长度和底角,可以计算出梯形的高,进而利用梯形面积公式求 解面积。
已知中位线和两腰求面积
中位线长度等于上下底边长度之和的一半,因此可以通过已知的中位线和两腰 长度,计算出梯形的上下底边长度和高,进而求解面积。
复杂图形中梯形面积计算策略
分割法
将复杂图形分割成若干个简单的 梯形或其他已知图形,分别计算
公式三
若已知等腰梯形的对角线长度$d$ 和夹角$theta$,则面积$S = frac{d^2 sintheta}{2}$。
03
直角梯形与斜梯形
特点分析
直角梯形特点及应用举例 特点 01
02
有一组对角互补的梯形是直角梯形。
有不同于底边的腰,而且此腰有一边与底 边垂直。
03
04
应用举例
在解决水坝、堤坝等实际问题时,经常把 其横截面视为直角梯形来研究相关问题。
利用相似多边形求解梯形问题
利用相似三角形求解梯形问题
01
在梯形中构造相似三角形,通
过相似三角形的性质求解梯形
的边长、角度等问题。
02
利用相似三角形的判定方法,
证明梯形中的两个三角形相似
,进而求解相关问题。
03
利用相似多边形性质求解梯形 问题
04
利用相似多边形对应边成比例
的性质,求解梯形的边长、面
积等问题。
05
06

斜梯形特点及应用举例
特点 斜梯形的两个底边平行但长度不相等。
斜梯形的两组对边都不平行。
斜梯形特点及应用举例
01
斜梯形的对角线相等。
02
应用举例
03

2019-2020年中考数学试卷解析分类汇编:梯形(最新整理)

2019-2020年中考数学试卷解析分类汇编:梯形(最新整理)

A.△ABC≌△DCB B.△AOD≌△COB C.△ABO≌△DCO D.△ADB≌△DAC
考点:等腰梯形的性质;全等三角形的判定. 分析:由等腰梯形 ABCD 中,AD∥BC,AB=DC,可得∠ABC=∠DCB,∠BAD=∠CDA,易证得△ABC≌△
DCB,△ADB≌△DAC;继而可证得∠ABO=∠DCO,则可证得△ABO≌△DCO.
市停留期间有且仅有 1 天空气质量优良的概率是( )
1
2
A 、 B、
3
5
考点:折线统计图;;几何概率.
1
C、
2
3
D、
4
分析:将所用可能结果列举出来,找出符合要求的,后者除以前者即可。用到的知识点为:

∴△ABO≌△DCO(AAS);故正确; D、∵等腰梯形 ABCD 中,AD∥BC,AB=DC, ∴∠BAD=∠CDA, 在△ADB 和△DAC 中,

∴△ADB≌△DAC(SAS),故正确.
故选 B.
点评:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌
握数形结合思想的应用.
D. 4.5
考点:等腰梯形的性质,直角三角形中 30°锐角的性质,梯形及三角形的中位线. 分析: 根据等腰梯形的性质,可得∠ABC 与∠C 的关系,∠ABD 与∠ADB 的关系,根据 等腰三角形的性质,可得∠ABD 与∠ADB 的关系,根据直角三角形的性质,可得 BC 的长,
再根据三角形的中位线,可得答案. 解答:已知等腰梯形 ABCD 中,AD∥BC,AB=CD=AD=3, ∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC. ∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.

数学梯形试题答案及解析

数学梯形试题答案及解析

数学梯形试题答案及解析1.一个梯形的上底与下底的和是30厘米,梯形的高是6厘米,这个梯形的面积是平方厘米.【答案】90【解析】梯形的面积=上下底之和×高÷2,由此代入数据即可解答.解:30×6÷2=90(平方厘米),答:这个梯形的面积是90平方厘米.故答案为:90.点评:此题考查梯形的面积公式的计算应用,熟记公式即可解答.2.如图的方格纸中,每个方格的边长都表示1厘米.梯形的面积是平方厘米,平行四边形的面积是平方厘米,三角形的面积是平方厘米.【答案】18,24,12.5【解析】(1)图一为梯形,上底为5厘米,下底为1厘米,高为6厘米,可根据梯形的面积公式进行计算即可;(2)图二为平行四边形,底为6厘米,高为4厘米,可根据平行四边形的面积公式进行计算即可;(3)图三为三角形,底为5厘米,高为5厘米,可根据三角形的面积公式进行计算即可.解:(1)梯形的面积:(5+1)×6÷2=6×6÷2,=36÷2,=18(平方厘米);(2)平行四边形的面积:6×4=24(平方厘米);(3)三角形的面积为:5×5÷2=12.5(平方厘米);故答案为:18,24,12.5.点评:此题主要考查梯形的面积=(上底+下底)×高÷2、平行四边形的面积=底×高、三角形的面积=底×高÷2.3.一块直角梯形地,它的下底40米,如果上底增加30米,这块地就变成了正方形,原梯形的面积是平方米.【答案】1000【解析】如图所示,因为正方形的边长都相等,所以梯形的高和下底都等于正方形的边长,即为40米,上底为40﹣30=10米,于是即可利用梯形的面积公式求解.解:(40﹣30+40)×40÷2,=50×40÷2,=2000÷2,=1000(平方米).答:原来梯形的面积是1000平方米.故答案为:1000.点评:由题意得出梯形的上底和高,是解答本题的关键.4.一个梯形装饰板,上底是6分米,下底是10分米,高是1米,两面都要涂油漆,涂油漆的面积是平方分米.【答案】160【解析】求涂油漆的面积,根据“梯形的面积=(上底+下底)×高÷2”求出这个梯形装饰板的面积,因为是两面都要涂,所以用这个梯形装饰板的面积乘2即可.解:1米=10分米,(6+10)×10÷2×2,=160÷2×2,=160(平方分米);答:涂油漆的面积是160平方分米;故答案为:160.点评:此题考查了对梯形面积计算公式的理解和应用,注意本题中单位不同,应先统一单位.5.一堆钢管,最上层有2根,最下层有12根,相邻两层相差1根,这堆钢管一共有根.【答案】77【解析】根据题意,最上层有2根,最下层有12根,相邻两层相差1根,这堆钢管的层数是(12﹣2+1)层,根据梯形的面积计算方法进行解答.解:(2+12)×(12﹣2+1)÷2=14×11÷2=77(根);答:这堆钢管一共有 77根.故答案为:77.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.6.一块梯形白菜地的面积是216平方米,它的上、下底的和是54米,那么它的高是米.【答案】8【解析】根据梯形的面积=(上底+下底)×高÷2,则高=梯形的面积×2÷上下底的和,代入数据解答即可.解:216×2÷54,=432÷54,=8(米),答:那么它的高是 8米.故答案为:8.点评:本题考查了梯形的面积=(上底+下底)×高÷2的逆用.7.如图中,大梯形面积是阴影部分面积的倍.【答案】【解析】观察图形可知,AB是这个梯形的中位线,所以可得出这条中位线的长度是(x+2x+x)÷2=2x,据此可得出阴影部分的小梯形的上底是x,下底是2x,又根据梯形的中位线的性质可得,阴影部分的小梯形的高等于大梯形的高的一半,据此设小梯形的高是h,则大梯形的高就是2h,据此根据梯形的面积=上下底之和×高÷2,分别表示出这两个梯形的面积,再相除即可解答.解:根据题干分析可得:AB是大梯形的中位线,设小梯形的高是h,则大梯形的高就是2h,则小梯形的面积是:(x+2x)×h÷2=xh,大梯形的面积是:(x+3x)×2h÷2=4xh,4xh÷xh=,答:大梯形的面积是小梯形的面积的倍.故答案为:.点评:此题主要考查梯形的中位线的性质以及梯形的面积公式的灵活应用.8.(2005•南安市模拟)一个梯形的上底是2分米、下梯是6分米,把这个梯形分成一个平行四边形和一个三角形,所得平行四边形的面积与梯形面积的比是.【答案】1:2【解析】根据题意,梯形的高等于得到的平行四边形的高也等于得到的三角形的高,可设梯形的高为h,那么根据平行四边形的性质得到平行四边形的底边应为2分米,可根据平行四边形的面积公式和梯形的面积公式计算出各自的面积,然后再用平行四边形的面积比梯形的面积即可得到答案.解:设梯形的高为h,平行四边形的面积为:2h,梯形的面积为:(2+6)h÷2=4h,平行四边形的面积与梯形的面积的比为:2h:4h=1:2,答:所得到的平行四边形的面积与梯形的面积的比是1:2.故答案为:1:2.点评:此题主要考查的是平行四边形的性质即对边平行且相等,然后再根据平行四边形的面积公式底乘高和梯形的面积公式(上底+下底)乘高除以2计算出各自的面积,最后再用平行四边形的面积比梯形的面积即可.9.用篱笆围成一梯形菜田,梯形一边是紧靠房屋墙壁(如右图所示),篱笆总长33米,菜田的面积是平方米.【答案】91【解析】由“梯形一边是紧靠房屋墙壁,篱笆总长33米”可知,梯形的高是7米,梯形的上底+下底=(33﹣7)米,将数据代入梯形面积公式即可求解.解:(33﹣7)×7÷2=91(平方米);答:菜田面积是91平方米.故答案为:91.点评:解答此题的关键是先求彩田上底与下底的和,从而可以求其面积.10.(2011•高县)图中(单位:cm),梯形由平行四边形和直角三角形组成,这个梯形的面积是平方厘米.【答案】18【解析】因为平行四边形的对边相等,所以该梯形的下底是3+3=6厘米,然后根据“梯形的面积=(上底+下底)×高÷2”,进行解答即可.解:3+3=6厘米(3+6)×4÷2,=9×4÷2,=18(平方厘米),答:这个梯形的面积是18平方厘米.故答案为:18点评:根据平行四边形对边相等,求出该梯形的下底是解答此题的关键,然后根据梯形的面积公式解答即可.11.(2006•鹿泉市)一个梯形的下底是12分米,把上底的一端延长4分米,可以成为一个平行四边形,这时面积将增加10平方分米.原来梯形的面积是平方分米.【答案】50平方分米【解析】如图根据题意知道,上底EA是(12﹣4)厘米,面积增加的10平方厘米是三角形ABC 的面积,再根据三角形的面积公式S=a×h÷2,知道h=2S÷a,由此即可求出三角形ABC的高,即梯形AEDC的高,再根据梯形的面积公式S=(a+b)×h÷2,即可求出原来梯形的面积.解:梯形的高:10×2÷4=5(分米)梯形的上底:12﹣4=8(分米),梯形的面积:(12+8)×5÷2,=20×5÷2,=50(平方分米);答:原来梯形的面积是50平方分米.故答案为:50平方分米.点评:根据题意画出图,灵活利用三角形的面积公式S=a×h÷2与梯形的面积公式S=(a+b)×h÷2解决问题.12.(2009•和平区)如果直角梯形的上底是1厘米,面积是6平方厘米,且梯形上底、下底和高的长度均为不相等的整厘米数,则符合此条件的梯形有种.【答案】2【解析】根据题意,上底、下底和高的长度均为不相等的整厘米数,所以当上底为1厘米时,下底最小为2厘米,最大为5厘米,所以可分别设下底为2厘米、3厘米、4厘米、5厘米时梯形的高各是多少厘米,根据梯形的面积公式可计算出梯形的高,最后再看符合题意的有几种情况即可.解:当直角梯形的上底为1厘米,面积为6平方厘米时,①设下底为2厘米,高为:6×2÷(1+2)=12÷3,=4(厘米),上底为1厘米,下底为2厘米,高为4厘米,符合题意;②设下底为3厘米,高为:6×2÷(1+3)=12÷4,=3(厘米),下底和高都为3厘米,不符合题意;③设下底为4厘米,高为:6×2÷(1+4)=12÷5,=2.4(厘米),高为小数,不符合题意;④设下底为5厘米,高为:6×2÷(1+5)=12÷6,=2(厘米),上底为1厘米,下底为5厘米,高为2厘米,符合题意;答:只有下底为2厘米、高为4厘米和下底为5厘米,高为2厘米这两种情况符合题意.故答案为:2.点评:此题主要考查的是梯形的面积公式的应用.13.有一堆圆形钢管,它的横截面是梯形,上层有2根,下层有7根,共有6层,这堆钢管共有()根.A.20B.27C.28【答案】B【解析】根据题意,最上层有2根,最下层有7根,这堆钢管的层数是6层,根据梯形的面积计算方法进行解答.解:(2+7)×6÷2,=9×3,=27(根),答:一共有27根.故选:B.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.14.求下图梯形的面积,列式正确的是()A.(10+4)×7÷2B.10×4÷2C.(10十4)×5÷2【答案】C【解析】梯形的面积S=(a+b)×h÷2,据此代入数据即可求解.解:(10+4)×5÷2,=14×5÷2,=35(平方厘米);答:这个梯形的面积是35平方厘米.故选:C.点评:此题主要考查梯形的面积的计算方法.15.已知梯形的面积是20平方厘米,高为4厘米,则梯形的上、下底可能是()A.4cm和6cmB.2cm和3cmC.1cm和1.5cm【答案】A【解析】梯形面积=(上底+下底)×高÷2,因面积和高已知,代入公式即可求得上底与下底的和是多少,从而判断出上底与下底的可能值.解:上底与下底的和为:20×2÷4=10(厘米),只要是选项中上底与下底的和为10厘米的就是正确答案,故选:A.点评:此题主要考查梯形面积公式的灵活应用,将数据代入公式即可求解.16.如果一个梯形的面积是90平方厘米,高是30厘米,则它的上下底之和是()A.3厘米B.60厘米C.6厘米【答案】C【解析】根据梯形的面积公式可知:上下底之和=面积×2÷高,由此代入数据计算出结果即可作出选择.解:上下底之和是:90×2÷30=6(厘米).答:它的上下底之和是6厘米.故选:C.点评:此题考查了梯形面积=(上底+下底)×高÷2这一公式的灵活应用.17.一个梯形面积是16平方米,上底与下底的和是8米,那么高是()米.A.2B.4C.6D.8【答案】B【解析】根据梯形的面积=(上底+下底)×高÷2,可用梯形的面积乘2然后再除以上底与下底的和即可得到答案.解:16×2÷8=4(米),答:梯形的高是4米.故选:B.点评:此题主要考查的是梯形面积公式的灵活应用.18.一个等腰三角形其中两条边分别是5厘米和11厘米,那么这个等腰三角形的周长是()厘米.(三条边都是整厘米数)A.21B.27C.21或27D.以上都不是【答案】B【解析】在三角形中,两边之和大于第三边,所以这个等腰三角形的要为11厘米,那么把三角形的三条边相加即可得到这个等腰三角形的周长,列式解答即可得到答案.解:11+11+5=27(厘米),答:这个等腰三角形的周长是27厘米.故答案为:B.点评:此题主要考查是在三角形中,两边之和大于第三边和三角形周长的计算方法.19.一堆钢管每上一层比下层少1根,已知最下层有12根,最上层有5根,这堆钢管共有()根.A.68B.119C.136【答案】A【解析】根据题意,最上层有5根,最下层有12根,相邻两层相差1根,这堆钢管的层数是(12﹣5+1)层,根据梯形的面积计算方法进行解答.解:(5+12)×(12﹣5+1)÷2=17×8÷2=68(根);答:这堆钢管一共有68根.故选:A.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.20.一个梯形的面积是30平方厘米,上底与下底长度比是2:3,高是6厘米,则上底长为()A.2厘米B.4厘米C.6厘米D.8厘米【答案】B【解析】因为梯形的面积S=(a+b)×h)×h÷2,所以a+b=2S÷h,由此求出上底与下底的和,再利用按比例分配的方法,求出上底.解:30×2÷6=10(厘米),10×=4(厘米),答:上底长为4厘米;故选:B.点评:本题主要是灵活利用梯形的面积公式与按比例分配的方法解决问题.21.一块梯形菜地上底是20米,下底是30米,高是28米,共收白菜4200千克,平均每平方米收白菜多少千克?【答案】6千克【解析】根据题意,可用梯形的面积公式计算出梯形地的面积,然后再用4200除以梯形地的面积即可得到答案.解:4200÷[(20+30)×28÷2]=4200÷[50×28÷2],=4200÷700,=6(千克),答:平均每平方米收白菜6千克.点评:此题主要考查的是梯形面积公式的灵活应用.22.一个梯形的高是60厘米,下底的长度是上底的2倍,下底长12厘米.求梯形的面积.(先写出字母公式,再把数值代入公式计算)【答案】540平方厘米【解析】根据梯形的面积公式S=(a+b)h÷2进行计算即可得到答案.解:梯形的上底为:12÷2=6(厘米),梯形的面积为:S=(a+b)h÷2,=(6+12)×60÷2=18×60÷2,=540(平方厘米),答:梯形的面积是540平方厘米.点评:此题主要考查的是梯形面积公式的灵活应用.23.学校准备用梯形和小正方形地砖铺计算机室的地板,如图所示.4块梯形砖和一块小正方形砖可铺成一个大正方形.(1)每块梯形砖的面积是多少平方厘米?(2)铺一个长12米,宽8米的电教室,一共要用多少块大正方形的地转?【答案】1200平方厘米,150块【解析】(1)图中梯形的上、下底已知,大正方形的边长是由小正方形的边长和两个梯形的高拼成,由此可求出梯形的高,然后根据梯形的面积公式S=(上底+下底)×高÷2即可求出一个梯形的面积;(2)电教室的长、宽及每个大正方形的边长均已知,据此可求出一共要用多少块大正方形的地转.解:如图:(1)(180﹣40)÷2=40÷2=20(cm);(40+80)×20÷2,=120×20÷2,=1200(cm);(2)12m=1200cm,8m=800cm,1200÷80=15(块),800÷80=10(块),15×10=150(块);故答案为:1200cm,150块.点评:本题考查的知识点有图形的切拼、梯形面积的计算等.不要用电教室的总面积除以每个大正方形的面积.24.一个平行四边形和一个梯形重叠了一部分放在桌子上,平行四边形的底是13厘米,高是6厘米.没有重叠的部分是甲;梯形的上底是7厘米,下底是11厘米,高是5厘米,没有重叠的部分是乙.甲比乙大平方厘米.【答案】33【解析】因为重叠部分是二者的公共部分,可以忽略不计,则甲比乙大的面积也就是平行四边形的面积比梯形的面积大的面积.解:13×6﹣(7+11)×5÷2,=78﹣18×5÷2,=78﹣90÷2,=78﹣45,=33(平方厘米);答:甲比乙大33平方厘米.故答案为:33.点评:解答此题的关键是明白,甲比乙大的面积也就是平行四边形的面积比梯形的面积大的面积.25.用两个完全一样的梯形恰好可以拼成一个边长3厘米的正方形.已知梯形的上底是1厘米,请在下面画出这样的一个梯形,并注明上底、下底、高,再计算出它的面积.【答案】,4.5平方厘米【解析】两个完全一样的梯形拼成一个正方形(如图),那么这两个梯形是直角梯形,它的直角腰的长度就是这个正方形的边长,上下底的和也是正方形的边长,由此求解.解:这个梯形是直角梯形:面积:(1+2)×3÷2,=3×3÷2,=9÷2,=4.5(平方厘米).点评:本题关键是知道两个完全一样的直角梯形才能拼成一个正方形,根据正方形的边长找出梯形的两个底,以及高,由此求解.26.一个直角梯形,它的下底缩短2米,面积就减少了6平方米,且变成了一个正方形,求原来梯形的面积.【答案】42平方米【解析】由题意可知:减少的部分是一个三角形,其底为2厘米,面积为6平方厘米,于是可以求出三角形的高,进而可以得出梯形的上底和下底,于是利用梯形的面积公式即可求解.解:6×2÷2=6(厘米),(6+2+6)×6÷2,=14×6÷2,=42(平方米).答:原来的梯形的面积是42平方米.点评:解答此题的关键是先求出梯形的高,进而利用梯形的面积公式即可求解.27.一条新修渠道的横截面是梯形(如图),这个梯形的面积是432m2,渠底宽24m,渠口宽是渠底宽的2倍,它的渠深是多少米?【答案】12米【解析】根据题干先求出渠口宽是24×2=48米,再梯形的面积=(上底+下底)×高÷2,得出渠深=横截面的面积×2÷(渠口宽+渠底宽),据此代入数据即可解答.解:432×2÷(24+24×2),=864÷72,=12(米),答:渠深是12米.点评:此题考查梯形的面积公式的灵活应用.28.一个养鱼池的池面近似于一个梯形,上底780米,下底540米,高120米,这个养鱼池水面大约有多少公顷?【答案】7.92公顷【解析】根据题意,可用梯形的面积公式计算出这个梯形鱼池的面积.解:(780+540)×120÷2=1320×120÷2,=79200(平方米),79200平方米=7.92公顷.答:这个养鱼池大约占地7.92公顷.点评:此题主要考查的是:梯形的面积=(上底+下底)×高÷2.29.一块梯形的广告牌(如图),用油漆漆这块广告牌,每平方米用油漆0.8千克,一共用油漆多少千克?【答案】11.2千克【解析】根据梯形的面积=(上底+下底)×高÷2,即可求出广告牌的面积,再乘0.8即可求出需要油漆的千克数.解:(3+5)×3.5÷2×0.8,=8×3.5÷2×0.8,=11.2(千克),答:需要11.2千克的油漆.点评:此题主要考查梯形的面积公式的计算应用.30.填表.图形平行四边形三角形梯形【答案】70m2,9cm,120dm2,9cm,27m2【解析】本题运用三角形,平行四边形,梯形面积公式之间的数量关系进行解答即可.注意当三角形,梯形的面积是已知条件时不要忘记乘以2,再进一步计算即可.解:点评:本题考查了三角形,平行四边形,梯形面积公式之间的数量关系进行解答即可.31.有一堆圆木堆成横截面是梯形的木堆,最上层有2根,最下层有8根,每相邻两层相差一根,这堆圆木共有多少根?【答案】35根【解析】根据梯形的面积公式解决,下层8根,上层2根,每相邻两层差一根,这堆圆木的层数是:(8﹣2+1)=7层,据此解答.解:(2+8)×7÷2=10×7÷2,=35(根);答:这堆圆木共有35根.点评:此题主要根据梯形的面积计算方法解决有关的实际问题.32.一共有多少支铅笔?【答案】204支【解析】根据题意,最底层有20根,最顶层有4根,相邻两层相差1根,这堆铅笔的层数是17层,根据梯形的面积=(上底+下底)乘高÷2进行计算方法进行解答.解:(20+4)×17÷2=24×17÷2,=204(支),答:一共有204支铅笔.点评:此题主要考查梯形的面积计算方法,能够根据梯形的面积计算方法解决有关的实际问题.33.一个养鸡场靠墙边用篱笆围起来(如图),竹篱笆全长48米,这个养鸡场的面积是多少平方米?【答案】160平方米【解析】根据图知道,此养鸡场的图形为梯形,由竹篱笆的全长是48米,高为8米,得出上底和下底的和是48﹣8=40米,由此根据梯形的面积公式S=(a+b)×h÷2列式解答即可求出养鸡场的面积.解:(48﹣8)×8÷2,=40×8÷2,=320÷2,=160(平方米),答:这个养鸡场的面积是160平方米.点评:本题主要是根据图与题意,先求出梯形的上底与下底的和,再利用梯形的面积公式S=(a+b)×h÷2解决问题.34.一个梯形的面积是480平方厘米,高是20厘米,下底是18厘米,上底是多少厘米?【答案】30厘米【解析】因为梯形面积公式为(上底+下底)×高÷2,已知面积、高和下底,求上底,用面积乘2除以高,再减去下底即可.解:480×2÷20﹣18,=48﹣18,=30(厘米);答:上底是30厘米.点评:此题考查了学生对梯形面积公式的掌握与运用情况.35.算一算,求出下面每个图形的面积.【答案】108平方米;176平方厘米;6平方厘米;16平方厘米【解析】平行四边形的面积S=ah,梯形的面积S=(a+b)×h÷2,三角形的面积S=,据此代入数据即可求解.解:(1)9×12=108(平方米);(2)(20+12)×11÷2,=32×11÷2,=176(平方厘米);(3)20mm=2cm,6×2÷2=6(平方厘米);(4)8×4÷2=16(平方厘米).点评:此题主要考查平行四边形、梯形和三角形的面积的计算方法的灵活应用.36.填表【答案】2.5,9.2,14【解析】平行四边形的面积=底×高,三角形的面积=底×高÷2,梯形的面积=(上底+下底)×高÷2,据此根据公式变形即可计算解答.解:(1)31.5÷12.6=2.5(厘米),(2)11.04×2÷2.4=9.2(厘米),(3)122.98×2÷14.3﹣3.2,=17.2﹣3.2,=14(厘米),故完成表格如下:点评:此题主要考查平行四边形、三角形、梯形的面积公式的计算应用.37.有一堆木头,共8层,最上层2根,最下层9根,相邻两层相差一根,这堆木头共多少根?【答案】44根【解析】由题意可知:这堆木料堆成的是梯形形状,且这堆木料共有8层,于是利用梯形面积公式即可求解.解:(2+9)×8÷2,=11×8÷2,=44(根).答:这堆木头共44根.点评:解答此题的关键是:知道这堆木料的层数就是梯形的高,即可利用梯形面积公式求解.38.一块菜地是梯形,上底是400米,下底是650米,高是75.4米,这块地合多少公顷?【答案】3.948公顷【解析】根据梯形的面积公式(上底+下底)×高÷2进行计算即可得到答案.解:(400+650)×75.4÷2=1050×75.2÷2,=78960÷2,=39480(平方米),39480平方米=3.948公顷,答:这块地的面积是3.948公顷.点评:此题主要考查的是梯形的面积公式的灵活应用.39.已知梯形的上底是6米,下底是8米,高14米,求面积?【答案】98平方米【解析】根据梯形的面积公式(上底+下底)×高÷2进行计算即可得到答案.解:(6+8)×14÷2=14×14÷2,=196÷2,=98(平方米),答这个梯形的面积是98平方米.点评:此题主要考查的是梯形的面积公式的应用.40.先作出图形的高,再量出面积计算所需要的数据,最后算出面积.【答案】6.25平方厘米,7平方厘米,6.875平方厘米【解析】经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高;经过平行四边形底上的一个顶点向另一底作垂线,顶点和垂足之间的线段就是平行四边形的一条高;过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;经过度量,平形四边形的底和高都是2.5厘米,三角形的底和高分别是4厘米和3.5厘米,梯形的上、下底和高分别是2厘米、3.5厘米和2.5厘米,根据度量的数据即可分别求出下平行四边形、三角形和梯形的面积.解:作高如下,平行四边形的面积:2.5×2.5=6.25(平方厘米);三角形的面积:4×3.5÷2=7(平方厘米);梯形的面积:(2+3.5)×2.5÷2=5.5×2.5÷2=6.875(平方厘米);故答案为:6.25平方厘米,7平方厘米,6.875平方厘米.点评:本题考查的知识点比较多,有作图形的高,平行四边形、三角形、梯形面积的计算等.作图形的高要用虚线,并标出垂直符号;计算图形的面积,关键要量出所需数据.41.量出你所需要的数据(精确到厘米),再计算面积.【答案】,6平方厘米,6平方厘米,3平方厘米【解析】(1)是一个平行四边形,测量出底和高,再根据平行四边形面积=底×高,计算出面积即可;(2)是一个梯形,测量出上底、下底和高,再根据梯形面积=(上底+下底)×高÷2,计算即可;(3)是一个三角形,测量出底和高,再根据三角形面积=底×高÷2,计算出面积即可.解:如图所示:;(1):(1)3×2=6(平方厘米);答:平行四边形的面积是6平方厘米.(2)(2+4)×2÷2,=6×2÷2,=6(平方厘米);答:梯形的面积是6平方厘米.(3)3×2÷2=3(平方厘米);答:三角形的面积是3平方厘米.点评:此题主要考查平行四边形、梯形和三角形的面积的计算方法,直接利用公式解答即可.42.在右面的长方形中画上一条线段,把长方形分成一个最大的等腰直角三角形和一个梯形,梯形中最大的角是°,测量相关数据,求出梯形的面积.【答案】135°;;16平方厘米【解析】(1)要把这个长方形分成一个最大等腰直角三角形和一个梯形,则所画的等腰直角三角形的腰等于长方形的宽;(2)则梯形中有两个直角一个锐角和一个钝角,钝角最大,与三角形的底角合起来等于180度,又因为等腰直角三角形的底角是45度,则最大角的度数=180°﹣45°.(3)测量出梯形的上底、下底和高,代入面积公式计算.解:(1)如图所示:;(2)梯形中最大的角是:180°﹣45°=135°;(3)如图:梯形的上底为:2厘米,下底为:6厘米,高为:4厘米,梯形面积为:(2+6)×4÷2,=8×4÷2,=16(平方厘米).答:梯形面积为16平方厘米.点评:解决本题要根据等腰三角形的特征确定两腰的长度及角的大小,也就得出梯形的各个组成部分的长度和角的大小,再根据公式计算出面积.43.已知直角梯形的下底是30厘米,高是12厘米,把它分成一个长方形和一个三角形,三角形的面积是72平方厘米,梯形的面积是多少平方厘米?【答案】288平方厘米【解析】根据题意,可利用三角形的面积公式确定三角形的底,然后再用梯形的下底减去三角形的底即为梯形的上底,最后再利用梯形的面积公式进行计算即可得到答案.解:梯形的上底为:30﹣72×2÷12=30﹣12,=18(厘米),梯形的面积为:(30+18)×12÷2=48×12÷2,=288(平方厘米),答:梯形的面积是288平方厘米.点评:此题主要考查的是三角形面积公式和梯形面积公式的灵活应用.44.木材市场堆放着一堆圆木(形状如图),每下一层都比上一层多1根,这堆木材顶层有14根,共堆了5层,每根圆木价值30.5元.这堆圆木共有多少根?这堆圆木价值多少元?【答案】80根,2440元【解析】根据堆成梯形的物品的计算方法:根数=(上层根数+下层根数)×层数÷2,代入数据求出这堆圆木的根数,再乘每根圆木的单价,就是圆木的价值.据此解答.解:[14+14+(5﹣1)]×5÷2,=[14+14+4]×5÷2,=32×5÷2,=80(根),80×30.5=2440(元).答:这堆圆木共有80根,这堆圆木价值2440元.点评:本题的关键是根据堆成梯形物品的计算方法求出圆木的根数,再根据总价=单价×数量,求出圆木的总价值.45.计算图形的面积面积面积.【答案】28.8平方分米;93平方厘米【解析】(1)根据梯形的面积公式S=(a+b)×h÷2,代入数据求出图形的面积;(2)根据平行四边形的面积公式S=ah和三角形的面积公式S=ah÷2,分别求出平行四边形的面积和三角形的面积,再相加求出该图形的面积.解:(1)(4.8+13.2)×3.2÷2,=18×3.2÷2,=57.6÷2,=28.8(平方分米),(2)15×4.2+15×4÷2,=63+30,=93(平方厘米),故答案为:28.8平方分米;93平方厘米.点评:解决本题要先看图形的组成,再根据相应的面积公式计算.46.靠墙边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积.【答案】120平方米【解析】由图意可知:梯形的高是6米,则梯形的上底和下底的和是46﹣6=40(米),于是代入梯形的面积公式即可求出花坛的面积.解:(46﹣6)×6÷2,=40×6÷2,=120(平方米);答:这个花坛的面积是120平方米.点评:此题主要考查梯形的面积的计算方法,关键是得出梯形的上底和下底的和.47.图中小正方形的边长是8厘米,大正方形的边长是10厘米,求斜线部分的面。

中考数学压轴题函数梯形问题精选解析

中考数学压轴题函数梯形问题精选解析

2013中考数学压轴题函数梯形问题精选解析(一)例1已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ 长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.备用图解析(1)抛物线的解析式为y=x2-2x,直线的解析式为y=2x.(2)如图1,当P为OA的中点时,PQ的长度取得最大值为4.(3)如图2,如果四边形AOMN是梯形,那么点N的坐标为(3,3),梯形AOMN的面积为9.图1 图2例 2已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2解析(1)设抛物线的解析式为2(4)y a x k =-+,代入A (2,0)、C (0,12) 两点,得40,1612.a k a k +=⎧⎨+=⎩ 解得1,4.a k =⎧⎨=-⎩ 所以二次函数的解析式为22(4)4812y x x x =--=-+,顶点P 的坐标为(4,-4).(2)由2812(2)(6)y x x x x =-+=--,知点B 的坐标为(6,0).假设在等腰梯形OPBD ,那么DP =OB =6.设点D 的坐标为(x ,2x ). 由两点间的距离公式,得22(4)(24)36x x -++=.解得25x =或x =-2. 如图3,当x =-2时,四边形ODPB 是平行四边形.所以,当点D 的坐标为(52,54)时,四边形OPBD 为等腰梯形.图3 图4 图5(3)设△PMN 与△POB 的高分别为PH 、PG .在Rt △PMH 中,PM =,PH MH t ==.所以'24P G t =-.在Rt △PNH 中,PH t =,1122NH PH t ==.所以32MN t =. ① 如图4,当0<t ≤2时,重叠部分的面积等于△PMN 的面积.此时2133224S t t t =⨯⋅=. ②如图5,当2<t <4时,重叠部分是梯形,面积等于△PMN 的面积减去△P ′DC 的面积.由于2''P DC PMN S P G S PH ⎛⎫= ⎪⎝⎭△△,所以222'2433(24)44P DC t S t t t -⎛⎫=⨯=- ⎪⎝⎭△. 此时222339(24)1212444S t t t t =--=-+-.考点伸展第(2)题最好的解题策略就是拿起尺、规画图:方法一,按照对角线相等画圆.以P 为圆心,OB 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.方法二,按照对边相等画圆.以B 为圆心,OP 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.。

初中数学中考梯形问题(含答案解析)

初中数学中考梯形问题(含答案解析)

初中数学中考梯形问题(含解析答案)一.解答题(共29小题)1.已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.(1)求过点O、B、A三点的抛物线的解析式;(2)求AB的长;若动点P在从A到B的移动过程中,设△APD的面积为S,写出S与t 的函数关系式,并指出自变量t的取值范围;(3)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.2.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.3.如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y 轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BO ﹣OP于点F.当DF经过原点O时,请直接写出t的值.4.如图,在Rt△ABO中,OB=8,tan∠OBA=.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点C在x轴负半轴上,且OB=4OC.若抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)设该二次函数的图象的顶点为P,求四边形OAPB的面积;(3)有两动点M,N同时从点O出发,其中点M以每秒2个单位长度的速度沿折线OAB 按O→A→B的路线运动,点N以每秒4个单位长度的速度沿折线按O→B→A的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.①请求出S关于t的函数关系式,并写出自变量t的取值范围;②判断在①的过程中,t为何值时,△OMN的面积最大?5.如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.(1)当t=4秒时,判断四边形COEB是什么样的四边形?(2)当t为何值时,四边形COEF是直角梯形?(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值6.如图,已知在平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(12,0),点D的坐标为(8,4),动点E从点A出发,沿y轴正方向以每秒1个单位的速度移动;同时动点F从点A出发,在线段AD上以每秒2个单位的速度向点D移动.当点F与点D重合时,E、F两点同时停止移动.设点E移动时间为t秒.(1)求当t为何值时,三点C、E、F在同一直线上;(2)设顺次连接OCFE,设这个封闭图形的面积为S,求出S与t之间的函数关系及自变量t的取值范围;(3)求当t为何值时,以O、E、F为顶点的三角形是等腰三角形?7.如图,已知A,B两点坐标分别为(28,0)和(0,28),动点P从A开始在线段AO上以每秒3个单位长度的速度向原点O运动.动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E,F,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积;(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?(3)当梯形OPFE的面积等于△APF的面积时,求线段PF的长.8.如图,在平面直角坐标系中,已知直线AB:y=﹣x+3分别与x轴、y轴分别交于点A、点B.动点P、Q分别从O、A同时出发,其中点P以每秒1个点位长度的速度沿OA方向向A点匀速运动,到达A点后立即以原速度沿AO返向;点Q以每秒1个单位长度的速度从A点出发,沿A﹣B﹣O方向向O点匀速运动.当点Q到达点O时,P、Q两点同时停止运动.设运动时间为t(秒).(1)求点A与点B的坐标;(2)如图1,在某一时刻将△APQ沿PQ翻折,使点A恰好落在AB边的点C处,求此时△APQ的面积;(3)若D为y轴上一点,在点P从O向A运动的过程中,是否存在某一时刻,使得四边形PQBD为等腰梯形?若存在,求出t的值与D点坐标;若不存在,请说明理由;(4)如图2,在P、Q两点运动过程中,线段PQ的垂直平分线EF交PQ于点E,交折线QB﹣BO﹣OP于点F.问:是否存在某一时刻t,使EF恰好经过原点O?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.9.如图,在平面直角坐标系中,O是原点,A、B、C三点的坐标分别为A(30,0),B(24,6),C(8,6).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒3个单位,点Q沿OC、CB向终点B运动,速度为每秒2个单位.当这两点有一点达到自己的终点时,另一点也停止运动.设运动时间为t(秒).(1)当点Q在OC上运动时,试求点Q的坐标;(用t表示)(2)当点Q在CB上运动时;①当t为何值时,四边形OPQC为等腰梯形?②是否存在实数t,使得四边形PABQ为平行四边形?若存在,求出t的值;若不存在,说明理由.10.如图,在平面直角坐标系中,直角梯形ABCD的顶点A、B分别在x、y轴的正半轴上,顶点D在x轴的负半轴上.已知∠C=∠CDA=90°,AB=10,对角线BD平分∠ABC,且tan∠DBO=(1)求直线AB的解析式;(2)若动点P从点A出发,以每秒5个单位长的速度沿着线段AB向终点B运动;同时动点Q从点D出发,以每秒4个单位长的速度沿着线段DA终点A运动,过点Q作QH⊥AB,垂足为点H,当一点到达终点时,另一的也随之停止运动.设线段朋的长度为y,点P运动时间为t,求y与t的函数关系式;(请直接写出自变量t的取值范围)(3)在(2)的条件下,将△APQ沿直线PQ折叠后,AP对应线段为A’P,当t为何值时,A’P∥CD,并通过计算说明,此时以为半径的ΘP与直线QH的位置关系.11.(2008•辽宁)如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.(1)求等腰梯形DEFG的面积;(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.12.如图,在等腰梯形ABCD中,AB∥DC,∠DAB=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由_________形变化为_________形;(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD 重叠部分的面积为y(cm2),求y与x之间的函数关系式;(3)当①x=4(s),②x=8(s)时,求等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积.13.如图,在等腰梯形ABCD中,AB∥CD,∠A=60°,AD=DC=CB=2,点P是AD上一动点,点Q是线段AB上一动点且AP=AQ,在等腰梯形ABCD内以PQ为一边作矩形PQMN,点N在CD上.设AQ=x,矩形PQMN的面积为y.(1)求等腰梯形ABCD的面积;(2)求y与x之间的函数关系式;(3)当x为何值时,矩形PQMN是正方形;(4)矩形PQMN面积最大时,将△PQN沿NQ翻折,点P的对应点为点P’,请判断此时△BMP’的形状.14.如图,在直角坐标系内,已知等腰梯形ABCD,AD∥BC∥x轴,AB=CD,AD=2,BC=8,AB=5,B点的坐标是(﹣1,5).(1)直接写出下列各点坐标.A(,)C(,)D(,);(2)等腰梯形ABCD绕直线BC旋转一周形成的几何体的表面积(保留π);(3)直接写出抛物线y=x2左右平移后,经过点A的函数关系式;(4)若抛物线y=x2可以上下左右平移后,能否使得A,B,C,D四点都在抛物线上?若能,请说理由;若不能,将“抛物线y=x2”改为“抛物线y=mx2”,试确定m的值,使得抛物线y=mx2经过上下左右平移后能同时经过A,B,C,D四点.15.如图,在平面直角坐标系中,A、C、D的坐标分别是(1,2)、(4,0)、(3,2),点M是AD的中点.(1)求证:四边形AOCD是等腰梯形;(2)动点P、Q分别在线段OC和MC上运动,且保持∠MPQ=60°不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:试探究当点P从点O首次运动到点E(3,0)时,Q点运动的路径长.16.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC 于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.(1)求点E的坐标;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO 交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.①求S关于x的函数关系式;②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y 与时间t的函数关系式.17.如图,Rt△AOB中,∠OAB=90°,以O为坐标原点,OA所在的直线为x轴建立平面直角坐标系,将△OAB沿OB折叠后,点A落在第一象限的点C处,已知B点坐标是;一个二次函数的图象经过O、C、A三个点.(1)求此二次函数的解析式;(2)直线OC上是否存在点Q,使得△AQB的周长最小?若存在请求出Q点的坐标,若不存在请说明理由;(3)若抛物线的对称轴交OB于点D,设P为线段DB上一点,过P点作PM∥y轴交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在请求出P点坐标,若不存在请说明理由.18.如图1,等腰梯形ABCD中,AD∥BC,AB=CD=,AD=5,BC=3.以AD所在的直线为x轴,过点B且垂直于AD的直线为y轴建立平面直角坐标系.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的函数表达式;(2)设(1)中的抛物线与BC交于点E,P是该抛物线对称轴上的一个动点(如图2):①若直线PC把四边形AOEB的面积分成相等的两部分,求直线PC的函数表达式;②连接PB、PA,是否存在△PAB是直角三角形?若存在,求出所有符合条件的点P的坐标,并直接写出相应的△PAB的外接圆的面积;若不存在,请说明理由.19.(2006•衢州)在等腰梯形ABCD中,已知AB=6,BC=,∠A=45°,以AB所在直线为x轴,A为坐标原点建立直角坐标系,将等腰梯形ABCD饶A点按逆时针方向旋转90°得到等腰梯形OEFG(O﹑E﹑F﹑G分别是A﹑B﹑C﹑D旋转后的对应点)(图1)(1)写出C﹑F两点的坐标;(2)等腰梯形ABCD沿x轴的负半轴平行移动,设移动后的OA=x(图2),等腰梯形ABCD 与等腰梯形OEFG重叠部分的面积为y,当点D移动到等腰梯形OEFG的内部时,求y与x 之间的关系式;(3)线段DC上是否存在点P,使EFP为等腰三角形?若存在,求出点P坐标;若不存在,请说明理由.20.(2010•梧州)如图,在平面直角坐标系中,点A(10,0),∠OBA=90°,BC∥OA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动.现点E、F同时出发,当点F到达点B时,E、F两点同时停止运动.(1)求梯形OABC的高BG的长;(2)连接E、F并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形;(3)动点E、F是否会同时在某个反比例函数的图象上?如果会,请直接写出这时动点E、F运动的时间t的值;如果不会,请说明理由.21.(2002•潍坊)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.(1)求⊙O的直径;(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD 为等腰梯形时,四边形PQCD的面积;(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.22.(2004•荆州)如图1,在等腰梯形ABCD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.(1)分别求出点Q位于AB、BC上时,S与x之间函数关系式,并写出自变量x的取值范围;(2)当线段PQ将梯形ABCD分成面积相等的两部分时,x的值是多少?(3)在(2)的条件下,设线段PQ与梯形ABCD的中位线EF交于O点,那么OE与OF 的长度有什么关系?借助备用图2说明理由;并进一步探究:对任何一个梯形,当一直线l 经过梯形中位线的中点并满足什么条件时,其一定平分梯形的面积?(只要求说出条件,不需证明)23.(2006•恩施州)现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:(1)方案①:把它折成横截面为矩形的水槽,如图.若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?方案②:把它折成横截面为等腰梯形的水槽,如图.若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).24.(2006•济南)某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图1,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.(1)该小组通过多次尝试,最终选定下表中的简便且易操作的三种横截面图形,如图2,是根据这三种横截面图形的面积y(cm2)与x(cm)(见表中横截面图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y取最大值时的设计示意图;(2)在研究性学习小组展示研究成果时,小华同学指出:图2中“底角为60°的等腰梯形”的图象与其他两个图象比较,还缺少一部分,应该补画.你认为他的说法正确吗?请简要说明理由.25.如图(1),四边形ABCD内部有一点P,使得S△APD+S△BPC=S△PAB+S△PCD,那么这样的点P叫做四边形ABCD的等积点.(1)如果四边形ABCD内部所有的点都是等积点,那么这样的四边形叫做等积四边形.①请写出你知道的等积四边形:_________,_________,_________,_________,(四例)②如图(2),若四边形ABCD是平行四边形且S△ABP=8,S△APD=7,S△BPC=15,则S△PCD= _________.(2)如图(3),等腰梯形ABCD,AD=4,BC=10,AB=5,直线l为等腰梯形的对称轴,分别交AD于点E,交BC于点F.①请在直线l上找到等腰梯形的等积点,并求出PE的长度.②请找出等腰梯形ABCD内部所有的等积点,并画图表示.26.(2010•锦州)如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC 的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.(1)求正方形的边长;(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.27.(2005•龙岩)已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上(如图示)(1)求该二次函数的解析式;(2)P为线段AB上一动点(A、B两端点除外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x,求出l与x之间的函数关系式,并求出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标,并求出梯形的面积;若不存在,请说明理由.28.如图1所示,直角梯形OABC的顶点C在x轴正半轴上,AB∥OC,∠ABC为直角,过点A、O作直线l,将直线l向右平移,设平移距离为t(t≥0),直角梯形OABC被直线l 扫过的面积(图中阴影部分)为s,s关t的函数图象如图2所示,OM为线段,MN为抛物线的一部分,NQ为射线.(1)求梯形上底AB的长及直角梯形OABC的面积;(2)如图3,矩形ODEF的两边OD、OF分别落在坐标轴上,且OD=4,OF=3,将矩形ODEF沿x轴的正半轴平行移动,设矩形ODEF的顶点O向右平移的距离为x(0<x<7),求矩形ODEF与梯形OABC重叠部分面积S与x的函数关系式.(3)当平移距离x=_________时,重叠部分面积S取最大值_________.29.(2009•娄底)如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.2013年3月刘笑天的初中数学组卷参考答案与试题解析一.解答题(共29小题)1.已知,如图,在直角梯形COAB中,CB∥OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.(1)求过点O、B、A三点的抛物线的解析式;(2)求AB的长;若动点P在从A到B的移动过程中,设△APD的面积为S,写出S与t 的函数关系式,并指出自变量t的取值范围;(3)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.考点:二次函数综合题.专题:探究型.分析:(1)设所求抛物线的解析式为y=ax2+bx+c(a≠0),把A(10,0)、B(4,8)、C(0,8)三点代入即可求出a、b、c的值,进而得出该抛物线的解析式;(2)作BE⊥OA与E,OE=BC=4,在Rt△ABE中利用勾股定理求出AB的长,作OF⊥AB于F,DH⊥AB于H,由OA•BE=AB•OF可求出OF及DH的长,进而可得出结论;(3)先求出COAB的面积,由于点P的位置不能确定,故应分两种情况进行讨论:(i)当点P在AB上时,设点P的坐标为(x,y),由S△APD=S梯形COAB,得OD•y=×56故可求出y的值,由S△APD=AP•DH=t×4=14求出t的值,作BG⊥OA于G,由勾股定理即可得出x的值,进而得出结论;(ii)当点P在OC上时,设点P的坐标为(0,y).由S△APD=S梯形COAB,得AD•y=×56故可求出y的值,此时t=10+4+(8﹣)=16,由此可得出点P2的坐标.解答:解:(1)设所求抛物线的解析式为y=ax2+bx+c(a≠0)依题意,得,解得,故所求抛物线的解析式为y=﹣x2+x;(2)作BE⊥OA与E,OE=BC=4,∵在Rt△ABE中,AE=OA﹣OE=6,BE=OC=8,∴AB==10.解法一:作OF⊥AB于F,DH⊥AB于H,∵OA•BE=AB•OF,∴OF==8,DH=OF=4,∴S=AP•DH=t×4=2t(0≤t≤10);解法二:∵=,S△ABD=AD•BE=×5×8=20.∴=,∴S=2t(0≤t≤10);(3)点P只能在AB或OC上才能满足题意,S梯形COAB=(BC+OA)•OC=×(4+10)×8=56,(ⅰ)当点P在AB上时,设点P的坐标为(x,y),由S△APD=S梯形COAB,得OD•y=×56,解得y=,由S△APD=AP•DH=t×4=14,得t=7.此时,作BG⊥OA于G,由勾股定理得(AO﹣x)2+y2=AP2,即(10﹣x)2+()2=72,解得x=,即在7秒时有点P1(,)满足题意;(ⅱ)当点P在OC上时,设点P的坐标为(0,y).由S△APD=S梯形COAB,得AD•y=×56,解得y=,此时t=10+4+(8﹣)=16.即在t=16秒时,有点P2(0,)满足题意;综上,在7秒时有点P1(,),在16秒时有点P2(0,)使PD将梯形COAB 的面积分成1:3的两部分.点评:本题考查的是二次函数综合题,此题涉及到用待定系数法求二次函数的解析式、梯形的面积公式及三角形的面积公式,根据题意作出辅助线,构造出三角形及梯形的高是解答此题的关键.2.(2008•黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.考点:一次函数综合题;矩形的判定;直角梯形;相似三角形的判定与性质.专题:综合题;压轴题;动点型;分类讨论.分析:(1)可根据点B,C的坐标,用待定系数法来求出直线BC的解析式;(2)可先计算出梯形面积的,也就求出了四边形COPD的面积.有OC的长,D是BC的中点,如果过D作梯形的中位线,可求出三角形OCD中,OC边上的高应该是4,由此可求出三角形OCD的面积,也就能表示出OPD的面积,然后再用OP的值表示出三角形OPD的面积,得出关于t的方程,即可求出此时t的值;(3)本题要分三种情况进行讨论:①当P在OA上时,即0<t<8时,如果过D作OA的垂线DE,垂直为E,那么DE 就是梯形的中位线,即DE=7,要表示三角形OPD的面积,还需知道OP的长,可以根据P点的速度,用时间t表示出OP,这样可根据三角形的面积公式求出关于S,t 的函数关系式.②当P在AB上时,即8≤t<18时,三角形OPD的面积可以用四边形OAPD的面积﹣三角形OAP的面积来表示,而四边形OAPD的面积可分成梯形DEAP和三角形OED两部分来求,而OE,AE,DE,AB都是定值,因此可求出四边形OAPD的面积,三角形OAP中,可用t表示出AP的长,进而可用t表示出三角形OAP的面积,然后根据三角形OPD的面积S=四边形OAPD的面积﹣三角形OAP的面积,即可得出关于S,t的函数关系式;③当P在BD上时,即18<t<23时,三角形OPD的面积可用三角形OCP的面积﹣三角形OCD的面积来求,三角形OPC中,可过P作OC的垂线PH,可根据AB∥OC,得出∠BCH的正弦值,然后用t表示出CP,那么在直角三角形OPH中可以求出OC 边上的高PH的表达式,那么就能表示出三角形OPC的面积,三角形OCD中,OC 的值已知,而OC边上的高就是OE,那么也可求出三角形OCD的面积,然后可根据三角形OPD的面积=三角形OPC的面积﹣三角形OCD的面积来求出关于S,t的函数关系式;(4)先假设存在这样的点P,那么四边形CQPD是矩形,可得出CD=QP=BD=5,∠QPD=∠PDC=90°,要求此时t的值,首先就要求出AP的长,根据∠QPD=∠BDP=∠QAP=90°,不难得出三角形AQP与三角形DPB相似,那么可得出关于BD,BP,AP,QP的比例关系,而BD,QP的长已求出,AP+PB=AB=10,因此可求出此时AP,PB的长,然后判定一下此时四边形QPDC是矩形的结论是否成立,如果成立可根据AP的长求出t的长.解答:解:(1)设BC所在直线的解析式为y=kx+b,因为直线BC过B(8,10),C(0,4)两点,可得:,解得k=,b=4,因此BC所在直线的解析式是y=x+4;(2)过D作DE⊥OA,则DE为梯形OABC的中位线,OC=4,AB=10,则DE=7,又OA=8,得S梯形OABC=56,则四边形OPDC的面积为16,S△COD=8,∴S△POD=8,即•t×7=8,得t=;(3)分三种情况①0<t≤8,(P在OA上)S三角形OPD=t②8<t≤18,(P在AB上)S三角形OPD=S梯形OCBA﹣S三角形OCD﹣S三角形OAP﹣S三角形PBD=56﹣8﹣4(t﹣8)﹣2(18﹣t)=44﹣2t(此时AP=t﹣8,BP=18﹣t)③过D点作DM垂直y轴与M点∴CM=3,DM=4,CD=5,∴∠BCH的正弦值为CP长为28﹣t∴PH=22.4﹣0.8tS三角形OPD=S三角形OPC﹣S三角形ODC=×4(22.4﹣0.8t)﹣8=﹣t;(4)不能.理由如下:作CM⊥AB交AB于M,则CM=OA=8,AM=OC=4,∴MB=6.∴在Rt△BCM中,BC=10,∴CD=5,若四边形CQPD为矩形,则PQ=CD=5,且PQ∥CD,∴Rt△PAQ∽Rt△BDP,设BP=x,则PA=10﹣x,∴,化简得x2﹣10x+25=0,x=5,即PB=5,∴PB=BD,这与△PBD是直角三角形不相符因此四边形CQPD不可能是矩形.点评:本题主要考查了梯形的性质,矩形的判定,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.3.如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y 轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止运动,设P、Q运动的时间为t秒(t>0).(1)试求出△APQ的面积S与运动时间t之间的函数关系式;(2)在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.求出此时△APQ的面积.(3)在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯形?若存在,求出点E的坐标;若不存在,请说明理由.(4)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BO ﹣OP于点F.当DF经过原点O时,请直接写出t的值.考点:平行线分线段成比例;全等三角形的判定与性质;勾股定理;等腰梯形的性质;解直角三角形.专题:应用题;分段函数.。

初中中考复习之梯形(精编含答案)

初中中考复习之梯形(精编含答案)

∴AE=EB=BF=FC。
在△ABF和△CBE中,∵AB=CB,∠ABF=∠CBE, BF=BE,
∴△ABF≌△CBE(SAS)。∴∠BAF=∠BCE,AF=CE。
在△AME和△CMF中,
∵∠BAF=∠BCE,∠AME=∠CMF ,AE=CF,
∴△AME≌△CMF(AAS)。∴EM=FM。
在△BEM和△BFM中,∵BE=BF,BM=BM,
点,∴BE=CE。
在△ABE和△DCE中,
∵AB=DC,∠B=∠C
,BE=CE,
∴△ABE≌△DCE(SAS)。∴AE=DE。
7、证明:∵ABCD是等腰梯形,AD∥BC,∴∠B=∠BCD, ∠BCD =∠EDC。
∴∠B=∠EDC。又∵CE=CD。∴∠EDC=∠E。∴∠B=∠E。
8、解:(1)180°-2α。
(1)∠BEF=_____(用含α的代数式表示); (2)当AB=AD时,猜想线段ED、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且 AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图2),求 的值(用含m、n的代数式表示)。
9.我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角 形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的, 我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD 中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位 线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证 明你的结论.
6.如图,在等腰梯形ABCD中,点E为底边BC的中点,连结AE、DE.求 证:AE=DE.
7.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且 CE=CD,求证:∠B=∠E

中考数学 梯形专题讲解

中考数学   梯形专题讲解

中考数学 梯形专题【基础知识概述】一、梯形:1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形. 2.特殊梯形: (1)等腰梯形:两腰相等的梯形. (2)直角梯形:一腰垂直于底的梯形. 3.等腰梯形的性质(1) 等腰梯形的两腰相等.(2) 等腰梯形在同一底上的两个角相等. (3) 等腰梯形的对角线相等. 3.等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形.(2)在同一底上的两个角相等的梯形是等腰梯形. (3)对角线相等的梯形是等腰梯形.二、梯形中常用的辅助线的添法:三、多边形:1.多边形的定义:在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的封闭图形叫多边形.2.多边形内角和定理:n 边形的内角和等于(n-2)·180°. 3.多边形外角和定理:多边形的外角和等于360°. 4.多边形的对角线(1)从n 边形的一个顶点,可以引(n-3)条对角线,将多边形分成(n-2)个三角形. (2)n 边形共有2)3( n n 条对角线.四、中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合.那么这个图形叫作中心对称图形,这个点就是它的对称中心.中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

例1.(1)某多边形的内角和与外角和共1080°,则多边形的边数是___________.(2)________边形的内角和是外角和的2倍; _______边形的内角和与外角和相等. (3)n 边形的每一个内角都相等,它的一个外角与一个内角的比是1∶3,n 边形的对角线有_____条.(1)作两高 (2)平移腰 (3)平移对角线 (4)延长两腰 中点 (6)构造全等三角中点 中点 (5)作中位线ABCD等腰梯形的常见辅助线的作法【法一:平移对角线,然后两条对角线和底构成一个等腰三角形】例2:已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD=3㎝,BC=7㎝,求BD 的长.和梯形的面积变式:如图,等腰梯形中, ,,且 ,是高,是中位线,求证:.【法二:平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形】例3:如图,在梯形ABCD 中,.求证:.变式:如图,四边形ABCD 中,AB ‖CD ,B D ∠=∠2,若AD=a,AB=b,则CD 的长是 .A D BCBCD A【法三:遇到梯形一腰中点的问题可以作出梯形的中位线,中位线与上、下底都平行,且三线段有数量关系. 或利用“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构造全等三角形解决问题】例4:如图,E 是梯形ABCD 的腰AD 的中点,且AB+CD=BC ,试说明 1. BE 平分∠ABC. CE 平分∠BCD 2. CE ⊥BE 3. ABCD BCE S S 21变式:1.已知:如图,在梯形 中,是 的中点,且 .求证:.2.如图,在梯形ABCD 中,AD ∥BC ,E 是CD 的中点,若△AEB 的面积为S ,则梯形ABCD 的面积为( ) A.S 25B.2SC.S 47D.S 49【法四:从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题】例5:如图,ABCD 是梯形,AB ∥DC,AB=5,BC=23,∠BCD=45°,∠CDA=60°,DC 的长度AD BC EA BCD1S 2SS 3BCDA 【法五:即延长两腰相交于一点,可使梯形转化为三角形】例6 如图,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。

初升高衔接数学专题 梯形(含答案)

初升高衔接数学专题     梯形(含答案)

【练出高分】
1.有两个角相等的梯形是( )
A.等腰梯形
B.直角梯形
C.一般梯形
D.等腰或直角梯形
2.如图,梯形 ABCD 中,AD//BC, AD , BC , AC , BD ,则梯形 ABCD
的面积是________.
A
D
B
C
【解析】24.
【点评】此题常规可以用做双高的方法求解,但是过于麻烦,如果深入发掘题目,会发
∴ MF NF , MN BC AD ,
∴ EF MN
【点评】在梯形 ABCD 中,B C ,EF 是两底中点的连线,则 EF (BC AD) .
同样的,如果反过来也是对的,即在梯形 ABCD 中,EF 是两底中点的连线,且
EF (BC AD) ,则 B C .
_______. 【解析】3.21;4. x ;
5.如图,点 A、B 在一直线上,以 AB、BC 为边在同侧分别作正方形 ABGF 和正方形 BCDE,
点 P 是 DF 的中点,连接 BP.已知 AB cm , BC cm ,则 BP ________.
E
D
P
F
G7
初升高衔接数学专题
cm.
中考热点, 梯形中构 造特殊三 角形
集中对角 线
梯形的中 位线证明; 梯形拼接 成三角形 或四边形
2
初升高衔接数学专题
【例 1】(1)下列说法正确的是( ) A.梯形是特殊的平行四边形 B.等腰梯形的两底角相等 C.有两邻角相等的梯形是等腰梯形 D.有且只有一组相邻角为直角的四边形是直角梯形 (2)如图 1-1,梯形 ABCD 中,AD//BC,AD AB ,BC BD ,A ,则 C ________. (3)如图 1-2,在直角梯形 ABCD 中,ABC ,AD//BC,AD ,AB = 8 ,BC , 点 P 是 AB 上一个动点,则 PC PD 的最小值为________. (4)如图 1-3,梯形 ABCD 中,AB//CD,ABE D ,C , AB , CD ,则△BCE 的面积是________.

全国各地2019年中考数学真题分类解析汇编 26梯形

全国各地2019年中考数学真题分类解析汇编 26梯形

梯形一、选择题1. (2018•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()A.12B.15C.12 D.15考点:等腰梯形的性质.分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.解答:解:过点A作AE∥CD,交BC于点E,∵梯形ABCD是等腰梯形,∠B=60°,∴AD∥BC,∴四边形ADCE是平行四边形,∴∠AEB=∠BCD=60°,∵CA平分∠BCD,∴∠ACE=∠BCD=30°,∵∠AEB是△ACE的外角,∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,∴∠EAC=30°,∴AE=CE=3,∴四边形ADEC是菱形,∵△ABE中,∠B=∠AEB=60°,∴△ABE是等边三角形,∴AB=BE=AE=3,∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.故选D.点评:本题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键.2.(2018•襄阳,第10题3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()3.(2018·台湾,第3题3分)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.若AB=10,BE=8,DE =6,则AD的长度为何?( )A.8 B.9 C.6 2 D.6 3分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.解:∵AE⊥BC,∴∠AEB=90°,∵AB=10,BE=8,∴AE=AB2-BE2=102-82=6,∵AD∥BC,∴∠DAE=∠AEB=90°,∴AD=DE2-AE2=(63)2-62=62.故选C.点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.4.(2018•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA 的面积比为().:,求出=,DAC=,得=.==,∴===,∴=,ACB==,DAC==∴•=×=,∴=,=,=,=.5. (2018•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.(第1题图)6.(2018•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()米中,∵=i==6米,二.填空题1. ( 2018•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是7+.AE=DE=BD=2DC=,BC==3+3=7+.2. (2018•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第1题图)则∠1=3. (2018•扬州,第14题,3分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40 cm3.(第2题图)三.解答题1. (2019年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?(第1题图)考点:三角形的中位线、菱形的判定分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解答:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.。

最新中考数学真题解析汇编:梯形

最新中考数学真题解析汇编:梯形

梯形一、选择题1. (2014年广西钦州,第10题3分)如图,等腰梯形ABCD的对角线长为13,点E、F、G、H分别是边AB、BC、CD、DA的中点,则四边形EFGH的周长是()A.13 B.26 C.36 D.39考点:等腰梯形的性质;中点四边形.分析:首先连接AC,BD,由点E、F、G、H分别是边AB、BC、CD、DA的中点,可得EH,FG,EF,GH是三角形的中位线,然后由中位线的性质求得答案.解答:解:连接AC,BD,∵等腰梯形ABCD的对角线长为13,∴AC=BD=13,∵点E、F、G、H分别是边AB、BC、CD、DA的中点,∴EH=GF=BD=6.5,EF=GH=AC=6.5,∴四边形EFGH的周长是:EH+EF+FG+GF=26.故选B.点评:此题考查了等腰梯形的性质以及三角形中位线的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2.(2014衡阳,第10题3分)如图,一河坝的横断面为等腰梯形ABCD,坝i ,则坝底AD的长度为【】顶宽10米,坝高12米,斜坡AB的坡度1:1.5A.26米 B.28米 C.30米 D.46米3.二、填空题1.(2014•黑龙江龙东,第3题3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足AB=DC(或∠ABC=∠DCB、∠A=∠D)等条件时,有MB=MC(只填一个即可).考点:梯形;全等三角形的判定.专题:开放型.分析:根据题意得出△ABM≌△△DCM,进而得出MB=MC.解答:解:当AB=DC时,∵梯形ABCD中,AD∥BC,则∠A=∠D,∵点M是AD的中点,∴AM=MD,在△ABM和△△DCM中,,∴△ABM≌△△DCM(SAS),∴MB=MC,同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,故答案为:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.点评:此题主要考查了梯形的性质以及全等三角形的判定与性质,得出△ABM≌△△DCM是解题关键.2. (2014•青岛,第13题3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.3. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是.考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形.分析:首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.解答:解:延长BA,CD交于点F,∵BE平分∠ABC,∴∠EBF=∠EBC,∵BE⊥CD,∴∠BEF=∠BEC=90°,在△BEF和△BEC中,,∴△BEF≌△BEC(ASA),∴EC=EF,S△BEF=S△BEC=2,∴S△BCF=S△BEF+S△BEC=4,∵CE:ED=2:1∴DF:FC=1:4,∵AD∥BC,∴△ADF∽△BCF,∴=()2=,∴S△ADF=×4=,∴S四边形ABCD=S△BEF﹣S△ADF=2﹣=.故答案为:.点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.(2014•湖北黄石,第14题3分)如图,在等腰梯形ABCD中,AB∥CD,∠D=45°,AB=1,CD=3,BE∥AD交CD于E,则△BCE的周长为.第1题图考点:等腰梯形的性质.分析:首先根据等腰梯形的性质可得∠D=∠C=45°,进而得到∠EBC=90°,然后证明四边形ABED是平行四边形,可得AB=DE=1,再得EC=2,然后再根据勾股定理可得BE长,进而得到△BCE的周长.解答:解:∵梯形ABCD是等腰梯形,∴∠D=∠C=45°,∵EB∥AD,∴∠BEC=45°,∴∠EBC=90°,∵AB∥CD,BE∥AD,∴四边形ABED是平行四边形,∴AB=DE=1,∵CD=3,∴EC=3﹣1=2,∵EB2+CB2=EC2,∴EB=BC=,∴△BCE的周长为:2+2,故答案为:2+2.点评:此题主要考查了等腰梯形的性质,以及平行四边形的判定和性质,勾股定理的应用,关键是掌握等腰梯形同一底上的两个角相等.5.三、解答题1.(2014•黑龙江龙东,第26题8分)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.考点:旋转的性质;全等三角形的判定与性质;梯形中位线定理.分析:(1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可;(2)根据题意得出图2的结论为:ME= (BD+CF),图3的结论为:ME= (CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案.解答:解:(1)如图1,∵ME⊥m于E,CF⊥m于F,∴ME∥CF,∵M为BC的中点,∴E为BF中点,∴ME是△BFC的中位线,∴EM=CF.(2)图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD).图2的结论证明如下:连接DM并延长交FC的延长线于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠DBM=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA),∴DB=CK DM=MK由题意知:EM=FK,∴ME= (CF+CK)= (CF+DB)图3的结论证明如下:连接DM并延长交FC于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠MBD=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA)∴DB=CK,DM=MK,由题意知:EM=FK,∴ME=(CF﹣CK)=(CF﹣DB).点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△DBM≌△KCM(ASA)是解题关键.2. (2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.考点:直角梯形;矩形的判定与性质;解直角三角形..分析:利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.解答:解:过点A作AH⊥BC于H,则AD=HC=1,在△ABH中,∠B=30°,AB=2,∴cos30°=,即BH=ABcos30°=2×=3,∴BC=BH+BC=4,∵CE⊥AB,∴CE=BC=2.点评:此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键.3. (2014•攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).(1)求过点B的双曲线的解析式;(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.考点:等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.分析:(1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y=(k≠0),然后利用待定系数法求反比例函数解析式解答;(2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.解答:解:(1)如图,过点C作CD⊥AB于D,∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),∴CD=2,BD=3,∵C(0,2),∴点B的坐标为(2,5),设双曲线的解析式为y=(k≠0),则=5,解得k=10,∴双曲线的解析式为y=;(2)平移后的点C落在(1)中的双曲线上.理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),当x=5时,y==2,∴平移后的点C落在(1)中的双曲线上.点评:本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.。

中考数学压轴题函数梯形问题精选解析二

中考数学压轴题函数梯形问题精选解析二

2013中考数学压轴题函数梯形问题精选解析(二) 例3 如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1解析(1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2). (2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-. 如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得15x =±. 如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2.因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OM PQ CM =,即PQ HQ CM OM=. 当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-.当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得23x =±. 如图6,当23x =时,823t =-+;如图6,当23x =-时,823t =--.图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭. 而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.例 4已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图1解析(1)因为BC //x 轴,点D 在BC 上,C (0,-2),所以点D 的纵坐标为-2.把y =-2代入x y 32-=,求得x =3.所以点D 的坐标为(3,-2). (2)由于抛物线与x 轴交于点O 、A (4,0),设抛物线的解析式为y =ax (x -4),代入D (3,-2),得23a=.所求的二次函数解析式为2228(4)333y x x x x=-=-.(3) 设点M的坐标为228,33x x x⎛⎫-⎪⎝⎭.①如图2,当OM//DA时,作MN⊥x轴,DQ⊥x轴,垂足分别为N、Q.由tan∠MON=tan ∠DAQ,得228332x xx-=.因为x=0时点M与O重合,因此28233x-=,解得x=7.此时点M的坐标为(7,14).②如图3,当AM//OD时,由tan∠MAN=tan∠DOQ,得22823343x xx-=-.因为x=4时点M与A重合,因此2233x-=,解得x=-1.此时点M的坐标为10(1,)3-.③如图4,当DM//OA时,点M与点D关于抛物线的对称轴对称,此时点M的坐标为(1,-2).图2 图3 图4考点伸展第(3)题的①、②用几何法进行计算,依据是两直线平行,内错角的正切相等.如果用代数法进行,计算过程比较麻烦.以①为例,先求出直线AD的解析式,再求出直线OM的解析式,最后解由直线OM和抛物线的解析式组成的二元二次方程组.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梯形
一、选择题
1. (2014•广西贺州,第9题3分)如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为()
A.12B.15C.12 D.15
考点:等腰梯形的性质.
分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.
解答:解:过点A作AE∥CD,交BC于点E,
∵梯形ABCD是等腰梯形,∠B=60°,
∴AD∥BC,
∴四边形ADCE是平行四边形,
∴∠AEB=∠BCD=60°,
∵CA平分∠BCD,
∴∠ACE=∠BCD=30°,
∵∠AEB是△ACE的外角,
∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,
∴∠EAC=30°,
∴AE=CE=3,
∴四边形ADEC是菱形,
∵△ABE中,∠B=∠AEB=60°,
∴△ABE是等边三角形,
∴AB=BE=AE=3,
∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.
故选D.
点评:本题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键.
2.(2014•襄阳,第10题3分)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()
3.(2014·台湾,第3题3分)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥B C.若AB =10,BE=8,DE=6,则AD的长度为何?( )
A.8 B.9 C.62D.6 3
分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.
解:∵AE⊥BC,
∴∠AEB=90°,
∵AB=10,BE=8,
∴AE=AB2-BE2=102-82=6,
∵AD∥BC,
∴∠DAE=∠AEB=90°,
∴AD=DE2-AE2=(63)2-62=62.
故选C.
点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.
4.(2014•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,
则△ABC与△DCA的面积比为()
.:
相似三角形的判定与性质.
先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC=,得出
△ABC与△DCA的面积比=.
解:∵AD∥BC,
∴∠ACB=∠DAC
又∵∠B=∠ACD=90°,
∴△CBA∽△ACD
==,
AB=2,DC=3,
∴===,
∴=,
∴COS∠ACB==,
COS∠DAC==
∴•=×=,
∴=,
=,
=,
=.
5. (2014•湘潭,第3题,3分)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米.
(第1题图)
6.(
2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )
4 中,∵=,=6
二.填空题
1. ( 2014•广西玉林市、防城港市,第17题3分)如图,在直角梯形ABCD 中,AD ∥BC ,∠C =90°,∠A =120°,AD =2,BD 平分∠ABC ,则梯形ABCD 的周长是 7+

AD
,则=2
BD,
=
=2+2++3=7+.
2. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5°.
(第1题图)
×135°=67.5°.
3. (2014•扬州,第14题,3分)如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A 落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40 cm3.
(第2题图)
BC×10×8=40
三.解答题
1. (2014年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作
EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?
(第1题图)
考点:三角形的中位线、菱形的判定
分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;
(2)根据邻边相等的平行四边形是菱形证明.
(1)证明:∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;
(2)解答:当AB=BC时,四边形DBEF是菱形.
理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,
∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.。

相关文档
最新文档