2.5直线与圆的位置关系3

合集下载

第2章 2.5 2.5.1 直线与圆的位置关系

第2章 2.5 2.5.1 直线与圆的位置关系

2.5直线与圆、圆与圆的位置关系2.5.1直线与圆的位置关系学习目标核心素养1.掌握直线与圆的三种位置关系:相交、相切、相离.(重点)2.会用代数法和几何法来判断直线与圆的三种位置关系.(难点)3.会用直线与圆的位置关系解决一些实际问题.(难点) 通过研究直线与圆的位置关系,提升逻辑推理、数学运算、直观想象的数学素养.“大漠孤烟直,长河落日圆”,这是唐代诗人王维的诗句.它描述了黄昏日落时分塞外特有的景象.如果我们把太阳看成一个圆,地平线看成一条直线,观察下面三幅太阳落山的图片.图片中,地平线与太阳的位置关系怎样?结合初中知识总结,直线与圆有几种位置关系?1.直线与圆的三种位置关系位置关系交点个数相交有两个公共点相切只有一个公共点相离没有公共点位置关系相交相切相离公共点个数两个一个零个判定方法几何法:设圆心到直线的距离d=|Aa+Bb+C|A2+B2d<r d=r d>r 代数法:由Δ>0Δ=0Δ<0⎩⎨⎧Ax +By +C =0,x -a 2+y -b2=r2消元得到一元二次方程的判别式Δ[提示] “几何法”与“代数法”判断直线与圆的位置关系,是从不同的方面,不同的思路来判断的.“几何法”更多地侧重于“形”,更多地结合了图形的几何性质;“代数法”则侧重于“数”,它倾向于“坐标”与“方程”.3.用坐标法解决平面几何问题的“三步曲”第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:把代数运算的结果“翻译”成几何结论.1.思考辨析(正确的打“√”,错误的打“×”)(1)直线与圆的位置关系可以用代数法或几何法判断. ( ) (2)过圆外一点作圆的切线有两条.( )(3)当直线与圆相离时,可求圆上点到直线的最大距离和最小距离. ( ) (4)若直线与圆有公共点,则直线与圆相交或相切. ( )[提示] (1)√ (2)√ (3)√ (4)√2.直线3x +4y -5=0与圆x 2+y 2=1的位置关系是( ) A .相交 B .相切 C .相离D .无法判断B [圆心(0,0)到直线3x +4y -5=0的距离d =|-5|32+42=1. ∵d =r ,∴直线与圆相切.故选B.]3.设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |=( ) A .1 B . 2 C . 3D .2D [直线y =x 过圆x 2+y 2=1的圆心C (0,0),则|AB |=2.]4.若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________. x +2y -5=0 [由题意,得k OP =2-01-0=2,则该圆在点P 处的切线的斜率为-12,所以所求切线方程为y -2=-12(x -1),即x +2y -5=0.]直线与圆的位置关系与直线:(1)有两个公共点;(2)只有一个公共点;(3)没有公共点.[解]法一:将直线mx-y-m-1=0代入圆的方程化简整理得,(1+m2)x2-2(m2+2m+2)x+m2+4m+4=0.∵Δ=4m(3m+4),∴(1)当Δ>0时,即m>0或m<-43时,直线与圆相交,即直线与圆有两个公共点;(2)当Δ=0时,即m=0或m=-43时,直线与圆相切,即直线与圆只有一个公共点;(3)当Δ<0时,即-43<m<0时,直线与圆相离,即直线与圆没有公共点.法二:已知圆的方程可化为(x-2)2+(y-1)2=4,即圆心为C(2,1),半径r=2.圆心C(2,1)到直线mx-y-m-1=0的距离d=|2m-1-m-1|1+m2=|m-2|1+m2.(1)当d<2时,即m>0或m<-43时,直线与圆相交,即直线与圆有两个公共点;(2)当d=2时,即m=0或m=-43时,直线与圆相切,即直线与圆只有一个公共点;(3)当d>2时,即-43<m<0时,直线与圆相离,即直线与圆没有公共点.直线与圆位置关系判断的三种方法(1)几何法:由圆心到直线的距离d与圆的半径r的大小关系判断.(2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.[跟进训练]1.已知直线l :(2m +1)x +(m +1)y =7m +4,圆C :(x -1)2+(y -2)2=25,则直线l 与圆C 的位置关系为________.相交 [由直线方程得(2x +y -7)m +x +y -4=0,令⎩⎨⎧ 2x +y -7=0,x +y -4=0,得⎩⎨⎧x =3,y =1.故直线l 过定点A (3,1). 由|AC |=3-12+1-22=5<5得A 点在圆内,因此直线l 与圆C 相交.]直线与圆相切问题1.怎样解决直线与圆相切问题?[提示] 一般采用几何法,即圆心到直线的距离等于半径.2.当点(x 0,y 0)在圆外时,过该点的直线与圆相切有几条?当设点斜式只求出一个解时怎么办? [提示] 有两条.虽设点斜式但要分斜率存在与不存在两种情况,当只求出一个解时,另一条一定是x =x 0.【例2】 (1)已知直线l :ax +by -3=0与圆M :x 2+y 2+4x -1=0相切于点P (-1,2),则直线l 的方程为________.(2)过点A (4,-3)作圆(x -3)2+(y -1)2=1的切线,求此切线方程. [思路探究] (1)利用MP ⊥l ,同时点P 在直线l 上. (2)先确定点A 在圆外,利用d =r 求切线方程. (1)x +2y -3=0 [根据题意,圆M :x 2+y 2+4x -1=0, 即(x +2)2+y 2=5,其圆心M (-2,0),直线l :ax +by -3=0与圆M :x 2+y 2+4x -1=0相切于点P (-1,2), 则P 在直线l 上且MP 与直线l 垂直. k MP =2-0-1--2=2,则有-a b =-12,则有b =2a ,又由P 在直线l 上,则有-a +2b -3=0,可解得a =1,b =2, 则直线l 的方程为x +2y -3=0.] (2)[解] 因为(4-3)2+(-3-1)2=17>1, 所以点A 在圆外,故切线有两条.①若所求直线的斜率存在,设切线斜率为k ,则切线方程为y+3=k(x-4),即kx-y-4k-3=0. 设圆心为C,因为圆心C(3,1)到切线的距离等于半径1,所以|3k-1-3-4k|k2+1=1,即|k+4|=k2+1,所以k2+8k+16=k2+1,解得k=-15 8.所以切线方程为-158x-y+152-3=0,即15x+8y-36=0.②若直线斜率不存在,圆心C(3,1)到直线x=4的距离为1,这时直线x=4与圆相切,所以另一条切线方程为x=4.综上,所求切线方程为15x+8y-36=0或x=4.圆的切线方程的求法(1)点在圆上时求过圆上一点(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,再由垂直关系得切线的斜率为-1k,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程y=y0或x=x0.(2)点在圆外时①几何法:设切线方程为y-y0=k(x-x0).由圆心到直线的距离等于半径,可求得k,也就得切线方程.②代数法:设切线方程为y-y0=k(x-x0),与圆的方程联立,消去y后得到关于x的一元二次方程,由Δ=0求出k,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.[跟进训练]2.若圆C:x2+y2+2x-4y+3=0,关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作的切线长的最小值为________.4[因为圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,所以圆心C(-1,2)在直线2ax+by+6=0上,所以-2a+2b+6=0,即a-b=3.又圆的半径为2,当点(a,b)与圆心的距离最小时,切线长取得最小值,又点(a,b)与圆心的距离为a +12+b -22=2a -22+18≥32,所以切线长的最小值为322-22=4.]直线与圆相交问题【例3】 (1)求直线l :3x +y -6=0被圆C :x 2+y 2-2y -4=0截得的弦长|AB |.(2)过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB |=8,求直线l 的方程.[思路探究] (1)利用交点坐标直接求解.(2)直线l 要分斜率存在和不存在两种情况,建立方程,通过解方程得解.[解] (1)联立直线l 与圆C 的方程,得⎩⎨⎧ 3x +y -6=0,x 2+y 2-2y -4=0,解得⎩⎨⎧ x 1=1,y 1=3,⎩⎨⎧x 2=2,y 2=0,所以交点为A (1,3),B (2,0).故直线l :3x +y -6=0被圆C :x 2+y 2-2y -4=0截得的弦长|AB |=1-22+3-02=10.(2)将圆的方程配方得(x +1)2+(y -2)2=25, 由圆的性质可得,圆心到直线l 的距离d =252-⎝ ⎛⎭⎪⎫822=3. ①当直线l 的斜率不存在时,x =-4满足题意;②当直线l 的斜率存在时,设l 的方程为y =k (x +4),即kx -y +4k =0. 由点到直线的距离公式,得3=|-k -2+4k |1+k2, 解得k =-512,所以直线l 的方程为5x +12y +20=0. 综上所述,直线l 的方程为x +4=0或5x +12y +20=0.求弦长常用的三种方法(1)利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系⎝ ⎛⎭⎪⎫12l 2+d 2=r 2解题.(2)利用交点坐标,若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长.(3)利用弦长公式,设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l =1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2].[跟进训练]3.直线m :x +y -1=0被圆M :x 2+y 2-2x -4y =0截得的弦长为( ) A .4 B .23 C .12 D .13B[∵x2+y2-2x-4y=0,∴(x-1)2+(y-2)2=5,∴圆M的圆心坐标为(1,2),半径为5,又点(1,2)到直线x+y-1=0的距离d=|1×1+1×2-1|12+12=2,直线m被圆M截得的弦长等于2()52-()22=2 3.故选B.]直线与圆位置关系的综合受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[思路探究]先以台风中心为原点建立适当的直角坐标系,把有关的几何元素用坐标和方程表示出来,然后把此实际问题转化为代数问题来解决.[解]以台风中心为坐标原点,以东西方向为x轴建立平面直角坐标系(如图所示),其中取10 km 为单位长度,则受台风影响的圆形区域为圆x2+y2=9及其内部,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到直线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,因为d>r,所以直线与圆相离,所以轮船不会受到台风的影响.直线与圆的方程的实际应用问题的解题步骤(1)审题:认真审题,明确题意,从题目中抽象出几何模型,明确已知和未知;(2)建系:建立平面直角坐标系,求出相关各点的坐标,用方程表示曲线,从而在实际问题中建立直线与圆的方程;(3)求解:利用直线与圆的方程的有关知识求解问题;(4)还原:将运算结果还原到实际问题中去.[跟进训练]4.如图所示,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,则水面下降1米后,水面宽度为()A.14米B.15米C.51米D.251米D[以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x轴,以过圆弧形拱桥的顶点的竖直直线为y轴,建立平面直角坐标系,如图所示.设圆心为C,水面所在弦的端点为A,B,则由已知可得A(6,-2),设圆的半径长为r,则C(0,-r),则圆的方程为x2+(y+r)2=r2.将点A的坐标代入上述方程,可得r=10,所以圆的方程为x2+(y+10)2=100,当水面下降1米后,水面所在弦的端点为A′,B′,可设A′(x0,-3)(x0>0),代入x2+(y+10)2=100,解得x0=51,∴水面宽度|A′B′|=251米.]1.直线与圆的位置关系反映在三个方面:一是点到直线的距离与半径大小的关系;二是直线与圆的公共点的个数;三是两方程组成的方程组解的个数.因此,若给出图形,可根据公共点的个数判断;若给出直线与圆的方程,可选择用几何法或代数法,几何法计算量小,代数法可一同求出交点.解题时可根据条件作出恰当的选择.2.与圆有关的弦长、切线问题常利用几何法求解,体现了直观想象的数学素养,但注意验证所求直线的斜率不存在的情形,避免漏解.3.坐标法解决问题的一般步骤(1)建立适当的平面直角坐标系;(2)设出已知点的坐标,求出未知点的坐标及曲线的方程;(3)利用所学公式列出方程(组),通过计算得出代数结论;(4)反演回去,得到几何问题的结论.1.直线3x+4y+12=0与圆(x-1)2+(y+1)2=9的位置关系是()A .过圆心B .相切C .相离D .相交但不过圆心D [圆心坐标为(1,-1),圆心到直线3x +4y +12=0的距离为d =|3-4+12|32+42=115<r =3.又点(1,-1)不在直线3x +4y +12=0上,所以直线与圆相交且不过圆心.选D.]2.过点P (0,1)的直线l 与圆(x -1)2+(y -1)2=1相交于A ,B 两点,若|AB |=2,则该直线的斜率为( )A .±1B .±2C .±3D .±2A [由题意设直线l 的方程为y =kx +1,因为圆(x -1)2+(y -1)2=1的圆心为(1,1),半径为r =1,又弦长|AB |=2,所以圆心到直线的距离为d =r 2-⎝ ⎛⎭⎪⎫|AB |22=1-12=22,所以有|k |k 2+1=22,解得k =±1.]3.若直线3x -2y =0与圆(x -4)2+y 2=r 2(r >0)相切,则r =( ) A .487 B .5 C .4217D .25C [设圆心到直线的距离为d ,则d =|43-0|32+-22=4217.由直线与圆相切可得r =4217.故选C.]4.过点A (-1,4)作圆C :(x -2)2+(y -3)2=1的切线l ,则切线l 的方程为________.y =4或3x +4y -13=0 [设方程为y -4=k (x +1),即kx -y +k +4=0.∴d =|2k -3+k +4|k 2+1=1,∴4k 2+3k =0,解得k =0或k =-34.故切线l 的方程为y =4或3x +4y -13=0.] 5.已知圆C 经过点A (2,0),B (1,-3),且圆心C 在直线y =x 上. (1)求圆C 的方程;(2)过点⎝⎛⎭⎪⎫1,33的直线l 截圆所得弦长为23,求直线l 的方程.[解] (1)AB 的中点坐标⎝ ⎛⎭⎪⎫32,-32,AB 的斜率为 3.可得AB 垂直平分线方程为23x +6y =0,与x ―y =0的交点为(0,0),圆心坐标(0,0),半径为2,所以圆C 的方程为x 2+y 2=4.(2)直线的斜率存在时,设直线的斜率为k ,又直线l 过⎝ ⎛⎭⎪⎫1,33,∴直线l 的方程为y -33=k (x -1), 即y =kx +33-k ,则圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪33-k 1+k 2,又圆的半径r =2,截得的弦长为23,则有⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪33-k 1+k 22+(3)2=4,解得:k =-33,则直线l 的方程为y =-33x +233.当直线的斜率不存在时,直线方程为x =1,满足题意. ∴直线l 的方程为x =1或y =-33x +233.。

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5直线与圆、圆与圆的位置关系(精练)1直线与圆的位置关系1.(2022·山东滨州)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定【答案】D【解析】直线()22:1(32)250l m m x m y m +++---=,即2(2)(2)(35)0x m x y m x y -+-++-=,由2020350x x y x y -=⎧⎪-=⎨⎪+-=⎩解得21x y =⎧⎨=⎩,因此,直线l 恒过定点(2,1)A ,又圆22:20C x y x +-=,即22(1)1x y -+=,显然点A 在圆C 外,所以直线l 与圆C 可能相离,可能相切,也可能相交,A ,B ,C 都不正确,D 正确.故选:D2(2021·黑龙江)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B3.(2022·辽宁·瓦房店市高级中学高二期末)直线()1R y kx k =+∈与圆22(1)(1)4x y -+-=的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】直线()1R y kx k =+∈恒过定点()0,1,又22(01)(11)14-+-=<,即点()0,1在圆22(1)(1)4x y -+-=内部,所以直线与圆相交;故选:A4.(2022·湖北省武汉市汉铁高级中学高三阶段练习)直线230kx y k +--=与圆22450x y x +--=的位置关系是()A .相离B .相切C .相交D .相交或相切【答案】C【解析】直线230kx y k +--=即()()320k x y -+-=,过定点()3,2,因为圆的方程为22450x y x +--=,则223243540+-⨯-=-<,所以点()3,2在圆内,则直线与圆相交.故选:C5.(2021·重庆市两江中学校高二阶段练习)已知过点(3,1)P 的直线与圆22(1)(2)5x y -+-=相切,且与直线10x my --=垂直,则m =()A .12-B .12C .2-D .2【答案】C【解析】设过点(3,1)P 的直线为l .(1)当l 的斜率不存在时,直线l :3x =.圆22(1)(2)5x y -+-=的圆心到l 的距离为312-=≠,所以不是圆的切线,不合题意.(2)当l 的斜率存在时,直线l :()13y k x -=-.=k =2.因为l 与直线10x my --=垂直,所以121m⨯=-,解得:m =-2.故选:C6.(2022·全国·高二课时练习)若直线:420l kx y k -++=与曲线y =有两个交点,则实数k 的取值范围是()A .{}1k k =±B .3{|}4k k <-C .3{|1}4k k -≤<-D .3{|1}4k k -≤<【答案】C【解析】由题意,直线l 的方程可化为(2)40x k y +-+=,所以直线l 恒过定点(2,4)A -,y =可化为224(0)x y y +=≥其表示以(0,0)为圆心,半径为2的圆的一部分,如图.当l 与该曲线相切时,点(0,0)到直线的距离24221kd k +==+,解得34k =-.设(2,0)B ,则40122AB k -==---.由图可得,若要使直线l 与曲线24y x =-314k -≤<-.故选:C.7.(2022·贵州遵义·高二期末(文))若直线():100l ax by ab +-=>始终平分圆()()22:124C x y -+-=的周长,则11a b+的最小值为()A .322+B .6C .7D .32+【答案】A【解析】圆C 的圆心为()1,2C ,由题意可知,直线l 过圆心C ,则21a b +=,因为0ab >,则0a >且0b >,因此,()1111222332322b a b a a b a b a ba b a b ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭当且仅当2a b 时,等号成立,故11a b+的最小值为322+.故选:A.8.(2022·广西梧州·高二期末(文))已知对任意的实数k ,直线l :0kx y k t --+=与圆C :2210x y +=有公共点,则实数t 的取值范围为()A .[3,0)-B .[3,3]-C .(,3](0,3]-∞-D .(,3)[0,3]-∞-【答案】B【解析】由直线0kx y k t --+=可化为(1)-=-y t k x ,则直线l 过定点(1,)t ,因为直线l :kx y k t --+0=与圆C :2210x y +=有公共点,所以定点(1,)t 在圆C 上或圆C 内,可得22110t +≤,解得33t -≤≤,故选:B9.(2022·江西上饶·高二期末(文))已知直线2y kx =-与圆22(1)1x y -+=相交,则实数k 的取值范围是()A .3,4⎛⎤-∞ ⎥⎝⎦B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由题意,圆心()1,0到直线20kx y --=1,即22441k k k -+<+,解得34k >故选:D10.(2022·浙江·温州中学高二期末)已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是()A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .30,4⎡⎤⎢⎥⎣⎦D .3,04⎛⎫- ⎪⎝⎭【答案】B【解析】因为直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,1<,即2860k k -<,解得304k <<,所以实数k 的取值范围是30,4⎛⎫⎪⎝⎭,故选:B.2直线与圆的弦长1.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是()A.43130x y +-=B.34150x y +-=C.34150x y +-=或1x =D.43130x y +-=或1x =【答案】D【解析】圆()2224x y -+=的圆心为点()2,0,半径为2r =,圆心到直线l 的距离为1d ==.①若直线l 的斜率不存在,则直线l 的方程为1x =,此时圆心到直线l 的距离为1,合乎题意;②若直线l 的斜率存在,可设直线l 的方程为()31y k x -=-,即30kx y k -+-=,圆心到直线l的距离为1d ==,解得43k =-.此时直线l 的方程为43130x y +-=.综上所述,直线l 的方程为43130x y +-=或1x =.故选:D.2(2022·贵溪市)直线y kx =被圆222x y +=截得的弦长为()A.B.2C.D.与k 的取值有关【答案】A【解析】由于圆222x y +=的圆心在直线y kx =上,所以截得弦为圆222x y+=,故截得的弦长为.故选:A 3.(2022·江苏·高二)过点(-2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是()A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0【答案】A【解析】由题意得,圆的方程为()221(2)5x y -++=,∴圆心坐标为()1,2-.∵直线被圆截得的弦长最大,∴直线过圆心()1,2-,又直线过点(-2,1),所以所求直线的方程为211221y x +-=+--,即10x y ++=.故选:A .4.(2022·全国·模拟预测)(多选)已知直线l :()()121740m x m y m ---+-=,圆C :2224200x y x y +---=,则()A .直线l 恒过定点()1,3B .直线l 与圆C 相交C .圆C 被x 轴截得的弦长为D .当圆C 被直线l 截得的弦最短时,34m =【答案】BD【解析】依题意,直线l :()()121740m x m y m ---+-=可化为()2740x y m x y --+++-=,由27040x y x y --+=⎧⎨+-=⎩解得3x =,1y =,即直线l 过定点()3,1P ,A 不正确;圆C :22(1)(2)25x y -+-=的圆心(1,2)C ,半径=5r ,||PC r =<,即点P 在圆C 内,直线l 与圆C 恒相交,B 正确;圆心C 到x 轴的距离2d =,则圆C 被x 轴截得的弦长为==C 不正确;由于直线l 过定点()3,1P ,圆心(1,2)C ,则直线PC 的斜率121312k -==--,当圆C 被直线l 截得的弦最短时,由圆的性质知,l PC ⊥,于是得1221m m -=-,解得34m =,D 正确.故选:BD5.(2022·湖北恩施·高二期末)(多选)已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是()A .6B .7C .8D .5【答案】BC【解析】由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM ==,则2AB r ≤≤,即8AB ≤≤.故选:BC.6.(2022·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=.(1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.【答案】(1)证明见解析;(2)答案见解析.【解析】(1)证明:直线:2()0l m x y --=过定点()2,0,因为224250-⨯-<,所以点()2,0在圆C 的内部,故直线l 与圆C 相交.(2)圆C 的标准方程为()2225()42x y -++=,则圆C 的圆心坐标为4(2,)C -,半径为5,且圆心C 到直线l 的距离()22242411m md m m ---==++因为2225213MN d =-=,所以23d =由24231m =+,得33m =±当33m =时﹐直线l 的方程为()323y x =-,倾斜角为6π当33m =-时﹐直线l 的方程为()323y x =--,倾斜角为56π3圆与圆的位置关系1.(2022·西藏)圆x 2+y 2-2x +4y =0与直线2x +y +1=0的位置关系为()A .相离B .相切C .相交D .以上都有可能【答案】C【解析】圆x 2+y 2-2x +4y =0的圆心坐标为(1,2)-,半径5r =圆心(1,2)-到直线2x +y +1=0的距离2221(2)15521d ⨯+-+==+由555d r =<=,可得圆与直线的位置关系为相交.故选:C2.(2022·陕西渭南)已知圆1C :()()22321x y -++=与圆2C :()()227150x y a -+-=-,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于()A .14B .34C .14或45D .34或14【答案】D【解析】圆1C :()()22321x y -++=的圆心为()113,2,1C r -=,圆2C :()()227150x y a -+-=-的圆心为()227,1,50C r a =-()()221237215C C -+--=,因为圆1C 与圆2C 有且仅有一个公共点,故圆1C 与圆2C 相内切或外切,故215r -=或215r +=,从而26=r 或24r =,所以2506r a =-=或2504r a =-=,解得:34a =或14a =所以实数a 等于34或14故选:D3.(2022广东)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为()A.内切B.相交C.外切D.相离【答案】A【解析】圆221:20C x y x +-=,即22(1)1x y -+=,表示以1(1,0)C 为圆心,半径等于1的圆.圆222:(1)(2)9C x y -++=,表示以2(1,2)C -为圆心,半径等于3的圆.∴两圆的圆心距|20|2d =--=,231=-,故两个圆相内切.故选:A.4.(2022·江西)已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是()A.相离B.相切C.相交D.内含【答案】B【解析】22210x y x my +-++=即()222124m m x y 骣琪-++=琪桫,圆心1,2m ⎛⎫- ⎪⎝⎭,因为圆1C 关于直线210x y ++=对称,所以圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,即12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,()()22111x y -++=,圆心()1,1-,半径为1,()()222316x y ++-=,圆心()2,3-,半径为4,5=,因为圆心间距离等于两圆半径之和,所以圆1C 与圆2C 的位置关系是相切,故选:B.5.(2022云南)已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为()A.相离B.相切C.相交D.内含【答案】C【解析】由题意可得,圆()()221:4425C x y -+-=的圆心为()4,4,半径为5因为圆222:430C x y x my +-++=关于直线10x ++=对称,所以2102m-+=(),得m =,所以圆()(222:24C x y -++=的圆心为(2,,半径为2,则两圆圆心距12C C =1252725C C -<<=+,所以圆1C 与圆2C 的位置关系是相交,故选:C .6.(2022·上海中学东校高二期末)已知圆22:28M x y ax +-=截直线:0l x y -=所得的弦长M 与圆22:(1)4N x y +-=的位置关系是()A .内切B .相交C .外切D .相离【答案】B【解析】由22:28M x y ax +-=,即()2228y a x a +=+-,故圆心(),0M a ,半径M r =所以点M 到直线:0l x y -=的距离d =故解得:1a =±;所以()1,0M ±,3M r =;又22:(1)4N x y +-=,圆心()0,1N ,2N r =,所以MN ==,且15M N M N r r r r -=<<=+,即圆M 与圆N 相交,故选:B.7.(2022·湖南岳阳·高二期末)圆221:1O x y +=与圆222:680O x y x y m +-++=外切,则实数m =_________.【答案】9【解析】圆1O 的圆心()10,0O ,半径11r =,圆2O 的圆心()23,4O -,半径2r =125O O =根据题意可得:1212O O r r =+,即51=9m =故答案为:9.8.(2022·上海徐汇·高二期末)已知圆221:(2)(2)1C x y -+-=和圆2222:()(0)C x y m m m +-=>内切,则m 的值为___________.【答案】72【解析】圆1C 的圆心为()2,2,半径为11r =,圆2C 的圆心为()0,m ,半径为2r m =,所以两圆的圆心距()()22202d m =-+-,又因为两圆内切,有()()222021d m m =-+-=-,解得72m =.故答案为:72.9.(2023·全国·高三专题练习)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________.【答案】34【解析】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m 由两圆向外切可知()()224030225-+--=+-m ,解得16m =所以2:C ()()22439x y -++=2C 到直线的距离为22431211-==+d ,设圆2C 的半径为R则直线:0l x y +=被圆2C 所截的弦长为221229342-=-=R d 故答案为:344圆与圆的弦长1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =()A.6B.5C.67813D.123913【答案】D【解析】圆O 的半径3r =,圆1O 的半径14r =,113OO =故在1AOO中,22211111cos sin21313r OO rAOO AOOr OO+-∠===⇒∠=⋅,故1sin21313ABr AOO AB=∠=⇒=.故选:D2.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y+=和圆222:40C x y x+-=的公共点为A,B,则()A.12||2C C=B.直线AB的方程是14x=C.12AC AC⊥D.||2AB=【答案】ABD【解析】圆1C的圆心是()0,0,半径11r=,圆()222:24C x y-+=,圆心()2,0,22r=,122C C∴=,故A正确;两圆相减就是直线AB的方程,两圆相减得1414x x=⇒=,故B正确;11AC=,22AC=,122C C=,2221212AC AC C C+≠,所以12AC AC⊥不正确,故C不正确;圆心()0,0到直线14x=的距离14d=,2AB===,故D正确.故选:ABD3.(2021·全国高二课时练习)(多选)圆221:20x y xO+-=和圆222:240O x y x y++-=的交点为A ,B ,则有()A.公共弦AB 所在直线方程为0x y -=B.线段AB 中垂线方程为10x y +-=C.公共弦AB的长为2D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为212+【答案】ABD【解析】对于A,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==,故C 不正确;对于D,P 为圆1O 上一动点,圆心1O ()1,0到0xy -=的距离为2d =,半径1r =,即P 到直线AB 距离的最大值为12+,故D 正确.故选:ABD4.(2022·全国·高二专题练习)已知圆22110C x y +=:与圆22222140C x y x y +++-=:.(1)求证:圆1C 与圆2C 相交;(2)求两圆公共弦所在直线的方程;(3)求经过两圆交点,且圆心在直线60x y +-=上的圆的方程.【答案】(1)证明见解析(2)20x y +-=(3)226620x y x y +--+=【解析】(1)证明:圆2C :2222140x y x y +++-=化为标准方程为()()221116x y +++=,()21,1C ∴--,4r =圆221:10C x y +=的圆心坐标为()10,0C ,半径为=R,12C C ∴44<,∴两圆相交;(2)解:由圆221:10C x y +=与圆222:22140C x y x y +++-=,将两圆方程相减,可得2240x y +-=,即两圆公共弦所在直线的方程为20x y +-=;(3)由22222214010x y x y x y ⎧+++-=⎨+=⎩,解得3113x x y y ==-⎧⎧⎨⎨=-=⎩⎩或,则交点为()3,1A -,()1,3B -,圆心在直线60x y +-=上,设圆心为()6,P n n -,则AP BP ==3n =,故圆心()3,3P ,半径4r AP ==,∴所求圆的方程为()22(3)316x y -+-=.5.(2021·湖南·嘉禾县第一中学高二阶段练习)已知圆1C :222220x y x y +++-=,圆2C :22410x y y +--=.(1)证明:圆1C 与圆2C 相交;(2)若圆1C 与圆2C 相交于A ,B 两点,求AB .【答案】(1)证明见解析;【解析】(1)圆1C 的标准方程为()()22114x y +++=,圆心为()1,1--,半径为2,圆2C 的标准方程为()2225x y +-=,圆心为()0,2∴圆1C 和圆2C =22<,可知:圆1C 和圆2C 相交,得证.(2)由(1)结论,将圆1C 与圆2C 作差,得:直线AB 的方程为2610x y +-=,圆2C 的圆心()0,2到直线AB=,∴AB =6.(2022·江苏·高二单元测试)已知圆221:210240 C x y x y +-+-=和圆222:2280C x y x y +++-=.(1)试判断两圆的位置关系;(2)求公共弦所在直线的方程;(3)求公共弦的长度.【答案】(1)相交(2)240x y -+=(3)【解析】(1)将两圆方程化为标准方程为221:(1)(5)50C x y -++=,222:(1)(1)10C x y +++=,则圆1C 的圆心为(1,5)-,半径1r =圆2C 的圆心为(1,1)--,半径2r =12C C =12r r +=12r r -=121212r r C C r r ∴-<<+,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线的方程为240x y -+=.(3)由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩,∴两圆的交点坐标为(4,0)-和(0,2).∴=5切线问题1.(2022·全国·高二课时练习)设圆221:244C x y x y +-+=,圆222:680C x y x y ++-=,则圆1C ,2C 的公切线有()A .1条B .2条C .3条D .4条【答案】B【解析】由题意,得圆()()2212:312C x y -+=+,圆心()11,2C -,圆()()2222:534C x y ++=-,圆心()23,4C -,∴125353C C -<=+,∴1C 与2C 相交,有2条公切线.故选:B .2.(2022·全国·高二课时练习)(多选)已知圆()221:9C x y a +-=与圆()222:1C x a y -+=有四条公切线,则实数a 的取值可能是()A .-4B .-2C .D .3【答案】AD【解析】圆心()10,C a ,半径13r =,圆心()2,0C a ,半径21r =.因为两圆有四条公切线,所以两圆外离.又两圆圆心距d =31>+,解得a <-或a >3.(2022·全国·高二课时练习)(多选)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为()A .y =0B .3x -4y =0C.20x y -=D.20x y -=【答案】ACD【解析】圆M 的圆心为M (2,1),半径11r =.圆N 的圆心为N (-2,-1),半径21r =.圆心距2d =>,两圆相离,故有四条公切线.又两圆关于原点O 对称,则有两条切线过原点O ,设切线方程为y =kx1=,解得k =0或43k =,对应方程分别为y =0,4x -3y =0.另两条切线与直线MN 平行,而1:2MN l y x =,设切线方程为12y x b =+1=,解得2b =±,切线方程为20x y -+=,20x y --=.故选:ACD .4.(2022·全国·高二专题练习)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=5.(2022·全国·高二专题练习)求过点()13M -,的圆224x y +=的切线方程__________.【答案】326122633y x ++=+或326122633y x --=+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:326122633y x ++=+或326122633y x --=+.6(2022·广东·中山一中高三阶段练习)已知圆22:240C x y x y m +--+=.若圆C 与圆22:(2)(2)1D x y +++=有三条公切线,则m 的值为___________.【答案】11-【解析】由22240x y x y m +--+=,得22(1)(2)5x y m -+-=-,所以圆C 的圆心为()1,2C 因为圆22:(2)(2)1D x y +++=,所以圆D 的圆心为()22D ,--,半径为1,因为圆C 与圆D 有三条公切线,所以圆C 与圆D 相外切,即1CD ==+,解得11m =-,所以m 的值为11-.故答案为:11-.7.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 的值为___________.【答案】34或14【解析】设圆1C ,圆2C 的半径分别为1r ,2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-.由两圆相切,得1212C C r r =+或1212C C r r =-.因为11r =,125C C ==,所以215r +=或215r -=,可得24r =或26=r 或24r =-(舍去),因此5016a -=或5036a -=,解得34a =或14a =.故答案为:34或148.(2022·贵州黔东南·高二期末(理))若圆221x y +=与圆()()22416x a y -+-=有3条公切线,则正数a =___________.【答案】35=∴3,0,3a a a =±>∴=又6最值问题1.(2022·广东·高三阶段练习)已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为____.【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =.因为四边形MACB 的面积2•2CAMS SCA AM AM ====,要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直,直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则CM =则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.故答案为:210x y ++=.2.(2021·广东·南海中学高二阶段练习)已知圆22:(4)(3)1C x y -++=和两点(,0)A a -、(,0)(0)B a a >,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .1B .6C .3D .4【答案】D【解析】由90APB ∠=︒得点P 在圆222x y a +=上,所以,点P 在圆222x y a +=上,又在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为()4,3-,半径为1.所以,|1|1a OC a -≤≤+,即|1|5146a a a -≤≤+⇒≤≤所以,a 的最小值为4.故选:D3.(2021·吉林油田高级中学高二开学考试)已知圆P 的方程为22680x y x y ++-=,过点()1,2M -的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A .B .10C .D .5【解析】圆P 的方程可化为()()223425x y ++-=,则(3,4),5P r -=,因为()()22132425-++-<,故点()1,2M -在圆内,过点()1,2M -的最长弦一定是圆P 的直径,当AB PM ⊥时,AB 最短,此时PM =则AB ==故选:A .4.(2022·浙江·杭州市富阳区场口中学高二期末)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是()A .()()22515x y -++=B .()()225113x y -+-=C .()()224413x y -++=D .()()221652x y -++=【答案】B【解析】过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB =(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫ ⎪⎝⎭,即()5,1,故该圆为()()225113x y -+-=故选:B5.(2022·江苏·高二专题练习)已知M 是圆22:1C x y +=上一个动点,且直线1:310(R)l mx y m m --+=∈与直线2:310(R)l x my m m +--=∈相交于点P ,则||PM 的取值范围是()A.1,1⎤⎦B.1⎤⎦C.1,1⎤⎦D.1⎤⎦【答案】B【解析】直线1:310(R)l mx y m m --+=∈整理可得,(3)(1)0m x y ---=,即直线1l 恒过(3,1),同理可得,直线2l 恒过(1,3),又()110m m ⨯+-⨯=,∴直线1l 和2l 互相垂直,∴两条直线的交点P 在以(1,3),(3,1)为直径的圆上,即P 的轨迹方程为22(2)(2)2x y -+-=,设该圆心为M ,圆心距||1MC =>,∴两圆相离,1||1PM ∴-+ ,||PM ∴的取值范围是1].故选:B .。

教学设计2:2.5.1 第1课时 直线与圆的位置关系

教学设计2:2.5.1 第1课时  直线与圆的位置关系

2.5.1 第1课时 直线与圆的位置关系教学设计一、教学目标1. 能根据给定直线、圆的方程,判断直线与圆的位置关系;2. 能用直线和圆的方程解决一些简单的数学问题和实际问题. 二、教学重难点 1. 教学重点直线与圆的位置关系及其应用. 2. 教学难点直线与圆的方程的应用. 三、教学过程 (一)新课导入思考:直线与圆有哪些位置关系? (学生自由发言,教师总结) (1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点. (二)探索新知问题1 在初中,我们怎样判断直线与圆的位置关系?根据圆心到直线的距离d 与圆的半径r 的大小关系来判断直线与圆的位置关系. (1)直线与圆相交d r ⇔<; (2)直线与圆相切d r ⇔=; (3)直线与圆相离d r ⇔>.问题2 如何利用直线和圆的方程判断它们之间的位置关系? 先来看例1.例1 已知直线:360l x y +-=和圆心为C 的圆22240x y y +--=,判断直线l 与圆C 的位置关系;如果相交,求直线l 被圆C 所截得的弦长. 解法1:联立直线l 与圆C 的方程,得22360240x y x y y +-=⎧⎨+--=⎩①②,消去y ,得2320x x -+=,解得1221x x ==,. 所以,直线l 与圆C 相交,有两个公共点.把1221x x ==,分别代入方程①,得1203y y ==,. 所以,直线l 与圆C 的两个交点是(20)(13)A B ,,,.因此||AB 解法2:圆C 的方程22240x y y +--=可化为22(1)5x y +-=,因此圆心C 的坐标为(01),,,圆心(01)C ,到直线l 的距离d =所以,直线l 与圆C 相交,有两个公共点.如图,由垂径定理,得||AB ==通过上述解法我们发现,在平面直角坐标系中,要判断直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系,可以联立它们的方程,通过判定方程组222()()Ax By C x a y b r++=⎧⎨-+-=⎩的解的个数,得出直线与圆的公共点的个数,进而判断直线与圆的位置关系.若相交,可以由方程组解得两交点坐标,利用两点间的距离公式求得弦长. 我们还可以根据圆的方程求得圆心坐标与半径r ,从而求得圆心到直线的距离d ,通过比较d 与r 的大小,判断直线与圆的位置关系.若相交,则可利用勾股定理求得弦长.例2 过点(21)P ,作圆22:1O x y +=的切线l ,求切线l 的方程.解法1:设切线l 的斜率为k ,则切线l 的方程为1(2)y k x -=-,即120kx y k -+-=.由圆心(00),到切线l 的距离等于圆的半径11=,解得0k =或43.因此,所求切线l 的方程为1y =,或4350x y --=.解法2:设切线l 的斜率为k ,则切线l 的方程为1(2)y k x -=-. 因为直线l 与圆相切,所以方程组221(2)1y k x x y -=-⎧⎨+=⎩只有一组解. 消元,得22221(24)440()x k k x k k k ++-+-=.①因为方程①只有一个解,所以222Δ4(12)161)()0(1k k k k k =--+-=,解得0k =或43.所以,所求切线l 的方程为1y =,或4350x y --=.例3 如图是某圆拱形桥一孔圆拱的示意图.圆拱跨度20m AB =,拱高4m OP =,建造时每间隔4 m 需要用一根支柱支撑,求支柱22A P 的高度(精确到0.01 m ).解:建立如图所示的直角坐标系,使线段AB 所在直线为x 轴,O 为坐标原点,圆心在y 轴上. 由题意,点P ,B 的坐标分别为(04)(100),,,. 设圆心坐标是(0)b ,,圆的半径是r ,那么圆的方程是222()x y b r +-=.因为P ,B 两点都在圆上,所以它们的坐标(04)(100),,,都满足方程222()x y b r +-=. 于是,得到方程组2222220(4)10(0)b r b r ⎧-⎨+-=+=⎩. 解得2210.514.5b r =-=,.所以,圆的方程是222(10.5)14.5x y ++=.把点2P 的横坐标2x =-代入圆的方程,得222(2)(10.5)14.5y -++=,即10.5y +=(2P 的纵坐标0y >,平方根取正值).所以10.514.3610.5 3.86(m)y ≈-=. 答:支柱22A P 的高度约为3.86 m.例4 一个小岛的周围有环岛暗礁,暗礁分布在以小岛中心为圆心,半径为20 km 的圆形区域内. 已知小岛中心位于轮船正西40 km 处,港口位于小岛中心正北30 km 处. 如果轮船沿直线返港,那么它是否会有触礁危险?解:以小岛的中心为原点O ,东西方向为x 轴,建立如图所示的直角坐标系. 为了运算的简便,我们取10 km 为单位长度,则港口所在位置的坐标为(03),,轮船所在位置的坐标为(40),.这样,受暗礁影响的圆形区域的边缘所对应的圆的方程为224x y +=. 轮船航线所在直线l 的方程为143x y+=,即34120x y +-=. 联立直线l 与圆O 的方程,得22341204x y x y +-=⎧⎨+=⎩. 消去y ,得22572800x x -+=.由2Δ(72)425800=--⨯⨯<,可知方程组无解.所以直线l 与圆O 相离,轮船沿直线返港不会有触礁危险.用坐标法解决平面几何问题的“三步曲”:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算的结果“翻译”成几何结论.(三)课堂练习1. 若直线与圆相切,则的值为( )A.16B.4C.D.16或答案:D解析:圆的方程可化为,则圆心坐标为,.因为直线与圆相切,所以圆心到直线的距离为,解得或.故选D.2. 已知直线过点,当直线与圆有两个交点时,其斜率的取值范围是( )A. B. C. D.答案:C解析:易知圆心坐标是,半径是1,直线的斜率存在.设直线的方程为,即,即,解得.故选C.3. 直线1y x=+与圆22230x y y++-=交于A B,两点,则AB=______________.答案:解析:由题意知圆的方程为()2214x y++=,所以圆心坐标为()0,1-,半径为2,则圆心到直线1y x=+的距离d=||AB=.340x y a+-=2240x y x+-=a4-4-22(2)4x y-+=(2,0)2r=(2,0)340x y a+-=r2=16a= 4a=-l()2,0-l222x y x+=k (-(⎛⎝⎭11,88⎛⎫-⎪⎝⎭()1,0l l()2y k x=+ 20kx y k-+=1<218k<k<<4. 点在圆上,则点到直线的最短距离为___________. 答案:2解析:圆心的坐标为,点到直线的距离为,所以所求最小值为.5. 已知圆和点. (1)若过点有且只有一条直线与圆相切,求实数的值,并求出切线方程; (2)若的两条弦互相垂直,求的最大值. 答案:(1)由题意知点在圆上, 所以,解得.当时,点为,所以, 切线此时切线方程为,即; 当时,点为,所以. 此时切线方程为,即. 综上,所求切线方程为或.(2)设圆心到直线的距离分别为, 则.因为, 所以,所以.N ()()22:539M x y -+-=N 3420x y+-=M ()5,3M 3420x y +-=5d=532d r -=-=22:4O x y +=()1M a ,M Oaa =M AC BD ,AC BD +M O 214a +=a=a =M (1OM k k ==切线1)yx =-40x +-=a =M (1,OM k k ==切线1)y x +=-40x -=40x -=40x -=O AC BD ,()12120d d d d ≥,,22212||3d d OM +==||||AC BD ==||||AC BD +=2(||||)AC BD +(2212444d d =⨯-+-+45⎡=⨯+⎢⎣(45=⨯+因为,即,所以, 当且仅当, 所以.所以,即的最大值为. (四)小结作业 小结:1. 直线与圆的位置关系;2. 直线与圆的方程的应用. 作业: 四、板书设计2.5.1 直线与圆的位置关系1. 直线与圆的位置关系:相交、相切、相离;2. 用方程判断直线与圆的位置关系;3. 用坐标法判断直线与圆的位置关系.()2120d d -≥22121223d d d d ≤+=221294d d ≤12d d ==5225(||||)452402AC BD ⎛⎫+⨯+⨯= ⎪⎝≤⎭||||AC BD +≤||||AC BD +。

2-5 直线与圆、圆与圆的位置关系(精讲)(原卷版)

2-5 直线与圆、圆与圆的位置关系(精讲)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精讲)考点一直线与圆的位置关系【例1】(1)(2021·遵义师范学院附属实验学校)圆22(3)(3)8x y-+-=与直线3460x y++=的位置关系是()A.相交B.相切C.相离D.无法确定(2).(2021·全国高二专题练习)直线():120l kx y k k R-++=∈与圆22:5C x y+=的公共点个数为()A.0个B.1个C.2个D.1个或2个(3)(2021·黑龙江哈尔滨市)若过点()4,3A的直线l与曲线22231x y有公共点,则直线l的斜率的取值范围为()A.⎡⎣B.(C.33⎡-⎢⎣⎦D.,33⎛-⎝⎭(4)(2021·浙江高二期末)已知曲线y=与直线10kx y k-+-=有两个不同的交点,则实数k的取值范围是()A.13,24⎡⎫⎪⎢⎣⎭B.30,4⎛⎫⎪⎝⎭C.12,23⎡⎫⎪⎢⎣⎭D.12,43⎡⎫⎪⎢⎣⎭【一隅三反】1.(2021·江苏南京市·高二期末)直线10x +=与圆()2211x y -+=的位置关系是( ) A .直线过圆心B .相切C .相离D .相交2.(2021·四川成都市)若圆22()1(0)x a y a -+=>与直线3y x =只有一个公共点,则 a 的值为( )A .1BC .2D .3.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是( )A .相交B .相切C .相离D .与a 的大小有关4.(2021·全国高二专题练习)若直线0x y b +-=0y +=有公共点,则b 的取值范围是( )A .[-B .[C .[1,1]-D .[5.(2021·河北保定市·高二期末)(多选)已知圆22:(1)(1)169C x y -+-=,直线:450,l kx y k k R --+=∈.则下列选项正确的是( )A .直线l 恒过定点B .直线l 与圆C 的位置可能相交、相切和相离 C .直线l 被圆C 截得的最短弦长为12D .直线l 被圆C 截得的最短弦长对应的k 值为34- 考点二 直线与圆的弦长【例2】(1)(2021·四川成都市)直线1y x =-被圆22220x y y ++-=截得的弦长为( )A .1B .2C D .(2).(2021·浙江高二期末)已知直线:0l kx y k -+-=被圆224x y +=截得的弦长为点(),m n 是直线l 上的任意一点,则22m n +的最小值为( ) A .1 B .2 C .3 D .4【一隅三反】1.(2021·安徽省泗县第一中学)直线40x y -+=被圆22(2)(2)2x y ++-=截得的弦长为( )AB .C .D .2.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是( ) A .43130x y +-= B .34150x y +-=C .34150x y +-=或1x =D .43130x y +-=或1x =3.(2021·贵溪市实验中学高二期末)直线y kx =被圆222x y +=截得的弦长为( )A .B .2C D .与k 的取值有关4.(2021·天水市第一中学高二期中)已知直线0x ay a +-=和圆220x y x +-=的交点为A ,B ,且1AB =,则实数a 的值为( ) A .2B .1C .12D .1-5.(2021·全国高二课时练习)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( ) A .x -y -3=0 B .2x +y -3=0 C .x +y -1=0D .2x -y -5=06.(2021·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=. (1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.考点三 圆上的点到直线距离【例3】(1)(2021·福建三明市·高二期末)圆()2222x y -+=上动点到直线20x y ++=的距离的最小值为( )A B .C .D .(2)(2021·四川巴中市·(文))圆22(1)(1)4x y ++-=上到直线:0l x y ++=的距离为1的点共有( ) A .1个 B .2个 C .3个 D .4个【一隅三反】1.(2021·六安市裕安区新安中学)已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为( ) A .0B .1C .2D .32.(2021·全国高二课时练习)已知点M 是直线3420x y +-=上的动点,点N 为圆22(1)(1)1x y +++=上的动点,则||MN 的最小值为 A .45B .1C .95D .1353.(2021·全国高二专题练习)在圆()2224x y -+=上有且仅有两个点到直线340x y a ++=的距离为1,则a 的取值范围为__________.考点四 圆与圆的位置关系【例4】(1)(2021·浙江高二期末)圆221:(1)1C x y -+=与圆222:(4)(4)17C x y -+-=的位置关系为( ) A .内切B .相切C .相交D .外离(2)(2021·北京高二期末)已知圆1O 的方程为22()()4x a y b -+-=,圆2O 的方程为22(1)1x y b +-+=,其中,a b ∈R .那么这两个圆的位置关系不可能为( ) A .外离 B .外切 C .内含 D .内切【一隅三反】1.(2021·全国高二专题练习)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为( ) A .内切B .相交C .外切D .相离2.(2021·江西上高二中高二其他模拟(文))已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是( )A .相离B .相切C .相交D .内含3.(2021·全国高二(文))已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x ++=对称,则圆1C 与圆2C 的位置关系为( )A .相离B .相切C .相交D .内含4.(2021·四川凉山彝族自治州·高二期末(文))已知圆221:1C x y +=和圆()()2222:20C x y r r +-=>,若圆1C 和2C 有公共点,则r 的取值范围是( ) A .(]0,1B .(]0,3C .[]1,3D .[)1,+∞5.(2021·山东聊城市·高二期末)已知圆()()()221:80C x a y a a -+-=>与圆222:220C x y x y +--=没有公共点,则实数a 的取值范围为( ) A .()0,2 B .()4,+∞C .()()0,24,+∞ D .()()()0,10,24,⋃⋃+∞ 考点五 圆与圆相交弦【例5】(1)(2021·湖南湘潭市)已知圆221:40C x y +-=与圆222:44120C x y x y +-+-=相交于,A B两点,则两圆的公共弦AB =A .B .CD .2(2)(2021·天津市南仓中学高二期末)已知圆221:4C x y +=和圆()222:2600C x y ay a ++-=>的公共弦长为2,则实数a 的值为( )A .3BC .2D【一隅三反】1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =( )A .6B .5C .13D .132.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y +=和圆222:40C x y x +-=的公共点为A ,B ,则( )A .12||2C C =B .直线AB 的方程是14x =C .12AC AC ⊥D .||2AB =3.(2021·全国高二课时练习)(多选)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+考点六 切线及切线长【例6-1】(2021·浙江高二单元测试)由直线1y x =+上的点向圆()2231x y -+=作切线,则切线长的最小值为( )A .1BC .D .3【例6-2】(1)(2021·全国)经过点M 的圆2210x y +=的切线方程是( )A .100x -=B 2100y -+=C .100x -+=D .2100x +-=(2)(2021·重庆字水中学高二期末)(多选)过点(2,0)作圆222690x y x y +--+=的切线l ,则直线l 的方程为( )A .3460x y +-=B .4380x y +-=C .20x -=D .20x +=(3)(2021·全国)过点(2,2)-作圆224x y +=的切线,若切点为A 、B ,则直线AB 的方程是( ) A .20x y ++=B .20x y -+=C .20x y +-=D .20x y --=【例6-3】(2021·四川眉山市·高二期末(文))圆221:1C x y +=与圆222:870C x y y +-+=公切线的条数为( )A .0B .1C .2D .3【例6-4】(2021·全国高二课时练习)已知P (x ,y )是直线kx +y +3=0(k >0)上一动点,PA ,PB 是圆C :2x +2y -2y =0的两条切线,.A 、B 是切点,若四边形PACB k 的值为( )A BC .D .【一隅三反】1.(2021·全国高二课时练习)P 是直线x +y -2=0上的一动点,过点P 向圆22:(2)(8)4C x y ++-=引切线,则切线长的最小值为( )A .B .C .2D .22.(2021·西安市铁一中学高二期末(理))由直线2y x =+上的点向圆22(4)(2)1x y -++=引切线,则切线长的最小值为A B C .D 3.(2021·安徽马鞍山市·马鞍山二中高二期末(文))若从坐标原点O 向圆22:12270C x y x +-+=作两条切线,切点分别为A ,B ,则线段AB 的长为( )A .32B .3C .2D .4.(2021·重庆市南坪中学校高二月考)过坐标原点O 作圆(x ﹣2)2+(y ﹣3)2=4的两条切线,切点为A ,B .直线AB 被圆截得弦AB 的长度为( )A B C D5.(2021·浙江高二期末)过点()2,1作圆224x y +=的切线,切线的方程为( )A .34100x y +-=B .3420x y --=C .2x =或3420x y --=D .2x =或34100x y +-=6.(2021·全国高二课时练习)经过点()2,1M -作圆225x y +=的切线,则切线的方程为A .250x y --=B 50y ++=C 5y +=D .250x y ++=7.(2021·安徽池州市·高二期末(理))若圆221:2440C x y x y +---=,圆222:61020C x y x y +---=,则1C ,2C 的公切线条数为( )A .1B .2C .3D .48.(2021·六安市裕安区新安中学高二开学考试(理))若圆22(1)(3)4x y -+-=与圆22(2)(1)5x y a +++=+有且仅有三条公切线,则a =( )A .-4B .-1C .4D .119.(2021·四川眉山市·仁寿一中高二开学考试(文))已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B 为切点,C 为圆心,则四边形PACB 面积的最小值是( )A .2BC .D .4 考点七 实际生活运用【例7】(2021·上海高二专题练习)如图,某海面上有O 、A 、B 三个小岛(面积大小忽略不计),A 岛在O 岛的北偏东45︒方向距O 岛B 岛在O 岛的正东方向距O 岛20千米处.以O 为坐标原点,O 的正东方向为x 轴的正方向,1千米为单位长度,建立平面直角坐标系.圆C 经过O 、A 、B 三点.(1)求圆C 的方程;(2)若圆C 区域内有未知暗礁,现有一船D 在O 岛的南偏西30°方向距O 岛40千米处,正沿着北偏东45︒行驶,若不改变方向,试问该船有没有触礁的危险?【一隅三反】1.(2021·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A.B.C.D.2.(2021·上海高二专题练习)有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:每单位距离,A地的运费是B地运费的2倍﹐已知A、B两地相距6千米,顾客购物的唯一标准是总费用较低.建立适当的平面直角坐标系(1)求A、B两地的售货区域的分界线的方程﹔(2)画出分界线的方程表示的曲线的示意图,并指出在方程的曲线上、曲线内、曲线外的居民如何选择购货地.考点八综合运用【例8】(2021·全国高二课时练习)已知圆C的圆心坐标为C(3,0),且该圆经过点A(0,4).(1)求圆C的标准方程;(2)若点B也在圆C上,且弦AB长为8,求直线AB的方程;(3)直线l交圆C于M,N两点,若直线AM,AN的斜率之积为2,求证:直线l过一个定点,并求出该定点坐标.(4)直线l交圆C于M,N两点,若直线AM,AN的斜率之和为0,求证:直线l的斜率是定值,并求出该定值.【一隅三反】1.(2021·全国高二课时练习)已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的最短弦长并求此时直线l 的方程;(3)已知点(,)P x y 在圆C 上,求22xy +的最大值.2(2021·浙江高二单元测试)已知圆22(3)(4)16x y -+-=,直线1:0l kx y k --=,且直线1l 与圆交于不同的两点,P Q ,定点A 的坐标为(1,0).(1)求实数k 的取值范围;(2)若,P Q 两点的中点为M ,直线1l 与直线2:240l x y ++=的交点为N ,求证:||||AM AN ⋅为定值.3.(2021·内蒙古包头市·高二期末(文))已知圆O :228x y +=,()1,2M -是圆O 内一点,()4,0P 是圆O 外一点.(1)AB 是圆O 中过点M 最长的弦,CD 是圆O 中过点M 最短的弦,求四边形ACBD 的面积;(2)过点P 作直线l 交圆于E 、F 两点,求OEF 面积的最大值,并求此时直线l 的方程.。

2.5直线与圆的位置关系内切圆课件

2.5直线与圆的位置关系内切圆课件
A
2 1
I
3
B
4 5
D
E
C
练习:
1、如图,已知 ABC内心为O,且 BOC=110, 40°. 则 A=
2、已知三角形ABC的外心为O,且∠BOC=110°则 55或125 ∠A=____ __度。 3、三角形ABC中, ∠A= 50°,I是三角形的内心, 115° O是三角形的外心,则∠ BIC=______ ∠ BOC=________ 100°
思考:我们所学的平行四边形,矩形,菱形,正方 形,等腰梯形中,哪些四边形一定有内切圆?
(菱形,正方形一定有内切圆)
2.5 直线与圆的位置关系(3)
例1
典型例题
如图,⊙O是△ABC的内切圆,切点分别为D
E、F,∠B=60°,∠C=70°,
求∠EDF的度数. 拓展:∠A与∠EDF有什么关系?
变式:若G点是圆上任意点(不与E,F重合)求∠EGF度数 变式:连接BO,CO,求∠BOC度数 变式:(1)若∠A=80 °,则∠BOC= (2)若∠BOC=100 °,则∠A= 度。 度。
试探讨∠BOC与∠A之间存在怎样的数量关系? 请说明理由.
变式:如图,从⊙O外一点P作⊙O的两条切 线,分别切⊙O于A,B,在AB 上任取一点C 作⊙O的切线分别交PA、PB于D、E
连结OD,OE,若∠P=400,则∠DOE=_____; 若∠P=n° ,则∠DOE=_______ 连结OA,OB,若∠P=400,则∠AOB=_____; D P C E
D
C
三角形内切圆的圆心叫三角形的内心
①三角形的内心是三角形角平分线的交点 ②三角形的内心到三边的距离相等 ③三角形的内心一定在三角形的内部
三角形内心的性质

高中数学第二章直线和圆的方程2.5直线与圆圆与圆的位置关系2.5.2圆与圆的位置关系课件新人教A版选

高中数学第二章直线和圆的方程2.5直线与圆圆与圆的位置关系2.5.2圆与圆的位置关系课件新人教A版选
=r.
2
解由①②③组成的方程组得 a=4,b=0,r=2 或 a=0,b=-4√3,r=6.
故所求圆的方程为(x-4)2+y2=4 或 x2+(y+4√3)2=36.

变式探究1
将本例变为“求与圆x2+y2-2x=0外切,圆心在x轴上,且过点(3,- √3 )的圆的方
程”,如何求?
解 因为圆心在x轴上,
所以可设圆心坐标为(a,0),设半径为r,
则所求圆的方程为(x-a)2+y2=r2,
又因为与圆 x2+y2-2x=0 外切,且过点(3,-√3),
= 4,
(-1)2 + 02 = + 1,
所以
解得

=
2,
2
2
(3-) + (-√3) = 2 ,
所以圆的方程为(x-4)2+y2=4.
变式探究2
所以所求圆的方程为(x-3)2+(y+1)2=16.
规律方法 (1)当经过两圆的交点时,圆的方程可设为
(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1),然后用待定系数法求
出λ即可.
(2)对于此类问题首先要理解运算对象,然后选择好运算方法,设计好运算
程序,最后求得运算结果.
义不清晰.
学以致用•随堂检测全达标
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是(
)
A.内切 B.相交
C.外切 D.外离
答案 B
解析 圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.

人教版高中数学选择性必修第一册2.5.1直线与圆的位置关系

人教版高中数学选择性必修第一册2.5.1直线与圆的位置关系

人A数学选择性必修1
返回导航 上页 下页
∵直线 l 与圆 C 相切, ∴Δ=(4k2-10k+2)2-4(k2+1)(4k2-20k+25)=0,解得 k=152. ∴直线 l 的方程为 y-3=152(x-2),即 12x-5y-9=0. 若直线 l 的斜率不存在,则直线 l:x=2 也符合要求. 综上,直线 l 的方程为 12x-5y-9=0 或 x=2.
D.0,π3
人A数学选择性必修1
返回导航 上页 下页
解析:由题知,直线 l 斜率一定存在,设直线 l 方程为 y+1=k(x+ 3),
即 kx-y+ 3k-1=0,
圆心到直线 l 的距离 d=|
3k-1| k2+1 .
∵直线与圆有公共点,
∴d≤r,即| 3kk2+-11|≤1,
解得 0≤k≤ 3,即 0≤tan α≤ 3,
人A数学选择性必修1
返回导航 上页 下页
4.直线l:x-y+1=0与圆C:x2+y2+2ay+a2-2=0有公共点,则实 数a的取值范围是__[_-__3_,1_]___.
解析:圆 C:x2+y2+2ay+a2-2=0,即圆 C:x2+(y+a)2=2.根据题 意,圆心 C(0,-a)到直线 x-y+1=0 的距离 d=|0+a2+1|≤ 2,故|a +1|≤2,所以 a∈[-3,1]. 故实数 a 的取值范围为[-3,1].
A.相交Bຫໍສະໝຸດ 相切C.相离D.无法确定
解析:圆心(0,0),半径r=1,圆心到直线的距离d=1,∴d=r,∴相
切.
人A数学选择性必修1
返回导航 上页 下页
2.过点 P(- 3,-1)的直线 l 与圆 x2+y2=1 有公共点,则直线 l 的倾
斜角的取值范围是( D )

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)【题组一 直线与圆的位置关系】1.(2021·江西南昌市)直线4320x y --=与圆+-+-=2224110x y x y 的位置关系是( )A .相交B .相切C .相离D .以上都不对2.(2021·全国)直线1x y +=和圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不确定3.(2021·白银市第十中学)直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是( ) A .相交B .相切C .相离D .不确定4.(2021·北京高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为( ) A .相交B .相切C .相离D .不能确定5.(2021·北京高二期末)直线34x y b +=与圆22(1)(1)1x y -+-=相切,则b 的值是( ) A .-2或12B .2或-12C .-2或-12D .2或126.(2021·全国高二课时练习)若直线0x y +=与圆()()2212x m y -+-=相切,则m =( ) A .1B .1-C .1-或3D .3-或17.(2021·浙江高二期末)已知直线y x b =+与曲线3y =b 的取值范围是( )A .[1,1-+B .(1-+C .(1-D .(11]--8.(2021·浙江高二期末)直线()20ax y a a R --=∈与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定9.(2021·全国)(多选)直线l 与圆C 有公共点,则直线l 与圆C 的位置关系可能是( ) A .相交 B .相切 C .相离 D .不能确定10.(2021·全国)(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( )A .圆心坐标为(1,-2)B .圆心到直线的距离为2C .直线与圆相交 D11.(2021·内蒙古包头市·高二月考(理))已知(),P a b 是圆221x y +=内一点,则直线1ax by +=与圆221x y +=公共点的个数为( )A .0B .1C .2D .以上都有可能【题组二 直线与圆的弦长】1.(2021·陕西安康市·高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于A ,B 两点,则||AB = 。

2022-2023学年人教版高二数学阶段复习精练专题2-5 直线与圆,圆与圆位置关系(解析版)

2022-2023学年人教版高二数学阶段复习精练专题2-5 直线与圆,圆与圆位置关系(解析版)

d=rrd专题2.5 直线与圆,圆与圆之间的位置关系1.直线与圆的位置关系:1. 直线0=++C By Ax 与圆222)()(r b y a x =-+-,圆心到直线的距离22BA C Bb Aa d +++=(1)无交点直线与圆相离⇔⇔>r d ; (2)只有一个交点直线与圆相切⇔⇔=r d ;(3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r - 2.还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交; (2)当0=∆时,直线与圆只有1个交点,直线与圆相切; (3)当0<∆时,直线与圆没有交点,直线与圆相离;2. 两圆的位置关系1.设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-= ① 条公切线外离421⇔⇔+>r r d ; ② 条公切线外切321⇔⇔+=r r d ; ③ 条公切线相交22121⇔⇔+<<-r r d r r ; ④ 条公切线内切121⇔⇔-=r r d ; ⑤ 无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 内含3.切线问题1. 过一点作圆的切线的方程: (1) 过圆外一点的切线: ①k 不存在,验证是否成立①k 存在,设点斜式方程,用圆心到该直线距离=半径,即:⎪⎩⎪⎨⎧+---=-=-1)()(2110101k x a k y b R x x k y y(2) 过圆上一点的切线方程:圆(x -a )2+(y -b )2=r 2,圆上一点为(x 0,y 0),设切线方程上某点坐标为),(y x ,10000-=--⋅--ax by x x y y则过此点的切线方程为:0))(())((0000=--+--y y b y x x a x22020)()(r a x b y =-+- , 则过此点的切线方程也可为:200))(())((r b y b y a x a x =--+--特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+. 2.切点弦过①C :222)()(r b y a x =-+-外一点),(00y x P 作①C 的两条切线,切点分别为B A 、,则切点弦AB 所在直线方程为:200))(())((r b y b y a x a x =--+--3.切线长:若圆的方程为(x -a )2+(y -b )2=r 2,则过圆外一点P (x 0,y 0)的切线长为 d =22020b)(+)(r y a x --- 4.圆心的三个重要几何性质:① 圆心在过切点且与切线垂直的直线上;① 圆心在某一条弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线。

第2章 2.5 2.5.1 直线与圆的位置关系

第2章 2.5 2.5.1 直线与圆的位置关系

直线与圆位置关系的综合
【例 4】 一艘轮船沿直线返回港口的途中,接到气象台预报, 台风中心位于轮船正西 70 km 处,受影响的范围是半径为 30 km 的圆 形区域,已知港口位于台风中心正北 40 km 处,如果这艘轮船不改变 航线,那么它是否会受到台风的影响?
[思路探究] 先以台风中心为原点建立适当的直角坐标系,把有 关的几何元素用坐标和方程表示出来,然后把此实际问题转化为代数 问题来解决.
(2)[解] 因为(4-3)2+(-3-1)2=17>1, 所以点 A 在圆外,故切线有两条. ①若所求直线的斜率存在,设切线斜率为 k, 则切线方程为 y+3=k(x-4),即 kx-y-4k-3=0. 设圆心为 C, 因为圆心 C(3,1)到切线的距离等于半径 1,
所以|3k-1k-2+3-1 4k|=1,即|k+4|= k2+1, 所以 k2+8k+16=k2+1,解得 k=-185. 所以切线方程为-185x-y+125-3=0, 即 15x+8y-36=0.
[跟进训练] 2.若圆 C:x2+y2+2x-4y+3=0,关于直线 2ax+by+6=0 对
称,则由点(a,b)向圆 C 所作的切线长的最小值为________.
4 [因为圆 C:x2+y2+2x-4y+3=0 关于直线 2ax+by+6=0 对称,所以圆心 C(-1,2)在直线 2ax+by+6=0 上,所以-2a+2b+ 6=0,即 a-b=3.又圆的半径为 2,
4.若点 P(1,2)在以坐标原点为圆心的圆上,则该圆在点 P 处的
切线方程为________.
x+2y-5=0 [由题意,得 kOP=21--00=2,则该圆在点 P 处的切 线的斜率为-12,所以所求切线方程为 y-2=-12(x-1),即 x+2y-5 =0.]

苏科版九年级上2.5直线与圆的位置关系专题练习(三)含答案

苏科版九年级上2.5直线与圆的位置关系专题练习(三)含答案

《直线与圆的位置关系》专题练习(3)1.(2016•大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB 的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.2.(2016•锦州)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.3.(2016•兰州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.4.(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.5.(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.6.(2016•荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.7.(2016•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.8.(2016•茂名)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).9.(2016•宜宾)如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.10.(2016•西宁)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.11.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.12.(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.13.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.14.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作⊙O的切线与CD长线交于点F,AC=8,CE:ED=6:5,AE:EB=2:3.求:(1)AB的长度;(2)tan∠ECB的值.15.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.16.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.17.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.18.完成下列各题:(1)如图,在矩形ABCD中,AF=BE,求证:DE=CF;(2)如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.19.(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O 的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.20.如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)当0<x<2时,求证:AD平分△PQD的面积;(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).21.(2015•德阳)如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D 为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.22.(2015•厦门)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC 平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.23.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.24.等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.25.如图1在平面直角坐标系中,⊙O1与x轴切于A(﹣3,0)与y轴交于B、C两点,BC=8,连AB.(1)求证:∠ABO1=∠ABO;(2)求AB的长;(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM﹣BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断正确结论并证明.26.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.(1)△DEF的边长为(用含有t的代数式表示),当t=秒时,点F落在AB上;(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.27.在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E 是射线AB上的任意一点,DF∥AB,DF与CE相交于点F,设EF=x,DF=y.(1)如图1,当点E在射线OB上时,求y关于x的函数解析式,并写出函数定义域;(2)如图2,当点F在⊙O上时,求线段DF的长;(3)如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.28.如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为﹣1,直线l:y=﹣x﹣与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M.(1)求点A的坐标及∠CAO的度数;(2)⊙B以每秒1个单位长度的速度沿想x轴负方向平移,同时,直线l绕点A以每秒钟旋转30°的速度顺时针匀速旋转,当⊙B第一次与⊙O相切时,请判断直线l与⊙B的位置关系,并说明理由:(3)如图2,过A、O、C三点作⊙O1,点E是⊙O1上任意一点,连接EC、EA、EO.①若点E在劣弧OC上,试说明:EA﹣EC=EO;②若点E在优弧OAC上,①的结论中EC、EA、EO的关系式是否仍然成立?若成立,请你说明理由?若不成立,请你直接写出正确的结论.29.在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.(1)求⊙O的半径;(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.参考答案与解析1.(2016•大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB 的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角定理得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.2.(2016•锦州)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.【分析】(1)连接DO并延长交AC于M,证出,由垂径定理得出DM⊥AC,证出DM∥BC,由已知得出DF⊥DO,即可得出DF为⊙O的切线;(2)由(1)得出DF=AC=1.5,CF=BF=BC=4.5,作ON⊥CE于N,连接OA,由垂径定理得出CN=EN=CE,AM=CM=ON=DF=1.5,设⊙O的半径为r,在△AOM中,由勾股定理求出半径,得出CN=EN=OM=2,CE=4,求出EF=4.5﹣4=0.5,再由勾股定理求出DE 即可.【解答】(1)证明:连接DO并延长交AC于M,如图1所示:∵∠ACB=90°,AC<BC,点D为AB的中点,∴CD=AB=AD,∴,∴DM⊥AC,∴DM∥BC,∵DF⊥BC,∴DF⊥DO,∴DF为⊙O的切线;(2)解:由(1)得:AC∥DF,∵点D为AB的中点,∴DF=AC=1.5,CF=BF=BC=4.5,作ON⊥CE于N,连接OA,如图2所示:则CN=EN=CE,AM=CM=ON=DF=1.5,设⊙O的半径为r,在△AOM中,由勾股定理得:r2+(4.5﹣r)2=r2,解得:r=2.5,∴CN=EN=OM=4.5﹣2.5=2,∴CE=4,∴EF=4.5﹣4=0.5,∴DE===.【点评】本题考查了切线的判定、直角三角形斜边上的中线性质、勾股定理,垂径定理等知识;熟练掌握切线的判定,由勾股定理求出半径是解决问题(2)的关键.3.(2016•兰州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.【分析】(1)连接OC,欲证明CF是⊙O的切线,只要证明∠OCF=90°.(2)作DH⊥AC于H,由△AEO∽△ABC,得=求出AE,EC,再根据sin∠A=sin ∠EDH,得到=,求出DE即可.【解答】证明:连接OC,∵OA=OC,∴∠A=∠OCA,∵OD⊥AB,∴∠A+∠AEO=90°,∵DE=DC,∴∠DEC=∠DCE,∵∠AEO=∠DEC,∴∠AEO=∠DCE,∴∠OCE+∠DCE=90°,∴∠OCF=90°,∴OC⊥CF,∴CF是⊙O切线.(2)作DH⊥AC于H,则∠EDH=∠A,∵DE=DC,∴EH=HC=EC,∵⊙O的半径为5,BC=,∴AB=10,AC=3,∵△AEO∽△ABC,∴=,∴AE==,∴EC=AC﹣AE=,∴EH=EC=,∵∠EDH=∠A,∴sin∠A=sin∠EDH,∴=,∴DE===.,【点评】本题考查切线的性质、相似三角形的判定和性质、三角函数等知识,解题的关键是添加辅助线,构造相似三角形,属于中考常考题型.4.(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【分析】(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出结果.【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.【点评】本题考查了切线的判定、圆周角定理、角的互余关系;熟练掌握切线的判定方法,由圆周角定理得出直角是解决问题的关键.5.(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.6.(2016•荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.7.(2016•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.【分析】(1)根据等腰三角形的性质得到∠B=∠ACB,∠OCE=∠E,推出∠ACO=90°,根据切线的判定定理即可得到结论;(2)根据已知条件得到∠CFO=30°,解直角三角形得到DF==,EF=3OE=4,即可得到结论.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵OC=OE,∴∠OCE=∠E,∵DE⊥AB,∴∠BDE=90°,∴∠B+∠E=90°,∴∠ACB+∠OCE=90°,∴∠ACO=90°,∴AC⊥OC,∴AC是⊙O的切线;(2)解:∵∠E=30°,∴∠OCE=30°,∴∠FCE=120°,∴∠CFO=30°,∴∠AFD=∠CFO=30°,∴DF==,∵BD=5,∴DE=5,∵OF=2OC,∴EF=3OE=4,∴OE=,即⊙O的半径=.【点评】本题考查了切线的判定,直角三角形的性质,等腰三角形的性质,熟练掌握切线的判定定理是解题的关键.8.(2016•茂名)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O 的切线;(2)由在△OBE中,sinB=,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sinB=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF •sinB=r ,∴BG==r ,∴EG=BG ﹣BE=r ,∴S △FGE =EG •FG=r 2,EG :FG=1:2, ∵BC 是切线,∴∠GEH=∠EFG ,∵∠EGH=∠FGE ,∴△EGH ∽△FGE ,∴=()2=,∴S △EHG =S △FGE =r 2. 【点评】此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.9.(2016•宜宾)如图1,在△APE 中,∠PAE=90°,PO 是△APE 的角平分线,以O 为圆心,OA 为半径作圆交AE 于点G .(1)求证:直线PE 是⊙O 的切线;(2)在图2中,设PE 与⊙O 相切于点H ,连结AH ,点D 是⊙O 的劣弧上一点,过点D 作⊙O 的切线,交PA 于点B ,交PE 于点C ,已知△PBC 的周长为4,tan ∠EAH=,求EH 的长.【分析】(1)作OH ⊥PE ,由PO 是∠APE 的角平分线,得到∠APO=∠EPO ,判断出△PAO ≌△PHO ,得到OH=OA ,用“圆心到直线的距离等于半径”来得出直线PE 是⊙O 的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.【解答】证明:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴===,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴EH2=EG×EA=EG×(EG+AG)=×(+2)=,∴EH=.【点评】此题是切线的性质和判定题,主要考查了切线的判定和性质,相似三角形的性质和判定,勾股定理,三角函数,解本题的关键是用三角函数求出OA.10.(2016•西宁)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠ODB,于是∠CDA+∠ADO=90°;(2)根据已知条件得到△CDA∽△CBD由相似三角形的性质得到,求得CD=4,由切线的性质得到BE=DE,BE⊥BC根据勾股定理列方程即可得到结论.【解答】(1)证明:连结OD,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∵OD是⊙O半径,∴CD是⊙O的切线(2)解:∵∠C=∠C,∠CDA=∠CBD∴△CDA∽△CBD∴∵,BC=6,∴CD=4,∵CE,BE是⊙O的切线∴BE=DE,BE⊥BC∴BE2+BC2=EC2,即BE2+62=(4+BE)2解得:BE=.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.11.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.【点评】此题考查了三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.12.(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S 为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.【分析】(1)先根据BC、AC、AB的长求出P,再代入到公式S=即可求得S的值;(2)根据公式S=r(AC+BC+AB),代入可得关于r的方程,解方程得r的值.【解答】解:(1)∵BC=5,AC=6,AB=9,∴p===10,∴S===10;故△ABC的面积10;(2)∵S=r(AC+BC+AB),∴10=r(5+6+9),解得:r=,故△ABC的内切圆半径r=.【点评】本题主要三角形的内切圆与内心、二次根式的应用,熟练掌握三角形的面积与内切圆半径间的公式是解题的关键.13.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.14.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作⊙O的切线与CD长线交于点F,AC=8,CE:ED=6:5,AE:EB=2:3.求:(1)AB的长度;(2)tan∠ECB的值.【分析】(1)设CE=6k,ED=5k,AE=2a,BE=3a,过点O作OH⊥CD垂足为H,则CH=HD,由△OHE∽△FAE,得=求出EF=,由CE•ED=BE•AE求出k、a关系,得EF=10k,得到DE=DC,得△DEA、△BCE都是等腰三角形,在RT△ABC中利用勾股定理即可解决问题.(2)根据tan∠ECB=tan∠AEF=,求出AF、AE即可.【解答】解:(1)设CE=6k,ED=5k,AE=2a,BE=3a,过点O作OH⊥CD垂足为H,则CH=HD,∴EH=0.5k,OE=0.5a,∵AF是切线,∴∠FAE=90°=∠OHE,∵∠OEH=∠FEA,∴△OHE∽△FAE,∴=即=,∴EF=,∵CE•ED=BE•AE,∴6k•5k=3a•2a,∴a2=5k2,∴EF=10k,∴点D是EF中点,∴AD=ED=DF=5k,∴△DEA、△BCE都是等腰三角形,∴BC=BE=3a,∵AB是直径,∴∠ACB=90°,∴BC2+AC2=AB2,∴(3a)2+82=(5a)2,∴a=2,∴AB=5a=10.(2)∵a=2,∴k=,∵AF2=DF•FC=80k2=64,∴AF=8,∴tan∠ECB=tan∠AEF===2.【点评】本题考查切线的性质、垂径定理、直角三角形斜边中线性质、等腰三角形的性质、勾股定理等知识,解题的关键是设两个参数,想办法求出EF的长,发现点D是EF中点这个突破口,题目比较难,属于中考压轴题.15.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.【分析】(1)连结AC,由于BC是圆P的直径,那么∠CAB=90°.解Rt△ABC,得出AC==2,由垂径定理得出OB=OA=2,根据三角形中位线定理得出OP=AC=1,从而求出点B、P、C的坐标;(2)将C(﹣2,2)代入y=2x+b,利用待定系数法求出过点C的直线解析式为y=2x+6,得到D(﹣3,0),AD=1.再利用SAS证明△ADC≌△OPB,得出∠DCA=∠B,然后证明∠BCD=90°,根据切线的判定定理证明CD是⊙P的切线.【解答】(1)解:连结AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.【点评】本题考查了切线的判定,垂径定理,勾股定理,全等三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.16.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.17.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.【分析】(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明;(2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC.【解答】(1)证明:如图一,连接OC,则OC⊥EF,且OC=OA,易得∠OCA=∠OAC.∵AD⊥EF,∴OC∥AD.∴∠OCA=∠CAD,∴∠CAD=∠OAC.即∠CAD=∠BAC.(2)解:与∠CAD相等的角是∠BAG.证明如下:如图二,连接BG.∵四边形ACGB是⊙O的内接四边形,∴∠ABG+∠ACG=180°.∵D,C,G共线,∴∠ACD+∠ACG=180°.∴∠ACD=∠ABG.∵AB是⊙O的直径,∴∠BAG+∠ABG=90°∵AD⊥EF∴∠CAD+∠ACD=90°∴∠CAD=∠BAG.【点评】此题运用了切线的性质定理、圆周角定理的推论.注意根据等角的余角相等是证明角相等的一种常用方法.18.完成下列各题:(1)如图,在矩形ABCD中,AF=BE,求证:DE=CF;(2)如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.。

直线与圆的位置关系

直线与圆的位置关系
2 = r2 - d 2 .
2.代数法(也叫公式法):设直线与圆相交于A(x1,y1),B(x2,y2)两点,
解方程组 消y后得关于x的一元二次方程,从而求
得x1+x2,x1x2,则弦长为|AB|= (此公式也叫做设而不求利用韦达定理求弦长公式 )
(其中x1,x2为两交点的横坐标.k为直线斜率).
2 2 x y 4 例1 、已知直线 y= x+1 与圆
(1)若点P(x0,y0)在圆C外,过点P的切线有两条.这时
可设切线方程为y-y0=k(x-x0),利用圆心C到切线的
距离等于半径求k.若k仅有一值,则另一切线斜率不
存在,应填上.也可用判别式Δ=0求k的值.
(2)若点P(x0,y0)在圆C上,过点P的切线只有一条.利用 圆的切线的性质,求出切线的斜率.k切= 1 , 代入 kCP 点斜式方程可得. 也可以利用结论:①若点P(x0,y0)在圆x2+y2=r2上,则过 该点的切线方程是x0x+y0y=r2.②若点P(x0,y0)在圆 (x-a) 2+(y-b) 2=r2上,则过该点的切线方程是(x0-a)(xa)+(y0-b)(y-b)=r2.
一.直线与圆的位置关系 想一想,平面几何中,直线与圆有哪几种位置关系?
平面几何中,直线与圆有三种位置关系:
(1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点.
(1)
(2)
(3)
二.直线与圆的位置关系 那么,如何用直线和圆的方程判断它们之间的位 置关系? 判断直线与圆的位置关系有两种方法: 方法一:代数法,判断直线l与圆C的方程组成的 方程组是否有解.如果有解,直线l与圆C有公共 点.有两组实数解时,直线l与圆C相交;有一组实数 解时,直线l与圆C相切;无实数解时,直线l与圆C相 离. 方法二:几何法,判断圆C的圆心到直线l的距离 d与圆的半径r的关系.如果d< r ,直线l与圆C相交;如 果d= r ,直线l与圆C相切;如果d> r ,直线l与圆C相 离.

2.5.1直线与圆的位置关系

2.5.1直线与圆的位置关系
第二章
直线和圆的方程
2.5.1直线与圆的位置关系
学习目标
1.能根据给定直线、圆的方程,判断直线与圆的位置关系.(逻
辑推理)
2.能用直线和圆的方程解决一些简单的数学问题与实际问
题.(数学建模)
1.直线与圆的位置关系:
平面几何中,直线与圆的位置关系
位置关系
相离
相切
相交
图形
思考:若已知直线的方程为:Ax+By+C=0(A,B不同时为0),圆的方程为:
圆 ∶ 2 + 2 + 2 = 0
相离
1.直线x my 2m 1 0与圆x y 9的位置关系(C)
2
2
A.相离 B.相切 C.相交 D.相交或相切
2.已知点( a, b)在圆 x y r 的外部,
2
2
2
C )
直线 ax by r 与圆 C的位置关系(
2
.
O
x
(3)
M(x0,y0)
.
.
.
x
B
2.求过一定点的圆的切线方程时,要先判断点与圆的位置关系.
(1)若点在圆上,则该点为切点,切线只有一条;
(2)若点在圆外,切线应有两条;
(3)若点在圆内,切线为零条.
例4.
过点 P(1.2) 作圆: 2 + 2 = 1的切线l,求此切线l的方程.
例5.
过点(2,1)作圆: 2 + 2 = 1的切线l,求此切线l的方程.
3x y 6 0,
2 2
x y 2 y 4 0.
消去y,得
x 3x 2 0
2
设A( x1 , y1 ), B(x2 , y2 ), 则x1 x2 3, x1 x2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
F
D
O
2.5 直线与圆的位置关系(3)
学习目标: 姓名: 1、会过圆上一点画圆的切线、作三角形的内切圆 2、了解三角形的内切圆、三角形的内心等概念
3、通过探究作三角形内切圆的过程,归纳内心的性质,进一步提高归纳能力与作图能力。

学习重点、难点:三角形的内切圆的作法,三角形内心的性质。

一、动手操作 动手操作一 过已知点画圆的切线
1. 回忆角平分线有何性:角平分线上的点到这个角 ;反之,到这 个角两边 的点在这个角两边的平分线上。

2.过圆上一点P 画圆的切线;
3.过圆上D,E,F 三点分别画圆的切线,并两两相交得△ABC ,则O 到∠ABC, ∠BAC ,∠ACB 两边的距离 ,即点O 在这个三角形的 线上。

动手操作二 作三角形的内切圆
1、由操作一可知:过已知圆上三点可作一个三角形,使它与各边都与圆相切;反之,如果已知一个三角形,如何作一个圆,使它与三角形各边都相切呢?写出你的思路
2、概念:与三角形各边都相切的圆叫做_________________,
内切圆的圆心叫做 ,这个三角形叫做圆的 。

三角形内心就是三角形三个 的交点,它到三边的距离 。

3.已知有锐角三角形、直角-三角形、钝角三角形,分别作出它们的内角平分线,它们的交点一定在三角形的 部,即三角形的内心一定在三角形的 部。

名称 确定方法 图形 性质
外心
三角形三边
的交点
(1)OA=OB=OC ;
(2)外心不一定在三角形的内部. 内心
三角形三条 的交点
(1)到三边的距离相等;
(2)OA 、OB 、OC 分别平分∠BAC、∠ABC、∠ACB;
(3)内心在三角形内部.
O
【预习反馈】
1.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A=50°,∠C=60°则∠DOE=( ) A .70° B .110° C .120° D .130° 2.下列命题正确的是( )
A .三角形的内心到三角形三个顶点的距离相等
B .等边三角形的内心,外心重合
C .三角形的内心不一定在三角形的内部
D .一个圆一定有唯一一个外切三角形 3.如图,△ABC 中,∠A=80°,I 是内心,则∠BIC= 。

4.如图,△ABC 中,内切圆O 和边BC 、CA 、AB 分别相切于点D 、E 、F,∠B=60°∠C=70°.∠EDF= 。

5.如图,⊙O 是ABC 的内切圆,D 、E 、F 为切点。

若∠DOE =1200,∠EOF =1500, ∠A= , ∠B= , ∠C= .
6.等边三角形的内切圆与外接圆的半径之比为
7. 如图:⊙O 内切于直角△ABC ,∠ACB=90°,D,E,F 为切点, ∠CBO=30°,则∠A= 。

8. 如图: ⊙O 内切于直角△ABC ,∠C=90°,AC=6,BC=8. (1)△ABC 的面积= (2) 求证:四边形CDOE 是正方形; (3)求△ABC 的内切圆的半径r ;
(4)直角三角形的三边分别为a 、b 、c 你能探究出其 内切圆的半径和这三边的关系吗?
(5)如果是任意△ABC ,三边分别为a 、b 、c 。

△ABC 面积为S,则内切圆的半径r=
O F E B A O E F D
A I B
【挑战自我】
1.如图,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么∠EDF 等于( )A .40° B .55° C .65° D .70°
2.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A=50°,∠C=60°,•则∠DOE= A .70° B .110° C .120° D .130° ( ) 3.如图3,△ABC 中,∠A=45°,I 是内心,则∠BIC=( ) A .112.5° B .112° C .125° D .55° 4.下列命题正确的是( )
A .三角形的内心到三角形三个顶点的距离相等
B .三角形的内心不一定在三角形的内部
C .等边三角形的内心,外心重合
D .一个圆一定有唯一一个外切三角形
5.在Rt △ABC 中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为( ) A .1.5,2.5 B .2,5 C .1,2.5 D .2,2.5
6.如图,⊙O 为△ABC 的内切圆,切点分别分别为D ,E ,F ,∠BCA=90°,BC=3,AC=4, (1)求△ABC 的面积;(2)求⊙O 的半径;(3)求AF 的长。

O
F
E B
A
C
7.阅读材料:(2014•济宁)已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,
AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三
角形.
∵ S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=(a+b+c)r.
∴r=
.
(1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径;
(2)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…a n,合理猜想其内切圆半径公式(不需说明理由).
(4)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,
⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.。

相关文档
最新文档