七上期中试题
2023-2024学年北京市海淀区七年级(上)期中语文试卷(含解析)
2023-2024学年北京市海淀区七年级(上)期中语文试卷一、基础•运用。
(共15分)1.(15分)步入初中,我们认识了新同学,结交了新朋友。
为帮助同学们更好地理解友谊的真谛,完成下列任务。
(1)【第一组:诗文墙,识真挚友情】第一组负责布置诗文墙,展示歌咏友谊的中国经典诗文。
请你帮助完成问题。
①请用正楷字书写【甲】处格言。
②格言【甲】出自我国文化典籍《 》。
③在【乙】处再书写一句能够体现友情的诗文,恰当的一项是 A.不要人夸好颜色,只留清气满乾坤。
B.不知何处吹芦管,一夜征人尽望乡。
C.莫愁前路无知己,天下谁人不识君。
D.儿童相见不相识,笑问客从何处来。
(2)【第二组:故事墙,悟交友之道】割席断交管宁和华歆同在园中锄草,看见菜畦中有一片yào眼的金子。
管宁像没看见一样,继续挥动着锄头,有个穿着礼服的人,坐着装饰华丽的车从门前经过,华歆却放下书出去观看。
管宁就割断席子和华歆分开来坐,说:“你不再是我的朋友了□”【启示】管宁潜心读书,淡泊名利,华歆则向往富贵,容易受到世俗诱惑。
两个人不是志同道合的朋友,因而断交。
刎颈之交蔺相如深受赵王赏识,封为上卿。
廉颇不满,扬言要羞辱蔺相如。
面对廉颇的咄咄逼人,蔺相如处处避让。
蔺相如的门客误以为他害怕廉颇,纷纷提出要离开。
蔺相如解释说:“我连秦王都不怕,又怎会怕廉将军呢?如今,秦国才不敢进犯。
作为赵王的左膀右臂,我怎能因私人恩怨而不顾江山社稷呢?”廉颇听说后,万不得已,背着荆条向蔺相如请罪。
从此,他们便成了同生死、共患难的好朋友,同心同德为国效力。
【启示】蔺相如谦让大度、顾全大局的胸怀,廉颇知错就改、真诚请罪的风范,成就了古代友谊的佳话。
①故事墙文稿中有两处书写用拼音代替,请你依据拼音填写正确的汉字。
yào 眼惭kuì ②文稿中加点成语使用不恰当的一项是 A.淡泊名利B.志同道合C.咄咄逼人D.万不得已③句号用于句尾,表示陈述语气;叹号用于句尾标点: 理由: (3)【第三组:留言墙,写交友感悟】①有同学在留言墙上发布了一则“征友启事”,你发现画线句有一处语病,请帮助修改。
四川省成都市龙泉驿区2023-2024学年上学期七年级期中数学试卷(含解析)
2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×1084.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,55.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或36.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣27.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)48.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ ﹣(选填“>”、“=”或“<”).10.(4分)单项式的系数为 ,次数为 .11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 .12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 .(以上均为24小时制)13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).16.(6分)先化简,再求值:,其中x=2,y=﹣.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.18.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C 后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C 表演机A 起飞后的高度变化如下表所示:高度变化上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km(1)当表演机A 完成上述五个表演动作后,表演机A 的高度是多少千米;(2)如果表演机A 每上升或下降1千米需消耗1.7升燃油,那么表演机A 在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B 在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B 在完成第5个动作后与表演机A 完成5个动作后的高度相同,表演机B 的第5个动作是上升还是下降,上升或下降多少千米?一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x +y |+5取最小值时,代数式x +y ﹣10的值为 .20.(4分)在数轴上,如果点A 表示的数为﹣3,点B 表示的数为1,一个小球从点A 出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C 处,则点A 到点C 的距离与点B 到点C之间的距离之和为 .21.(4分)如图所示,在长方形ABCD 中,AD =3AB ,在它内部有三个小正方形,正方形AEFG 的边长为m ,正方形GBIH 的边长为n ,则阴影部分的周长为 (用含m ,n 的代数式表示).22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= .23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x=7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. (2)数轴上的点都表示有理数. (3)整数和小数统称为有理数. 25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.2023-2024学年四川省成都市龙泉驿区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)如果某商场盈利5万记作+5万元,那么亏损4万元,应记作( )A.+4万元B.﹣4万元C.+1万元D.﹣1万元【解答】解:如果某商场盈利5万记作+5万元,那么亏损4万元,应记作﹣4万元.故选:B.2.(4分)﹣2的相反数是( )A.﹣2B.﹣C.2D.【解答】解:﹣2的相反数是2,故选:C.3.(4分)我国神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间.从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里.将数据2.32亿用科学记数法表示为( )A.0.232×109B.2.32×108C.2.32×106D.23.2×108【解答】解:2.32亿=2.32×108.故选:B.4.(4分)多项式3x2﹣2x+5的各项分别是( )A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,5【解答】解:多项式3x2﹣2x+5的各项分别是3x2,﹣2x,5,故选:A.5.(4分)若数轴上点A表示的数是﹣1,则与点A相距2个单位长度的点表示的数是( )A.±3B.﹣3 或1C.±1D.1或3【解答】解:∵数轴上点A表示的数为﹣1,∴与点A相距2个单位长度的点表示的数是:﹣1﹣2=﹣3或﹣1+2=1,综上所述,表示的数是﹣3或1.故选:B.6.(4分)若﹣2a m+5b2与a4b2n的和仍为单项式,则m﹣n的值为( )A.0B.2C.﹣1D.﹣2【解答】解:根据题意可得,m+5=4,2n=2,解得:m=﹣1,n=1,则m﹣n=﹣1﹣1=﹣2.故选:D.7.(4分)下列各组数中,相等的一组是( )A.﹣|﹣2|与﹣(﹣2)B.﹣33与(﹣3)3C.与D.﹣54与(﹣5)4【解答】解:A、∵﹣|﹣2|=﹣2,﹣(﹣2)=2,∴﹣|﹣2|≠﹣(﹣2),故此选项不符合题意;B、∵﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C、∵,,∴,故此选项不符合题意;D、∵﹣54=﹣625,(﹣5)4=625,∴﹣54≠(﹣5)4,故此选项不符合题意;故选:B.8.(4分)根据流程图中的程序,若输入x的值为﹣1,则输出y的值为( )A.4B.7C.8D.187【解答】解:根据题意得:y=(﹣1)2×3﹣5=﹣2<0,y=(﹣2)2×3﹣5=7>0,符合题意,故选:B.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)比较大小:﹣ < ﹣(选填“>”、“=”或“<”).【解答】解:∵|﹣|=>|﹣|=.∴﹣<﹣.故答案为:<.10.(4分)单项式的系数为 ﹣ ,次数为 5 .【解答】解:单项式的系数为﹣、次数为5,故答案为:﹣,5.11.(4分)已知a,b互为相反数,且c,d互为倒数,m是最大的负整数,则3a﹣2023cd+3b+m的值为 ﹣2024 .【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1.∵m是最大的负整数,∴m=﹣1.∴3a﹣2023cd+3b+m=3(a+b)﹣2023cd+m=0﹣2023﹣1=﹣2024.故答案为:﹣2024.12.(4分)下表是国外城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市纽约巴黎东京多伦多时差(时)﹣13﹣7+1﹣12如果现在东京时间是16:00,那么纽约时间是 2:00 .(以上均为24小时制)【解答】解:∵由表格可得,东京时间比纽约时间快的时数为:1﹣(﹣13)=14,∴当东京时间是16:00时,纽约时间为:16﹣14=2(时),即如果现在东京时间是16:00,那么纽约时间是2:00,故答案为:2:00.13.(4分)当x=3时,ax3﹣bx+3的值是﹣1,则9a﹣b﹣1的值是 .【解答】解:把x=3代入ax3﹣bx+3=﹣1,得:27a﹣3b+3=﹣1,∴9a﹣b=,∴9a﹣b﹣1=﹣1=.故答案为:.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(4分)计算:(1)﹣17+24+(﹣16)﹣(﹣9);(2);(3);(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2.【解答】解:(1)﹣17+24+(﹣16)﹣(﹣9)=﹣17+24+(﹣16)+9=0;(2)=(﹣25)×××=﹣;(3)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=84+(﹣8)+30=106;(4)(﹣1)2025﹣(﹣18)×﹣4÷(﹣2)2=(﹣1)+18×﹣4÷4=(﹣1)+10﹣1=8.15.(4分)化简:(1)﹣x2+3y+2x2﹣5y+1;(2)3x2﹣xy﹣2(x2﹣xy).【解答】解:(1)原式=x2﹣2y+1;(2)原式=3x2﹣xy﹣x2+2xy=2x2+xy.16.(6分)先化简,再求值:,其中x=2,y=﹣.【解答】解:原式=xy2﹣(3x2y﹣xy2﹣2xy)+2x2y﹣2xy﹣xy2=xy2﹣3x2y+xy2+2xy+2x2y﹣2xy﹣xy2=xy2﹣xy2+xy2﹣3x2y+2x2y+2xy﹣2xy=xy2﹣x2y,当x=2,y=时,原式=×2×﹣4×(﹣)=+2=.17.(6分)如图是2023年八月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的7个数中最中间一个数是x,请用含x的代数式由小到大依次表示出“H”形框中的其余6个数;(2)请问“H”形框能否框到七个数,使这七个数之和等于161?若能,请由小到大依次写出这七个数;若不能,请说明理由.【解答】解:(1)根据题意可得:“H”形框中的其余6个数分别为:x﹣8、x﹣6、x﹣1,、x+1、x+6、x+8;(2)能;理由:根据(1)中所得的7个数分别为:x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,则x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=161,解得:x=23,7个数分别为:15、17、22、23、24、29、3118.(12分)2023年11月中国人民解放军空军八一飞行表演队应邀赴阿联酋参加于11月13日到17日举行的第十八届迪拜航空展,此次迪拜展是空军八一飞行表演队继2017年11月之后第二次亮相阿联酋,是空军八一飞行表演队换装歼﹣10C后首次飞赴中东国家,针对此次航展空军八一飞行表演队编排了3套表演方案,共20多个表演动作.表演过程中一架歼﹣10C表演机A起飞后的高度变化如下表所示:上升4.2千米下降2.3千米上升1.5千米下降0.9千米上升1.1千米高度变化记作+4.2km﹣2.3km+1.5km﹣0.9km+1.1km (1)当表演机A完成上述五个表演动作后,表演机A的高度是多少千米;(2)如果表演机A每上升或下降1千米需消耗1.7升燃油,那么表演机A在这5个动作表演过程中,一共消耗了多少升燃油;(3)若另一架表演机B在做花式飞行表演时,起飞后前四次的高度变化为:上升3.8千米,下降2.5千米,上升4.3千米,再下降1.9千米.若要使表演机B在完成第5个动作后与表演机A完成5个动作后的高度相同,表演机B的第5个动作是上升还是下降,上升或下降多少千米?【解答】解:(1)4.2﹣2.3+1.5﹣0.9+1.1=3.6(千米),即表演机A的高度是3.6千米;(2)(4.2+2.3+1.5+0.9+1.1)×1.7=10×1.7=17(升),即表演机A在这5个动作表演过程中,一共消耗了17升燃油;(3)3.6﹣(3.8﹣2.5+4.3﹣1.9)=3.6﹣3.7=﹣0.1(千米),即表演机B的第5个动作是下降,下降0.1千米.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)当|2x+y|+5取最小值时,代数式x+y﹣10的值为 ﹣10 .【解答】解:∵|2x+y|+5取最小值,|2x+y|≥0,∴当2x+y=0时,符合题意,∴x+y﹣10=(2x+y)﹣10=0﹣10=﹣10.故答案为:﹣10.20.(4分)在数轴上,如果点A表示的数为﹣3,点B表示的数为1,一个小球从点A出发,沿着数轴先向左移动7个单位长度,再向右移动4个单位长度,此时小球到达点C处,则点A到点C的距离与点B到点C之间的距离之和为 10 .【解答】解:由题意得,点C表示的数是﹣3﹣7+4=﹣6,因为点A表示的数为﹣3,点B表示的数为1,所以点A到点C的距离为﹣3﹣(﹣6)=﹣3+6=3,点B到点C的距离为1﹣(﹣6)=1+6=7,所以点A到点C的距离与点B到点C之间的距离之和为3+7=10,故答案为:10.21.(4分)如图所示,在长方形ABCD中,AD=3AB,在它内部有三个小正方形,正方形AEFG的边长为m,正方形GBIH的边长为n,则阴影部分的周长为 8m+6n (用含m,n的代数式表示).【解答】解:根据观察可知,图中阴影部分的周长与长为CI、宽为AB的矩形周长相同,在长方形ABCD中,AD=BC,AD=3AB,∵正方形AEFG的边长为m,正方形GBIH的边长为n,∴AB=m+n,BC=3(m+n),∵CI=BC﹣BI,∴CI=3(m+n)﹣n=3m+2n,∴阴影部分的周长为:2(AB+CI)=2(m+n+3m+2n)=8m+6n,故答案为:8m+6n.22.(4分)已知有理数a,b,c在数轴上的位置如图所示,满足|a|<|b|<|c|,则|2a+c﹣b|﹣|a﹣c+b|+= 3a﹣2 .【解答】解:由图可知,2a>0,c﹣b>0,a﹣c+b<0,ab<0,ac>0,∴|2a+c﹣b|﹣|a﹣c+b|+﹣=2a+c﹣b+(a﹣c+b)﹣1﹣1=2a+c﹣b+a﹣c+b﹣1﹣1=3a﹣2,故答案为:3a﹣2.23.(4分)观察下列数表规律,第n列第二排的数为 (用含n的代数式表示).第1列第2列第3列第4列第5列……第n列第一排2﹣46﹣810…………第二排207421…………第三排2481632…………【解答】解:∵第一排第n列的数为:(﹣1)n+12n,第三排第n列的数为:2n,∴第n列第二排的数为:,二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)【基本事实】我们知道整数和分数统称为有理数,为什么不是整数和小数统称为有理数呢?所有的分数都可以化成小数的形式,是不是所有的小数都可以化成分数形式呢?我们可以举例说明:有限小数0.2化成分数的形式是 ;无限循环小数又该如何化呢?我们以无限循环小数0.7为例进行说明:设=x,由=0.7777…可知,10x=7.7777…,所以10x =7+x,解方程,得x=,于是得,故化成分数的形式是 ,所有有限小数和无限循环小数 是 (填“是”或“不是”)有理数;而无限不循环小数是不可以化成分数的,所以π 不是 (填“是”或“不是”)有理数,那么无限不循环小数能通过数轴上的一个点来表示吗?我们将以π为例通过下列活动来探索:【数学活动】如图,直径为1的圆从原点出发沿数轴正方向滚动一周,圆上一点由原点O到达点O',则OO′= π .【知识推理】判断:(填“正确”或“错误”)(1)任何一个有理数都可以用数轴上唯一的一个点来表示. 正确 (2)数轴上的点都表示有理数. 错误 (3)整数和小数统称为有理数. 错误 【解答】解:【基本事实】0.2==;设=x,由=0.37373737…可知,100x=37.373737…,所以100x=37+x,解方程,得x=,于是得故=;所有有限小数和无限循环小数是有理数;无限不循环小数是不可以化成分数的,所以π不是有理数;【数学活动】因为圆的周长为π×1=π,所以OO′=π,故答案为:π;【知识推理】(1)任何一个有理数都可以用数轴上唯一的一个点来表示.正确;(2)数轴上的点都表示有理数.错误;(3)整数和小数统称为有理数.错误.故答案为:正确;错误;错误.25.(16分)(1)已知A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,若(x+y﹣2)2+|xy+1|=0,求3A﹣2(A+B)的值.(2)已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|.【解答】解:(1)∵(x+y﹣2)2+|xy+1|=0,∴x+y﹣2=0,xy+1=0,∴x+y=2,xy=﹣1,∵A=2x2﹣x+y﹣4xy,B=x2﹣2x﹣y﹣xy+3,∴3A﹣2(A+B)=3A﹣2A﹣2B=A﹣2B=2x2﹣x+y﹣4xy﹣2(x2﹣2x﹣y﹣xy+3)=2x2﹣x+y﹣4xy﹣2x2+4x+2y+2xy﹣6=3x+3y﹣2xy﹣6=3(x+y)﹣2xy﹣6=3×2﹣2×(﹣1)﹣6=6+2﹣6=2;(2)∵c<0<a,ab<0,|c|>|a|>|b|,∴b<0,c﹣a<0,a+b>0,b﹣c>0,∴|b|﹣2|c﹣a|﹣|a+b|+|b﹣c|=﹣b﹣2(a﹣c)﹣(a+b)+b﹣c=﹣b﹣2a+2c﹣a﹣b+b﹣c=﹣b﹣3a+c.26.(20分)【问题背景】我们知道|x|的几何意义是:在数轴上数x对应的点到原点O的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在数轴上,点A,B的位置如图1所示,AB=|1﹣(﹣2)|=3.【问题解决】(1)|2﹣(﹣3)|的几何意义是 点2与点﹣3之间的距离 .(2)如果点C为数轴上一点,它所表示的数为x,点D在数轴上表示的数为﹣2,那么CD = (用含x的代数式表示).【关联运用】(1)运用一:代数式|x+1|+|x+4|的最小值为 3 .(2)运用二:代数式|x﹣2|﹣|x+14|的最大值为 16 .(3)运用三:已知|x﹣1|+|x+3|=10,则x的值为 4或﹣6 .(4)运用四:如图2所示,点E,F,G是数轴上的三点,E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,点E,F,G开始在数轴上运动,若点E以每秒2个单位长度的速度向左运动,同时,点F和点G分别以每秒3个单位长度和1个单位长度的速度向右运动,假设t秒后,若点E与点F之间的距离表示为EF,点E与点G之间的距离表示为EG,点F与点G之间的距离表示为FG.4秒后,若mFG﹣3EF的值是一个定值,试确定m的值.【解答】解:【问题解决】(1)|2﹣(﹣3)|的几何意义是点2与点﹣3之间的距离,故答案为:点2与点﹣3之间的距离;(2)C表示的数为x,点D在数轴上表示的数为﹣2,则x与﹣2之间的距离CD=,故答案为:;【关联运用】(1)运用一:代数式|x+1|+|x+4|表示点x与﹣1的距离与点x与点﹣4距离的和,当x<﹣4时,|x+1|+|x+4|=﹣x﹣1﹣x﹣4=﹣2x﹣5>3,当﹣4≤x≤﹣1时,|x+1|+|x+4|=﹣x﹣1+4+x=3,当x>﹣1时,|x+1|+|x+4|=x+1+4+x=5+2x>3,综上所述:当﹣4≤x≤﹣1时,|x+1|+|x+4|取最小值为3,故答案为:3;(2)运用二:|x﹣2|﹣|x+14|表示点x与2的距离与点x与点﹣14距离的差,当x≤﹣14时,|x﹣2|﹣|x+14|=2﹣x+x+14=16;当﹣14<x<2时,|x﹣2|﹣|x+14|=2﹣x﹣(x+14)=﹣12﹣2x此时﹣16<﹣12﹣2x<16;当x≥2时,|x﹣2|﹣|x+14|=x﹣2﹣(x+14)=﹣16;综上所述:当x≤﹣14时,代数式|x﹣2|﹣|x+14|取最大值为16;故答案为:16;(3)运用三:由(1)知当﹣3≤x≤1时|x﹣1|+|x+3|取最小值4,∴|x﹣1|+|x+3|=10时,x<﹣3或x>1,故当x<﹣3时不,则1﹣x﹣x﹣3=10,解得:x=﹣6,当x>1时,x﹣1+x+3=10,解得:x=4,故答案为:4或﹣6;(4)运用四:∵E点表示数是﹣5,F点表示数是﹣2,G点表示数是6,∴根据题意可得:t s时,E点表示数是﹣5﹣2t,F点表示数是﹣2+3t,G点表示数是6+t,由已知可知F点始终在E点右侧,故EF=﹣2+3t﹣(﹣5﹣2t)=3+5t而FG==,当mFG﹣3EF的值是一个定值时则m﹣3(3+5t)为定值,当8﹣2t≥0时,即t≤4时m﹣3(3+5t)=m(8﹣2t)﹣9﹣15t=8m﹣9﹣(2m+15)t,∴2m+15=0,解得m=﹣7.5,此时定值为8m﹣9=﹣69;当8﹣2t<0时,即t>4时m﹣3(3+5t)=﹣8m+2mt﹣9﹣15t=﹣8m﹣9+(2m﹣15)t,∴2m﹣15=0,解得:m=7.5,此时定值为﹣8m﹣9=﹣69;综上所述:mFG﹣3EF的值是一个定值时,m的值为±7.5.。
七年级语文期中模拟卷(考试版A4)【测试范围:上册第1―3单元】(陕西专用)
2024-2025学年七年级语文上学期期中模拟卷(满分120分,考试用时150分钟)注意事项:1.本试卷共8页。
全卷总分120分。
考试时间150分钟。
2.答题前,考生在试卷和答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚。
3.请用直径0.5毫米黑色签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
4.测试范围:统编版2024新教材七上第1~3单元。
5.难度系数:0.75。
6.考试结束,将本试卷和答题卡一并交回。
一、积累和运用(共5小题,计24分)1.阅读语段,完成小题。
(4分)春风夏雨,秋霜冬雪,大自然生生不息,文人将四季书写于字里行间,带我们领略时序之美。
春天,眼前花团锦簇,美不胜收,与轻风流水应和.着的牧童的笛声传递着春的气息,惹得鸟儿呼朋引伴地卖弄清脆的hóu咙。
夏雨一来,就更是另一番风情。
花朵怒放着,树叶鼓着浆汁,数不清的杂草争先恐后地成长……当田野染上一层金黄,各种各样的果实摇着铃dānɡ的时候,那是秋天来了,给人们以丰收的喜悦。
还有那可爱的水藻,把一年到头贮蓄.的绿色全拿出来,一并奉献给济南的冬天。
(1)请根据语境,选出加点字正确的读音。
(只填序号)(2分)①与轻风流水应和.(A.hé B.hè)着的牧童的笛声传递着春的气息。
()②把一年到头贮蓄.(A.xù B.chù)的绿色全拿出来。
()(2)请根据语境,写出下面词语中拼音所对应的汉字。
(2分)①hóu___咙②铃___dānɡ2.经典诗文默写。
[在(1)-(6)题中,任选四题;在(7)(8)题中,任选一题](6分)(1)_____________,以观沧海。
(曹操《观沧海》)(2)乡书何处达,_____________。
(王湾《次北固山下》)(3)夕阳西下,_____________。
(马致远《天净沙·秋思》)(4)_____________,思而不学则殆。
重庆市江北区第十八中学2023—2024学年七年级上学期期中数学试题(含解析)
2023-2024学年重庆十八中七年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)﹣2023的相反数是( )A.B.﹣2023C.D.20232.(4分)下列各对数中,数值相等的是( )A.﹣23与(﹣2)3B.﹣32与(﹣3)2C.(﹣1)2023与(﹣1)2024D.(﹣2)3与(﹣3)23.(4分)下列说法正确的是( )A.带负号的数一定是负数B.是二次三项式C.单项式﹣2x2y的次数是3D.单项式与单项式的和一定是多项式4.(4分)“中国梦”成为2013年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为( )A.468×105B.4.68×105C.4.68×107D.0.468×1085.(4分)下列式子:①a2b+ab﹣b2;②0;③;④;⑤;⑥,多项式的个数是( )A.1个B.2个C.3个D.4个6.(4分)已知a、b、c在数轴上位置如图:则代数式|a+b|+|c﹣a|﹣|b﹣c|的值等于( )A.﹣2a B.2c C.2a﹣2b D.07.(4分)如图所示的运算程序中,如果开始输入的x值为﹣48,我们发现第1次输出的结果为﹣24,第2次输出的结果为﹣12,……,第2023次输出的结果为( )A.﹣3B.﹣6C.﹣12D.﹣248.(4分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2023,则m的值是( )A.46B.45C.44D.439.(4分)如图,矩形ABCD长为a,宽为b,若S1=S2=(S3+S4),则S4等于( )A.ab B.ab C.ab D.ab10.(4分)若有两个整式A=4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3;B=x2+bx+c,下列结论中,正确的有( )①当A+B为关于x的三次三项式时,则c=﹣8;②a1+a2+a3=19;③若x=2m或m﹣2时,无论b和c取何值,B值总相等,则m=﹣2.A.0B.1C.2D.3二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)已知:(a+2)2+|b﹣1|=0,则(a+b)2023= .12.(4分)若单项式﹣4x3y3n﹣5与x2m﹣3y是同类项,则m+n= .13.(4分)体育课上全班女生进行百米测验,达标最高成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标):﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6.则此小组达标率是 .14.(4分)已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a﹣b)千米/时,则顺流速度为 千米/时.15.(4分)对于有理数a,b,定义一种新运算,规定a☆b=a2﹣|b|,则(﹣4)☆(﹣6)= .16.(4分)如图是一个宫格图,图中实线划分的区域是一个宫,共有4个宫,每一宫又被虚线分为四个小格.根据图中已经给的提示数字,在其他的空格上填入数字﹣1,﹣2,﹣3,﹣4.使﹣1,﹣2,﹣3,﹣4每个数字在每一行、每一列和每一宫中都只出现一次.则图中点A位置所填的数字为 .17.(4分)已知:,且abc>0,a+b+c=0,则m共有x 个不同的值,若在这些不同的m值中,最小的值为y,则x﹣y= .18.(4分)若一个三位正整数m=(各个数位上的数字均不为0),若满足满足a+b+c=9,则称这个三位正整数为“合九数”.对于一个“合九数”m,将它的十位数字和个位数字交换以后得到新数n;记,则F(234)= ,对于一个“合九数”m,若F(m)能被8整除,则满足条件的“合九数”m的最大值是 .三、解答题(本大题共8个小题,19题8分,20-26每小题8分,共78分)19.(8分)计算:(1);(2)﹣12+16÷(﹣2)3×(﹣3﹣1).20.(10分)计算:(1)2x﹣(3x2﹣2)+2(x+2x2)+1;(2)3mn2+m2n﹣2(2n2m﹣nm2).21.(10分)已知:|a|=5,|b|=3,c2=81,且|a+b|=a+b,|a+c|=﹣(a+c),求4a﹣b+2c 的值?22.(10分)如果关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 所取的值无关,试化简代数式,再求值.23.(10分)某超市在双十一期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元八折优惠500元或超过500元其中500元部分给予八折优惠,超过500元部分给予七折优惠(1)若王老师一次性购物600元,他实际付款 元.若王老师实际付款160元,那么王老师一次性购物可能是 元;(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款 元,当x大于或等于500元时,他实际付款 元(用含x的代数式表示并化简);(3)如果王老师有两天去超市购物原价合计900元,第一天购物的原价为a元(200<a<300),用含a的代数式表示这两天购物王老师实际一共付款多少元?当a=250元时,王老师两天一共节省了多少元?24.(10分)观察下列等式:,,.将以上三个等式两边分别相加得:.(1)猜想并写出:= .(2)直接写出下列各式的计算结果:①= .②= .(3)探究并计算,请写出计算过程:.25.(10分)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,数轴上表示数a的点与表示数b的点距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x= ;若|x﹣2|=|x+1|,则x= ;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是 ,最大值是 ;(3)当|x﹣2|+|x+1|+|x+3|取最小值时,则x的值为 ;(4)|x﹣2||x+1|的最小值为 ;(5)若|x﹣2|+|x+1|=9,求x的值.26.(10分)如图,已知:数轴上点A表示的为8,B是数轴上一点,点B在点A左边且点A与点B的距离AB=14,动点P、Q分别从点A、B两点同时向左移动,点P的速度为每秒3个单位长度,点Q的速度为每秒1个单位长度.(1)写出数轴上点B表示的数 ;(2)经过多少秒以后,P、Q两点的距离为6个单位长度,并求出此时点P表示的数是多少?(3)若点M为PQ中点,N为QA中点,是否存在常数k使得k⋅BM﹣AN的值为定值,若存在,求出k的值,若不存在,请说明理由.2023-2024学年重庆十八中七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)1.(4分)﹣2023的相反数是( )A.B.﹣2023C.D.2023【解答】解:﹣2023的相反数为2023.故选:D.2.(4分)下列各对数中,数值相等的是( )A.﹣23与(﹣2)3B.﹣32与(﹣3)2C.(﹣1)2023与(﹣1)2024D.(﹣2)3与(﹣3)2【解答】解:∵﹣23=﹣8,(﹣2)3=﹣8,∴﹣23=(﹣2)3,∴A符合题意;∵﹣32=﹣9,(﹣3)2=9,∴﹣32≠(﹣3)2,∴B不符合题意;∵(﹣1)2023=﹣1,(﹣1)2024=1,∴(﹣1)2023≠(﹣1)2024,∴C不符合题意;∵(﹣2)3=﹣8,(﹣3)2=9,∴(﹣2)3≠(﹣3)2,∴D不符合题意.故选:A.3.(4分)下列说法正确的是( )A.带负号的数一定是负数B.是二次三项式C.单项式﹣2x2y的次数是3D.单项式与单项式的和一定是多项式【解答】解:A、﹣(﹣5)=5,是正数,原说法错误,故选项不符合题意;B、x2+2+是分式,不是整式,原说法错误,故选项不符合题意;C、单项式﹣2x2y的次数是3,说法正确,故选项符合题意;D、﹣2x+2x=0是单项式,原说法错误,故选项不符合题意.故选:C.4.(4分)“中国梦”成为2013年人们津津乐道的话题,小明在“百度”搜索“中国梦”,找到相关结果约为46800000,数据46800000用科学记数法表示为( )A.468×105B.4.68×105C.4.68×107D.0.468×108【解答】解:46 800 000=4.68×107.故选:C.5.(4分)下列式子:①a2b+ab﹣b2;②0;③;④;⑤;⑥,多项式的个数是( )A.1个B.2个C.3个D.4个【解答】解:根据多项式的定义可知:①a2b+ab﹣b2是多项式;②0是单项式;③是单项式;④是分式;⑤是多项式;⑥是分式,故多项式的个数是2个.故选:B.6.(4分)已知a、b、c在数轴上位置如图:则代数式|a+b|+|c﹣a|﹣|b﹣c|的值等于( )A.﹣2a B.2c C.2a﹣2b D.0【解答】解:由数轴知:a+b<0,c﹣a>0,b﹣c<0,∴|a+b|+|c﹣a|﹣|b﹣c|=﹣(a+b)+c﹣a+b﹣c=﹣a﹣b﹣a+b=﹣2a.故选:A.7.(4分)如图所示的运算程序中,如果开始输入的x值为﹣48,我们发现第1次输出的结果为﹣24,第2次输出的结果为﹣12,……,第2023次输出的结果为( )A.﹣3B.﹣6C.﹣12D.﹣24【解答】解:由题意可知,第一次输出结果为:,第二次输出结果为:,第三次输出结果为:,第四次输出结果为:,第五次输出结果为:﹣3﹣3=﹣6,第六次输出结果为:,第七次输出结果为:﹣3﹣3=﹣6,……观察可知,从第三次开始,输出结果按﹣6和﹣3依次循环,∵(2023﹣2)÷2=1010……1,∴第2023次输出的结果为﹣6,故选:B.8.(4分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2023,则m的值是( )A.46B.45C.44D.43【解答】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,从23到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2023,n=1011,∴奇数2023是从3开始的第1011个奇数,∵=989,=1034,∴第1011个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B.9.(4分)如图,矩形ABCD长为a,宽为b,若S1=S2=(S3+S4),则S4等于( )A.ab B.ab C.ab D.ab【解答】解:∵S1=S2=(S3+S4),∴2S1=2S2=S3+S4,∵S1+S2+S3+S4=ab,∴S1=S2=ab,S3+S4=ab,连接DB,如图所示,则S△DCB=S△DAB=ab,∴==,∴CF=BC,同理可得,AE=AB,∴BF=b,BE=a,∴S3==ab,∴S4=(S3+S4)﹣S3=ab﹣ab=ab,故选:B.10.(4分)若有两个整式A=4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3;B=x2+bx+c,下列结论中,正确的有( )①当A+B为关于x的三次三项式时,则c=﹣8;②a1+a2+a3=19;③若x=2m或m﹣2时,无论b和c取何值,B值总相等,则m=﹣2.A.0B.1C.2D.3【解答】解:A+B=4x3﹣3x2+8+x2+bx+c=4x3﹣2x2+bx+c+8,当A+B为关于x的三次三项式时,b=0,c+8≠0或b≠0,c+8=0,∴b=0,c≠﹣8或b≠0,c=﹣8;故①错误;在4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3中,令x=1得:4×13﹣3×12+8=a0,,∴a0=9;在4x3﹣3x2+8=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3中,令x=2得:4×23﹣3×22+8=a0+a1+a2+a3,∴a0+a1+a2+a3=28;∴a1+a2+a3=19;故②正确;∵(2m)2+2mb+c=(m﹣2)2+(m﹣2)b+c,∴3m2+4m+(m+2)b﹣4=0,∵x=2m或m﹣2时,无论b和c取何值,B值总相等,∴m+2=0,∴m=﹣2,故③正确;∴正确的有②③,共2个;故选:C.二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)已知:(a+2)2+|b﹣1|=0,则(a+b)2023= ﹣1 .【解答】解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,所以,(a+b)2023=(﹣2+1)2023=﹣1.故答案为:﹣1.12.(4分)若单项式﹣4x3y3n﹣5与x2m﹣3y是同类项,则m+n= 5 .【解答】解:∵单项式﹣4x3y3n﹣5与x2m﹣3y是同类项,∴2m﹣3=3,3n﹣5=1,∴m=3,n=2,∴m+n=3+2=5.故答案为:5.13.(4分)体育课上全班女生进行百米测验,达标最高成绩为18秒,下面是第一小组8名女生的成绩记录(其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标):﹣1,+0.8,0,﹣1.2,﹣0.1,0,+0.5,﹣0.6.则此小组达标率是 75% .【解答】解:由题意可得达标的为﹣1,0,﹣1.2,﹣0.1,0,﹣0.6共6人,则此小组达标率是×100%=75%,故答案为:75%.14.(4分)已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a﹣b)千米/时,则顺流速度为 3b 千米/时.【解答】解:依题意有(a+b)+[(a+b)﹣(2a﹣b)]=a+b+[a+b﹣2a+b]=a+b+a+b﹣2a+b=3b(千米/时).故顺流速度为3b千米/时.故答案为:3b.15.(4分)对于有理数a,b,定义一种新运算,规定a☆b=a2﹣|b|,则(﹣4)☆(﹣6)= 10 .【解答】解:(﹣4)☆(﹣6)=(﹣4)2﹣|﹣6|=16﹣6=10故答案为:10.16.(4分)如图是一个宫格图,图中实线划分的区域是一个宫,共有4个宫,每一宫又被虚线分为四个小格.根据图中已经给的提示数字,在其他的空格上填入数字﹣1,﹣2,﹣3,﹣4.使﹣1,﹣2,﹣3,﹣4每个数字在每一行、每一列和每一宫中都只出现一次.则图中点A位置所填的数字为 ﹣2 .【解答】解:∵﹣1,﹣2,﹣3,﹣4每个数字在每一行、每一列和每一宫中都只出现一次,∴第一列中间两个只能是﹣1,﹣3,∵在第二行已经出现﹣3,∴第一列第二行只能填﹣1,∴第一列第三行填﹣3.∵第四行中间两个只能填﹣2,﹣3,∵﹣3在第二列已经出现,∴第四行第二列只能填﹣2,∴第四行第三列填﹣3.∵第二列的两个空格只能填﹣1,﹣4,∵﹣4在第三行已经出现,∴第三行第二列只能填﹣1,∴第一行第二列只能填﹣4.∵第三列两个空格只能填﹣2,﹣1,∵﹣2在第一行已经出现,∴第三列第一行只能填﹣1,∴A处填﹣2.故答案为:﹣2.17.(4分)已知:,且abc>0,a+b+c=0,则m共有x个不同的值,若在这些不同的m值中,最小的值为y,则x﹣y= 7 .【解答】解:∵abc>0,a+b+c=0,∴a、b、c中有两个负数,一个正数,因此有三种情况,即①a、b为负,c为正,②a、c为负,b为正,③b、c为负,a为正,∵a+b+c=0,∴a+b=﹣c,a+c=﹣b,b+c=﹣a,∴m=++=++,①当a、b为负,c为正时,m=1﹣2﹣3=﹣4,②当a、c为负,b为正时,m=﹣1﹣2+3=0,③当b、c为负,a为正时,m=﹣1+2﹣3=﹣2,又∵m共有x个不同的值,若在这些不同的m值中,最小的值为y,∴x=3,y=﹣4,∴x+y=3﹣(﹣4)=7,故答案为:7.18.(4分)若一个三位正整数m=(各个数位上的数字均不为0),若满足满足a+b+c=9,则称这个三位正整数为“合九数”.对于一个“合九数”m,将它的十位数字和个位数字交换以后得到新数n;记,则F(234)= 53 ,对于一个“合九数”m,若F(m)能被8整除,则满足条件的“合九数”m的最大值是 32 .【解答】解:由题意得,当m=234时,2+3+4=9,∴m是合九数.∵将它的十位上的数字和个位上的数字交换以后得到新数n,∴n=243.∴m+n=234+243=477.∴F(234)===53.由题意,设任意一个“合九数”m=100a+10b+c,∴n=100a+10c+b.∴m+n=200a+11b+11c.∴F(m)=(200a+11b+11c).又a+b+c=9,∴F(m)=21a+11.又a+b+c=9,∴1≤a≤7.∴a=1,2,3,4,5,6,7.又F(m)能被8整除,∴a=1,此时F(m)=32.∴满足题意的“合九数”m的最大值是171.故答案为:53;171.三、解答题(本大题共8个小题,19题8分,20-26每小题8分,共78分)19.(8分)计算:(1);(2)﹣12+16÷(﹣2)3×(﹣3﹣1).【解答】解:(1)=×(﹣36)﹣×(﹣36)+×(﹣36)﹣×(﹣36)+9=﹣18+20+(﹣30)+21+9=2;(2)﹣12+16÷(﹣2)3×(﹣3﹣1)=﹣1+16÷(﹣8)×(﹣4)=﹣1+(﹣2)×(﹣4)=﹣1+8=7.20.(10分)计算:(1)2x﹣(3x2﹣2)+2(x+2x2)+1;(2)3mn2+m2n﹣2(2n2m﹣nm2).【解答】解:(1)2x﹣(3x2﹣2)+2(x+2x2)+1=2x﹣3x2+2+2x+4x2+1=x2+4x+3;(2)3mn2+m2n﹣2(2n2m﹣nm2)=3mn2+m2n﹣4mn2+2m2n=3m2n﹣mn2.21.(10分)已知:|a|=5,|b|=3,c2=81,且|a+b|=a+b,|a+c|=﹣(a+c),求4a﹣b+2c 的值?【解答】解:∵|a|=5,|b|=3,c2=81,∴a=±5,b=±3,c=±9,又∵|a+b|=a+b,|a+c|=﹣(a+c),∴a+b≥0,a+c≤0,∴a=5,b=±3,c=﹣9,当b=3时,4a﹣b+2c=4×5﹣×3+2×(﹣9)=20﹣1+(﹣18)=1;当b=﹣3时,4a﹣b+2c=4×5﹣×(﹣3)+2×(﹣9)=20+1+(﹣18)=3;由上可得,4a﹣b+2c的值是1或3.22.(10分)如果关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 所取的值无关,试化简代数式,再求值.【解答】解:(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,∴2﹣2b=0,a+3=0,解得:b=1,a=﹣3,==;当b=1,a=﹣3时,原式=.23.(10分)某超市在双十一期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元八折优惠500元或超过500元其中500元部分给予八折优惠,超过500元部分给予七折优惠(1)若王老师一次性购物600元,他实际付款 470 元.若王老师实际付款160元,那么王老师一次性购物可能是 160或200 元;(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款 0.8x 元,当x大于或等于500元时,他实际付款 (0.7x+50) 元(用含x的代数式表示并化简);(3)如果王老师有两天去超市购物原价合计900元,第一天购物的原价为a元(200<a <300),用含a的代数式表示这两天购物王老师实际一共付款多少元?当a=250元时,王老师两天一共节省了多少元?【解答】解:(1)500×0.8+(600﹣500)×0.7=400+100×0.7=400+70=470(元);实际付款160元,有两种可能:一是一次性购物160元,没有优惠;二是一次性购物x元(x≥200),则有八折优惠,实际付款160元,则建立等式:x×0.8=160,解得:x=200.所以,王老师一次性购物可能是160或200元.故答案为:470;160或200;(2)当x小于500元但不小于200时,实际付款x×0.8=0.8x;当x大于或等于500元时,实际付款:500×0.8+(x﹣500)×0.7=400+(0.7x–350)=400+0.7x﹣350=(0.7x+50)元;故答案为:0.8x;(0.7x+50);(3)因为第一天购物原价为a元(200<a<300),则第二天购物原价为(900﹣a)元,易知:(900﹣a)>500,第一天购物优惠后实际付款a×0.8=0.8a(元),第二天购物优惠后实际付款:500×0.8+[(900﹣a)﹣500]×0.7=400+[900﹣a﹣500]×0.7=400+(400﹣a)×0.7=400+280﹣0.7a=(680﹣0.7a)元,则一共付款0.8a+680﹣0.7a=(0.1a+680)元,当a=250元时,实际一共付款:680+0.1×250=680+25=705(元),一共节省900﹣705=195(元).24.(10分)观察下列等式:,,.将以上三个等式两边分别相加得:.(1)猜想并写出:= .(2)直接写出下列各式的计算结果:①= .②= .(3)探究并计算,请写出计算过程:.【解答】解:(1)=﹣故答案为:﹣;(2)①=1﹣+﹣+﹣+…+﹣=;②=(﹣+﹣+﹣+…+﹣)=(﹣)=.(3)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=×=.25.(10分)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,数轴上表示数a的点与表示数b的点距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x= 0 ;若|x﹣2|=|x+1|,则x= ;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是 ﹣1 ,最大值是 2 ;(3)当|x﹣2|+|x+1|+|x+3|取最小值时,则x的值为 ﹣1 ;(4)|x﹣2||x+1|的最小值为 1 ;(5)若|x﹣2|+|x+1|=9,求x的值.【解答】解:(1)|x﹣1|=|x+1|表示数轴上表示x的点到表示1和﹣1的距离相等,因此到1和﹣1距离相等的点表示的数为=0,|x﹣2|=|x+1|表示数轴上表示x的点到表示2和﹣1的距离相等,因此到2和﹣1距离相等的点表示的数为=,故答案为:0,;(2)|x﹣2|+|x+1|=3表示的意义是数轴上表示x的点到表示2和﹣1两点的距离之和为3,可得﹣1≤x≤2,因此x的最大值为2,最小值为﹣1;故答案为:﹣1,2;(3))|x﹣2|+|x+1|+|x+3|表示的意义是数轴上表示数x的点与表示数2的点,表示数﹣1的点,表示数﹣3的点距离之和根据数轴直观可得,x=﹣1,|x﹣2|+|x+1|+|x+3|有最小值为5,故答案为:﹣1;(4)|x﹣2||x+1|=(3|x﹣2|+2|x+1|)=(|x﹣2|+|x﹣2|+|x﹣2|+|x+1|+|x+1|),根据绝对值几何意义,当x=2时,有最小值,最小值为=1,故|x﹣2||x+1|的最小值为:1;故答案为:1;(5)当x≤﹣1时,|x﹣2|+|x+1|=9,去绝对值为:2﹣x﹣x﹣1=9,∴x=﹣4;当﹣1<x≤2时,去绝对值为:2﹣x+x+1=9(不成立);当x>2时,去绝对值为:x﹣2+x+1=9,∴x=5,综上,x=﹣4或5.26.(10分)如图,已知:数轴上点A表示的为8,B是数轴上一点,点B在点A左边且点A与点B的距离AB=14,动点P、Q分别从点A、B两点同时向左移动,点P的速度为每秒3个单位长度,点Q的速度为每秒1个单位长度.(1)写出数轴上点B表示的数 ﹣6 ;(2)经过多少秒以后,P、Q两点的距离为6个单位长度,并求出此时点P表示的数是多少?(3)若点M为PQ中点,N为QA中点,是否存在常数k使得k⋅BM﹣AN的值为定值,若存在,求出k的值,若不存在,请说明理由.【解答】解:(1)数轴上点B表示的数是8﹣14=﹣6.故答案为:﹣6;(2)设经过x秒以后,P、Q两点的距离为6个单位长度,依题意有:①相遇前P、Q两点的距离为6个单位长度,(3﹣1)x=14﹣6,解得x=4,则点P表示的数是8﹣3×4=﹣4;②相遇后P、Q两点的距离为6个单位长度,(3﹣1)x=14+6,解得x=10.则点P表示的数是8﹣3×10=﹣22.答:经过4秒以后,P、Q两点的距离为6个单位长度,此时点P表示的数是﹣4;经过10秒以后,P、Q两点的距离为6个单位长度,此时点P表示的数是﹣22;(3)由题意点P时8﹣3t,点Q是﹣6﹣Tt,∵M为PQ中点,N为QA中点,∴点M是1﹣2t.点N是1﹣t,∴k⋅BM﹣AN=k•|﹣6﹣1+2t|﹣(8﹣1+t)=k•|﹣7+2t|﹣7﹣t,∴当K=±时,k⋅BM﹣AN的值为定值.。
七年级上册数学期中考试试卷
七年级上册数学期中考试试卷【篇一】选择题(每小题3分,共36分)1、绝对值小于5的整数有()A、1个B、2个C、3个D、4个2、下列各组数中相等的是()A、-2与B、-2与C、与D、与3、已知a、b都是有理数,且,则a+b=()A、-1B、1C、3D、54、单项式与是同类项,则等于()A、-8B、8C、-9D、95、一个两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A、x(2x-3)B、x(2x+3)C、12x-3D、12x+36、去括号后等于a-b+c的是()A、a-(b+c)B、a+(b-c)C、a-(b-c)D、a+(b+c)7、已知,则多项式的值等于()A、1B、4C、-1D、-48、在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a0,那么abA、1个B、2个C、3个D、4个9、计算所得结果是()A、-2B、0C、1D、210、减去-2m等于多项式是()A、B、+m+2C、-5m-2D、-m-211、一件商品的进价是a元,提价20%后出售,则这件商品的售价是()A、0.8a元B、a元C、1.2a元D、2a元12、已知0A、二、填空题(每小题3分,共24分)13、太阳光的速度是300000000米/秒,用科学记数法表示为米/秒14、设三个连续整数的中间一个数是n,则它们三个数的和是。
15、若=4,=2且x16、规定一种关于a、b的运算:a*b=,那么3*(-2)=。
17、计算12=。
18、化简(x+y)-(x-y)的结果是。
19、已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高m。
20、观察数字-1,2,7,14,23,34,……的规律,照此规律第n个数为。
三、计算(每小题4分,共16分)21、22、(-0.25)×1.25×(-4)×(-8)23、24、-(-5+3)×+×525、已知A=,B=,求2A+B(6分)四、解答题26、先化简,再求值(6分)2+3x+5+[4-(5-x+1)]其中x=327、为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9。
七年级上学期期中考试试卷【含答案】
七年级上学期期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个是生态系统中的生产者?A. 植物B. 动物C. 细菌D.真菌2. 光合作用中,植物释放的气体是?A. 二氧化碳B. 氧气C. 氮气D.水蒸气3. 下列哪种动物属于哺乳动物?A. 鸟B. 鱼C. 蝙蝠D.青蛙4. 下列哪种植物是通过种子繁殖的?A. 苔藓B. 蕨类C. 草本植物D.藻类5. 下列哪种物质是人体必需的六大营养素之一?A. 纤维素B. 蛋白质C. 矿物质D.糖精二、判断题(每题1分,共5分)1. 动物细胞和植物细胞都有细胞壁。
(×)2. 食物链的起始环节是生产者。
(√)3. 地球上的所有生物都可以分为动物和植物两大类。
(×)4. 水是人体内含量最多的物质。
(√)5. 酸雨对环境没有危害。
(×)三、填空题(每题1分,共5分)1. 植物的光合作用是指植物利用光能将水和二氧化碳转化为有机物和氧气的过程。
2. 人体内的骨骼共有206块。
3. 水是由氢元素和氧元素组成的化合物。
4. 鸟类是恒温动物,它们的体温不会随着环境温度的变化而变化。
5. 食物链反映的是生产者与消费者之间的吃与被吃的关系。
四、简答题(每题2分,共10分)1. 请简述生态系统的组成。
答:生态系统由生物部分和非生物部分组成。
生物部分包括生产者、消费者和分解者;非生物部分包括阳光、空气、水等。
2. 请简述食物链和食物网的概念。
答:食物链是指生产者与消费者之间吃与被吃的关系;食物网是由多个食物链相互交织而成的复杂关系网。
3. 请简述消化系统的组成。
答:消化系统由消化道和消化腺组成。
消化道包括口腔、咽、食道、胃、小肠、大肠和肛门;消化腺包括唾液腺、胃腺、肠腺、胰腺和肝脏。
4. 请简述呼吸系统的组成。
答:呼吸系统由呼吸道和肺组成。
呼吸道包括鼻腔、咽、喉、气管和支气管;肺是气体交换的场所。
5. 请简述血液循环系统的组成。
七年级上期中考试试卷【含答案】
七年级上期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个是生态系统中的生产者?A. 植物B. 动物C. 细菌D. 真菌2. 下列哪种物质是光合作用的产物?A. 氧气B. 二氧化碳C. 水D. 有机物3. 下列哪个过程是呼吸作用的一部分?A. 光合作用B. 分解作用C. 吸收作用D. 呼吸作用4. 下列哪种生物是分解者?A. 植物B. 动物C. 细菌D. 真菌5. 下列哪个是生态系统的基本组成单位?A. 细胞B. 生物体C. 种群D. 生态系统二、判断题(每题1分,共5分)1. 光合作用只能在光照下进行。
()2. 呼吸作用只发生在动物体内。
()3. 生态系统中的物质循环是无限的。
()4. 生态平衡是指生态系统中各种生物的数量和所占的比例总是维持在相对稳定的状态。
()5. 生物圈是地球上最大的生态系统。
()三、填空题(每题1分,共5分)1. 光合作用是绿色植物利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程。
2. 呼吸作用是指生物体内的有机物在细胞内经过一系列的氧化分解,最终二氧化碳或其他产物,并且释放出能量的总过程。
3. 生态系统由非生物成分和生物成分组成,生物成分包括生产者、消费者和分解者。
4. 食物链反映的是生产者与消费者之间吃与被吃的关系,所以食物链中不应该出现分解者和非生物部分。
5. 生物圈是地球上的所有生物与其生存的环境形成的一个统一整体。
四、简答题(每题2分,共10分)1. 简述光合作用的意义。
2. 简述呼吸作用的意义。
3. 简述生态系统的组成。
4. 简述食物链和食物网的关系。
5. 简述生物圈的概念。
五、应用题(每题2分,共10分)1. 某农田发生了虫害,农民采取了喷洒农药的方法进行防治,结果导致农田的生态系统受到了破坏。
请分析原因,并提出合理的防治措施。
2. 某湖泊由于过度开发,导致水质恶化,鱼类大量死亡。
请分析原因,并提出合理的治理措施。
云南省昆明市2024-2025学年七年级上学期期中考试语文试题(含答案)
昆明市2024-2025学年七年级上学期期中考试语文(全卷四个大题,共22小题,共8页,考试用时120分钟,满分100分)注意事项:1.本卷为试题卷。
考生必须在答题卡上作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将本试题卷和答题卡交回。
亲爱的同学:祝贺你顺利迈入初中学段,开启新的学习征程。
“新”,意味着面临未知和挑战,但不要担心,不要迷茫。
我们一起脚踏实地,注重积累,探究识“新”;我们一起联系所学,吟哦讽诵,温故知“新”;我们一起转换视角,链接生活,推陈出“新”;我们一起心怀激越,借笔生花,焕然一“新”。
让我们开启一次全“新”的语文体验之旅吧!探究识“新”一、阅读小昆的学习笔记,完成1~7题。
(共14分)学习日期:2024年9月1日学习感受:今天,我领到了新书。
翻开七年级的语文课本,使我仿佛步入了一个全新的世界。
鸟儿“呼朋引伴地卖弄清脆的喉咙,唱出宛转的曲子,与轻风流水应和着”,那是春天奏响的新乐章.澄澈的河水,贮蓄着绿意的水藻,让济南的冬天充满了新的生机。
春雨清新而润泽,为世界增添新的活力;夏雨热烈而粗犷,让万物展现新的资态;秋雨端庄而沉静,给人们带来新的怀想;冬雨自然而平静,使大地孕育新的希望。
“新”就是我今天最深的感受!学习发现:回家后,我对“新”字展开了探究,发现“新”字的形体演变经历了以下过程:为了更好地了解“新”字的含义,我还查了工具书:新《说文解字》:新,取木也。
从斤,辛声。
【释义】“新”,其字形由“辛”“斤”组成,右边的“斤”代表斧头,左边的“辛”是一段木柴的形状。
所以,“新”字的本义是______。
《现代汉语词典》“新”字释义摘录①刚出现的或刚经验到的(与“旧、老、陈”相对):~风气/~品质/~的工作;②刚结婚的或结婚不久的:~郎/~媳妇;③没有用过的:~笔/这套衣服是全~的;④(Xīn)名姓。
原来,我们日常使用的“新”字,有这么多值得探究的地方啊!1.“学习笔记”中加点字字音有误的一项是()。
重庆市第十八中学2024-2025学年七年级上学期期中检测数学试题
重庆市第十八中学2024-2025学年七年级上学期期中检测数学试题一、单选题1.有理数−2的倒数是()A .2B .−2C .12-D .122.下列各数中,最小的是()A .3-B .π-C .5-D .23.下列说法正确的是()A .0是最小的有理数B .若0ab >,则0a >且0b >C .绝对值等于本身的数是正数D .自然数就是非负整数4.近似数1.23×103精确到()A .百分位B .十分位C .个位D .十位5.某圆柱形容器,内部半径是r ,内部底面积为s ,高为h ,体积是100,则下列关系正确的是()A .100h r=B .100h r=C .100h s=D .100h s=6.若26m x y 与334n x y +-为同类项,则mn 的值为()A .1-B .0C .1D .27.若32x y x y y x ==-=-,,,则x y +的值是()A .5-或1-B .5或1C .1±D .5±8.若2345M x N x x M =++=-+-,,的最小值与N 的最小值分别为()A .2,4B .2,1C .3,5D .3,19.如图,是用圆摆成的图案,其中第一层有1个圆,第二层有3个圆,第三层有7个圆,第四层有13个圆,第五层有21个圆,依照这个规律摆下去,则第四十五层有()个圆.A .1893B .1981C .2069D .207110.数学家欧拉曾经研究正整数拆分成多个正整数相加的问题.在不考虑加数位置的情况下,将正整数n 拆分的情况数量记为()p n .例如:44431422421141111==+=+=++=+++;;;;共5种情况,因此()45p =拆分的加数各不相同的情况数量记为() p n∣不同.例:44431==+;,因此,(4|)2p =不同;拆分的加数均为奇数的情况数量记为() p n ∣奇数.例:43141111=+=+++,,因此,(4|)2p =奇数;拆分的加数均为偶数的情况数量记为() p n ∣偶数.例:44422==+,,因此,(4|)2p =偶数.()()56(5|)3(6|)(6|)(2|)p p p p p n p n ====①;②不同;③不同奇数;④偶数上述四个说法中正确个数是()A .1B .2C .3D .4二、填空题11.素数(素数是正因数只有1和它本身的大于1的自然数)的研究在基础数学、密码学和计算机科学中都起到了巨大作用,因此许多数学家倾尽一生的精力去研究素数.2024年10月,LukeDurant 用“云超级计算机”找到了第52个梅森素数(形如21p -的素数,其中p 也是素数)136********--,也是现在人类已知的最大素数,它是一个大约41000000位的十进制数.将41000000用科学记数法表示为.12.若5a b -=,则2a b -+的值为.13.我校在举办“海量阅读”活动中,将若干图书分给了x 名学生,如果每人分1本,那么剩余10本没有分配给学生.我校图书共有本(用含x 的代数式表示).14.现有按某种规律排列的一列数:3-,6,12-,24,⋯⋯,则这列数的第9个数是.15.数a 的八进制数表示为()835,则a 转化为十进制数是,a 转化为二进制数是.16.下列各数:10.1234132π,,,其中有理数有w 个;关于a b c ,,的多项式2abc ab c π--的项数为x ,次数为y ,一次项系数为z ,则()wx y z ++的值为.17.如图,某加工厂加工零件,用长方形薄片进行切割,其阴影部分为零件.零件由1个五边形,8个直径为b 的小圆组成.若84953AB a DE a AD b AF b BG b =====,,,,,用含a b ,的代数式表示零件的总面积为.18.一个三位自然数n ,百位数字比个位数字多1,十位数字为8,则称这个数为“十八数”.则最大的“十八数”是.若n 是“十八数”,将n 的百位数字作为新数n '的个位数字,将n 的十位数字作为新数n '的百位数字,将n 的个位数字作为新数n '的十位数字.若满足n 与n '的差是7的倍数.则n 的值是.三、解答题19.计算(1)()()315---+;(2)223.55 2.57x x x x +--;20.计算或化简(1)1123413016431015⎛⎫⎛⎫÷---+⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()323236222x x y x yx x ⎡⎤----⎣⎦;(3)()()232213221333⎛⎫⎡⎤-+-÷+-÷-+- ⎪⎣⎦⎝⎭;(4)()543298415x ⎧⎫⎡⎤---+-⎨⎬⎣⎦⎩⎭.21.(1)画出数轴,在数轴上表示下列各数,并用“<”号连接起来.−2,0.5-,()1--(2)若222A a ab B a ab =-=+,,化简:()3232A A B B ⎡⎤-+-⎣⎦;(3)有理数a b c ,,在数轴上所表示的点分别记为A B C ,,;它们的位置如图所示,化简:2b a c a a b c +-----.22.若数a 在数轴上表示的点到原点的距离为()242b -,与1c +互为相反数,d e ,互为倒数.(1)求a b c ,,的值;(2)求()a b c de -+的值.23.代数式222513332M a b ab a b ab ab ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦,其中常数a b ,满足关于x 的多项式()2213b x ax x --+++与x 的取值无关.(1)化简代数式M ;(2)求常数a b ,的值;(3)求出M 的值.24.有20框玉米,以每框30kg 为标准,超过或不足的千克数分别用正、负数表示,记录如下:与标准质量的差值(单位:kg ) 2.5-1-00.51.52框数237521(1)20框玉米中,最重的一筐比最轻的一筐重多少千克?(2)这20框玉米总计多少千克?(3)若这20框玉米前期种植共花了750元,每千克玉米售价为4元,则这20框玉米全部售出后,盈利多少元?(总利润=总售价一总成本)25.(1)“十小八”打算建一个种植基地,需要一个周长为()1018a +米的三角形护栏,其第一条边长为()74a +米,第二条边长比第一条边长少()23a -米,求该护栏第三边的边长;(2)接下来,“十小八”准备买桃树苗进行种植,某商家的报价是每颗桃树苗单价为400元.由于“双十一”的到来,该商家为他提供了两种优惠.若买桃树苗的数量小于等于5颗,则每颗苗直接打九折;若买桃树苗大于5颗时,先缴纳订金500元,则本次购买的每颗树苗打八折.且在付尾款时,500元订金还会将膨胀为800元优惠券用于抵扣买桃树苗的钱.若“十小八”总共购买()0x x >颗桃树苗,用含x 的代数式表示他买桃树苗花的钱(售价=标价⨯折扣);(3)在桃子成熟后,“十小八”计划卖200公斤桃子,已知前期种植每公斤桃子的成本为4元,利润为y 元.“十小八”卖了125公斤后发现桃子开始腐烂,他决定在现在售价的基础上打九折销售,又卖出了70公斤.最后还剩5公斤桃子彻底腐烂无法销售,用含y 的代数式表示“十小八”卖桃子的总利润.(售价=成本+利润)26.在长方形ABCD 中,6AD BC ==,8AB DC ==;F ,E 分别为AB ,CD 边上的点,且满足4CE AF BF ===.点P 为一动点,从点E 出发,沿折线E D A F →→→,到点F 后终止运动,它的速度为1个单位每秒.设点P 运动时间为()014t t <<.(1)当010t <≤时,用含t 的代数式表示DP 的长度(填空);解:当P 在线段ED 上运动时,即当04t <≤时.点P 走的路程为起点E 至终点P 之间的线段PE 的长度,该路程也等于点P 的运动速度1⨯点P 的运动时间t ,即PE t =,4DP DE PE t =-=-..()()404____________t t DP ⎧-≤≤⎪=⎨⎪⎩(2)当014t <<时,连接BP ,CP ;用含t 的代数式表示BPC 的面积BPC S △;(3)在整个运动过程中,当t 的取值范围是_____时,BPC 有最大值,其最大值为_____;(4)当410t <<时,连接PE ,PB ,BE .直接用含t 的代数式表示PBE △的面积PBE S =△_____.。
人教版七年级上册数学期中试题(含简单答案)
B.5 或 1
C.5 或 1
D. 5 或 1
7.如果 2xn2 y3 与 3x3 y2m1 是同类项,那么 m,n 的值是( )
A. m 2 , n 1 B. m 0 , n 1
C. m 2 , n 2
D. m 1, n 2
8.关于 x、y 的多项式1 4xy2 nxy2 xy 中不含三次项,则 n 的值是( )
A.0
B.4
C. 1
D. 4
二、填空题
9.单项式 2 ab2 的次数为
.
3
10.m 与 - - 2 互为相反数,则 m 的值为
.
3
11.数轴上到原点的距离等于 3 个单位长度的点所表示的数为
.
12.一个数的绝对值的倒数是 3,这个数是
.
13.已知 m, n 满足 (m 2)2 | mn 8 | 0 ,求 m n nm 的值.
B. 6.96105
C. 6.96106
D. 0.696106
3.已知 a,b 都是实数,若 a 22 b 1 0 ,则 a b 2023 的值是( )
A. 2023
B. 1
C.1
D.2023
4.数轴上依次排列的四个点,它们表示的数分别为 a,b,c,d ,若 a c 6 , a d 10 ,
1.D
参考答案:
2.B
3.B
4.D
5.C
6.A
7.A
8.D
9.3 10. 2
3
11. 3 12. 1
3 13.22
14.9
27 15.
256
16. 4043x2
17.① 4 ;②1000;③1
1
29 ;④
2023-2024学年七年级上学期期中考试语文试题 (3)
2023-2024学年度第一学期期中学业水平调研七年级语文一、基础·运用(共14分)同学们,祝贺你成为一名中学生。
经过这段时间的学习,你一定有很多收获,请你运用所学,完成下面任务。
1.阅读下面一段文字,完成(1)-(2)题。
(共4分)不必说碧绿的莱畦,光滑的石井栏,高大的皂英树,紫红的桑椹;也不必说鸣蝉在树叶里长吟,肥胖的黄(①)伏在菜花上,轻捷的叫天子(云雀)忽然从草间直窜.向云(②)里去了。
单是周围的短短的泥墙根一带,就有无限趣味。
油蛉在这里低唱,蟋蟀们在这里弹琴。
翻开断砖来,有时会遇见蜈蚣;还有斑蝥,倘若用手指按住它的脊.梁,便会拍的一声,从后窍喷出一阵烟雾。
何首乌藤和木莲藤缠络着,木莲有莲房一般的果实,何首乌有拥肿的根。
有人说,何首乌根是有像人形的,吃了便可以成仙,我于是常常拔它起来,牵连不断地拔起来,也曾因此弄坏了泥墙,却从来没有见过有一块根像人样。
如果不怕刺,还可以摘到覆盆子,像小珊瑚珠攒成的小球,又酸又甜,色味都比桑椹要好得远。
(1)文段中加点字的读音全都正确的一项是(2分)A.窜向(cuàn)脊梁(jí)B.窜向(cuān)脊梁(jí)C.窜向(cuàn)脊梁(jǐ)D.窜向(cuān)脊梁(jǐ)(2)文段中①②处选填汉字完全正确的一项是(2分)A. ①蜂②宵B. ①烽②霄C. ①烽②宵D. ①蜂②霄2.阅读下面文段,完成(1)-(3)题。
(共6分)春水融融,又见燕影,又见花红。
古老的树影,朦胧的细雨,流淌的小溪,消融的冬雪,引领我们走进梦的森林。
那里神秘莫测,那里有花季的芬芳,那里有雨季的清新,那里有春的气息,那里是我们的季节!春天像清爽的早晨,春天像粉色的梦幻,春天像初生的婴儿……风妈妈用朦胧的细雨洗涤我们的心灵,我们忘却一切烦恼,我们清洗得靓丽洒脱。
春风满载着我们甜美的笑容,欢乐的笑声,飞向碧海蓝天!把我们的欢笑带去,把我们的理想放飞!寂静的夜里,心却无法平静,春更盎然有力。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
初一上册数学期中试题及答案【四篇】
【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
七年级语文(上册)期中考试卷(一) 含答案
七年级语文(上册)期中考试卷(一)含答案七年级语文(上册)期中试题(一)答案1、D2、A3、C A.成分残缺,应在“安全卫生"后面加上“的知识”:B.句式杂糅,将“组成"去掉,或者将“含有”改为“由";D.语序不当,应将“一场文化盛宴”和“一场体育盛会"互换位置;故选C。
4、A5、C7、B 诗句中的山岛草木是实景,不是想象。
8、两个若字表明这是写的是虚景,是作者的想象之景,有助于描绘大海吞吐日月星辰,包容星汉的壮阔景象,更能突出诗人的博大胸怀和宏伟的政治抱负。
9、(1) 急差不多曾经只有10、①比如比作柳絮因风飘起。
②李树长在路旁并且长满了果实,这一定是苦的李子。
11、D12、【甲】抓住了雪花和柳絮形态(外形)的相似,写出雪花飘舞的轻盈的姿态;给人以春天到来的感觉。
【乙】仔细观察,善于思考,三思后行,能根据观察推理判断,少走弯路。
【乙】王戎七岁的时候,和小朋友们一道玩耍,看见路边有株李树,结了很多李子,枝条都被压断了。
那些小朋友都争先恐后地跑去摘。
只有王戎没有动。
有人问他为什么不去摘李子,王戎回答说:“这树长在大路边上,还有这么多李子,这一定是苦李子。
”摘来一尝,果然是这样。
13、示例一:衍太太是一个令人讨厌的人。
《琐记》里写“她对自己的儿子虽然狠,对别家的孩子却好的",而这所谓的“好”,却是怂恿别人家的孩子在冬天比赛吃冰,或者比赛打旋,而在有的孩子旋得跌倒,被自家大人看见时,衍太太却说:“不是跌了么?不听我的话。
我叫你不要旋,不要旋…."而且,她还教唆“我”去偷母亲的首饰变卖,“我"并没有偷,她却放出流言来了。
这些就表现出衍太太的坏品德了。
示例二,对衍太太要辩证地看待。
她虽然丛恿别人家的孩子冬天比赛吃冰,或者比赛打旋,教唆“我”去偷母亲的首饰变卖,甚至背后散布流言,但她毕竟还是喜欢孩子,如孩子头上碰肿了,衍太太立刻给他搽药止痛。
江西省南昌市南昌县2023-2024学年七年级上学期期中考试语文试题(含解析)
南昌县2023-2024 学年度第一学期期中考试七年级语文试题题号一二三四五总分满分值102020545100得分一、语言文字运用 (10分)阅读下面的文字,完成1-2 小题。
“春有百花秋有月,夏有骄阳冬有雪。
”桃花盛开酝酿春的希望;菡萏挺立迎来夏的热情;菊花(qiáocuì)宣示秋的萧条;梅花(dài)雪无畏冬的荒凉。
尽管是高邈的原野,还是平坦的山地,四季都刻上了花的烙印。
1.下列选项中,加点字注音及字形全部正确的一项是 ( )(2分)A. yùn niàng , hán dàn, 谯脆, 戴B. yùn niàng , hàn dàn , 憔悴, 戴C. yún niàng , hàn dàng, 憔悴, 带D. yún niàng , hàn dàn, 谯脆, 带2、文中划波浪线的句子有语病,下列修改正确的一项是( ) (2分)A.即使是高邈的山地,还是平坦的原野,四季都刻上了花的烙印。
A.要么是高邈的原野,要么是平坦的山地,四季都刻上了花的烙印。
C.无论是高邈的原野,还是平坦的山地,四季都刻上了花的烙印。
D.无论是高邈的山地,还是平坦的原野,四季都刻上了花的烙印。
3.下文方框内,依次填入的标点符号,最恰当的一项是( )(2分)什么是读书的艺术呢□法国作家莫洛亚在《生活的艺术》一书中说□读书的艺术,在很大程度上,就是在书中重新发现生活□更准确地理解生活的艺术□A. , “ , !”B. ? : “ , 。
”C. ? “ 、 ”D. , : “ 、 ! ”4.下列关于文学常识、语法知识的表述,有误的一项是( ) (2分)A. 《春》作者朱自清,字佩弦,号秋实,江苏扬州人,散文家、诗人、学者。
著有诗文集《踪迹》,散文集《背影》、《欧游杂记》、《你我》等。
山东省青岛市2023-2024学年七年级上学期期中数学试题
山东省青岛市2023-2024学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________....2023的绝对值是()12023-.2023-12023.用一个平面去截一个圆柱,截面的形状可能是().....下列有理数中,负分数是()7-.03.6-329.如图所示的几何体是由5个大小相同的小正方体搭成的,从上面看到的几何体的形状图是()A ....6.下列两个数互为相反数的是()A .25x x+C .()()322x x x++-9.如图,往一个密封的正方体容器持续注入一些水,注水的过程中,可将容器任意放置,水平面形状不可能是(A .三角形B .正方形10.如图是一个“数值转换机次输出的结果是2,…,第A .8B .4二、填空题11.如果向东走2km 记作2km +,那么向西走12.235x y -的系数是.13.“一带一路”地区覆盖总人口为4400000000示为.16.小亮和同伴玩“24点”游戏,游戏规则是从一组卡片中任意抽取4张,根据卡片上的数进行混合运算(每张卡片必须用一次且只能用一次,可以加括号),使得运算结果为24或24-.小亮抽到的4张卡片上的数分别是2,6-,12,13,请帮助小亮列出一个结果为24或24-的算式.三、解答题17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.18.计算:(1)()()82713--+--;(2)()11010935--⨯--÷;(1)用代数式表示图1窗户能射进阳光的部分的面积(窗框面积忽略不计)(2)为了更加美观,小明重新设计了房间窗户的装饰物,和一个半圆组成),请用代数式表示图2窗户能射进阳光的部分的面积(窗框面积忽略不计);(3)比较(1)和(2)中哪种设计射进阳光的部分的面积更大,大多少?22.某班综合实践小组开展“制作长方体形纸盒【知识准备】下列图形中,可能是无盖正方体的表面展开图的有【制作纸盒】综合实践小组利用边长为20cm的正方形纸板,按以下两种方式制作长方体形盒子.如图⑤,先在纸板四角剪去四个同样大小边长为可制作一个无盖长方体形盒子.如图⑥,先在纸板四角剪去两个同样大小边长为小正方形和两个同样大小的小长方形,再沿虚线折合起来,【拓展探究】若有盖长方体形盒子的长、宽、高分别为5cm,4cm,3cm,将它的表面沿某些棱剪开,展成一个平面图形,则该长方体形盒子表面展开图的外围周长最小为________23.观察下列各式:。
七上期中考试语文试题及答案
七上期中考试语文试题及答案一、选择题(每题2分,共20分)1. 下列词语中,加点字的读音全部正确的一项是:A. 倔强(jué)B. 迸溅(bèng)C. 应届(yīng)D. 箴言(zhēn)答案:D2. 根据题目所给的语境,选择正确的词语填空:他虽然失败了,但仍然________地面对现实。
A. 坚韧不拔B. 坚韧不屈C. 坚忍不拔D. 坚忍不屈答案:C3. 下列句子中,没有语病的一项是:A. 通过这次活动,使我们的团队协作能力得到了提高。
B. 他不仅学习好,而且品德高尚,深受同学们的喜爱。
C. 这篇文章的观点很新颖,值得大家学习。
D. 我们不能因为一次失败就放弃追求。
答案:D4. 下列句子中,使用了比喻修辞手法的一项是:A. 他像一只猛虎一样冲向了终点。
B. 他跑得像风一样快。
C. 她的声音像泉水一样清澈。
D. 他的笑容像阳光一样温暖。
答案:B5. 下列句子中,使用了排比修辞手法的一项是:A. 他勤奋学习,刻苦钻研,成绩优异。
B. 春天的花开了,夏天的果实熟了,秋天的落叶黄了,冬天的雪白了。
C. 他不仅学习好,而且品德高尚。
D. 我们要珍惜时间,珍惜生命,珍惜机会。
答案:B6. 下列句子中,使用了设问修辞手法的一项是:A. 他为什么要这样做?B. 他这样做是为了什么?C. 他这样做究竟是为了什么?D. 他这样做,究竟是为了什么?答案:A7. 下列句子中,使用了反问修辞手法的一项是:A. 难道我们不应该珍惜时间吗?B. 我们难道不应该珍惜时间吗?C. 我们不应该珍惜时间吗?D. 我们难道不珍惜时间吗?答案:A8. 下列句子中,使用了夸张修辞手法的一项是:A. 他跑得像风一样快。
B. 他的声音震耳欲聋。
C. 他的心像石头一样硬。
D. 他的力气大得可以举起一头牛。
答案:D9. 下列句子中,使用了借代修辞手法的一项是:A. 他是一位白衣天使。
B. 他是一位医生。
C. 他是一位护士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级生物第一次月考试题一、 单项选择题,请将正确答案填在下表(每题2分,共50分) 1、“人间四月芳菲尽,山寺桃花始盛开”,造成这一差异的环境因素是 ( ) A 、光 B 、水 C 、温度 D 、湿度2、属于生物基本特征的是 ( ) A 、生物都能自由运动 B 、生物都需要从外界摄取有机物 C 、生物都能生长繁殖 D 、生物都能进行光合作用3、“葵花朵朵向太阳”所表现出的生物特征是 ( ) A 、生物对外界的刺激作出反应 B 、生物能排出体内产生的废物 C 、生物的生活需要营养 D 、生物能进行呼吸4、下列物体中属于生物的是 ( ) ①蝴蝶 ②珊瑚 ③黑木耳 ④智能机器人 ⑤青苔 ⑥流星 A 、① ③ ⑤ B 、① ② ③ ⑤ C 、② ④ ⑥ D 、④⑥5、鱼必须生活在水里,离开水一段时间就会死亡,对此最恰当的解释是 ( ) A 、生物影响环境 B 、生物适应环境 C 、生物改变环境 D 、生物依赖环境6、我们在养花的过程中,经常给花浇水,施肥,松土,放在阳光下,天气冷了,我们还要把花放在屋里,而且一般一个花盆只栽一株植物,这体现了生物生存所需要的基本条件,与上述顺序相对应,分别是 ( )(1)营养物质(2)空气(3)阳光(4)适宜的温度(5)一定的生存空间(6)水 A 、(1)(3)(2)(5)(6)(4) B 、(6)(1)(2)(3)(4)(5) C 、(4)(5)(3)(6)(1)(2) D 、(3)(6)(4)(5)(2)(1)7、下列食物链不正确的是 ( ) A 、青虫 山雀雀鹰 B 、牧草 野兔 狐狸B 、水草 小虾 黑鱼 D 、草 蝗虫 山雀 雀鹰 8、下列生物中,属于竞争关系的是 ( ) A 、水稻和杂草 B 、猫和老鼠C 、人和猪D 、蚂蚁和蚱蜢9、下列不属于生态系统的是 ( ) A 、一片农田 B 、一块草地 C 、生物圈 D 、一条河中所有的鱼10、下列生物中属于生产者的是 ( ) A 、草 B 、吃虫鸟 C 、细菌 D 、猪11、下列调查过程中的做法错误的是 ( ) A 、选择一条生物种类较多的路线 B 、见到喜爱的植物要采集起来 C 、注意安全,与组内的同学一起行动 D 、记录时要实事求是12、 含羞草的叶子被碰后会合拢,这说明生物具有 ( ) A 、生长现象 B 、应激性 C 、繁殖 D 、呼吸13、下列对生物圈的叙述正确的是 ( ) A 、阳光、土壤、空气是生物生存必须的条件B 、光线不易穿透深层海洋,使得生物在海洋深处绝迹C 、地球上适合生物生存的一薄层即生物圈D 、生物圈为海平面上下各1000米14、在绿草地中生活的蚱蜢的体色往往是 ( ) A 、灰色 B 、绿色 C 、黄色 D 、褐色15、下列现象中,属于与温度变化相适应的现象是 ( ) A 、蛾夜间活动 B 、仙人掌的叶变成刺 C 、候鸟的迁徙 D 、山顶的旗形树16、据报道,截至2010年4月8日,中国西南旱情:云南、贵州、广西、重庆、四川5省(区、市)耕地受旱面积1.01亿亩,农作物受旱死苗达7907亩。
此报道中导致农作物出现死苗现象的非生物因素是 ( ) A 、水分 B 、温度 C 、阳光 D 、土壤 17、目前餐桌上流行的营养丰富的各种菌类在生态系统中的角色是 ( ) A 、生产者 B 、消费者 C 、分解者 D 、非生物部分18、为保护南极的生态环境,到南极考察的科学工作者不仅要把塑料等难以降解的垃圾带离南极,还把粪便等生活垃圾带离南极,这是因为南极( )A 、缺少生产者B 、消费者C 、分解者D 、缺乏必要的生活设施19、在辽阔的草原生态系统中,数量最多的是 ( ) A 、草 B 、野鼠 C 、牛羊 D 、狼 20、某淡水生态系统中有这样一条食物链:“浮游植物→剑水蚤→蜻蜓幼虫→小鱼→大鱼”,当这水域被排放了难分解的有毒物质——汞后,一段时间,体内汞的含量最多的生物是 ( )A 、浮游植物B 、剑水蚤C 、小鱼D 、大鱼21、从前的黄土高原有茫茫的林海,而今却是荒山秃岭,其主要原因是 ( ) A 、地球上的温室效应造成的 B 、气候变得干燥造成的 C 、人类乱砍乱伐造成了平衡失调 D 、地壳变迁造成的22、世界人口不能无限增加,否则人类就不能正常地生存,因为生物的生存需要( ) A 、阳光 B 、空气 C 、适宜的温度 D 、一定的生存空间23、人们为了防止鸟吃草子,把一片草地用网全罩起来,结果导致食草昆虫大量繁殖,草几乎全被吃光,这是因为破坏了 ( ) A 、生态系统 B 、食物链 C 、食物网 D 、生存环境24、生活在沙漠中的植物,叶片比陆地植物的叶片小,这主要是哪种生态因素的影响( ) A 、水 B 、温度 C 、土壤 D 、阳光25、在一片森林中,有土壤、水分、阳光、空气,生活着各种植物、动物、微生物,它们共同组成 ( )A 、生态平衡B 、生态系统C 、生态因素D 、环境因素 二、 填空题(每空2分,共50分)26、生物圈包括____________ 的底部,____________ 大部,____________ 的表面。
27、影响生物生活的非生物因素有________ 、________ 、________ 、________ 等。
28、亲自进行科学探究是学习生物学的重要方式,那么,科学探究的一般过程是:提出问题、___ _ 、制定计划、 ____ 、得出结论。
29,人出汗,呼气和排尿,反映的生物基本特征是___ ________ ________ ________ 。
30、生态系统由________ ________ 和________ ________ 两部分组成。
其中生物部分包括________ 、________ 、________ 。
31、鲸是哺乳动物,但是它的体型却像鱼,四肢变为鳍状,这说明生物能 ______环境;茂密的森林中,空气远比喧闹的城市清洁、新鲜、湿润,这说明生物的生活能_______ 环境。
32、下图为草原生态系统请根据图回答问题 (1)图中生产者是 。
(2)鼠、兔、蛇、狐、鹰都是动物,统称为 者。
(3)图中有 条食物链。
(4)如果狐大量减少,那么鼠和兔将会 。
(5)该生态系统中还有一种成分没有画出来它是 者。
(6)如果受到DDT 污染,体内DDT 含量最高的生物是 和 。
(7)写出其中一条食物链:_________________________________________________ 七年级生物上册第二单元生物和细胞第一节 练习使用显微镜 一、填空1、显微镜的结构中,能调节光线强弱的结构是 和 ;若要使视野亮一些,应该用 、 ;要使视野暗一些,则应该用 、 。
2、目镜安装在 上,物镜安装在 上;观察时要选用 ( “低倍”或“高倍”)镜,显微镜的放大倍数等于物镜与目镜放大倍数的 ;从目镜内看到的像是 。
3、左图中,是目镜的有: 、 ,其中放大倍数较低的是 ;是物镜的有: 、 ,其中放大倍数较低的是 ;要想观察的细胞数目多,应选 和 组合观察。
4、对光时,先转动 ,使低倍物镜对准 ,然后转动遮光器,把一个较 的光圈对准通光孔。
最后转动 ,使光线射入镜筒内,通过目镜,可以看到 视野。
5、比较填表: 二、选择题 1.某同学在低倍镜下看到的物像如图Ⅱ一3所示, 玻片上写的字母应该是( ) A .P B. d C .q D .b 2.使用显微镜观察标本时,在视野中看到有一黑点,转动目镜和移动装片,黑点都没动,可断定黑点最可能在 ( ) A .反光镜上 B .目镜上 C .物镜上 D .装片上 3.使用显微镜对光的顺序是 ①选择遮光器上适宜的光圈对准通光孔 ②转动转换器,使低倍物镜对准通光孔 ③左眼注视目镜(右眼睁开) ④转动反光镜调节出一个白亮的视野 A .①②④③ B.②①③④ C .③④②① D.③②①④ 4.在使用显微镜时若光线过弱,可选用的反光镜和光圈是 ( ) A .平面镜、小光圈 B .凹面镜、大光圈 C 平面镜、大光圈 D .凹面镜、小光圈 5. 进行显微镜对光时,为了看到明亮的视野,应该使下列哪些部件成一条直线 ( ) A .物镜、目镜、转换器、反光镜 B .目镜、镜筒、物镜、反光镜 C .物镜、镜筒、目镜、载物台 D .目镜、物镜、通光孔、反光镜 6. 若显微镜中出现一个污点,移动玻片和转动转换器后,污点仍然不动,则污点在( ) A .目镜上 B .物镜上 C .玻片上 D .反光镜上 7.使用显微镜观察,下降镜筒时,眼睛要注视的部位是( ) A .目镜 B .物镜 C .反光镜 D .载物台 8. 某同学在使用显微镜时,在低倍镜视野中看到的物像在视野左上方。
他想将物像移到正中央,应将玻片( ) A .向左上方移动 B .向右上方移动 C .向左下方移动 D .向右下方移动 9. 若不动显微镜的其他部分,只是转动转换器,将物镜由IOX 转换成45X ,视野中的光线将会( ) A .变亮 B .变暗 C .无变化 D .变化无规律 10.图Ⅱ一4所示的使镜筒下降的四个操作中,正确的是 ( ) 11. 用显微镜观察葫芦鲜叶的装片时,为使视野内看到的细胞数目最多,应选用( ) A .目镜5×,物镜10× B .目镜10×,物镜15× C .目镜5×,物镜40× D .目镜10×,物镜40× 12. 、用低倍物镜观察印有“F ”字样的薄纸片, 视野中的字样是 ( ) 三、简答题 右图Ⅱ一5是显微镜的结构图,请据图回答: (1)取镜时,握镜的部位是[ ] 。
(2)接近玻片标本的镜头是[ ] 。
(3)转动使镜筒的升降范围很小的结构是[ ] 。
(4)用来调节光线强弱的结构是[ ] 和 [ ] 。
(5)把玻片标本放在[ ] 后,要用压片夹压住,标本要正对[ ] 的中央。
(6)某同学在用对好光的显微镜观察标本时,发现视野是暗的,请你帮他分析可能的原因。
(7)若图Ⅱ-6为某同学用显微镜观察临时装片时的一个视野,将装片向左下方移动能将细胞 移向视野中央。
第二节 观察植物细胞 一、填空 1.显微镜对所要观察的材料的要求是 ;常见的玻片标本有: 、 、 ,从生物体上撕下或挑取少量材料制成的标本是。
2.根据实验“观察植物细胞”,总结制作洋葱鳞片叶表皮细胞临时装片的方法步骤:擦:用洁净的纱布把 和 擦拭干净。
滴:用滴管在载玻片中央滴一滴 (维持细胞的正常形态)。
取:用镊子从洋葱鳞片叶 侧表皮撕取一小块透明薄膜。
展:用镊子把薄膜浸入载玻片上的水滴,并把它展平,目的是 。
盖:用镊子夹起盖玻片,使它的 先接触 ,然后 ,盖在所要观察的材料上,这样盖的目的是 。