鲁教版初二数学第十一章 一元一次不等式与一元一次不等式组课后作业题
最新版初中七年级数学题库 第11章 一元一次不等式单元测试题
第11章一元一次不等式组(满分150分 时间120分钟) 姓名一、选择题(每题3分,共36分)1、已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A . a +c <b +cB . a -c >b -cC . ac <bcD . ac >bc2、不等式组11x x ≤⎧⎨>-⎩的解集是( ) A . x >-1 B . x ≤1 C . x <-1 D . -1<x ≤13、若不等式00x b x a -<⎧⎨+>⎩的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24、下列说法中,错误..的是( ) A . 不等式2<x 的正整数解中有一个;B . 2-是不等式012<-x 的一个解C . 不等式93>-x 的解集是3->x ;D . 不等式10<x 的整数解有无数个5、在数轴上与原点的距离小于8的点对应的x 满足( )A .x <8B .x >8C .<-8或x >8D .-8<x <86、已知(x +3)2+m y x ++3=0中,y 为负数,则m 的取值范围是( )A .m >9B .m <9C .m >-9D .m <-97、已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x -y <0,则k 的取值范围是 ( )A .-1<k <-12 B .0<k <12 C .0<k <1 D .12<k <1 8、若15233m m +>⎧<⎪⎨-⎪⎩,化简│m +2│-│1-m │+│m │得 ( ) A .m -3 B .m +3 C .3m +1 D .m +19、若不等式组1+240x a x >⎧⎨-⎩≤有解,则a 的取值范围是( ) A .a ≤3 B .a <3 C .a <2 D .a ≤210、某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A .5B .6C .7D .811、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人12、某大型超市从生产基地购进一批大樱桃,运输过程中质量损失10%,假设超市不计其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高 ( )A . 30% B .33.3% C . 33.4% D .40%二、填空题(每空3分,共45分)13、不等式x 41-≤-8的解集是___________ 14、当a 时,不等式(a —1)x >1的解集是x <11-a 。
【最新试题库含答案】一元一次不等式组练习题(有答案)
一元一次不等式组练习题(有答案):篇一:一元一次不等式组练习题及答案一元一次不等式组1、下列不等式组中,解集是2<x<3的不等式组是( )A、??x?3B、?x?3C、??x?2??x??x?32D、??x?2?x?3x?2?2、在数轴上从左至右的三个数为a,1+a,-a,则a的取值范围是()A、a<1 B、a<0C、a>0 D、a<-1223、(2007年湘潭市)不等式组??x?1≤0,2x?3?5的解集在数轴上表示为()?ABCD4、不等式组??3x?1?02x?5的整数解的个数是()?A、1个B、2个C、3个D、4个5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则x的取值范围为()A、3<x<5 B、-3<x<5 C、-5<x<3 D、-5<x<-36、(2007年南昌市)已知不等式:①x?1,②x?4,③x?2,④2?x??1,从这四个不等式中取两个,构成正整数解是2的不等式组是() A、①与②B、②与③C、③与④D、①与④7、如果不等式组??x?a?x?b无解,那么不等式组的解集是()A.2-b<x<2-aB.b-2<x<a-2C.2-a<x<2-bD.无解8、方程组??4x?3m?2的解x、y满足x>y,则m的取值范围是()?8x?3y?mA.m?9101910B. m?9 C. m?1010D. m?19二、填空题9、若y同时满足y+1>0与y-2<0,则y的取值范围是______________.10、(2007年遵义市)不等式组??x?3?0?x?1≥0的解集是.11、不等式组??2x≥?0.5的解集是 .??3x≥?2.5x?212、若不等式组??x?m?1?x?2m?1无解,则m的取值范围是.?x?13、不等式组??1?x≥2的解集是_________________??x?514、不等式组??x?2的解集为x>2,则a的取值范围是_____________.?x?a?2x?a?115、若不等式组?的解集为-1<x<1,那么(a+1)(b-1)的值等于________.x?2b?3?16、若不等式组??4a?x?0无解,则a的取值范围是_______________.3?x?(2x?1)≤4,??218、(2007年滨州)解不等式组?把解集表示在数轴上,并求出不等式组的?1?3x?2x?1.??2?x?a?5?0三、解答题17、解下列不等式组(1)??3x?2?8x?1?2?2(3)2x<1-x≤x+5?5?7x?2x?42)????1?34(x?1)?0.5 ?3(1?x)?2(x4)??9)??x?3?0.5?x?40.2??14整数解.19、求同时满足不等式6x-2≥3x-4和2x?13?1?2x2?1的整数x的值.20、若关于x、y的二元一次方程组??x?y?m?5y?3m?3中,x的值为负数,y的值为正数,求m的?x?取值范围.((参考答案1、C2、D3、C4、B5、A6、D7、A8、D9、1<y<210、-1≤x <3 11、-14≤x≤412、m>2 13、2≤x<5 14、a<2 15、-6 16、a≤11310?x?(2)无解(3)-2<x<(4)x>-318、2,1,0,-13232719、不等式组的解集是-?x?,所以整数x为031017、(1)20、-2<m<0.5篇二:一元一次不等式组测试题及答案(加强版)一元一次不等式组测试题一、选择题1.如果不等式??2x?1?3(x?1)?x?m的解集是x<2,那么m的取值范围是( )A.m=2 B.m>2 C.m<2 D.m≥2 2.(贵州安顺)若不等式组??5?3x?0 x?m?0有实数解.则实数m的取值范围是 ( )? A.m?53 B.m?5553 C.m?3 D.m?33.若关于x的不等式组??x?3(x?2)?4无解,则a的取值范围是 ?3x?a?2x( )A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式??x?m?07?2x?1的整数解共有4个,则m的取值范围是 ( )?A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人 B.19人C.11人或13人 D.20人或19人 6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是() A.10km B.9 kmC.8km D.7 km 7.不等式组??3x?1?2的解集在数轴上表示为().?8?4x?08.解集如图所示的不等式组为().A.??x??1?x?2 B.??x??1?x??1?x??1?x?2 C.??x?2 D.??x?2二、填空题1.已知??x?2y?4k2k?1,且?1?x?y?0,则k的取值范围是________.?2x?y?2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .?3.如果不等式组?x?2?a?2的解集是??2x?b?30≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号ababdc?ac?bd.已知1?dc?3 则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果a?3x,b?4x,c?28,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)a?b?c?b?c?a?c?a?b?b?a?c?.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A 的质量m(g)的取值范围为.三、解答题13.解下列不等式组.?x?2(1)???3?3?x?1 (2) 2?1?3(x?1)?6?x2x?1?1?2x?1?0(3)??3x?1?0(4)?2x?1??3x?2?03≤5114.已知:关于x,y的方程组??x?y?2a?7x?2y?4a?3的解是正数,且x的值小于y的值.?(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元????3(x?2)?5(x?4)?2.......(1)18. 不等式组??2(x?2)?5x?6?3?1,........(2)是否存在整数解?如果存在请求出它的解;如果不存在??x?2?2?1?2x?13............(3)要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李. (1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.2【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为??x?2,又知不等式组的解集是x<?x?m2根据不等式组解集的确定方法“同小取小”可知m≥2. 2. 【答案】A;?【解析】原不等式组可化为??x?5?3而不等式组有解,根据不等式组解集的确定方法“大小小大中?x?m间找”可知m≤53. 3. 【答案】B;【解析】原不等式组可化为??x?1,a.根据不等式组解集的确定方法“大大小小没解了”可知a≤1.?x?4. 【答案】D;【解析】解得原不等式组的解集为:3≤x<m,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D;6. 【答案】B;7,A 8,A【解析】设这人乘的路程为xkm,则13<7+1.2(x-3)≤14.2,解得8<x≤9. 二、填空题 1. 【答案】12<k<1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可. 2. 【答案】10≤x≤30; 3.【答案】1 【解析】由不等式x2?a?2解得x≥4—2a.由不等式2x-b<3,解得x?b?32.∵ 0≤x<1,∴ 4-2a=0,且b?32?1,∴ a=2,b=-1.∴ a+b=1.4.【答案】7, 37;【解析】设有x个儿童,则有0<(4x+9)-6(x-1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd=2,所以b、d的值有四种情况:①b=2,d=1;②b=1,d=2;③b=-2,d=-1;④b=-1,d=-2.所以b+d的值是3或-3.6,【答案】(1) 4<x<28 (2)4<b<6(3)2a; 7.【答案】1<m<2;三、解答题?x?213.解:(1)解不等式组??3?3?x?1①??1?3(x?1)?6?x②解不等式①,得x>5,解不等式②,得x≤-4.因此,原不等式组无解.(2)把不等式xx12x?1?1进行整理,得2x?1?1?0,即?x2x?1?0,则有①??1?x?02x?1?0或②?1?x?01??解不等式组①得?2x?1?02?x?1;解不等式组②知其无解,故原不等式的解集为12?x?1. ?2x?1?0①(3)解不等式组??3x?1?0②??3x?2?0③解①得:x?12,解②得:x??13,解③得:x?23,将三个解集表示在数轴上可得公共部分为:12≤x<23所以不等式组的解集为:12≤x<23??2x?1?5①(4) 原不等式等价于不等式组:???3??2x?1??3??5②解①得:x??7,解②得:x?8,3所以不等式组的解集为:?7?x?8?8a?1114.解:(1)解方程组??x?y?2a?7?2y?4a?3,得??x?3?x? ?y?10?2a??3??8a?113?0①?14,根据题意,得??10?2a3?0② ???8a?1110?2a?3?3③解不等式①得a??118.解不等式②得a<5,解不等式③得a??110,①②③的解集在数轴上表示如图.∴上面的不等式组的解集是?118?a??110.(2)∵ ?118?a?110.∴ 8a+11>0,10a+1<0.∴ |8a+11|-|10a+1|=8a+11-[-(10a+1)]=8a+11+10a+1=18a+12.15,解:由不等式xx?12?3?0,分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>?25.由不等式x?5a?43?43(x?1)?a去分母得 3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为?25?x?2a,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12?a≤1. 16,解:设这件商品原价为x元,根据题意可得:??88%x?30?30?10%?90%x?30?30?20%解得:37.5?x?40答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得??x?y?320,?x?y?80,解得??x?200,?y?120.所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得??40m?20(8?m)?200,?10m?20(8?m)?120. 解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x<2;解不等式(2),得:x?-3;解不等式(3),得:x?-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).方案1花费最低,所以选择方案1.4∴篇三:一元一次不等式练习题及答案一元一次不等式一、选择题1. 下列不等式中,是一元一次不等式的有()个.①x -3;②xy≥1;③x?3;④2xxx?1??1;⑤?1.A. 1 B. 2 C. 3D .4 23x2. 不等式3(x-2)≤x+4的非负整数解有()个.. A. 4B. 5C. 6D. 无数3. 不等式4x-111?x?的最大的整数解为().A. 1 B. 0 C. -1 D. 不存在 444. 与2x 6不同解的不等式是()A. 2x+1 7B. 4x 12C. -4x -12D. -2x -65. 不等式ax+b 0(a 0)的解集是()A. x -bbbbB. x -C. xD. x aaaa6. 如果不等式(m-2)x 2-m的解集是x -1,则有()A. m 2B. m 2C. m=2D. m≠27. 若关于x的方程3x+2m=2的解是正数,则m的取值范围是()A. m 1B. m 1C. m≥1D. m≤18. 已知(y-3)2+|2y-4x-a|=0,若x为负数,则a的取值范围是()A. a 3B. a 4C. a 5D. a 6二、填空题9. 当x________时,代数式x?35x?1?的值是非负数. 2610. 当代数式x-3x的值大于10时,x的取值范围是________. 23(2k?5)的值不大于代数式5k-1的值,则k的取值范围是________. 211. 若代数式12. 若不等式3x-m≤0的正整数解是1,2,3,则m的取值范围是________.13. 关于x的方程kx?1?2x的解为正实数,则k的取值范围是14、若关于x的不等式2x+a≥0的负整数解是-2 ,-1 ,则a的取值范围是_________。
一元一次不等式应用题专题
一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。
若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。
若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。
答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
鲁教版五四制 七年级下册数学 第十一章 一元一次不等式(组)单元测试题(含答案)
,则
.
5/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
22. 23. 【解析】设最低打 折.由题意,得
24.
【解析】设签字笔购买了 支,则圆珠笔购买了
支.
根据题意得
.解得
.
解不等式组得
.
是整数,
.
第三部分 25. 去分母,得
去括号,得
移项,合并同类项,得
解集在数轴上表示如下图:
26. 由得 由得
盒牛奶,那么剩下 盒牛奶;如果分给每位老人 盒牛奶,那么最后一位老人分得的牛奶不
足 盒,但至少 盒.则这个敬老院的老人最少有
A. 人
B. 人
C. 人
D. 人
二、填空题(共 8 小题;共 32 分)
17. 写出一个解集为
的一元一次不等式
.
18. 若关于 的不等式
可化为
,则 的取值范围是
.
19. 关于 的不等式组
个球
拍.
23. 某种商品的进价为 元,出售时标价为
元,后来由于该商品积压,商店准备打折销售,
但要保证利润率不低于 ,则至多可打
折.
24. 某班级从文化用品市场购买了签字笔和圆珠笔共 支,所付金额大于 元,但小于 元.已
知签字笔每支 元,圆珠笔每支 元,则其中签字笔购买了
支.
3/7
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
(2)该水果商第二次仍用
元钱从批发市场购进了大樱桃和小樱桃各 千克,进价不变,
但在运输过程中小樱桃损耗了 .若小樱桃的售价不变,要想让第二次赚的钱不少于第
一次所赚钱的 ,大樱桃的售价最少应为多少?
28. 某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买 A,B 两种型号的污水
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
初中数学一元一次不等式(组)单元综合课后能力提升培优训练题2(附答案) (1)
初中数学一元一次不等式(组)单元综合课后能力提升培优训练题21(附答案) 1.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A .2010x x +>⎧⎨->⎩B .2010x x +>⎧⎨-<⎩C .2010x x +<⎧⎨->⎩D .2010x x +<⎧⎨-<⎩2.已知关于x 的不等式组 12x x m +≥⎧⎨-<⎩有3个整数解,则m 的取值范围是( )A .34m <≤B .4m ≤C .34m ≤<D .3m ≥3.不等式组31x x >⎧⎨≤⎩的解集在数轴上表示为( ) A .B .C .D .4.已知不等式2x−a<0的正整数解恰是1,2,3,则a 的取值范围是() A .6<a<8B .6⩽a ⩽8C .6⩽a<8D .6<a ⩽85.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .6.实数的平方根分别是和,且,则不等式的解集为( ) A .B .C .D .7.不等式组解集为 -1 ≤ x < 1 ,下列在数轴上表示正确的是( ) A .B .C .D .8.在一次“交通安全法规”如识竞赛中,竞赛题共25道题,每道题都给出4个答案,其中只有一个答案正确,选对得3分,不选或错选倒扣1分,得分不低于45分得奖,那么得奖者至少应选对的题数为( ) A .17B .18C .19D .209.甲种蔬菜保鲜适宜的温度是o o 2C~6C ,乙种蔬菜保鲜适宜的温度是o o 3C~8C ,将这两种蔬菜放在一起同时保鲜,适宜 的温度是( ) A .o o 2C~3CB .o o 2C~8CC .o o 3C~6CD .o o 6C~8C10.若a>b,则下列不等式中正确的是:( ) A .a -b<0B .-5a <-5bC .a+8<b -8D .ac 2≤bc 211.若a b >,则下列不等式成立的是( ) A .22a b -<-B .22a b >C .22a b ->-D .22a b< 12.已知关于的不等式组的解集中任意一个的值均不在...的范围内,则的取值范围是( ) A .或B .C .D .或13.已知对||3x =,||2y =,且20x y ++>,则2x y -=______.14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________. 15.12(x-m)>3-32m 的解集为x>3,则m 的值为____. 16.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________.17.不等式2552n n --<的所有正整数解是______.18.如图,已知抛物线y=x 2+bx+c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是________.19.已知关于x 的方程 2x+4 = m+x 的解为负数,则m 的取值范围是____. 20.不等式2x+5≤12的正整数解是___________21.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”).22.不等式2(x ﹣3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_____. 23.如果关于x 的不等式20.53x ->2a与关于x 的不等式5(1-x )<a -20的解集完全相同,则它们的解集为x________.24.一只纸箱质最为1kg,当放入一些苹果(每个苹果的质量为0.3kg),箱子和苹果的总质量不超过10kg,求这只纸箱内最多能装()个苹果A.30 B.31 C.32 D.3325.某单位计划组织员工到地旅游,人数估计在1025之间,甲乙两旅行社的服务质量相同,组织到H地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠,该单位怎样选择,才能使其支付的旅游总费用较少?26.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲乙两种型号设备的价格;(2)该公司决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有那几种购买方案?27.(1)解不等式113xx+<-,并将解集表示在数轴上;(2)解不等式组351,134.3xxx-≤⎧⎪⎨-<⎪⎩①②28.现计划把1240吨甲种货物和880吨乙种货物用一列火车运往某地,已知这列火车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,B型车厢每节费用8000元.如果每节A型车厢最多可装35吨甲种货物和15吨乙种货物,每节B型车厢最多可装25吨甲种货物和35吨乙种货物;(1)那么共有哪几种安排车厢的方案?(2)在上述方案中,哪种方案运费最省、最少运费为多少元?(3)在(1)问下,若两种货物全部售出,且每吨货物售出获利200元,除去运费获利154000元,问:在这种情况下是按哪种方案安排车厢的.29.已知方程组3951x y ax y a+=+⎧⎨-=+⎩的解x,y满足x>0,y>0.请化简:|4a+5|-2|a-4|.30.解方程组或不等式组(1)21321 3223x xx x++⎧->⎪⎨⎪-<⎩(2) 159317x y z x y z x y z ++=⎧⎪-+=⎨⎪-+=⎩31.解不等式:5-()()411x x ---<()223x - 32.解不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,并把其解集表示在数轴上.33.某商场决定从厂家购进甲、乙两种不同款型的名牌衬衫共150件,且购进衬衫的总金额不超过9080元,已知甲、乙两种款型的衬衫进价分别为40元/件、80元/件. (1)问该商场至少购买甲种款型的衬衫多少件?(2)若要求甲种款型的件数不超过乙种款型的件数,问有哪些购买方案?请分别写出来.34.解不等式组2+1)5733x x x x <+⎧⎪+⎨≤+⎪⎩(,并写出它的非负整数解.35.(1)计算:201(5)3tan 30|13π︒-++-.(2)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.参考答案1.B 【解析】 【分析】由数轴得出不等式组解集,据此可判断各选项是否符合此解集,从而得出答案. 【详解】解:由数轴知不等式组的解集为﹣2<x <1, 而2010x x +>⎧⎨-<⎩的解集为﹣2<x <1,故选:B . 【点睛】本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分. 2.A 【解析】 【分析】首先计算出不等式组的解集1≤x <m ,再根据不等式组的整数解确定m 的范围即可. 【详解】120x x m +≥⎧⎨-<⎩①②, 由①得:x≥1, 由②得:x <m ,不等式组的解集为:1≤x <m , ∵整数解共有3个, ∴整数解为:1,2,3, ∴34m <≤. 故选A. 【点睛】本题主要考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定m 的范围,是解决本题的关键.3.D【解析】【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【详解】解:不等式组31xx>⎧⎨≤⎩的解集在数轴上表示为.故选:D.【点睛】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D【解析】【分析】根据题目中的不等式可以求得x的取值范围,再根据不等式2x-a<0的正整数解恰是1,2,3,从而可以求得a的取值范围.【详解】由2x−a<0得,x<0.5a,∴不等式2x−a<0的正整数解恰是1,2,3,∴0.5a>3且0.5a⩽4,解得,6<a⩽8,故选D.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则.5.C【解析】 【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围. 【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限, ∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩,解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选:C . 【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限. 6.A 【解析】 【分析】先根据平方根求出a 的值,再求出m ,求出t ,再把t 的值代入不等式,求出不等式的解集即可. 【详解】∵3a−22和2a−3是实数m 的平方根, ∴3a−22+2a−3=0, 解得:a=5, 3a−22=−7, 所以m=49,=7,∵,∴,解得:,故选:A【点睛】此题考查平方根,不等式的解集,解题关键在于掌握运算法则7.C【解析】【分析】根据已知解集确定出数轴上表示的解集即可.【详解】不等式组解集为-1≤x<1,表示在数轴上为:,故选C.【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【解析】【分析】首先设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得出不等式,解得即可.【详解】解:设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得,3x-(25-x)≥45解得x ≥352又题数为整数,则至少应为18. 故答案为B. 【点睛】此题主要考查不等式的实际应用,关键是找出关系式,需要注意的是取整数. 9.C 【解析】 【分析】根据“2℃~6℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】设温度为x ℃,根据题意可知2x 63x 8≤≤⎧⎨≤≤⎩解得3≤x≤6.适宜的温度是3°C ~6°C . 故选:C 【点睛】此题主要考查了一元一次不等式组的应用,关键是弄懂题意,列出不等式,根据不等式组解集的确定规律:大小小大中间找确定出x 的解集. 10.B 【解析】 【分析】运用不等式的性质进行判断. 【详解】A 、当a >b 时,不等式两边都减b ,不等号的方向不变得a-b >0,故A 错误;B 、当a >b 时,不等式两边都乘以-5,不等号的方向改变得-5a <-5b ,故B 正确;C 、因为a>b,则a+8>b+8>b-8,故C 错误;D 、因为c 2≥0,所以ac 2≥bc 2,故D 错误. 故选B .【点睛】考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 11.B 【解析】 【分析】直接利用不等式的基本性质分别判断得出答案. 【详解】 解:A 、∵a >b ,∴a -2>b -2,故此选项错误; B 、∵a >b ,∴2a >2b ,故此选项正确; C 、∵a >b ,∴-2a <-2b ,故此选项错误; D 、∵a >b , ∴2a >2b,故此选项错误. 故选:B . 【点睛】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键. 12.D 【解析】 【分析】解不等式组,可得不等式组的解集,根据不等式组的解集与0≤x≤4的关系,可得答案. 【详解】 解:解,得a−1<x≤a +2,由不等式组的解集中任意一个x 的值均不在0≤x≤4的范围内,得a +2<0或a−1≥4, 解得:a≥5或a <−2,故选:D .【点睛】本题考查了不等式的解集,利用解集中任意一个x 的值均不在0≤x≤4的范围内得出不等式是解题关键.13.-1或7或-7.【解析】【分析】 由3x =,2y =得到3,2x y =±=±,再结合20x y ++>求出x 、y 的值,代入计算即可.【详解】 解:∵3x =,2y =,∴3,2x y =±=±,∵20x y ++>,∴2x y +>-,∴32x y =⎧⎨=⎩,32x y =⎧⎨=-⎩,32x y =-⎧⎨=⎩, 2x y ∴-=-1或7或-7.故答案是:-1或7或-7.【点睛】本题考查了绝对值的计算和不等式的知识,掌握绝对值的性质是关键.14.-0.5<m<7.【解析】【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-7+m <0,2m+1<0,求不等式组的解集即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即70 210mm-+⎧⎨+⎩<<,解得-0.5<m<7.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.3 2【解析】【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【详解】去括号得:12x−12m>3−32m,移项得:12x>3−32m+12m,合并同类项得;12x>3−m,系数化为1得;x>6-2m,∵不等式的解集为x>3,∴6-2m=3,解得:m=32,故答案为:32.【点睛】考查了解一元一次不等式,和解一元一次方程组,根据不等式的解集为x>3列出关于m的方程是解题的关键.16.12 x<【解析】【分析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =, 且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <. 故答案为:12x <【点睛】 本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键. 17.1,2【解析】【分析】先解得不等式2n-5<5-2n 的解集为n <2.5,则不等式2n-5<5-2n 的正整数解为1,2.【详解】2552n n --<移项、合并同类项得4n <10,系数化为1得n <2.5,所以不等式2n-5<5-2n 的正整数解为1,2.【点睛】本题考查一元一次不等式和正整数,解题的关键是掌握解一元一次不等式和正整数的定义. 18.1(在﹣2<b <2范围内的任何一个数)【解析】【分析】把(0,-3)代入抛物线的解析式求出c 的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【详解】把(0,-3)代入抛物线的解析式得:c=-3,∴y=x2+bx-3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx-3得:y=1+b-3<0把x=3代入y=x2+bx-3得:y=9+3b-3>0,∴-2<b<2,即在-2<b<2范围内的任何一个数都符合,故答案为1(在-2<b<2范围内的任何一个数).【点睛】本题考查了对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解题的关键.19.m<4【解析】试题分析:3x=m-4,解得:x=43m-,根据题意可得:43m-<0,解得:m<4.考点:一元一次方程.20.1,2,3【解析】【分析】先求出不等式的解集,再求出整数解即可.【详解】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为1,2,3.【点睛】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.21.>【解析】【分析】在a b <的基础上两边同时乘以b ,根据不等式的性质解题即可【详解】∵0,0a b <<,且a b <∴不等式两边同时乘以b 得:2ab b >故答案为>【点睛】本题考查不等式的性质,注意不等式两边同时乘以一个负数不等式要变号是解题的关键. 22.﹣1.5≤a <﹣0.5【解析】【分析】首先求得不等式的解集,然后根据不等式的自然数解只有0、1、2三个,即可得到一个关于a 的不等式,从而求得a 的范围.【详解】解:解不等式得:x≤a+3.5.不等式的自然数解只有0、1、2三个,则自然数解是:0,1,2.根据题意得:2≤a+3.5<3,解得:﹣1.5≤a <﹣0.5.故答案为﹣1.5≤a <﹣0.5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.23.>4【解析】【分析】根据不等式的解集相同,可得关于a 的方程,根据解方程,可得答案.【详解】由不等式20.532x a -> 解得x >314a +, 由5(1-x )<a-20解得x >25a 5-. 关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a -20的解集完全相同,得 3125a 45a +-=. 解得a=5,关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a-20解集为x >4, 故答案为:>4.【点睛】本题考查了不等式的解集,利用不等式的解集相同得出关于a 的方程式解题关键. 24.A【解析】【分析】根据“箱子和苹果的总质量不超过10 Kg”列出不等式进行求解即可.【详解】解:设这只纸箱内装了x 个苹果,根据题意得0.3x+1≤10解得x≤30所以的最大值是30.【点睛】本题主要考查不等式的应用,找出题中的等量关系列出不等式即可.25.当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【解析】【分析】去的人数是变量可设为x ,在两个旅行社提出的不同优惠条件下根据公式:旅游费用=优惠前总费用-优惠费,分别列出解析式y 1 和y 2 ,然后根据两解析式大小比较来解题.【详解】设人数为x 人,该单位选择甲乙两旅行社分别支付的旅游费用为y 1 和y 2.则y 1=200×0.75x=150xy 2=200×0.8(x-1)=160x-160由y 1=y 2得:150x=160x-160解得x=16由y 1>y 2得:150x >160x-160解得x <16由y 1<y 2得:150<160x-160解得x >16答:当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【点睛】此题考查一次函数的应用,一元一次不等式的应用,解题关键在于分情况对费用进行讨论从而得出人数.26.(1)甲设备每台12万元,乙设备每台10万元.(2)有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【解析】【分析】(1)设设甲设备每台x 万元,乙设备每台y 万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”列出二元一次方程组可以求解;(2)设购买甲设备a 台,根据购买甲型设备不少于3台,和购买甲、乙两种新设备的资金不超过110万元,列出不等式组,根据不等式组的整数解得出购买方案.【详解】(1)设甲设备每台x 万元,乙设备每台y 万元,由题意得:3216326x y y x -=⎧⎨-=⎩解得:1210x y =⎧⎨=⎩, 答:甲设备每台12万元,乙设备每台10万元.(2)设购买甲设备a 台,则购买乙设备()10a -台,由题意得:()3121010110a a a ≥⎧⎪⎨+-≤⎪⎩解得:35a ≤≤, 又∵a 为整数,∴3a =,或4a =,或5a =,因此有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【点睛】考查一元一次不等式组和二元一次方程组的应用,分析题目中数量关系是列不等式组和方程组的关键,通过方程组确定价格,通过不等式组的整数解确定购买方案.27.(1)2x >,这个不等式的解集在数轴上的表示如图所示见解析;(2)12x <≤.【解析】【分析】(1)根据不等式性质进行解不等式;(2)分别解不等式,再求不等式组的解集.【详解】(1)去分母,得133x x +<-,移项,合并同类项,得24x -<-,系数化为1,解得2x >.这个不等式的解集在数轴上的表示如图所示:(2)解不等式①,得2x ≤.解不等式②,得1x >.∴不等式组的解集为12x <≤.【点睛】考核知识点:解不等式和不等式组.掌握一般步骤是关键.28.(1)共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)当A 车厢用26节时,总运费最少,最少为268000元;(3)按A 车厢25节,B 车厢15节安排的车厢.【解析】【分析】(1)关系式为:35×A 车厢节数+25×B 车厢节数≥1240;15×A 车厢节数+35×B 车厢节数≥880;(2)运费=6000×A 车厢节数+8000×B 车厢节数,结合(1)中的自变量的取值求解;(3)算出毛利润,减去154000,得到运费,把运费代入(2)即可得到方案.【详解】(1)设A 车厢用x 节,由题意,得3525401240? 153540880x x x x +⨯-≥⎧⎨+⨯-≥⎩()() 解得24≤x≤26,∴共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)总运费为:6000x+8000×(40-x )=-2000x+320000,当x 值越大时费用越小,故当A 车厢用26节时,总运费最少,最少为268000元,答:当A 车厢用26节时,总运费最少,最少为268000元;(3)200×(1240+880)-154000=-2000x-320000,解得x=25,所以是按A 车厢25节,B 车厢15节安排的车厢.【点睛】此题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,及所求量的等量关系.29.6a -3.【解析】【分析】先解方程组,得出x 和y 的值后,满足x >0,y >0,再化简|4a +5|-2|a -4|.【详解】3951x y a x y a +=+⎧⎨-=+⎩①② ①+②,得x =4a +5.③将③代入①,得y =-a +4.∵x >0,y >0,∴4a +5>0,-a +4>0,∴a -4<0.∴|4a +5|-2|a -4|=4a +5+2(a -4)=4a +5+2a -8=6a -3.【点睛】此题重点考察学生对二元一次方程组解的应用和整式化简的应用,熟练二元一次方程组的解法是解题的关键.30.(1)原不等式组的解集是 2.x <- (2) 122.x y z =⎧⎪=-⎨⎪=⎩【解析】【分析】(1)先求出两个不等式的解集,再求其公共解;(2)先消掉z ,得到关于x 、y 的二元一次方程,联立组成方程组求出x 、y 的值,然后代入方程③求解即可.【详解】 (1)213213223x x x x ++⎧->⎪⎨⎪-<⎩①②,解不等式①,()()2213326,x x +-+>42966,x x +-->510,x <-2,x <-解不等式②,23x x -<,3x ,<所以,原不等式组的解集是 2.x <-(2) 159317x y z x y z x y z ①②③,++=⎧⎪-+=⎨⎪-+=⎩①−②得,24y =-④,③−①得,8x −4y =16,即2x −y =4⑤,联立2424,y x y =-⎧⎨-=⎩④⑤ 解得12x y =⎧⎨=-⎩, 把x =1,y =−2代入③得,9617z ++=,解得z =2,所以,原方程组的解是122.x y z =⎧⎪=-⎨⎪=⎩【点睛】考查解一元一次不等式组,解三元一次方程组,掌握解题的步骤是解题的关键.31.x <23. 【解析】【分析】先移项,再分别运用平方差公式和完全平方公式进行去括号,合并同类项,系数化为1,从而得解.【详解】5-()()411x x ---<()223x - 5-()()411x x ----()223x -<0 5+4x 2-4-4x 2+12x-9<012x <8x <23. 【点睛】此题主要考查了解一元一次不等式,运用平方差公式和完全平方公式去括号是解此题的关键.32. 2.54x-<≤【解析】【分析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【详解】131722523(1)x xx x⎧--⎪⎨⎪+>-⎩①②解不等式①,得4x≤解不等式②,得 2.5x>-,把不等式的解集在数轴上表示为:所以原不等式组的解集为{| 2.54}x x-<≤.【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则33.(1)甲至少购买73件;(2)共3种方案.见详解【解析】【分析】(1)直接利用购进衬衫的总金额不超过9080元,进而得出不等式求出答案;(2)利用甲种款型的件数不超过乙种款型的件数,得出不等式结合(1)所求,进而得出答案.【详解】解:(1)设该商场购买甲种款型的衬衫x件,则购进乙种款型的衬衫(150-x)件,根据题意可得:40x+80(150-x)≤9080,解得:x≥73,答:该商场至少购买甲种款型的衬衫73件;(2)根据题意可得:x ≤150-x ,解得:x ≤75,∴73≤x ≤75,∵x 为正整数,∴x=73,74,75,∴购买方案有三种,分别是:方案一:购买甲种款型的衬衫73件,乙种款型77件;方案二:购买甲种款型的衬衫74件,乙种款型76件;方案三:购买甲种款型的衬衫75件,乙种款型75件.【点睛】本题考查了一元一次不等式的综合运用,重点掌握解应用题的步骤.难点是正确列出不等量关系.34.13x -≤<,非负整数解是0,1,2.【解析】【分析】先求出每一个不等式的解集,得到不等式组的解集,然后找到非负整数解即可.【详解】解:解不等式①得3x <,解不等式②得1x -≥,∴此不等式组的解集是13x -≤<,∴此不等式组的非负整数解是0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.35.(1)1;(2) 1<x <4.【解析】【分析】(1)先根据零指数幂、有理数乘方的法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.(2)分别求出不等式的解集,即可解答【详解】解:(1)原式=﹣1+1+3×3+1=1;(2)3(2)42113x xxx-->⎧⎪⎨+>-⎪⎩①②,由①得:x>1,由②得:x<4,则不等式组的解集为1<x<4.【点睛】此题考查负整数指数幂,零指数幂,实数的运算,特殊角的三角函数值,解一元一次不等式组,掌握运算法则是解题关键。
鲁教版(五四制)七年级数学下册第十一章一元一次不等式与不等式组专题测评练习题(精选含解析)
七年级数学下册第十一章一元一次不等式与不等式组专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x 的一元一次不等式64x x +≤的解集在数轴上表示为( )A .B .C .D .2、若不等式253x +-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x -1)+5>5x +2(m +x )成立,则m 的取值范围是( )A .m >-35B .m <-15C .m <-35D .m >-153、若22x y +>+,则下列式子中错误的是( )A .33x y ->-B .33x y >C .33x y ->-D .33x y +>+4、在数轴上表示不等式3x >5的解集,正确的是( )A .B .C .D .5、若a b >,则下列式子中一定成立的是( )A .22a b ->-B .22a b >C .11a b -<-D .11a b> 6、下列不等式中,是一元一次不等式的是( )A .2x y ->B .8x <C .32>D .2x x >7、下列不等式一定成立的是( )A .20222021a a >B .20212022a a +<+C .20212022a a ->-D .20222021a a> 8、若整数m 使得关于x 的不等式组()251325131x m x m x x ++⎧-≤⎪⎨⎪-<+⎩有且只有三个整数解,且关于x ,y 的二元一次方程组31x y m x y -=⎧⎨+=-⎩ 的解为整数(x ,y 均为整数),则符合条件的所有m 的和为( ) A .27 B .22 C .13 D .99、已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( )A .4个B .3个C .2个D .1个10、若不等式(m -2)x >n 的解集为x >1,则m ,n 满足的条件是( ).A .m =n -2且m >2B .m =n -2且m <2C .n =m -2且m >2D .n =m -2且m < 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点()2,1m m +-在第二象限,则m 的取值范围是__________.2、不等式1531422x x ->--的最小负整数解______. 3、临近中秋,某超市发起限时抢购散装月饼活动,规定中秋节前一天(9.30)价格打九折,中秋节当天(10月1日)价格打八折,其余时间不打折,中午王老师在该超市选购甲、乙、丙三种月饼,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在10月1日的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在9月30日总价的2027,且4千克甲9月30日的总价不低于65元,也不超过100元,如果三种月饼每千克的价格均为正整数,则王老师买2千克甲,1千克乙,1千克丙共付款_____元.4、①-2<0;②2x >3;③2≠3;④2x 2-1;⑤x ≠-5中是不等式的有____(填序号).5、不等式621x ->的最大整数解是_______.三、解答题(5小题,每小题10分,共计50分)1、解不等式组()2432122x x x ⎧+≤+⎪⎨-<⎪⎩. 2、仔细阅读下面例题,解答问题:观察下列各计算题:26×682=286×6234×473=374×4352×275=572×2515×561=165×51……以上每个等式都非常巧妙,左边是一个两位数乘以三位数,等式两边的数字之间具有特殊性,一边的数字也有特殊性,且数字关于等号成对称分布,我们把满足这种条件的等式称为“对称积等式”.(1)解决问题:填空,使下列各式成为“对称积等式”:41×154=×14;×286=682×(2)解决问题:设“对称积等式”这类等式左边两位数的十位数字为a,个位数字为b,①写出a+b的取值范围;②请用含a、b的代数式写出表示“对称积等式”的式子,并证明你的结论.3、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.4、在近几年的两会中,有多位委员不断提出应在中小学开展编程教育,2019年3月教育部公布的《2019年教育信息化和网络安全工作要点》中也提出将推广编程教育.某学校的编程课上,一位同学设计了一个运算程序,如图所示.按上述程序进行运算,程序运行到“判断结果是否大于23”为一次运行.(1)若5x ,直接写出该程序需要运行次才停止;(2)若该程序只运行了1次就停止了,则x的取值范围是.(3)若该程序只运行了2次就停止了,求x的取值范围.5、解不等式组{x−12>−13(x−1)<x+1,并写出不等式组的整数解-参考答案- 一、单选题1、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:64x x +≤,移项得:46x x -≤-,合并得:36x -≤-,解得:2x ≥,在数轴上表示为:故选:B .【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x 系数化为1是解题的关键.2、C【解析】【分析】 求出不等式253x +-1≤2-x 的解,求出不等式3(x −1)+5>5x +2(m +x )的解集,得出关于m 的不等式,求出m 即可.【详解】 解不等式253x +-1≤2-x ,得:x ≤45,解不等式3(x -1)+5>5x +2(m +x ),得:x <12m -, ∵不等式253x +-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x -1)+5>5x +2(m +x )成立, ∴12m ->45, 解得:m <-35. 故选:C【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m 的不等式是解此题的关键.3、C【解析】【分析】根据不等式的性质逐项分析判断即可【详解】 解:22x y +>+x y ∴>A. x y >,∴33x y ->-,故该选项正确,不符合题意;B. x y >,∴33x y >,故该选项正确,不符合题意; C. x y >,∴33x y -<-故该选项不正确,符合题意;D. x y >,∴33x y +>+,故该选项正确,不符合题意;故选C本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.4、A【解析】略5、C【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A. a b >,∴22a b -<-,故该选项不正确,不符合题意;B.当0a b >>时,22a b >,故该选项不正确,不符合题意;C. a b >,∴11a b -<-,故该选项正确,符合题意;D. 当0a b >>时,11a b<,故该选项不正确,不符合题意; 故选C【点睛】 本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.6、B【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【详解】A 、不等式中含有两个未知数,不符合题意;B 、符合一元一次不等式的定义,故符合题意;C 、没有未知数,不符合题意;D 、未知数的最高次数是2,不是1,故不符合题意.故选:B【点睛】本题考查一元一次不等式的定义,掌握其定义是解决此题关键.7、B【解析】【分析】令0a <,代入各式中判断是否成立,即可得出结果.【详解】解:A 中当0a <时,20222021a a <,原式不成立,故不符合要求;B 中20212022a a +<+,无论a 取何值,都成立,故符合要求;C 中当0a <时,20212022a a -<-,原式不成立,故不符合要求;D 中当0a <时,20222021a a<,原式不成立,故不符合要求; 故选B .【点睛】本题考查了不等式的性质.解题的关键在于举出不等式不成立的反例.8、A【解析】【分析】 先求出不等式组的解集为6211m x +-≤<,根据不等式组有且只有三个整数解,可得516m ≤< ,再解出方程组,可得1434m x m y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据x ,y 均为整数,可得m 取5,9,13,即可求解. 【详解】 解:()251325131x m x m x x ++⎧-≤⎪⎨⎪-<+⎩①② 解不等式①,得:611m x +≥- , 解不等式②,得:2x < , ∴不等式的解集为6211m x +-≤<, ∵不等式组有且只有三个整数解, ∴62111m +-<-≤- , 解得:516m ≤< ,∵m 为整数,∴m 取5,6,7,8,9,10,11,12,13,14,15,31x y m x y -=⎧⎨+=-⎩,解得:1434m x m y -⎧=⎪⎪⎨+⎪=-⎪⎩,∴当m取5,9,13时,x,y均为整数,∴符合条件的所有m的和为591327++=.故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.9、C【解析】【分析】先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.【详解】解:解方程组32121399x y ax y a+=--⎧⎪⎨-=+⎪⎩得:213322x ay a⎧=+⎪⎪⎨⎪=--⎪⎩,∵关于x、y的二元一次方程组32121399x y ax y a+=--⎧⎪⎨-=+⎪⎩的解满足x y≥,∴213a+≥322a--,解得:a≥-18 13,∵关于s的不等式组731ass-⎧>⎪⎨⎪≤⎩恰好有4个整数解,即4个整数解为1,0,-1,-2,∴7323a--≤<-,解得-2≤a<1,∴1813-≤a <1, ∴符合条件的整数a 的值有:-1,0,共2个,故选:C .【点睛】本题主要考查了解二元一次方程和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10、C【解析】略二、填空题1、2m <-【解析】【分析】根据第二象限的点的特征求得2010m m +<⎧⎨->⎩,解一元一次不等式组即可求解 【详解】解:∵点()2,1m m +-在第二象限,∴2010m m +<⎧⎨->⎩解得2m <-故答案为:2m <-【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2、-3【解析】【分析】移项,合并同类项,系数化成1,再求出不等式的最小负整数解即可.【详解】解:1531422x x->--,移项,得15143 22x x+>-+,合并同类项,得3x>-11,系数化成1,得x>113 -,所以不等式的最小负整数解是-3,故答案为:-3.【点睛】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.3、80【解析】【分析】本题首先假设三种月饼的价格,继而根据题意列三元一次方程组并求解,进一步根据甲月饼价格限制确定其价格,最后按照题目要求列式求解.【详解】假设每千克甲月饼x 元,每千克乙月饼y 元,每千克丙月饼z 元, 故根据题意得:2 4.20.8(23)202 4.20.9(3 2.7 1.8)27200.8(23)0.9(3 2.7 1.8)27x y x y z x y x y z x y z x y z ⎧⎪+=++⎪⎪+=⨯⨯++⎨⎪⎪++=⨯⨯++⎪⎩, 求解上述方程组得:6621211y z x z y z x ⎧⎪=-⎪=⎨⎪⎪=⎩,由题已知:650.94100x ≤⨯≤,且三种月饼每千克价格均为正整数,故解得:1927x ≤≤, ∵1211z x =,且每种月饼价格为正整数, ∴22x =,即12222411z =⨯=,62462212y =⨯-⨯=, 故每千克甲月饼22元,每千克乙月饼12元,每千克丙月饼24元,综上:2千克甲,1千克乙,1千克丙共付款:222+12+24=80⨯元.【点睛】本题考查三元一次方程组的实际应用,解题关键在于通过复杂的文字描述中抽象出数学等式,其次求解三元一次方程组时需根据具体情况选择合适的消元法.4、①②③⑤【解析】【分析】根据不等式的定义用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式,依次判断5个式子即可.【详解】解:依据不等式的定义用不等号连接表示不相等关系的式子是不等式,分析可得这5个式子中,①②③⑤是不等式,④是代数式;故答案为:①②③⑤.【点睛】本题属基本概念型的题目,考查不等式的定义,注意x ≠-5这个式子,难度不大.5、2【解析】【分析】首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.【详解】解:移项,得:216x ->-,合并同类项,得:25x ->-,系数化成1得:122x <, 则最大整数解是:2.故答案是:2.【点睛】本题主要考查不等式的整数解,关键在于求解不等式.三、解答题1、2 5.x【解析】【分析】先分别解不等式组中的两个不等式,再确定两个不等式解集的公共部分即可.【详解】解:() 2432122x xx①②⎧+≤+⎪⎨-<⎪⎩由①得:2,x≥-由②得:5,x所以不等式组的解集为:2 5.x【点睛】本题考查的是一元一次不等式组的解法,掌握“解一元一次不等式组的步骤”是解本题的关键.2、 (1)14,62,26(2)①19a b<+≤②证明见解析【解析】【分析】(1)根据例题写出对称积等式即可;(2)①根据,a b为整数且,a b的和为三位数的十位数字,即可求得范围;②根据规律列出等式,进而根据整式的乘法运算进行证明即可(1)41×154=451×14;62×286=682×26故答案为:14,62,26(2)设“对称积等式”这类等式左边两位数的十位数字为a,个位数字为b,,0a b >,9a b+≤,且,a b为整数∴19a b<+≤②()()()()10100101001010a b b a b a a a b b b a +⨯+++=⎡⎤⎡⎤⎣⎦⎣⎦+++⨯+证明:等式的左边等于()()1011011a b b a +⨯+22110011011011ab a b ab =+++()221111110ab a b =++等式的右边等于()()1101110a b b a +⨯+221110*********ab a b ab =+++()221111110ab a b =++∴左边等于右边原等式成立【点睛】本题考查了找规律,整式的乘法运算,不等式组的应用,找到规律是解题的关键.3、 (1)y 甲=25x +2 000;y 乙=35x(2)当0<x <200时,选择乙公司更优惠;当x =200时,选择两公司费用一样多;当x >200时,选择甲公司更优惠.理由见解析【解析】【分析】(1)设甲公司制作宣传材料的费用为y 甲(元),乙公司制作宣传材料的费用为y 乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;(2)分三种情况讨论,当y 甲>y 乙时,当y 甲=y 乙时,当y 甲<y 乙时,分别计算可得(1)解:设甲公司制作宣传材料的费用为y 甲(元),乙公司制作宣传材料的费用为y 乙(元),制作宣传材料的份数为x (份),依题意得y 甲=25x +2 000;y 乙=35x ;(2)解:当y 甲>y 乙时,即25x +2 000>35x ,解得:x <200;当y 甲=y 乙时,即25x +2 000=35x ,解得:x =200;当y 甲<y 乙时,即25x +2 000<35x ,解得:x >200.∴当0<x <200时,选择乙公司更优惠;当x =200时,选择两公司费用一样多;当x >200时,选择甲公司更优惠.【点睛】此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.4、 (1)4(2)13x >(3)813x <【解析】【分析】(1)当5x =时,根据2x -3求代数式的值,523723⨯-=<,循环代入x =7,代数式的值,7231123⨯-=<,再代入x =11,11231923⨯-=<,再看x=19时,19233523⨯-=>.该程序需要运行4次才停止.(2)根据一次运算就停止,列不等式2323x ->,解不等式13x >即可.(3)根据该程序只运行1次结果小于23,2次结果大于23就停()2323223323x x -⎧⎪⎨-->⎪⎩①②,解不等式①得x≤13,解不等式②得x >8,不等式的解集:813x <.(1)解:523723⨯-=<,7231123⨯-=<,11231923⨯-=<,19233523⨯-=>.∴若5x =,该程序需要运行4次才停止.故答案为:4.(2)解:该程序只运行了1次就停止了依题意得:2323x ->,解得:13x >.故答案为:13x >.(3)依题意得:()2323223323x x -⎧⎪⎨-->⎪⎩①②, 解不等式①得x≤13,解不等式②得x >8,不等式的解集:813x <.答:x 的取值范围为813x <.【点睛】本题考查了程序与代数式的值,一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)代入5x =,找出程序运行的次数;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)根据各数量之间的关系,正确列出一元一次不等式组.5、不等式组的解集为12x -<<,不等式组的整数解为0,1.【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.【详解】 解:()112311x x x -⎧>-⎪⎨⎪-<+⎩①②,解不等式①得:1x >-,解不等式②得:2x <,则不等式组的解集为12x -<<,不等式组的整数解为0,1.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.。
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
《第十一章4一元一次不等式》作业设计方案-初中数学鲁教版五四制12七年级下册
《一元一次不等式》作业设计方案(第一课时)一、作业目标本作业旨在通过实践操作,使学生能够:1. 掌握一元一次不等式的概念和基本性质;2. 学会一元一次不等式的解法,并能够正确运用;3. 培养解决实际问题的能力,提高数学应用意识。
二、作业内容作业内容主要围绕一元一次不等式的基本知识和解题技巧展开,具体包括:1. 复习巩固一元一次不等式的基本概念,如不等式的定义、不等号的意义等;2. 掌握一元一次不等式的解法,包括移项、合并同类项、系数化为1等基本步骤;3. 通过具体实例,让学生理解并掌握如何将实际问题转化为一元一次不等式问题,并求解;4. 布置一定数量的练习题,包括选择题、填空题和解答题,让学生巩固所学知识,提高解题能力。
三、作业要求为了确保作业的完成质量和效果,特提出以下要求:1. 要求学生认真审题,明确题目要求,做到有的放矢;2. 要求学生按照解题步骤,逐步推导,确保解题过程的严密性和正确性;3. 要求学生注意解题规范,书写清晰,符号正确,单位齐全;4. 要求学生独立完成作业,不得抄袭他人答案或网上搜索答案;5. 要求学生按时完成作业,并在规定时间内提交。
四、作业评价作业评价将根据以下标准进行:1. 正确性:答案是否正确,解题步骤是否严密;2. 规范性:书写是否清晰,符号、单位是否正确;3. 独立性:是否独立完成作业,无抄袭现象;4. 及时性:是否按时完成作业并提交。
评价结果将作为学生平时成绩的一部分,以鼓励学生学习积极性和提高作业质量。
五、作业反馈作业反馈是提高学生学习效果的重要环节,具体包括:1. 教师将对每位学生的作业进行认真批改,指出错误并给出正确答案;2. 对于普遍存在的问题,将在课堂上进行讲解和示范,帮助学生纠正错误;3. 对于表现优秀的学生,将给予表扬和鼓励,激发其学习热情;4. 及时收集学生反馈意见,不断改进作业设计和教学方法。
通过以上作业设计,旨在通过多方面的练习和反馈,让学生真正掌握一元一次不等式的知识和解题技巧,提高数学应用能力。
鲁教版2019七年级数学下册第十一章一元一次不等式与一元一次不等式组单元综合训练题B(附答案)
鲁教版2019七年级数学下册第十一章一元一次不等式与一元一次不等式组单元综合训练题B (附答案)1.不等式组1{231x x >--≤的解集在数轴上表示正确的是( )A .B .C .D .2.关于x 的不等式组10{20x x +>-≤,其解集在数轴上表示正确的是( ). A . B .C .D .3.如果(a +1)x <a +1的解集是x >1,那么a 的取值范围是( ) A .a <0 B .a <﹣1 C .a >﹣1 D .a 是任意有理数4.若关于x 的一元二次方程()21220k x x -+-=有两个不相等实数根,则k 的取值范围是( ). A .12k >B .12k ≥C .102k k >≠且D .102k k ≥≠且 5.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x≥11B .11≤x <23C .11<x≤23D .x≤236.下列各项中,结论正确的是( )A .若00a b ><,,则0ba> B .若a b >,则0a b -> C .若00a b <<,,则0ab < D .若0a b a ><,,则0ba<7.不等式组()256{5212x x x+≥->+的解集在数轴上表示正确的是( )A .B .C .D .8.若实数3是不等式2x–a–2<0的一个解,则a可取的最小正整数为()A.2B.3C.4D.59.不等式213x+>-的解集在数轴上表示正确的是()A .B .C .D .10.不等式组的解在数轴上表示正确的是( )A.A B.B C.C D.D11.若不等式3x>5x-8的解集中有m个正整数,则m的值为________.12.关于x 的不等式组的解集为,那么的值等于__________。
(完整word版)一元一次不等式习题课
(完整word版)一元一次不等式习题课一元一次不等式习题课【学习目标】1.会整理易错点,并能找到错误原因2.能灵活应用不等式的性质解决相关问题,会熟练准确地解一元一次不等式【错误展示】1.去括号时,错用乘法分配律解不等式3x+2(2-4x)<19.错解:去括号,得3x+4-4x<19,解得x>-15.诊断: 诊断: 错解在去括号时,括号前面的数 2 没有乘以括号内的每一项.正解: 正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3. 2.去括号时,2.去括号时,忽视括号前的负号解不等式5x-3(2x-1)>-6.错解:去括号,得5x-6x-3>-6,解得x<3.诊断:诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.3.移项时,不改变符号解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5,即6x<-14,所以x<-7/3诊断: 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.4.去分母时,忽视分数线的括号作用解不等式3x-(2x-5)/2>7错解:去分母,得6x-2x-5>15 ,解得:x>19/4诊断:去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,x>9/45.不等式两边同除以负数,不改变方向解不等式3x-6<1+7x. 错解:移项,得3x-7x<1+6,即-4x <7,所以x<-7/4诊断:将不等式-4x<7 的系数化为1 时,不等式两边同除以-4 后,根据不等式的诊断基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以所以x>-7/46.去分母时,漏乘不含分母的项解不等式x-(x-1)/3>x/2+1 错解:去分母,得x-2(x-1)>3x+1,去括号,解得x<1/4诊断:去分母时,要用最简公分母去乘不等式两边的每一项.而错解只乘了含有分母的项,漏乘了不含有分母的项.正解: 去分母,得6x-2(x-1)>3x+6,去括号,得6x-2x+2>3x+6,解得x>4.7.忽视对有关概念的理解求不等式(3x+4)/2-3≤7的非负整数解错解:整理,得3x≤16,的非负整数解. 所以x≤16/3 故其非负整数的解是1,2,3,4正解:非负整数的解是0,1,2,3,4,58.在数轴上表示解集时出现错误解不等式:3(1-x)≥2(x+9),并把它的解集在数轴上表示出来.错解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图1 所示.诊断:本题求得的解集并没错,问题出在将解集在数轴上表示出来时出现了错误,即有两处错误:一是方向表示错误,不应该向右,而应该向左;二是不应用空心圆圈表示,而应用实心圆圈表示.正解:整理,得-5x≥15,所以x≤-3,在数轴上表示如图2 所示.上述三例告诉我们解一元一次不等式时一定要认真分析题目的结构特征,灵活运用注:解一元一次不等式的步骤,正确理解有关概念,才能及时避开陷阱,准确、快速的求解. 【典型例题】例1.不等式基本性质的应用(比较大小)已知:a<b< p="">(1)a+1<b-c;<="" p="">(3)2a<2b: (4)-a/2 >-a/b;(5)3a-2<3b-2; (6)-a+c>-b+c例题2.求不等式2x-3≤5的正整数解例3.已知方程3x+y=2,当y取何值时,x<5?例4.解不等式:(x-2)/2 –(x-1)/3<1【巩固练习】一、不等式的解集1.不等式-3≤x<2的整数解是二、不等式的性质1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3,(2)2a ----- 2b,( 3 )- a /3 ----- -b /3 (4)4a-3---- 4b-3 (5)a-b --- 02、不等式ax>a 的解集为x>1,则a 的取值范围是()A. a>0B.a≥0C.a<0D.a≤03、不等式( a -3) x > 1 的解集是x < 3/a-1,则a的取值范围是4、若a > b ,则ac2 ____ bc2.(本组题独立完成后小组内正)三、解不等式,并把解集在数轴上表示出来(1)-3x/4<-2 (2)3x-1<5x+5(3)(2x-1)/3≤(1+x)/2 (4)(x-3)/4<6-(3-4x)/2(5) 2(x-1)/3≤(x+1/3)/5(由5 名同学板演,然后集体订正)四、列不等式并求出x的范围1、x 的1 与5 的差不小于32、代数式3x-5 的值大于5x+33、代数式(x+3)/2 –(x-1)/5<1的解是非负数(独立完成后,小组派代表讲解订正)五、不等式的综合应用1、求不等式x+1 < 3 的正整数解2、若不等式2x3、关于x 的方程3 x +k= 2 的解是非负数,求k 的取值范围4.3x+y= m+1,2x+y=m-1当m 为何值时,x>y?5.已知关于x,y的方程组x+2y=1,x-2y=m(1)求这个方程组的解;(2)当m取何值时,这个方程组的解x大于1,y不小于-1</b<>。
精品试卷鲁教版(五四制)七年级数学下册第十一章一元一次不等式与不等式组章节训练试题(含答案解析)
七年级数学下册第十一章一元一次不等式与不等式组章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a b <,则下列各式中,不一定成立的是( )A .33a b <B .33a b ->-C .a b a b +>-D .31a b -<-2、已知关于x 的不等式组()232325x a x x >-⎧⎨>-+⎩仅有三个整数解,则a 的取值范围是( ) A .12≤a <1 B .12≤a ≤1 C .12<a ≤1 D .a <13、已知a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a ﹣1>b ﹣1B .﹣a +2<﹣b +2C .3a <3bD .23a b > 4、如果有理数a <b ,那么下列各式中,不一定成立的是( )A .4-a >4-bB .2a <2bC .a 2<abD .a -3<b -1.5、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x 道题,根据题意可列不等式( )A .10x ﹣5(20﹣x )≥125B .10x +5(20﹣x )≤125C .10x +5(20﹣x )>125D .10x ﹣5(20﹣x )>1256、在数轴上表示不等式3x >5的解集,正确的是( )A .B .C .D .7、若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则下列各式正确的是( ) A .3a < B .3a ≤ C .a >-3 D .3a ≥-8、已知x y ≤下列式子中成立的是( )A .11x y +≤+B .x y c c ≤C .11x y +≤-D .xc yc ≤9、如果m n <,那么下列各式中,不一定成立的是( )A .22mc nc <B .33m n ->-C .22m n <D .31m n -<-10、已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A 礼盒混装2千克广味香肠,2千克川味香肠;B 礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超巿混装A 、B 两种礼盒的总成本最多为______元.2、不等式组21462x x ->⎧⎨-≤-⎩的解集是__________. 3、判断下列不等式组是否为一元一次不等式组:(1)276331y x -<⎧⎨+>⎩__________;(2)12x x <⎧⎨>-⎩__________; (3)2111x x+=⎧⎪⎨<⎪⎩ __________;(4)271330a a ->⎧⎨+<⎩__________ 4、已知关于x ,y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中31a -,给出下列命题: ①当2a =-时,x ,y 的值互为相反数;②51x y =⎧⎨=-⎩是方程组的解; ③当1a =时,方程组的解也是方程4x y a +=-的解;④若1x ,则14y .其中正确命题的序号是 __.(把所有正确命题的序号都填上)5、 “a 与b 的2倍的和大于1”用不等式可表示为________.三、解答题(5小题,每小题10分,共计50分)1、表示下列关系:(1)x 的14与-5的和是非负数; (2)y 的3倍与9的差不大于-1.2、解不等式组:54211135x x x x +>+⎧⎪-+⎨≤⎪⎩并把解集在数轴上表示出来. 3、(1)解不等式组2931213x x x +⎧⎪+⎨>-⎪⎩,并将其解集在数轴上表示出来. (2)解不等式组2173112x x x -<⎧⎪⎨-+⎪⎩①②,并写出该不等式的整数解. 4、定义:点C 在线段AB 上,若点C 到线段AB 两个端点的距离成二倍关系时,则称点C 是线段AB 的闭二倍关联点.(1)如图,若点A 表示数-1,点B 表示的数5,下列各数-3,1,3所对应的点分别为1C ,2C ,3C ,则其中是线段AB 的闭二倍关联点的是 ;(2)若点A 表示的数为-1,线段AB 的闭二倍关联点C 表示的数为2,则点B 表示的数为 ;(3)点A 表示的数为1,点C ,D 表示的数分别是4,7,点O 为数轴原点,点B 为线段CD 上一点.设点M 表示的数为m .若点M 是线段AB 的闭二倍关联点,求m 的取值范围.5、用适当的符号表示下列关系:(1)x 的3倍与x 的2倍的和是正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的体重不比小刚轻.-参考答案-一、单选题1、C【解析】【分析】根据不等式的性质进行解答.【详解】解:A 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.B 、在不等式的两边同时乘以13-,不等号方向改变,即33a b ->-,故本选项不符合题意. C 、a b <,则a b a b +>-不一定成立,如当2a =-,1b =-时,a b a b +<-,故本选项符合题意.D 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,所以31a b -<-,故本选项不符合题意.故选:C .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2、A【解析】【分析】根据解一元一次不等式组的方法,可以求得不等式组的解集,再根据关于x 的不等式组仅有三个整数解,即可得到关于a 的不等式组,从而可以求得a 的取值范围.【详解】解:解不等式组()232325x a x x >-⎧⎨>-+⎩得,2a ﹣3<x ≤1,由关于x 的不等式组2323(2)5x a x x >-⎧⎨>-+⎩仅有三个整数解得,整数解为1,0,-1, ∴﹣2≤2a ﹣3<﹣1, 解得12≤a <1,故选:A .【点睛】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法,根据不等式组有三个整数解列出不等式.3、C【解析】【分析】利用不等式的基本性质可判断A ,B ,C ,再利用特值法令4,0a b =-=可判断D ,从而可得答案.【详解】 解: a <b ,11,33,,a b a b a b 故A 不符合题意,C 符合题意; 22,a b 故B 不符合题意;当4,0a b =-=时,满足,a b < 而,23a b 故D 不符合题意; 故选C【点睛】 本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.【解析】【分析】根据a >b ,应用不等式的基本性质,逐项判断即可.【详解】解:∵a <b ,∴-a >-b ,∴4-a >4-b ,∴选项A 不符合题意;∵a <b ,∴2a <2b ,∴选项B 不符合题意;∵a <b ,∴a 2<ab (0a ),或a 2=ab (a =0),20,aab a∴选项C 符合题意;∵a <b ,∴a -3<b -1,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.【解析】【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x -5(20-x )>125,故选:D .【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.6、A【解析】略7、D【解析】【分析】不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:∵不等式组3x a x >⎧⎨≥-⎩的解为x a >, ∴3a ≥-,故选D .本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.8、A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A.∵x≤y,∴x+1≤y+1,故本选项符合题意;B.当c=0时,由x≤y不能推出x yc c,故本选项不符合题意;C.∵x≤y,∴x+1≤y+1,故本选项不符合题意;D.当c<0时,由x≤y能推出xc≥yc,故本选项不符合题意;故选:A.【点睛】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数(或式子),不等号的方向不变;②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.9、A【解析】【分析】根据不等式的性质,逐项判断即可求解.解:A 、当0c 时,2=0c ,则22mc nc =,故本选项错误,符合题意;B 、因为m n <,所以m n ->-,则33m n ->-,故本选项正确,不符合题意;C 、因为m n <,所以22m n <,故本选项正确,不符合题意;D 、因为m n <,所以31m n -<-,故本选项正确,不符合题意;故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.10、B【解析】【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x +1<-2x 的两边同加上2x ,不等号的方向不变,即10x +1<0. 故选:B .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.二、填空题1、36250【解析】【分析】设每千克川味香肠的成本为x 元,每千克广味香肠的成本为y 元,先根据利润率的计算公式可得100x y +=,从而可分别求出每个,A B 礼盒的实际成本和核算出的成本,再设A 礼盒的数量为a 个,B 礼盒的数量为b 个,根据“核算出的成本比实际成本少了500元”可得250x y b -=,从而可得12550x b=+,然后结合180a b +≤求出超巿混装,A B 两种礼盒的总成本的最大值即可得. 【详解】解:设每千克川味香肠的成本为x 元,每千克广味香肠的成本为y 元,由题意得:100(120%)()12000x y ⨯++=,即100x y +=,则每个A 礼盒的实际成本和核算出的成本均为22200x y +=(元),每个B 礼盒的实际成本为32100x y x +=+(元),核算出的成本为32100x y y +=+(元),设A 礼盒的数量为a 个,B 礼盒的数量为b 个,由题意得:180200(2100)200(2100)500a b a x b a y b +≤⎧⎨++--+=⎩,即180250a b x y b +≤⎧⎪⎨-=⎪⎩, 联立250100x y b x y ⎧-=⎪⎨⎪+=⎩,解得12550x b =+, 则超巿混装,A B 两种礼盒的总成本为200(2100)2002100a x b a xb b ++=++1252002(50)100a b b b=+⋅++ 200()25036250a b =++≤,即超巿混装,A B 两种礼盒的总成本最多为36250元,故答案为:36250.【点睛】本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.2、52<x ≤4##2.54x < 【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:解214x ->得:x >52; 解62x -≤-得:x ≤4; ∴不等式组的解集为:52<x ≤4. 故答案为:542x < 【点睛】本题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握各自的解法是解本题的关键.3、 不是 是 不是 是【解析】略4、①③④【解析】【分析】①先求出方程组的解121x a y a =+⎧⎨=-⎩,把2a =-代入求出x 、y 即可;②把51x y =⎧⎨=-⎩代入121x a y a=+⎧⎨=-⎩,求出a的值,再根据31a -判断即可;③求出方程组的解,再代入方程,看看方程左右两边是否相等即可;④根据1x 和12x a =+求出0a ,求出30a -,再求出1a -的范围即可.【详解】解方程组343x y a x y a +=-⎧⎨-=⎩得:121x a y a=+⎧⎨=-⎩, ①当2a =-时,12(2)3x =+⨯-=-,1(2)3y =--=,所以x 、y 互为相反数,故①正确;②把51x y =⎧⎨=-⎩代入121x a y a =+⎧⎨=-⎩得:12511a a +=⎧⎨-=-⎩, 解得:2a =,31a -,∴此时2a =不符合,故②错误;③当1a =时,123x a =+=,10y a =-=,∴方程组的解是30x y =⎧⎨=⎩, 把1a =,30x y =⎧⎨=⎩代入方程4x y a +=-得:左边=右边, 即当1a =时,方程组的解也是方程4x y a +=-的解,故③正确;④1x ,121x a ∴=+,即0a ,30a ∴-,30a ∴-,411a ∴-,1y a =-,14y∴,故④正确;故答案为:①③④.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,一元一次方程的解,解不等式组等知识点,能求出方程组的解是解此题的关键.5、a+2b>1【解析】【分析】a与b的2倍即为2+a b,再用不等号连接即得答案.【详解】解:由题意得:“a与b的2倍的和大于1”用不等式表示为21a b+>.故答案为:21a b+>.【点睛】本题考查了根据不等关系列出不等式,属于应知应会题型,正确理解题意是关键.三、解答题1、 (1)14x-5≥0(2)3y-9≤-1 【解析】【分析】(1)先表示出x的是14x,与−5的和为14x−5,是非负数得出14x−5≥0;(4)先表示出y的3倍是3y,再表示出与9的差3y−9,然后根据不大于−1即为小于等于,列出不等式即可.(1) 解:根据题意得:14x −5≥0; (2)解:根据题意得:3y −9≤−1.【点睛】本题考查了由实际问题抽象出一元一次不等式,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2、14x -<≤,见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由5421x x +>+得:1x >-, 由1135x x -+≤得:4x ≤, 故不等式组的解集为14x -<≤,在在数轴上表示如所示:.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、(1)34x -≤<,不等式组的解集表示在数轴上见解析;(2)不等式组的整数解是3.【解析】【分析】(1)先求出各个不等式的解集,然后根据“同大取大,同小取小,小大大小中间找,大大小小无处找”确定不等式组的解集,在数轴上表示出来即可;(2)先求出各个不等式的解集,然后根据“同大取大,同小取小,小大大小中间找,大大小小无处找”确定不等式组的解集,找出整数解即可.【详解】(1)2931213x x x +≥⎧⎪⎨+>-⎪⎩①②, 解不等式①得:3x ≥-,解不等式②得:4x <,则不等式组的解集为:34x -≤<,将不等式组的解集表示在数轴上如下:(2)解:2173112x x x -<⎧⎪⎨-≥+⎪⎩①②, 解不等式①得:4x <,解不等式②得:3x ≥,∴不等式组的解集是:34x ≤<,∴不等式组的整数解是3.【点睛】题目主要考查求解不等式组及在数轴上表示,熟练掌握不等式组的解法是解题关键.4、(1)2C 和3C ;(2)3.5或8;(3)25m ≤≤【解析】【分析】(1)首先点1C 不在线段AB 上,即点1C 不是线段AB 的闭二倍关联点;然后求出()2112AC =--=,2514BC =-=,得到222BC AC =,则点2C 线段AB 的闭二倍关联点,同理即可判断点3C 线段AB 的闭二倍关联点;(2)设点B 表示的数为x ,然后求出()213AC =--=,2BC x =-,再分当2AC BC =时,即()322x =-,当2BC AC =时,即26x -=,两种情况讨论求解即可;(3)设点B 表示的数为y ,先求出1AM m =-,BM y m =-,当2AM BM =时,即 当2BM AM =时,即22y m m -=-,两种情况讨论求解即可.【详解】解:(1)∵点A 表示数-1,点B 表示的数5,点1C 表示的数为-3,∴点1C 不在线段AB 上,即点1C 不是线段AB 的闭二倍关联点;∵点A 表示数-1,点B 表示的数5,点2C 表示的数为1,∴()2112AC =--=,2514BC =-=,∴222BC AC =,∴点2C 线段AB 的闭二倍关联点,同理()3314AC =--=,3532BC =-=,∴332AC BC =,∴点3C 线段AB 的闭二倍关联点,故答案为:2C 和3C ;(2)设点B 表示的数为x ,∵点C 是线段AB 的闭二倍关联点,∴()213AC =--=,2BC x =-,当2AC BC =时,即()322x =-,解得 3.5x =;当2BC AC =时,即26x -=,解得8x =;故答案为:3.5或8;(3)设点B 表示的数为y ,∵点M 是线段AB 的闭二倍关联点,∴1AM m =-,BM y m =-,当2AM BM =时,即122m y m -=-, ∴312m y -=, ∵B 在线段CD 上,且C 、D 表示的数分别为4、7, ∴31472m -≤≤ ∴35m ≤≤;当2BM AM =时,即22y m m -=-,∴32y m =-,∵B 在线段CD 上,且C 、D 表示的数分别为4、7,∴4327m ≤-≤∴23m ≤≤;∴综上所述,25m ≤≤.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,解题的关键在于正确理解题意.5、 (1)3x +2x >0(2)r ≥300(3)3a +4b ≤268(4)P ≥70%(5)设小明的体重为a 千克,小刚的体重为b 千克,a ≥b【解析】【分析】根据每一道题所叙述内容列出不等关系即可,注意大于与大于等于,小于与小于等于的区别.【详解】(1)3x +2x >0;(2)设炮弹的杀伤半径为r 米,r ≥300;(3)设每件上衣为a 元,每条长裤是b 元,3a +4b ≤268;(4)用P 表示明天下雨的可能性,P ≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,a ≥b .【点睛】本题考查列不等式,能够分析题意找出不等关系是解决本题的关键.。
一元一次不等式组应用题练习
一元一次不等式(组)应用题练习一、选择题(每题5分,共25分)1、亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A、30x-45≥300B、30x+45≥300C、30x-45≤300D、30x+45≤3002、初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A、至多6人B、至少6人C、至多5人D、至少5人3、2x+1是不小于-3的负数,表示为()A、-3≤2x+1≤0B、-3<2x+1<0;C、-3≤2x+1<0D、-3<2x+1≤04、现用甲、乙两种运输车将46t搞旱物资运往灾区,甲种运输车载重5t,乙种运输车载重4t,安排车辆不超过10辆,则甲种运输车至少应安排()A、4辆B、5辆C、6辆D、7辆5、(2007年佛山市)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A、1B、2C、3D、4二、填空题(每题5分,共15分)6、某试卷共有20道题,每道题选对得10分,选错了或者不选扣5分,至少要选对_____道题,其得分才能不少于80分。
7、某人10∶10离家赶11∶00的火车,已知他家离车站10公里,他离家后先以3公里/时的速度走了5分钟,然后乘公共汽车去车站,公共汽车每小时至少走______公里才能不误当次火车。
8、(2007年潍坊市)幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 _____件.三、解答题(每题10分,共60分)9、一个工程队原定在10天内至少要挖土600立方米,在前两天一共完成了120立方米,由于整个工程调整工期,要求提前两天完成挖土任务。
(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课
4、议一议:
1. 讨论下列式子的正确与错误.
(1)如果 a<b,那么 a+c<b+c;
(2)如果 a<b,那么 a-c<b-c;
(3)如果 a<b,那么 ac<bc; 2.设 a>b,用“<”或“>”号填空.
(4)如果 a<b,且 c≠0,那么 a > b . cc
(1)a+1 b+1;
(2)a-3 b-3;
教学重点 掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
教学难点 一元一次不等式的解法。
教法、学法
分析
自主探究与小组合作交流相结合.
媒体使用 和选择
教学过程
二次备课
1、 创设情境,引入新课
(1) 不等式的三条基本性质是什么?
(2) 运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
(1)a-3 b-3; (2) a
b;
22
5b;
(5)当 a>0,b 0 时,ab>0;
(7)当 a<0,b 0 时,ab>0;
三、课堂小结:
(3)-4a -4b; (4)5a
(6)当 a>0,b (8)当 a<0,b
0 时,ab<0; 0 时,ab<0.
四、作业:
板书设计
2.不等式的基本性质
教学反思
(3)3a 3b;
(4) a
b;
4
4
(5)- a 7
- b ; (6)-a -b. 7
5、变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;
(2)6x<5x-1; (3) 1 x>5; 2
(4)-4x>3.
鲁教版五四制七年级下册 第十一章 一元一次不等式与一元一次不等式组 一元一次不等式组及其解法
11 【中考·绥化】关于 x 的不等式组xx>>a1,的解集为 x>1, 则 a 的取值范围是( D )
A.a>1 B.a<1 C.a≥1 D.a≤1
【点拨】 此题容易遗漏a=1的情况而错选B.
-2x≤6,① 12 【中考·南京】解不等式组x>-2,②
3(x-1)<x+1.③
请结合题意,完成本题的解答.
A.1个 B.2个 C.3个 D.4个
8 【2021·广西】定义一种运算:a*b=ab,,aa≥<bb则不等式 (2x+1)*(2-x)>3 的解集是( C )
A.x>1 或 x<13
B.-1<x<13
C.x>1 或 x<-1 D.x>13或 x<-1
【点拨】 由新定义,得22xx++11≥>23-x,或22-x+x>1<3,2-x, 解得 x>1 或 x<-1. 故选 C.
16 已知关于 x,y 的方程组xx+-y2=y=a+4a-2,10的解为正数,且
x 的值小于 y 的值,求 a 的取值范围. 解:解方程组得xy==42-a-a,2, 根据题意得24a--a2>>00,,
2a-2<4-a,
解得 1<a<2.
5 【2021·贵港】不等式1<2x-3<x+1的解集是( C ) A.1<x<2 B.2<x<3 C.2<x<4 D.4<x<5
6 【2021·威海】解不等式组3x-2 1-1<2x,① 时,不等 x-3(2x-1)≥8②
式①②的解集在同一条数轴上表示正确的是( A )
7 【中考·宿迁】已知 4<m<5,则关于 x 的不等式组 x4--m2x<<00,的整数解共有( B )
①2y>x+1;1<5x,
②yy2<+11;>2y,
③3x(≤x2-;2)>4x,④26x--x7<≤48;-x,
鲁教版五四制下册数学第十一章 一元一次不等式与一元一次不等式组 一元一次不等式及其解法
解:2-x≤3(2+x), 2-x≤6+3x,-4x≤4,x≥-1. 解集表示在数轴上如图所示.
(2)若实数a满足a>2,说明a是不是该不等式的解.
解:∵a>2,不等式的解集为x≥-1,而2> -1, ∴a是该不等式的解.
17.不等式13(x-m)>3-m 的解集为 x>1,求 m 的值.
LJ版七年级下
第十一章一元一次不等式与 一元一次不等式组
11.4一元一次不等式 第1课时一元一次不等式及其解法
提示:点击 进入习题
1A 2B 3D 4D
5A 6B 7C 8B
答案显示
提B 13 C
14 见习题 15 见习题 16 见习题 17 见习题 18 见习题
(1)若3⊗x=-2023,求x的值;
解:根据题意,得2×3-x=-2023, 解得x=2029.
(2)若x⊗3<5,求x的取值范围.
解:根据题意,得2x-3<5, 解得x<4.
19.已知关于 x 的不等式43x+4<2x-23a 的解也是不等式1-62x< 12的解,求 a 的取值范围.
解:解第一个不等式得x>a+6, 解第二个不等式得x>-1, 则根据题意得a+6≥-1,解得a≥-7.
5.【中考·舟山】不等式1-x≥2的解集在数轴 上表示正确的是( A )
6.【中考·南充】不等式x+1≥2x-1的解集 在数轴上表示为( ) B
7.【中考·丽水】若关于x的一元一次方程x-
m+2=0的解是负数,则m的取值范围是
() A.Cm≥2 B.m>2
C.m<2
D.m≤2
8.若不等式2x+3 1+1>ax-3 1的解集是 x<53,则 a 的取值情况是 (B ) A.a>5 B.a=5 C.a>-5 D.a=-5
综合解析鲁教版(五四制)七年级数学下册第十一章一元一次不等式与不等式组专题攻克试题(含解析)
七年级数学下册第十一章一元一次不等式与不等式组专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、现有甲、乙两种运输车将46吨物资运往A 地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A .5 B .6 C .7 D .82、若整数m 使得关于x 的不等式组()251325131x m x m x x ++⎧-≤⎪⎨⎪-<+⎩有且只有三个整数解,且关于x ,y 的二元一次方程组31x y m x y -=⎧⎨+=-⎩的解为整数(x ,y 均为整数),则符合条件的所有m 的和为( ) A .27 B .22 C .13 D .93、如果m n <,那么下列各式中,不一定成立的是( )A .22mc nc <B .33m n ->-C .22m n <D .31m n -<-4、随着科技的进步,在很多城市都可以通过手机APP 实时查看公交车到站情况.小聪同学想乘公交车,他走到A 、B 两站之间的C 处,拿出手机查看了公交车到站情况,发现他与公交车的距离为700m (如图),此时他有两种选择:(1)与公交车相向而行,到A 公交站去乘车;(2)与公交车同向而行,到B 公交站去乘车.假设公交车的速度是小聪速度的6倍,小聪无论选择哪站乘坐都不会错过这辆公交车,则A ,B 两公交站之间的距离最大为( )A .240mB .260mC .280mD .300m5、若a b <,则下列各式中正确的是( )A .11a b +>+B .a c b c ->-C .33a b ->-D .33a b > 6、关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .37、一只纸箱质量为1kg ,放入一些苹果后,纸箱和苹果的总质量不能超过9kg .若每个苹果的质量为0.3kg ,则这只纸箱内能装苹果( )A .最多27个B .最少27个C .最多26个D .最少26个8、在数轴上表示不等式3x >5的解集,正确的是( )A .B .C .D .9、如图,一次函数y =kx +b (k >0)的图像过点()1,0-,则不等式()20k x b -+>的解集是( )A .x >-3B .x >-2C .x >1D .x >210、已知关于x 的不等式组32x x x a ≤⎧⎪-⎨⎪≥⎩>无解,则a 的取值范围是( ) A .a ≤﹣2 B .a >3 C .﹣2<a <3 D .a <﹣2或a >3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对x ,y ,z 定义一种新运算F ,规定:(F x ,y ,)z ax by cz =++,其中a ,b 为非负数.(1)当0c 时,若(1F ,1-,2)1=,(3F ,1,1)7=,则a 的值是 __,b 的值是 __;(2)若(3F ,2,1)5=,(1F ,2,3)1-=,设2H a b c =++,则H 的取值范围是 __.2、若不等式763x x -的最小整数解是a ,不等式47413x x -<+的最大负整数解是b ,则ab =_____.3、若x y >,则35x -______35y -(填“>”或“=”或“<”).4、不等式组36x x <-⎧⎨≤⎩的解集是_______. 5、用数轴表示不等式的解集,应记住下面的规律:①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点三、解答题(5小题,每小题10分,共计50分)1、临近春节,各大商场内虎年吉祥物、红灯笼、春联等商品需求量大增,各大工厂为应对“年货”模式,提高商品生产量以满足广大群众的需求,某工厂计划租用A、B两种型号的货车运送一批年货商品到外地进行销售,已知3辆A型货车和4辆B型货车一次可以运送850箱商品,6辆A型货车和5辆B型货车一次可以运送1400箱商品.(1)求一辆A型货车和一辆B型货车一次分别可以运送多少箱商品;(2)工厂计划租用A、B两种型号的货车共15辆,A型货车的租车费用为每辆500元,B型货车的租车费用为每辆300元,若运送的商品不少于1850箱,且租车费用小于6500元,请问工厂应该选择哪种租车方案所需费用最少,最少费用是多少元?2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、已知y与x﹣2成正比例,且当x=1时,y=﹣2(1)求变量y 与x 的函数关系式;(2)请在给出的平面直角坐标系中画出此函数的图象;(3)已知点A 在函数y =ax +b 的图象上,请直接写出关于x 的不等式ax +b >2x ﹣4的解集 .4、解不等式组:54211135x x x x +>+⎧⎪-+⎨≤⎪⎩并把解集在数轴上表示出来. 5、对于任意实数a ,b ,定义一种新运算,记为a b ⊗.当a b ≤时,a b a b ⊗=+;当a b >时,224a b a b ⊗=-+.(等号右边皆为通常的加法、减法和乘法)例如:对于23⊗,因为23<,所以23235⊗=+=;对于52⊗,因为52>,所以225252425⊗=-+=.(1)求()1142⎛⎫-⊗⊗-⎡⎤ ⎪⎣⎦⎝⎭的值;(2)若x ,y 为非负整数,且2230x y -≤,四位数M 的百位数字为x ,十位数字为y ,千位数字比百位数字小1,个位数字是十位数字的2倍,且()()33x y y x -⊗-能被7整除,求满足条件的所有M .-参考答案-一、单选题1、B【解析】【分析】现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x 辆,根据不等关系就可以列出不等式,求出x 的值.【详解】解:设乙种车安排了x 辆,4x +5×5≥46解得x ≥214. 因为x 是正整数,所以x 最小值是6.则乙种车至少应安排6辆.故选:B .【点睛】本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.2、A【解析】【分析】 先求出不等式组的解集为6211m x +-≤<,根据不等式组有且只有三个整数解,可得516m ≤< ,再解出方程组,可得1434m x m y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据x ,y 均为整数,可得m 取5,9,13,即可求解. 【详解】 解:()251325131x m x m x x ++⎧-≤⎪⎨⎪-<+⎩①② 解不等式①,得:611m x +≥- , 解不等式②,得:2x < , ∴不等式的解集为6211m x +-≤<, ∵不等式组有且只有三个整数解,∴62111m +-<-≤- , 解得:516m ≤< ,∵m 为整数,∴m 取5,6,7,8,9,10,11,12,13,14,15,31x y m x y -=⎧⎨+=-⎩,解得:1434m x m y -⎧=⎪⎪⎨+⎪=-⎪⎩, ∴当m 取5,9,13 时,x ,y 均为整数,∴符合条件的所有m 的和为591327++= .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.3、A【解析】【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A 、当0c 时,2=0c ,则22mc nc =,故本选项错误,符合题意;B 、因为m n <,所以m n ->-,则33m n ->-,故本选项正确,不符合题意;C 、因为m n <,所以22m n <,故本选项正确,不符合题意;D 、因为m n <,所以31m n -<-,故本选项正确,不符合题意;故选:A本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4、A【解析】【分析】可设小聪的速度是x m/分,则公交车速度是6x m/分,看手机后走的时间为t分,A,B两公交站之间的距离为y m,计算得到小明的路程,公交车的路程,再根据小聪无论选择哪站乘坐都不会错过这辆公交车得到关于y的不等式,故可求解.【详解】解:设小聪的速度是x m/分,则公交车速度是6x m/分,看手机后走的时间为t分,A,B两公交站之间的距离为y m,到A公交站:xt+6xt=700,解得xt=100,则6xt=6×100=600,到B公交站,由小聪不会错过这辆公交车可得1006006y y x x -+≤解得y≤240.符合题意故A,B两公交站之间的距离最大为240m.故选:A.【点睛】本题考查了一元一次不等式的应用,解题的关键是找到不等关系列出一元一次不等式.5、C【解析】依题意,根据不等式的性质,不等式两边同时加减相同数字,不等号不改变方向;不等式两边同时乘除大于零的数,不等号不改变方向;反之则改变,即可;【详解】对于选项A .a b <,依据不等式性质: 11+<+a b ,∴选项A 不符合题意;对于选项B .a b <,依据不等式性质:a c b c ∴-<-,∴选项B 不符合题意;对于选项C .a b <,依据不等式性质:33a b ∴->-,∴选项C 符合题意;对于选项D .a b <,依据不等式性质:∴33a b <,选项D 不符合题意. 故选:D .【点睛】本题主要考查不等式性质,难点在熟练应用不等式两边的同时乘小于零的数,不等号方向发生改变;6、D【解析】【分析】根据数轴可确定不等式的解集,根据解集相同列出方程求解即可.【详解】解:根据数轴可知,不等式的解集为1x ≥-,解不等式21x a +≥得,12a x -≥, 故112a -=-, 解得,3a =,故选:D .本题考查了一元一次方程的解法和一元一次不等式的解集,解题关键是根据不等式的解集相同列出方程.7、C【解析】【分析】设这只纸箱内能装苹果x个,则根据不等关系:纸箱质量+所装苹果质量≤9,可建立不等式,解不等式即可,从而可得结果.【详解】设这只纸箱内能装苹果x个,由题意可得:1+0.3x≤9解不等式得:2263 x由于x只能取正整数所以x为不超过26的正整数时,均满足纸箱和苹果的总质量不能超过9kg即这只纸箱内最多能装苹果26个故选:C【点睛】本题考查了一元一次不等式的应用,根据题意找出不等关系并列出不等式是关键,但要注意所求量为整数.8、A【解析】略9、C【解析】先将(-1,0)代入y =kx +b 中得到k=b ,则不等式()20k x b -+>化为()20k x k -+>,根据k >0解关于x 的不等式即可.【详解】解:将(-1,0)代入y =kx +b 中得:-k +b =0,解得:k=b ,则不等式()20k x b -+>化为()20k x k -+>,∵k >0,∴(x -2)+1>0,解得:x >1,故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k 与b 的关系是解答的关键.10、B【解析】【分析】根据大大小小无解找,确定a 的值即可.【详解】∵关于x 的不等式组32x x x a ≤⎧⎪-⎨⎪≥⎩>无解, ∴a >3,故选:B .本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.二、填空题1、 2 1955H 【解析】【分析】(1)根据定义列出二元一次方程组,解方程即可求得;(2)根据定义列出二元一次方程组,用含c 的代数式表示a ,b ,根据a ,b 为非负数,列出一元一次不等式,解不等式组求得c 的取值范围,进而求得H 的取值范围.【详解】(1)(F x ,y ,)z ax by cz =++,∴当0c 时,若(1F ,1-,2)1=,(3F ,1,1)7=可得:137a b a b -=⎧⎨+=⎩, 解方程组得:21a b =⎧⎨=⎩. 故答案为2,1.(2)当(3F ,2,1)5=,(1F ,2,3)1-=时,(F x ,y ,)z ax by cz =++得:325231a b c a b c ++=⎧⎨+-=⎩, 用含c 的代数式表示a ,b 得:22512a c c b =-⎧⎪⎨-=⎪⎩. a ,b 为非负数, ∴2205102c c -⎧⎪⎨-⎪⎩, 解不等式组得:115c . 2H a b c =++51222412c c c c -=-+⨯+=+, H 随c 的增大而增大,∴当15c =时,95H =, 当1c =时,5H =. ∴955H . 故答案为955H . 【点睛】本题考查了二元一次方程组与一元一次不等式组的应用,根据新定义列出方程组和不等式组是解题的关键.2、3【解析】【分析】根据不等求得x 的取值范围,从而可以得到a 、b 的值,进而求得ab 的值.【详解】解:763x x -,移项,得763x x --,合并同类项,得,3x -,不等式763x x -的最小整数解是a ,3a ∴=-,47413x x -<+,移项,得73414x x --<-,合并同类项,得1037x -<,系数化为1,得, 3.7x >-,不等式47413x x -<+的最大负整数解是b ,1b ∴=-,3ab ∴=,故答案为:3.【点睛】本题考查一元一次不等式的整数解,解题的关键是明确解一元一次不等式的方法.3、<【解析】【分析】根据不等式的性质:①不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变,据此变形即可得.【详解】解:∵x y >,∴55x y -<-,∴3535x y -<-,故答案为:<.【点睛】题目主要考查不等式的性质,深刻理解不等式的性质进行变形是解题关键.4、x <﹣3【解析】【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.【详解】解:根据“同小取小”,不等式组36x x <-⎧⎨≤⎩的解集是x <﹣3. 故答案为:x <﹣3.【点睛】本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5、 右 左 空心 不含【解析】略三、解答题1、 (1)1辆A 型车满载时一次可运150箱,1辆B 型车满载时一次可运100箱.(2)工厂应该选择租A 种货车7辆,B 型货车是8辆,费用为5900元.【解析】【分析】(1)设1辆A 型车一次可运x 箱,1辆B 型车一次可运柑橘y 箱,根据“用3辆A 型车和4辆B 型车一次可运850箱;用6辆A 型车和5辆B 型车一次可运1400箱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设租用A 型货车m 辆,B 型货车(15﹣m )辆,根据题意建立不等式组求出其解可确定租车方案;再分别计算费用即可.(1)解:设1辆A 型车一次可运x 箱,1辆B 型车一次可运y 箱,依题意,得:34850651400x y x y +=⎧⎨+=⎩, 解得:150100x y =⎧⎨=⎩. 答:1辆A 型车一次可运150箱,1辆B 型车一次可运100箱.(2)解:设租用A 型货车m 辆,B 型货车(15﹣m )辆,由题意,得150100(15)1850500300(15)6500?m x m x +-≥⎧⎨+-<⎩, 解得,710m ≤<,∵m 为整数,∴m =7,8,9.∴有3种方案;方案一:A 种货车7辆,B 型货车是8辆,费用为500730085900⨯+⨯=(元);方案二:A 种货车8辆,B 型货车是7辆,费用为500830076100⨯+⨯=(元);方案一:A 种货车9辆,B 型货车是6辆,费用为500930066300⨯+⨯=(元);答:工厂应该选择租A 种货车7辆,B 型货车是8辆,费用为5900元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是找准数量关系,正确列出二元一次方程组和一元一次不等式组.2、(1)N 95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N 95型40箱;(3)采购N 95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N 95型每箱进价x 元,一次性成人口罩每箱进价y 元,依题意得10x +20y =32500,30x +40y =87500,联立求解即可;(2)设购进N 95型a 箱,依题意得:2250×(1+10%)a +500×80%×(80-a )≤115000,求出a 的范围,结合a 为正整数可得a 的最大值;(3)设购进的口罩获得最大的利润为w ,依题意得:w =500a +100(80-a ),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N 95型每箱进价x 元,一次性成人口罩每箱进价y 元,依题意得:102032500{304087500x y x y +=+= ,解得: 2250{500x y == , 答:N 95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N 95型a 箱,则一次性成人口罩为(80﹣a )套,依题意得:2250110%50080%80115000a a ++⨯≤()(﹣) .解得:a ≤40.∵a 取正整数,0<a ≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w,则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.3、 (1)y=2x﹣4(2)见解析(3)x<3【解析】【分析】(1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;(2)列表描点连线即可;(3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集即可.(1)解:∵y与x﹣2成正比例,∴设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),解得:k=2,即y=k(x﹣2)=2(x﹣2)=2x﹣4,所以变量y与x的函数关系式是y=2x﹣4;(2)列表描点(0,-4),(2,0),连线得y=2x﹣4的图象;(3)从图象可知:A 点的坐标是(3,2),把A 点的横坐标x =3代入y =2x ﹣4时,y=2,即点A 也在函数y =2x ﹣4的图象上,即点A 是函数y =ax +b 和函数y =2x ﹣4的交点,∴关于x 的不等式ax +b >2x ﹣4反应在函数图像函数y =ax +b 在函数y =2x ﹣4图像上方,交点A 的左侧,所以关于x 的不等式ax +b >2x ﹣4的解集是x <3,故答案为:x <3.【点睛】本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.4、14x -<≤,见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由5421x x +>+得:1x >-, 由1135x x -+≤得:4x ≤, 故不等式组的解集为14x -<≤,在在数轴上表示如所示:.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、 (1)3124(2)2348或1212【解析】【分析】(1)根据新定义计算;(2)根据新定义,分两种情况解答①()()33x y y x -≤-;②()()33x y y x ->-.(1)根据题意:()1142⎛⎫-⊗⊗-⎡⎤ ⎪⎣⎦⎝⎭=(-1+4)1()2⊗-=31()2⊗-=2213()42--+=3124; (2)由题意得个位数字为2y ,千位数字为(x -1),∵千位数字不能为0,∴x -1≥0,解得x ≥2,∵个位数字2y <10,∴y <5,分两种情况讨论:①()()33x y y x -≤-,解得:x ≤y ,∴()()33x y y x -⊗-=3x -y +3y -x =2(x +y ),当x +y =7时,25x y =⎧⎨=⎩(不合题意,舍去),34x y =⎧⎨=⎩符合题意; ∴M 的值为:2348;当x +y =14时,∴x ≤y <5不合题意;②()()33x y y x ->-,解得:x >y ,∴()()33x y y x -⊗-=(3x -y )²-(3y -x )²=8(x ²-y ²)+4,222274x y x y224x y 能够被7整除,而2230,x y∴ x ²-y ²=3,即(x +y )(x -y )=3,(其余情况不合题意)∴x =2,y =1,∴M 的值为:1212;综上M 的值为:2348或1212.【点睛】本题考查了因式分解的应用以及解一元一次不等式,通过新运算的定义利用新运算解决问题是关键.。
难点详解鲁教版(五四制)七年级数学下册第十一章一元一次不等式与不等式组定向练习试卷(精选含答案)
七年级数学下册第十一章一元一次不等式与不等式组定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m <n ,那么下列各式中,不一定成立的是( )A .2m <2nB .3﹣m >3﹣nC .mc 2<nc 2D .m ﹣3<n ﹣12、下列说法中不正确的个数有( )①有理数21m +的倒数是211m + ②绝对值相等的两个数互为相反数③绝对值既是它本身也是它的相反数的数只有0④几个有理数相乘,若有奇数个负因数,则乘积为负数⑤若a b >,则22(1)(1)a c b c +>+A .1个B .2个C .3个D .4个3、下列不等式一定成立的是( )A .20222021a a >B .20212022a a +<+C .20212022a a ->-D .20222021a a> 4、如果a <b ,那么下列不等式中不成立的是( )A .3a <3bB .-3a <-3bC .-a >-bD .3+a <3+b5、不等式820x ->的解集在数轴上表示正确的是 ( )A .B .C .D .6、已知关于x 的不等式组32x x x a ≤⎧⎪-⎨⎪≥⎩>无解,则a 的取值范围是( ) A .a ≤﹣2 B .a >3 C .﹣2<a <3 D .a <﹣2或a >37、下列各数中,是不等式12x +>的解的是( )A .﹣7B .﹣1C .0D .98、如果有理数a <b ,那么下列各式中,不一定成立的是( )A .4-a >4-bB .2a <2bC .a 2<abD .a -3<b -1.9、不等式组2145x x x m -+⎧⎨>⎩有两个整数解,则m 的取值范围为( ) A .54m -<- B .54m -<<- C .54m -<- D .54m --10、如果a >b ,那么下列不等式中正确的是( )A .a -b >0B .ac ²>bc ²C .c -a >c -bD .a +3<b -3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数,a b 满足232a b +=,则22a b -的取值范围为___________.2、已知不等式1203x a -≤的解集为2x ≤,则a 的值为______.3、列一元一次不等式解应用题的基本步骤:(1)_________:认真审题,分清已知量、未知量;(2)_________:设出适当的未知数;(3)_________:要抓住题中的关键词,如“大于”“小于”“不大于”“不小于”“不超过”“超过”“至少”等.(4)_________:根据题中的不等关系列出不等式;(5)_________:解所列的不等式;(6)答:检验是否符合题意,写出答案4、某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x人,根据题意,得:_________,解这个不等式,得:_________,所以至少需要_________名八年级学生参加活动.5、不等式的解集的表示方法主要有两种:一是用______(如x>2),即用最简单形式的不等式x>a或x<a(a为常数)表示;另一种是用______,标出数轴上的某一区间,其中的点对应的数值都是不等式的解.这两种形式分别是用“______”和“______”表示不等式的解集.三、解答题(5小题,每小题10分,共计50分)1、解不等式组435133xxx->-⎧⎪+⎨-≤⎪⎩,并把它的解集在数轴上表示出来.2、在平面直角坐标系中,已知点()3,52P m m --,m 是任意实数.(1)当0m =时,点P 在第几象限?(2)当点P 在第三象限时,求m 的取值范围.(3)判断命题“点P 不可能在第一象限”的真假,并说明理由.3、肥西县祥源花世界管理委员会要添置办公桌椅A ,B 两种型号,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)直接写出A 型桌椅每套 元,B 型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A 型桌椅不少于12套,B 型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A 型桌椅x 套,总费用为y 元.①求y 与x 之间的函数关系,并直接写出x 的取值范围;②求出总费用最少的购置方案.4、解不等式523146x x ++-≥,并把它的解集在数轴上表示出来. 5、对于一个三位正整数n ,如果n 满足:它的百位数字、十位数字之和与个位数字的差等于6,那么称这个数n 为“开心数”,例如:n 1=936,∵9+3﹣6=6,∴936是“开心数”:n 2=602,∵6+0﹣2=4≠6,∴602不是“开心数”.(1)判断666、785是否为“开心数”?请说明理由;(2)若将一个“开心数”m 的个位数的两倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数s (例如;若m =543,则s =654),若s 也是一个“开心数”,求满足条件的所有m 的值-参考答案-一、单选题1、C【解析】【分析】不等式性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的性质逐一判断即可.【详解】解:A 、由m <n ,根据不等式性质2,得2m <2n ,本选项成立;B 、由m <n ,根据不等式性质3,得﹣m >﹣n ,再根据不等式性质1,得3﹣m >3﹣n ,本选项成立;C 、因为c 2≥0,当c 2>0时,根据不等式性质2,得mc 2<nc 2,当c 2=0时,mc 2=nc 2,本选项不一定成立;D 、由m <n ,根据不等式性质1,得m ﹣3<n ﹣2<n ﹣1,本选项成立;故选:C .【点睛】本题考查的是不等式的基本性质,掌握“利用不等式的基本性质判断不等式的变形是否正确”是解本题的关键.2、B【解析】【分析】由倒数的定义可判断①,由绝对值的含义可判断②③,由有理数的乘法中积的符号确定方法可判断④,由不等式的基本性质可判断⑤,从而可得答案.【详解】解:因为210,m 所以有理数21m +的倒数是211m +,故①正确;不符合题意 绝对值相等的两个数互为相反数或者相等,故②不正确;符合题意;绝对值既是它本身也是它的相反数的数只有0,故③正确;不符合题意;几个不为零有理数相乘,若有奇数个负因数,则乘积为负数,若其中一个因数为0,则结果为0,故④不正确;符合题意;若a b >,则22(1)(1)a c b c +>+,故⑤正确;不符合题意;所以②④符合题意故选: B .【点睛】本题考查的是倒数的含义,绝对值的含义,有理数乘法中积的符号确定,不等式的性质,掌握以上基础知识是解本题的关键.3、B【解析】【分析】令0a <,代入各式中判断是否成立,即可得出结果.【详解】解:A 中当0a <时,20222021a a <,原式不成立,故不符合要求;B 中20212022a a +<+,无论a 取何值,都成立,故符合要求;C 中当0a <时,20212022a a -<-,原式不成立,故不符合要求;D 中当0a <时,20222021a a<,原式不成立,故不符合要求; 故选B .【点睛】本题考查了不等式的性质.解题的关键在于举出不等式不成立的反例.4、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.5、B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:820x ->,移项得:28,x解得:4,x <所以原不等式得解集:4x <.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.6、B【解析】【分析】根据大大小小无解找,确定a 的值即可.【详解】∵关于x 的不等式组32x x x a ≤⎧⎪-⎨⎪≥⎩>无解, ∴a >3,故选:B .【点睛】本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.7、D【解析】【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】x ,解:移项得:1∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.8、C【解析】【分析】根据a>b,应用不等式的基本性质,逐项判断即可.【详解】解:∵a<b,∴-a>-b,∴4-a>4-b,∴选项A不符合题意;∵a<b,∴2a<2b,∴选项B 不符合题意;∵a <b ,∴a 2<ab (0a >),或a 2=ab (a =0),20,aab a∴选项C 符合题意;∵a <b ,∴a -3<b -1,∴选项D 不符合题意.故选:C .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9、C【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m 的不等式组,求出即可.【详解】解:2145x x x m -+⎧⎨>⎩①②, 解不等式①得:3x -,解不等式②得:x m >,∴不等式组的解集为3m x <-,不等式组有两个整数解,54m ∴-<-,故选:C .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m 的不等式组,难度适中.10、A【解析】【分析】在不等式的两边都加上或减去同一个数或整式,不等号的方向不变,在不等式的两边都乘以或除以同一个正数,不等号的方向不变,在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的基本性质逐一分析即可.【详解】 解: a >b ,0,a b 故A 符合题意;a >b ,当0c ≠时,22,ac bc > 故B 不符合题意;a >b ,,,a b c a c b 故C 不符合题意;a >b ,+333,a b b 故D 不符合题意;故选A【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.二、填空题1、24322a b -≤-≤ 【解析】【分析】 先根据已知等式可得223b a =-,从而可得22274a b a -=-,再根据绝对值的非负性、偶次方的非负性求出2a 的取值范围,由此即可得出答案.【详解】 解:由232a b +=得:223b a =-, 则222222(2374)a b a a a -=--=-,0b ≥,2203a ∴-≥,解得223a ≤, 又20a ≥,2302a ∴≤≤, 244372a ∴-≤-≤, 即22a b -的取值范围为24322a b -≤-≤, 故答案为:24322a b -≤-≤. 【点睛】本题考查了绝对值的非负性、偶次方的非负性、一元一次不等式组的应用,熟练掌握绝对值和偶次方的非负性是解题关键.2、12【解析】【分析】 先解不等式得到6≤ax ,结合2x ≤得到26=a进而求出a 的值12.【详解】 解:解不等式:1203x a -≤,得到16≤x a ,又不等式的解集为:2x ≤, ∴26=a,解得a =12,故答案为:12.【点睛】本题考查了不等式的解法,属于基础题,计算过程中细心即可.3、 审题 设未知数 找出题中的不等量关系 列不等式解不等式【解析】略4、 15×(60-x )+20x ≥1000 x ≥20 20【解析】略5、 式子形式 数轴 数 形【解析】略三、解答题1、不等式组的解集为:14x <≤,数轴表示见解析【解析】【分析】首先分别求解不等式,再根据不等式组的性质得到解集,结合数轴的性质作图,即可得到答案.【详解】∵43x ->-,移项并合并同类项,得:1x >, ∵5133x x +-≤ 去分母,得:5193x x +-≤移项并合并同类项,得:4x ≤,∴不等式组的解集为:14x <≤,将不等式组的解集表示在数轴上如下:.【点睛】本题考查了一元一次不等式组、数轴的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、 (1),点P 在第二象限; (2)52<m <3; (3)真命题,理由见解析【解析】【分析】(1)求得点P坐标即可得出所在的象限;(2)根据第三象限的点(x,y)满足x<0,y<0列出关于m的不等式组,解之即可求解;(3)分点P的横坐标大于0、横坐标等于0和横坐标小于0求解判断即可.(1)解:当m=0时,点P坐标为(-3,5),∴点P在第二象限;(2)解:∵点P在第三象限,∴30 520mm-<⎧⎨-<⎩,解得:52<m<3;(3)解:“点P不可能在第一象限”是真命题,理由为:当m-3>0时,m>3,∴-2m<-6,即5-2m<-1<0,∴点P在第四象限;当m-3=0时,m=3,∴5-2m=-1,即点P坐标为(0,-1),∴点P在y轴的负半轴;当m-3<0时,m<3,即-2m>-6,∴5-2m>-1,∴点P在第二象限或第三象限,综上,点P不可能在第一象限,是真命题.【点睛】本题考查点所在的象限、解一元一次不等式(组),熟记象限内点的坐标的符号特点是解答的关键.3、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:2200033000a ba b+=⎧⎨+=⎩,解得:600800ab=⎧⎨=⎩,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴12206xx≥⎧⎨-≥⎩,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.4、x≤-3,数轴见解析【解析】【分析】根据一元一次不等式的解法,将不等式去分母、去括号、移项、合并同类项、系数化1,解出不等式的值即可.【详解】解:去分母得,3(x+5)-2(2x+3)≥12,去括号得,3x+15-4x-6≥12,移项得,3x-4x≥12-15+6,合并得,-x≥3,系数化1得,x≤-3;不等式的解集在数轴上表示如下:【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、 (1)666是“开心数”,785不是“开心数”,理由见解析(2)464和532【解析】【分析】(1)根据“开心数”的定义即可得;(2)设m的百位数字为a,十位数字为b,个位数字为c,从而可得s的百位数字为2c,十位数字为a,个位数字为b,再根据“开心数”的定义列出等式,将,b c都用a表示出来,然后根据b c≤≤<≤求出a的取值范围,最后根据a为正整数进行分析即可得.09,029(1)解:666是“开心数”,785不是“开心数”,理由如下:+-=,6666666∴是“开心数”,+-=≠,785106∴不是“开心数”.785(2)解:设m的百位数字为a,十位数字为b,个位数字为c,则s的百位数字为2c,十位数字为a,个位数字为b,m和s都是“开心数”,626a b c c a b +-=⎧∴⎨+-=⎩, 解得183b a =-,122c a =-,09,029b c ≤≤<≤,01839,02(122)9a a ∴≤-≤<-≤, 解得1564a ≤<, 又a 为正整数,a ∴所有符合条件的取值为4,5,当4a =时,18346,12244b c =-⨯==-⨯=,则464m =, 当5a =时,18353,12252b c =-⨯==-⨯=,则532m =,。
八年级数学下册第二章一元一次不等式与一元一次不等式组2.6.2一元一次不等式组课后作业北师大版(2
八年级数学下册第二章一元一次不等式与一元一次不等式组2.6.2 一元一次不等式组课后作业(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第二章一元一次不等式与一元一次不等式组2.6.2 一元一次不等式组课后作业(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第二章一元一次不等式与一元一次不等式组2.6.2 一元一次不等式组课后作业(新版)北师大版的全部内容。
2.6.2一元一次不等式组课后作业1。
若不等式组2x313x a⎧->⎪⎨⎪>⎩的解集为x >3,则a 的取值范围是( ).A.a <3 B.a≤ 3 C .a >3 D.a ≥32.不等式组2x3482xx⎧>-⎪⎨⎪-≤-⎩的最小整数解为( ).A.-1 B.0 C.1 D.43. 若不等式组x2b2x0⎧>⎨->⎩的解集是-1<x <1,则( a +b ) 2 018 =__________.4。
判断52是否为不等式组11xx + 8 > 4x-1x⎧-≥-⎨⎩的一个解.5.关于x的不等式组2x-1<3(x-3)①2x+2>3x+4a ②⎧⎨⎩有四个整数解,求出a的取值范围.6。
一个长方形足球场的长为xcm,宽为70cm,如果它的周长大于350cm,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛. (注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间)参考答案1。
B2。
B3。
14。
是5.解:解原不等式组得8〈x<2-4a ,由题设条件可知8〈x<2—4a 包含着四个整数解应为9、10、11、12,可知 12〈2—4a≤13 所以,115-<a <-426.解:依题意,得2(x+70)>350 ① 70x<7560 ②⎧⎨⎩ 解这个不等式组,得105<x 〈108,因此,该球场可以用作国际比赛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版初二数学第十一章 一元一次不等式与一元一次不等式组课后作业题
1、下列不等式中,是一元一次不等式的是 ( )
A 012>-x ;
B 21<-;
C 123-≤-y x ;
D 532>+y ;
2.下列各式中,是一元一次不等式的是( )
A.5+4>8
B.2x -1
C.2x ≤5
D.1x
-3x ≥0 3. 下列各式中,是一元一次不等式的是( )
(1)2x<y (2) 错误!未找到引用源。
(3)错误!未找到引用源。
(4)错误!未找到引用源。
4.用“>”或“<”号填空 若a>b,且c 错误!未找到引用源。
,则:
(1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b;
(4)c-a_____c-b (5)错误!未找到引用源。
; (6)错误!未找到引用源。
5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
1、不等式122x >的解集是: ;不等式133
x ->的解集是: ; 2、不等式组⎩
⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 . 3、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620
x x ⎧<⎪⎨⎪->⎩的解集为 . 三. 解下列不等式,并在数轴上表示出它们的解集.
(1) 8223-<+x x ( 2). x x 4923+≥- (3). )1(5)32(2+<+x x
(4). 0)7(319≤+-x (5) 31222+≥+x x (6) 2
23125+<-+x x
(7)7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x (9)12
15312≤+--x x
(10) 2
15329323+≤---x x x (11)11(1)223x x -<- (12) )1(5
2)]1(21[21-≤+-x x x
(13)4
1328)1(3--<++x x (14) ⋅->+-+2503.0.02.003.05.09.04.0x x x
三、解不等式组,并在数轴上表示它的解集
1. ⎩⎨⎧≥-≥-.
04,012x x 2.⎩⎨⎧>+≤-.074,03x x 4⎪⎩⎪⎨⎧+>-<-.
3342,121x x x x 5.-5<6-2x <3.
6.⎪⎩⎪⎨⎧⋅>-<-322,352x x x x
7.⎪⎩
⎪⎨⎧->---->-.6)2(3)3(2,132x x x x 8.⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x 9..234512x x x -≤-≤-
10.532(1)
314(2)2x x x -≥⎧⎪⎨-<⎪⎩ 11.⎪⎩⎪⎨⎧≥--+.052,1372x x x 12.⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x 13.14321<--<-x
四.变式练习
1不等式组⎩
⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1
2. k 满足______时,方程组⎩⎨⎧=-=+4
,2y x k y x 中的x 大于1,y 小于1.
3. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .
4. .已知关于x ,y 的方程组⎩
⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.
5. 已知方程组⎩
⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.
6. 当3
10)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.
7. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.
8. 当k 取何值时,方程组⎩
⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.
9. 已知⎩⎨⎧+=+=+1
22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
10. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-0
2,43x a x 的解集是x >2,求a 的值.
11. 关于x 的不等式组⎩
⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.
12. k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?
13. 已知关于x ,y 的方程组⎩⎨⎧-=-+=+3
4,72m y x m y x 的解为正数,求m 的取值范围.
14. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.。