2020年高考物理专题6 万有引力定律

合集下载

06 万有引力与航天高考真题分项详解(解析版)

06 万有引力与航天高考真题分项详解(解析版)

十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。

高考物理万有引力定律的应用解题技巧分析及练习题(含答案)(1)

高考物理万有引力定律的应用解题技巧分析及练习题(含答案)(1)

高考物理万有引力定律的应用解题技巧分析及练习题(含答案)(1)一、高中物理精讲专题测试万有引力定律的应用1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=-【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22Mm Gmr r ω= 航天飞机在地面上,有2mMG R mg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t =则由2v mg m R=求得:星球的第一宇宙速度22hv gR R t ==, ()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。

高考物理学霸复习讲义万有引力-第六部分 特殊卫星及天体分析

高考物理学霸复习讲义万有引力-第六部分  特殊卫星及天体分析

一、极地卫星和近地卫星1.极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。

2.近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行的线速度约为7.9 km/s 。

二、同步卫星同步卫星是指相对地球“静止不动”的卫星。

同步卫星的六个“一定”: 1.地球赤道上的物体,静止在地面上与地球相对静止,随地球的自转绕地轴做匀速圆周运动。

地球赤道上的物体受到的地球的万有引力,其中的一个分力提供物体随地球自转做圆周运动的向心力,产生向心加速度a ,另一个分力为重力,有G2MmR -mg =ma (其中R 为地球半径)。

2.近地卫星的轨道高度约等于地球的半径,其所受万有引力完全提供卫星做圆周运动的向心力,即G2MmR =ma 。

3.同步卫星与赤道上的物体具有与地球自转相同的运转周期和运转角速度,始终与地球保持相对静止状态,共同绕地轴做匀速圆周运动。

4.区别:(1)同步卫星与地球赤道上的物体的周期都等于地球自转的周期,而不等于近地卫星的周期。

(2近地卫星与地球赤道上的物体的运动半径都等于地球的半径,而不等于同步卫星运动的半径。

(3)三者的线速度各不相同。

四、求解此类试题的关键1.在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应依据二者角速度相同的特点,运用公式a =ω2r 而不能运用公式a =2GMr。

2.在求解“同步卫星”与“赤道上的物体”的线速度的比例关系时,仍要依据二者角速度相同的特点,运用公式v =ωr 而不能运用公式v =GMr。

3.在求解“同步卫星”运行速度与第一宇宙速度的比例关系时,因都是由万有引力提供的向心力,故要运用公式v =GMr,而不能运用公式v =ωr 或v =gr 。

【典例1】有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角是π/6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h 【答案】C【解析】对于卫星a ,根据万有引力定律、牛顿第二定律可得2-GMm N ma r =向,而2GMmmg r =,故a 的向心加速度小于重力加速度g ,A 项错;由c 是地球同步卫星可知卫星c 在4 h 内转过的圆心角是π3,B 项错;由22GMm v m r r =得,GMv r=,故轨道半径越大,线速度越小,故卫星b 的线速度大于卫星c 的线速度,卫星c 的线速度大于卫星d 的线速度,而卫星a 与同步卫星c 的周期相同,故卫星c 的线速度大于卫星a 的线速度,C 项对;由22π()Mm G m r r T =得,32πr T GM=,轨道半径r 越大,周期越长,故卫星d 的周期大于同步卫星c 的周期,D 项错。

2020年高考物理考点题型归纳与训练专题六 万有引力与航天(含解析)

2020年高考物理考点题型归纳与训练专题六 万有引力与航天(含解析)

2020高考物理二轮复习题型归纳与训练专题六 万有引力与航天题型一 开普勒三定律的理解和应用【例1】(2018·高考全国卷Ⅲ)为了探测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P 与Q 的周期之比约为 ( )A .2∶1B .4∶1C .8∶1D .16∶1【答案】 C【解析】 由G Mm r 2=mr 4π2T 2知,T 2r 3=4π2GM ,则两卫星T 2P T 2Q =r 3P r 3Q.因为r P ∶r Q =4∶1,故T P ∶T Q =8∶1.题型二 万有引力定律的理解【例2】近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T 、引力常量为G .下列说法正确的是( )A .如果该星体的自转周期T <2π R 3Gm,则该星体会解体 B .如果该星体的自转周期T >2πR 3Gm ,则该星体会解体 C .该星体表面的引力加速度为Gm R D .如果有卫星靠近该星体表面做匀速圆周运动,则该卫星的速度大小为Gm R【答案】 AD 【解析】 如果在该星体“赤道”表面有一物体,质量为m ′,当它受到的万有引力大于跟随星体自转所需的向心力时,即G mm ′R 2>m ′R 4π2T2时,有T >2πR 3Gm ,此时,星体处于稳定状态不会解体,而当该星体的自转周期T <2πR 3Gm时,星体会解体,故选项A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ′,所以g ′=G m R 2,故选项C 错误;如果有质量为m ″的卫星靠近该星体表面做匀速圆周运动,有G mm ″R 2=m ″v 2R ,解得v =Gm R,故选项D 正确. 题型三 天体质量和密度的估算【例3】为了研究某彗星,人类先后发射了两颗人造卫星.卫星A 在彗星表面附近做匀速圆 周运动,运行速度为v ,周期为T ;卫星B 绕彗星做匀速圆周运动的半径是彗星半径的n 倍.万 有引力常量为G ,则下列计算不正确的是 ( ) A .彗星的半径为vT 2π B .彗星的质量为v 3T 4πGC .彗星的密度为3πGT 2D .卫星B 的运行角速度为2πT n 3【答案】 ACD【解析】 由题意可知,卫星A 绕彗星表面做匀速圆周运动,则彗星的半径满足:R =vT 2π,故A 正确;根据G Mm R 2=m v 2R ,解得M =v 3T 2πG ,故B 错误;彗星的密度为ρ=M V =M 43πR 3=3πGT 2,故C 正确;根据G Mm r 2=mω2r ,GMm R 2=mR 4π2T 2,r =nR ,则卫星B 的运行角速度为2πT n 3,故D 正确.题型四 卫星运动及变轨问题【例11】(2019·陕西省宝鸡市质检二)如图所示,质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R 3的圆形轨道Ⅲ继续绕地球运动,其中P 点为Ⅰ轨道与Ⅱ轨道的切点,Q 点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )A .卫星在轨道Ⅰ上的动能为G Mm 2R 1B .卫星在轨道Ⅲ上的机械能等于-G Mm 2R 3C .卫星在Ⅱ轨道经过Q 点时的加速度小于在Ⅲ轨道上经过Q 点时的加速度D .卫星在Ⅰ轨道上经过P 点时的速率大于在Ⅱ轨道上经过P 点时的速率【答案】 AB【解析】 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12mv 12=GMm 2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12mv 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q2=ma 得:a =GM R Q2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误.题型五 双星模型【例5】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星 ( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G , 质量之和可以估算.由线速度与角速度的关系v =ωr 得v 1=ωr 1④v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算.质量之积和各自自转的角速度无法求解.【强化训练】1.假设有一星球的密度与地球相同,但它表面处的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的( )A.14 B .4倍 C .16倍 D .64倍2.火星成为我国深空探测的第二颗星球,假设火星探测器在着陆前,绕火星表面匀速飞行(不计周围其他天体的影响),宇航员测出飞行N 圈用时t ,已知地球质量为M ,地球半径为R ,火星半径为r ,地球表面重力加速度为g 。

高考物理一轮专题复习学案: 万有引力定律

高考物理一轮专题复习学案: 万有引力定律

一、行星的运动 二、万有引力定律 三、引力常量的测定【例题】应用万有引力定律和向心力的公式证明:对于所有在圆周轨道上运动的地球卫星,其周期的二次方与轨道半径的三次方之比为一常量,即T 2/R 3=常量.【证明】设地球的质量为M ,卫星的质量为m ,轨道半径为R ,周期为T .因为卫星绕地球作圆周运动的向心力为万有引力,故F =G 2R Mm =m R ω2=m R 22T 4π. ∴ 32R T =GM 42π=常量. 可见,这一常量只与中心天体(地球)的质量有关.也适用于绕某一中心天体运动的天体系统.●课堂针对训练●(1)关于丹麦天文学家第谷,对行星的位置进行观测所记录的数据,下列说法正确的是:A .这些数据在测量记录时误差相当大;B .这些数据说明太阳绕地球运动;C .这些数据与以行星绕太阳做匀速圆周运动为模型得到的结果相吻合;D .这些数据与以行星绕太阳做椭圆运动为模型得到的结果相吻合.(2)关于行星绕太阳运动的正确说法是:A .所有行星都在同一椭圆轨道上绕太阳运动;B .行星绕太阳运动时太阳位于行星轨道的中心处;C .离太阳越近的行星运动周期越大;D .所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.(3)如图6-1所示,r 远大于两球的半径,但两球半径不能忽略,而球的质量均匀分布、大小分别为m 1与m 2,则两球间的万有引力大小为:A .Gm 1m 2/r 2;B .Gm 1m 2/r 12;C .Gm 1m 2/(r 1+r 2)2;D .Gm 1m 2/(r +r 1+r 2)2.(4)地球对月球具有相当大的万有引力,为什么它们不靠在一起,其原因是:A .不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,方向相反,互相平衡了;B .地球对月球的引力还不算大;C .不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力,这些力的合力等于零;D .万有引力不断改变月球的运动方向,使得月球绕地球运行.(5)关于引力常量G ,以下说法正确的是:A .在国际单位制中,G 的单位是N ·kg 2/m 2;B .在国际单位制中,G 的数值等于两个质量各为1kg 的物体,相距1m 时的相互吸引力;C .在不同星球上,G 的数值不一样;D .在不同的单位制中,G 的数值不一样.(6)以下说法正确的是:A .质量为m 的物体在地球上任何地方其重力均相等;B .把质量为m 的物体从地面移到高空上,其重力变小了;C .同一物体在赤道处的重力比在两极处重力大;D .同一物体在任何地方其质量是相同的.(7)有一个半径比地球大两倍、质量是地球质量36倍的行星.同一物体在它表面的重力是在地球表面的重力的多少倍?(8)人造地球卫星运动时,其轨道半径为月球轨道半径的31,则此卫星运动的周期大约是多少天?(9)物体在地面上重力为G 0,它在高出地面0.5R(R 为地球半径)处的重力是多少?(10)已知地面的重力加速度是g ,距地面高等于地球半径处的重力加速度是多少?(11)假设火星和地球都是球体,火星的质量为M 火,地球的质量为M 地,且M 火/M 地=p ,火星的半径和地球的半径之比是R 火/R 地=q ,那么在它们表面的重力加速度之比g 火/g 地等于多少?★滚动训练★(12)小球从高为h 处落到一个倾角为45°的斜面上,如图6-2所示,设小球与斜面碰撞后速率不变,沿水平方向向左运动,求小球第二次与斜面碰撞时离第一次碰撞处的距离是多少?(斜面足够长,不计空气阻力)(13)一辆汽车匀速率通过一座圆形拱桥后,接着又以相同的速率通过圆弧形凹地,设两圆形半径相等,汽车通过桥顶A 时,桥面受到的压力F NA 为车重的一半,汽车在圆弧形凹地最低点B 时,对地面的压力为F NB ,求f NA 与F NB 之比. 四、万有引力定律在天文学上的应用【例题】月亮绕地球转动的周期为T ,轨道半径为r ,则由此可得地球质量表达式为________(引力常量为G).若地球半径为R ,则其密度表达式是________.【分析与解答】月亮绕地球转可看成作匀速圆周运动,且F 向=F 引,∴ G 2r m M 月地=m 月ω2r =m 月(T 2π)2r 故M 地=232GT r 4π. 而 ρ=体V M =232GT r 4π/(34πR 3)=323RGT r 3π. ●课堂针对训练●(1)若已知行星绕太阳公转的半径为r ,公转的周期为T ,万有引力恒量为G ,则由此可求出:A .某行星的质量;B .太阳的质量;C .某行星的密度;D .太阳的密度.(2)若地球绕太阳公转周期及公转轨道半径分别为T 和R ,月球绕地球公转周期和公转轨道半径分别为t 和r ,则太阳质量与地球质量之比M 日/M 地为:A .R 3t 2/r 3T 2;B .R 3T 2/r 3t 2;C .R 3t 2/r 2T 3;D .R 3T 3/r 3t 3.(3)设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,即T 2/R 3=k ,那么k 的大小决定于:A .只与行星质量有关;B .只与恒星质量有关;C .与行星及恒星的质量都有关;D .与恒星的质量及行星的速率有关.(4)银河系中有两颗行星环绕某恒星运转,从天文望远镜中观察到它们的运转周期的比为27∶1,则它们的轨道半径的比为:A .3∶1;B .9∶1;C .27∶1;D .1∶9.(5)下列说法正确的是:A .海王星和冥王星是人们依据万有引力定律计算的轨道而发现的;B .天王星是人们依据万有引力定律计算的轨道而发现的;C .天王星的运行轨道偏离根据万有引力计算出来的轨道,其原因是由于天王星受到轨道外面其它行星的引力作用;D .以上均不正确.(6)行星的平均密度是ρ,靠近行星表面的卫星运转周期是T ,试证明:ρT 2是一个常量,即对任何行星都相同.(7)已知某行星绕太阳运动的轨道半径为r ,周期为T ,太阳的半径是R ,则太阳的平均密度是多少?(万有引力恒量为G)(8)已知月球的半径是r ,月球表面的重力加速度为g 月,万有引力恒量为G ,若忽略月球的自转,试求出月球的平均密度表达式.(9)一艘宇宙飞船飞近某一个不知名的行星,并进入靠近该行星表面的圆形轨道,宇航员着手进行预定的考察工作.宇航员能不能仅用一只表通过测定时间来测定该行星的密度?说明理由及推导过程,并说明推导过程中各量的物理意义.(10)太阳光经500s 到达地球,已知地球的半径是6.4×106m ,试估算太阳的质量与地球的质量的比值(光速c =3×108m/s ,结果取1位有效数字).★滚动训练★(11)从离地面高为H 的A 点平抛一物体,其水平射程为2s .在A 点正上方且离地面高为2H 的B 点,以相同方向平抛另一物体,其水平射程为s ,两物体在空中的运动轨道在同一竖直平面内,且都从同一个屏M 的顶端擦过,求屏M 的高度.(12)如图6-3所示,半径为R 的光滑圆环上套有一质量为m 的小环,当圆环以角速度ω绕着环心的竖直轴旋转时,求小环偏离圆环最低点的高度.五、人造卫星 宇宙速度【例1】一人造地球卫星距地球表面的高度是地球半径的15倍.试估算此卫星的线速度(已知地球半径R =6400km).【分析与解答】人造地球卫星绕地球做圆周运动时,满足的关系式为 G 2)R 16(M m =m R 16v 2① 式中:m 为卫星质量;M 为地球质量;16R 为卫星的轨道半径.由于地球质量M 未知,所以应设法用其他已知常数代换,在地球表面mg =G 2RMm ② 由①、②两式消去GM ,解得v =1610468916R 6⨯⨯=..g =2.0×103(m/s). 注意:有些基本常知,尽管题目没有明显给出,必要时可以直接应用,如在地球表面物体受到地球的引力近似等于重力,地球自转周期T =24小时,公转周期T =365天,月球绕地球运动的周期约为30天等.【例2】人造卫星环绕地球运转的速度v =r /R 20g ,其中g 为地面处的重力加速度,R 0为地球的半径,r 为卫星离地球中心的距离,下面哪些说法正确?A .题目中卫星速度表达式是错误的;B .由速度表达式知,卫星离地面越高,其速度也越大;C .由速度表达式知,卫星环绕速度与轨道半径平方根成反比;D .从速度表达式可知,把卫星发射到越远的地方越容易.【分析和解答】卫星绕地球转动时,F 引=F 心所以,G 2r M m =m r v 2(其中m 是卫星质量,M 是地球的质量),故v =r GM , 而在地球表面:mg =G 20R M m (其中m 为地面上物体的质量)故有GM =g R 02,所以v =r /R 20g , 由此可知A 是错的,C 为正确的.又因为v 是环绕速度,故离地球越远处卫星环绕速度越小,但发射卫星到越远,克服地球引力作功越多,所需初速越大,故D 错(注意区分:发射初速度与环绕速度).●课堂针对训练●(1)已知下面的哪组数据,可以算出地球的质量M 地(引力常量G 为已知):A .月球绕地球运动的周期T 1及月球到地球中心的距离R 1;B .地球绕太阳运行的周期T 2及地球到太阳中心的距离R 2;C .人造卫星在地面附近的运行速率v 3和运行周期T 3;D .地球绕太阳运行的速度v 4及地球到太阳中心的距离R 4.(2)关于第一宇宙速度,下面说法中错误的是:A .它是人造地球卫星绕地球飞行的最小速度;B .它是人造地球卫星在近地圆形轨道上的运行速度;C .它是能使卫星进入近地圆形轨道的最小发射速度;D .它是卫星在椭圆轨道上运行时近地点的速度.(3)下列说法正确的是:A .地球同步卫星和地球自转同步,因此同步卫星的高度和速度是一定的;B .地球同步卫星的角速度虽被确定,但高度和速度可以选择,高度增加,速度增大,高度降低,速度减小;C .地球同步卫星只能定点在赤道上空,相对地面静止不动;D .以上均不正确.(4)人造地球卫星中的物体处于失重状态是指物体:A .不受地球引力作用;B .受到的合力为零;C .对支持它的物体没有压力作用;D .不受地球引力,也不受卫星对它的引力.(5)实际中人造地球卫星绕地球做匀速圆周运动时的速度一定________第一宇宙速度.(填“大于”或“小于”或“等于”)(6)两个行星的质量分别为m 和M ,绕太阳运行的轨道半径分别是r 和R ,则:①它们与太阳之间的万有引力之比是多少?②它们公转的周期之比是多少?(7)两颗人造地球卫星,其轨道半径之比为R 1∶R 2=4∶1,求这两颗卫星的:①线速度之比v 1∶v 2=? ②角速度之比ω1∶ω2=?③周期之比T 1∶T 2? ④向心加速度之比a 1∶a 2=?(8)为转播电视节目,发射地球的同步卫星,它在赤道上空某高度处随地球同步运转,地球半径为6400km ,地球表面重力加速度g 取10m/s 2,求它的高度和线速度大小.(9)如图6-4所示,两颗靠得很近的恒星称为双星,这两颗星必须各以一定速率绕某一中心转动才不致于因万有引力作用而吸引在一起.已知双星的质量分别为m 1和m 2,相距为L ,万有引力常数为G .求:①双星转动中心位置O 与m 1的距离; ②转动周期.(10)一颗在赤道上空飞行的人造地球卫星,其轨道半径为r =3R(R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为w 0,某一时刻该卫星通过赤道上某建筑物的正上方,再经过多少时间它又一次出现在该建筑物正上方?★滚动训练★(11)如图6-5所示,长为L 的轻杆,两端各连接一个质量都是m 的小球,使它们以轻杆中点为轴在竖直平面内做匀速圆周运动,周期为T =2πgL .求两小球通过竖直位置时杆分别对上下两球的作用力,并说明是拉力还是支持力.●补充训练●(1)如图6-6中的圆a 、b 、c ,其圆心均在地球的自转轴线上,对卫星环绕地球做匀速圆周运动而言:A .卫星的轨道只可能为a ;B .卫星的轨道可能为b ;C .卫星的轨道不可能为c ;D .同步卫星的轨道一定为b .(2)人造卫星以地心为圆心,做匀速圆周运动,下列说法正确的是:A .半径越大,环绕速度越小,周期越小;B .半径越大,环绕速度越小,周期越大;C .所有卫星的环绕速度均是相同的,与半径无关;D .所有卫星角速度都相同,与半径无关.(3)人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为v ,周期为T ,若要使卫星的周期变为2T ,可能的办法是: A .R 不变,使线速度变为v /2; B .v 不变,使轨道半径变为2R ;C .轨道半径变为43R ;D .无法实现.(4)“黑洞”是近代引力理论所预言的宇宙中一种特殊天体,在“黑洞”引力作用范围内,任何物体都不能脱离它的束缚,甚至连光也不能射出.研究认为,在宇宙中存在的黑洞可能是由于超中子星发生塌缩而形成的.2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,被命名为:MCG6-30-15.假设银河系中心仅此一个黑洞,已知太阳系绕银河系中心做匀速圆周运动,则根据下列哪一组数据可以估算出该黑洞的质量:A .太阳系质量和运动速度;B .太阳系绕黑洞公转的周期和到“MCG6-30-15”的距离;C .太阳系质量和到“MCG6-30-15”的距离;D .太阳系运行速度和“MCG6-30-15”的半径.(5)物体在月球表面上的重力加速度为地球表面上的1/6,这说明:A .地球的直径是月球直径的6倍;B .月球的质量是地球质量的1/6;C .月球吸引地球的引力是地球吸引月球引力的1/6;D .物体在月球表面的重力是在地球表面的1/6.(6)三颗人造地球卫星A 、B 、C 绕地球作匀速圆周运动,如图6-7所示,已知m A =m B <m C 知,则三个卫星:A .线速度关系:v A >vB =vC ; B .周期关系:T A <T B =T C ;C .向心力大小:F A =F B <F C ;D .半径与周期关系:2C 3C 2B 3B 2A 3A T R T R T R ==. (7)宇航员在一行星上以速度为v 0竖直上抛一个物体经t 秒钟后落回手中,已知该行星半径为R ,要使物体不再落回星球表面,沿星球表面抛出的速度至少应是多少?(8)地球绕太阳公转的周期为T 1,轨道半径为R 1,月球绕地球公转的周期为T 2,轨道半径为R 2,则太阳的质量是地球的质量的多少倍?(9)有m 1和m 2两颗人造卫星,已知m 1=m 2,如果m 1和m 2在同一轨道上运行,则它们的线速度之比v 1∶v 2=?;如果m 1的运行轨道半径是m 2的运行轨道半径的2倍,则它们的速度之比v 1∶v 2=?(10)若取地球的第一宇宙速度为8km/s ,某行星的质量是地球的6倍,半径是地球的1.5倍,这行星的第一宇宙速度约为多少?(11)某一高处的物体的重力是在地球表面上的重力的一半,则其距地心距离是地球半径R 的多少倍?(12)北京时间2002年12月30日零时40分,“神舟”四号无人飞船在酒泉卫星发射中心由长征二号运载火箭发射升空,飞船按计划进入预定轨道,用时t 秒绕地球运行了n 圈后,安全返回地面,这标志着我国航天技术达到新的水平.已知地球半径为R ,地面重力加速度为g ,试求飞船绕地球飞行时离地面的高度.(13)已知地球半径约6.4×106m ,又知月球绕地球的运动可近似看作做圆周运动,则可估算出月球到地心的距离约为多少?(结果保留一位有效数字)(14)在火箭发射卫星的开始阶段,火箭与卫星一起竖直上升的运动可看作匀加速直线运动,加速度大小为a =5m/s 2,卫星封闭舱内用弹簧秤挂着一个质量m =9kg 的物体,当卫星竖直上升到某高度时,弹簧秤的示数为85N ,求此时卫星距地面的高度是多少?(地球半径R =6.4×103km ,g =10m/s 2)(15)宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G .求该星球的质量M .(16)用打点计时器测量重力加速度,如图6-8所示,A 、B 、C 为纸带上的3个点,测AB 间距离为0.980cm ,BC 间距离为1.372cm ,已知地球半径为6.37×106m ,试计算地球的第一宇宙速度为多少?(电源频率为50Hz)(17)2000年1月26日我国发射了一颗同步卫星,其定点位置与东经98°的经线在同一平面内.若把甘肃嘉峪关处的经度和纬度近似取为东经98°和北纬α=40°,已知地球半径R 、地球自转周期T 、地球表面重力加速度g (视为常量)和微波信号传播速度为c .试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).参考答案一、行星的运动 二、万有引力定律 三、引力常量的测定:(1)D(2)D(3)D(4)D(5)BD(6)BD(7)4(8)5.8天(9)94G(10)41g (11)p /q 2(12)42h(13)1∶3. 四、万有引力定律在天文学上的应用(1)B(2)A(3)B(4)B(5)AC(6)略(7)323RGT r 3π(8)rG 43π月g (9)3π/GT 2(10)3×105(11)6H/7(12)R -g /ω2.五、人造卫星、宇亩速度:(1)AC(2)AD(3)AC(4)C(5)小于(6)①22Mr R m ;②33R r (7)1∶2,1∶8,8∶1,1∶16(8)3.56×104km ,3.1×103m/s(9)①)(L 212m m m +;②)(G L 2213m m +π(10)6π;03R 3/6ωπ-g (11)21mg ,支持力;23mg ,拉力. 本章补充训练: (1)B(2)B(3)C(4)B(5)D(6)ABD(7)t /R 20v (8)21322231T R T R (9)1∶1,1∶2(10)16km/s(11)2(12)222n 4t R π2g -R(13)4×108m(14)3.2×103km(15)22Gt 3L R 32(16)7.9km/s .(17)C cos )4T R (R 2R )4T R (312223222αππg g 22-+.。

高考物理必背知识手册专题06万有引力及航天讲义

高考物理必背知识手册专题06万有引力及航天讲义

专题06 万有引力及航天考点内容要求 课程标准要求 行星的运动a 1.通过史实,了解万有引力定律的发现过程。

知道万有引力定律。

认识发现万有引力定律的重要意义。

认识科学定律对人类探索未知世界的作用。

2.会计算人造地球卫星的环绕速度。

3.知道第二宇宙速度和第三字宙速度。

太阳与行星间的引力 a 万有引力定律c 万有引力理论的成就 c 宇宙航行c 经典力学的局限性a万有引力及航天万 有 引 力 定 律 第一宇宙速度:7.9km/s 开普勒行星运动规律内容: 适用条件公式: 万有引力与重力的关系万有引力定律的应用:测量天体质量、密度人 造 地 球 卫 星 及 宇 宙 航 行卫星发射开普勒第一定律:轨道定律 开普勒第二定律:面积定律 开普勒第三定律:周期定律k T a 23=2r Mm GF=第二宇宙速度:11.2km/s 第二宇宙速度:16.7km/s 运行 规律22322gR GM ,rGMa GMr 4πT ,r GM ω,r GM v =====特殊卫星近地卫星:卫星的运行轨道半径等于地球半径 同步卫星:六个一定卫星轨道圆心与地心重合一、开普勒三定律1. 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2. 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.3. 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,即k =23Ta ,k 是一个与行星无关的常量,其值与中心天体的质量有关,不同的中心天体k 值不同.但该定律只能用于绕同一中心天体运动的星体.技巧点拨:①开普勒行星运动定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转②中学阶段一般把行星的运动看成匀速圆周运动,太阳处在圆心,开普勒第三定律k =23Ta 中的a 可看成行星的轨道半径R .②由开普勒第二定律可得12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.二、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量M 和m 的乘积成正比、与它们之间距离r 的二次方成反比.2.公式:2rMm G F =,式中22-11/kg m N 106.67G ⋅⨯= 称为引力常量,由英国物理学家卡文迪许测定.3.适用条件及说明(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r 是两球心间的距离. (3)两物体相互作用的万有引力是一对作用力和反作用力.4.万有引力与重力的关系:地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,①在赤道上: R m ωmg RMm G22+=. ②在两极上: mg RMmG2=. ③一般位置: r m ωmg RMm G22+=. 式中r 为物体到地球转轴的距离。

备战2020年高考物理计算题专题复习:《万有引力定律》(解析版)

备战2020年高考物理计算题专题复习:《万有引力定律》(解析版)

《万有引力定律》一、计算题1.2019年1月3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了第一张近距离拍摄月球背面的图片。

此次任务实现了人类探测器首次在月球背面软着陆、首次在月球背面通过中继卫星与地球通讯,因而开启了人类探索月球的新篇章。

探测器在月球背面着陆的难度要比在月球正面着陆大很多。

其主要原因在于:由于月球的遮挡,着陆前探测器将无法和地球之间实现通讯。

2018年5月,我国发射了一颗名为“鹊桥”的中继卫星,在地球和月球背面的探测器之间搭了一个“桥”,从而有效地解决了通讯问题。

为了实现通讯和节约能量,“鹊桥”的理想位置就是围绕“地—月”系统的一个拉格朗日点运动,如图1所示。

所谓“地—月”拉格朗日点是指空间中的某个点,在该点放置一个质量很小的天体,该天体仅在地球和月球的万有引力作用下保持与地球和月球的相对位置不变。

设地球质量为M,月球质量为m,地球中心和月球中心间的距离为L,月球绕地心运动,图1中所示的拉格朗日点到月球球心的距离为r。

推导并写出r与M、m和L之间的关系式。

地球和太阳组成的“日—地”系统同样存在拉格朗日点,图2为“日—地”系统示意图,请在图中太阳和地球所在直线上用符号“”标记出几个可能拉格朗日点的大概位置。

2.利用万有引力定律可以测量天体的质量.英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g,地球半径为R,引力常量为若忽略地球自转的影响,求地球的质量.测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O做匀速圆周运动的两个星球A和B,如图所示.已知A、B间距离为L,A、B绕O点运动的周期均为T,引力常量为G,求A、B的总质量.测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”已知月球的公转周期为,月球、地球球心间的距离为你还可以利用、中提供的信息,求月球的质量.3.如图所示是“月亮女神”、“嫦娥1号”绕月做圆周运行时某时刻的图片,用、、、、分别表示“月亮女神”和“嫦娥1号”的轨道半径及周期,用R表示月亮的半径.请用万有引力知识证明:它们遵循其中k是只与月球质量有关而与卫星无关的常量经多少时间两卫星第一次相距最远;请用所给“嫦娥1号”的已知量.估测月球的平均密度.4.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注。

高考物理万有引力定律的应用解题技巧及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224Tπ① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.2.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】(1)22324gR T r π= (2)22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解3.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数33μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.4.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算5.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。

高考物理万有引力公式

高考物理万有引力公式

高考物理万有引力公式
万有引力1.开普勒第三定律T2/R3=K(=4&pi;2/GM){R轨道半径,T周期,K常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律F=Gm1m2/r2(G=6.67x10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度GMm/R2=mg;g=GM/R2{R天体半径(m),M天体质量(kg)}4.卫星绕行速度、角速度、周期V=(GM/r)1/2;&omega;=(GM/r3)1/2;T=2&pi;(r3/GM)1/2{M中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4&pi;2(r地+h)/T2{h&asymp;36000km,h距地球表面的高度,r地地球的半径}注(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理专题复习:万有引力定律

高考物理专题复习:万有引力定律

高考物理专题复习:万有引力定律一、单选题1.已知某空间站在距地面高度为h 的圆轨道上运行,经过时间t ,通过的弧长为s 。

已知引力常量为G ,地球半径为R 。

下列说法正确的是( ) A .空间站运行的速度大于第一宇宙速度 B .空间站的角速度为stC .空间站的周期为2)R h tsπ+( D .地球平均密度为. 22234()s G t R h π+2.假设某星球可视为质量均匀分布的球体,已知该星球表面的重力加速度在两极的大小为g 1,在赤道的大小为g 2,星球自转的周期为T ,引力常量为G ,则该星球的密度为( ) A .23GT πB .1223g GT g π⋅ C .12123g GT g g π⋅- D .12213g g GT g π-⋅ 3.某探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知引力常量为G ,关于土星质量M 和平均密度ρ的表达式正确的是( ) A .2324()R h M Gt π+=,3233()R h G Rπρ+= B .2224()R h M Gtπ+=,2233()R h Gt R πρ+= C .2324()R h M Gt π+=,3233()R h Gn R πρ+=D .22324()n R h M Gt π+=,23233()n R h Gt R πρ+=4.某探测器在距火星表面高度为h 的轨道上绕火星做周期为T 的匀速圆周运动,再经多次变轨后成功着陆,着陆后测得火星表面的重力加速度为g ,已知火星的半径为R ,万有引力常量为G ,忽略火星自转及其他星球对探测器的影响,以下说法正确的是( ) A .火星的质量为2324πR GTB .火星的质量为()3224πR h gT +C .火星的密度为23πGT D .火星的密度为34πgG R5.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于宇宙四星系统,下列说法错误的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为2aC .四颗星表面的重力加速度均为2GmR D.四颗星的周期均为2π6.质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为0t 、速度由0v 减速到零的过程。

万有引力定律高中物理

万有引力定律高中物理

有关高中物理“万有引力定律”的概念
有关高中物理“万有引力定律”的概念如下:
万有引力定律是描述物体之间相互引力的定律,由艾萨克·牛顿在1687年提出。

它表明任何两个物体之间都存在引力,且这个引力与它们质量的乘积成正比,与它们距离的平方成反比。

在高中物理中,万有引力定律通常表示为:F = G * (m1 * m2) / r^2,其中F 是两个物体之间的引力,m1 和m2 分别是两个物体的质量,r 是它们之间的距离,G 是引力常量,其值约为6.67430 × 10^-11 m^3 kg^-1 s^-2。

万有引力定律在天文学中有着重要的应用,它解释了行星轨道运动和天体运动的规律。

此外,万有引力定律也是研究宇宙学和天体物理学等领域的基础。

在高中物理中,学生通常会学习如何使用万有引力定律计算两个物体之间的引力,以及如何使用它来解释一些天体运动的规律。

同时,学生也会学习到万有引力定律的一些特殊情况,例如在地球表面的物体所受的重力可以看作是地球对该物体的万有引力。

总之,万有引力定律是高中物理中的一个重要概念,它描述了物体之间的引力规律,为我们理解天体运动和宇宙结构提供了基础。

2020-2022年高考物理真题分专题训练 专题06 万有引力定律与航天(学生版)

2020-2022年高考物理真题分专题训练 专题06 万有引力定律与航天(学生版)

专题06 万有引力定律与航天【2022年高考题组】1、(2022·湖南卷·T8)如图,火星与地球近似在同一平面内,绕太阳沿同一方向做匀速圆周运动,火星的轨道半径大约是地球的1.5倍。

地球上的观测者在大多数的时间内观测到火星相对于恒星背景由西向东运动,称为顺行;有时观测到火星由东向西运动,称为逆行。

当火星、地球、太阳三者在同一直线上,且太阳和火星位于地球两侧时,称为火星冲日。

忽略地球自转,只考虑太阳对行星的引力,下列说法正确的是()A. 827倍B. 在冲日处,地球上的观测者观测到火星的运动为顺行C. 在冲日处,地球上的观测者观测到火星的运动为逆行D. 在冲日处,火星相对于地球的速度最小2、(2022·广东卷·T2)“祝融号”火星车需要“休眠”以度过火星寒冷的冬季。

假设火星和地球的冬季是各自公转周期的四分之一,且火星的冬季时长约为地球的1.88倍。

火星和地球绕太阳的公转均可视为匀速圆周运动。

下列关于火星、地球公转的说法正确的是()A. 火星公转的线速度比地球的大B. 火星公转的角速度比地球的大C. 火星公转的半径比地球的小D. 火星公转的加速度比地球的小3、(2022·山东卷·T6)“羲和号”是我国首颗太阳探测科学技术试验卫星。

如图所示,该卫星围绕地球的运动视为匀速圆周运动,轨道平面与赤道平面接近垂直。

卫星每天在相同时刻,沿相同方向经过地球表面A点正上方,恰好绕地球运行n圈。

已知地球半径为地轴R,自转周期为T,地球表面重力加速度为g,则“羲和号”卫星轨道距地面高度为()A.1223222π⎛⎫-⎪⎝⎭gR TRnB.1223222π⎛⎫⎪⎝⎭gR TnC.1223224π⎛⎫-⎪⎝⎭gR TRnD.1223224π⎛⎫⎪⎝⎭gR Tn4、(2022·全国乙卷·T14)2022年3月,中国航天员翟志刚、王亚平、叶光富在离地球表面约400km的“天宫二号”空间站上通过天地连线,为同学们上了一堂精彩的科学课。

高考物理考点:万有引力定律的理解及应用

高考物理考点:万有引力定律的理解及应用

力常量为 G,则飞船所在处的重力加速度大小为( )
A.0
GM B.
(R+h)2
GMm C.
(R+h)2
GM D. h2
解析 对飞船由万有引力定律和牛顿第二定律得,(RG+Mhm)2=mg′,解得飞
船所在处的重力加速度为 g′=(RG+Mh)2,B 项正确。 答案
B
解析显隐
目录
3.规律方法 地球表面的物体运动规律的迁移应用
目录页
Contents Page
考点强化: 万有引力定律的理解及应用
1.考点精讲
2.典例剖析
3.规律方法
4.备选训练 5.高考模拟演练
基础课
目录
1.考点精讲
计算星体表面上的重力加速度有哪些方法?
1.地球表面附近的重力加速度g (不考虑地球自转)
2.地球上空距地心r=R+h 处 的重力加速度g′.
3.其他星球上的加速度
个小球,测得水平射程为 s。在另一星球表面以相同的水平速度抛
出该小球,需将高度降低一半才可以获得相同的水平射程。忽略
一切阻力。设地球表面重力加速度为 g,该星球表面的重力加速度
为 g′,g∶g′为( ) A.1∶2 B.1∶ 2
C. 2∶1
D.2∶1
解析 因为 s=v0t,h=12gt2 而 s=v0t′ 答案 D
A.开普勒通过研究观测记录发现行星绕太阳运行的轨道是椭圆
B.太阳与行星之间引力的规律并不适用于行星与它的卫星
C.库仑利用实验较为准确地测出了引力常量G的数值
D.牛顿在发现万有引力定律的过程中应用了牛顿第三定律的知识
解析 开普勒通过研究观测记录发现行星绕太阳运行的轨道是椭圆,太阳与行
星之间引力的规律既适用于其他行星,也适用于行星与它的卫星,选项A正确 B错误;引力常量G的数值是卡文迪许测出的,选项C错误;牛顿在发现万有

2020高中物理万有引力定律教案范文

2020高中物理万有引力定律教案范文

2020高中物理万有引力定律教案范文高二时孤身奋斗的阶段,是一个与寂寞为伍的阶段,是一个耐力、意志、自控力比拚的阶段。

但它同时是一个厚实庄重的阶段。

由此可见,高二是高中三年的关键,也是最难把握的一年。

为了帮你把握这个重要阶段。

接下来是小编为大家整理的2020高中物理万有引力定律教案范文,希望大家喜欢!2020高中物理万有引力定律教案范文一教学设计思路:一、背景分析及指导思想:本节课是针对应届高三学生的第一轮复习而设置。

在本节之前学生在高一已经学习了万有引力定律这一章的相关知识,但知识的系统性不强,对“表面模型”和“环绕模型”及二者特点有了一定的掌握,但解决问题的方法性不强,对部分的重点和难点的分析不透彻。

因此在设计时我们兼顾了本章的知识特点、高考大纲要求和学生特点,在教学过程中设置提问,重在提升学生的思维能力和解决问题的能力。

二、高考特点分析:本部分是高考考查的重点内容之一,每年的高考试题中都会出现,频率较高,命题的立意包括:万有引力定律与其他知识的综合;应用万有引力定律解决一些实际问题,一般以选择题、填空题或计算题(新课标后计算题出现频率较低)的形式考查。

由于航天技术、人造地球卫星属于现代科技发展的重要领域,有关人造卫星问题的考查频率会越来越高,加上2012年载人航天的成功、中国北斗卫星导航系统的建成和完善、中国探月计划的实施、美国火星计划的实施,这些都是命题的热点。

三、内容设置与方案:鉴于本部分的内容特点及在高考中的地位,设计这节复习课时,我们打破常规复习课以梳理知识为主的模式,重点突出模型教学与“问题式”方法教学。

本节课设计了三个教学环节,第一个环节是知识梳理,以梳理基础知识;第二个环节是模型探究,以“地表”和“天上”两条线为引,突出圆和椭圆两类问题,并能解决相应的实际问题——(包括质量估算和简单变轨问题)的基本技能;第三个环节从高考的考点入手,有效的抓住高考的得分点,引导学生构建从基本概念、基本规律出发应用所学知识分析、解决实际问题的能力。

备战2023年物理高考复习必备(全国通用)专题06 万有引力与航天的最新“新情景问题”(解析版)

备战2023年物理高考复习必备(全国通用)专题06  万有引力与航天的最新“新情景问题”(解析版)
A. 恒星A的质量大于恒星B的质量
B. 恒星B的质量为
C. 若知道C的轨道半径,则可求出C的质量
D. 三星A、B、C相邻两次共线的时间间隔为
【答案】AB【解析】因为双星系统的角速度相同,故对A、B可得

即恒星A的质量大于恒星B的质量,故A正确;对恒星A可得
解得恒星B的质量为
故B正确;
C.对卫星C满足

联立解得
故B正确;根据

可知神舟十二号飞船沿轨道Ⅰ运行的周期小于天和核心舱沿轨道Ⅲ运行的周期,故C错误;
根据

可知正常运行时,神舟十二号飞船在轨道Ⅱ上经过B点的加速度等于在轨道Ⅲ上经过B点的加速度,故D错误。
12.中国航空领域发展迅猛,2022年2月27日,中国航天人又创造奇迹,长征八号遥二运载火箭搭载22颗卫星从海南文昌航天发射场挟烈焰一飞冲天,创造了我国“一箭多星”单次发射卫星数量最多的纪录,如图所示。其中“泰景三号01”卫星是可见光遥感卫星,分辨率达到0.5米,能用于资源详查、城市规划、环境保护等诸多领域,其轨道高度为几百千米。关于“泰景三号01”卫星,下列说法正确的是( )
在甲抬高轨道的过程中,离月球的距离r逐渐增大,由 可知月球对卫星的万有引力逐渐减小,故C错误;因地球表面的重力加速度比月球表面的重力加速度大,则由 可知月壤样品的重量在地表比在月表要大,故D正确。
6.(2022·广东深圳市第一次调研考试)2021年10月16日神舟十三号飞船顺利将3名航天员送入太空,并与天和核心舱对接。已知核心舱绕地球运行近似为匀速圆周运动,离地面距离约为390km,地球半径约为6400km,地球表面的重力加速度g取10m/s2,下列说法正确的是( )
A.两黑洞质量之间的关系一定是M1>M2

2020届高考物理总复习第五单元万有引力定律第2讲人造地球卫星教师用书含解析

2020届高考物理总复习第五单元万有引力定律第2讲人造地球卫星教师用书含解析

第2讲人造地球卫星1 宇宙速度(1)环绕速度①第一宇宙速度又叫环绕速度,其数值为 7.9 km/s。

②第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度。

③第一宇宙速度是人造卫星的最小发射速度,也是人造卫星在圆轨道上运行时的最大环绕速度。

注意:第一宇宙速度是发射的最小速度,但发射速度不等于第一宇宙速度。

(2)第二宇宙速度(脱离速度):使物体挣脱地球引力束缚的最小发射速度,其数值为 11.2 km/s。

(3)第三宇宙速度(逃逸速度):使物体挣脱太阳引力束缚的最小发射速度,其数值为 16.7 km/s。

甘肃兰州质量检测)下列关于宇宙速度的说法正确的是()。

A.第一宇宙速度是人造地球卫星在圆轨道运行时的最大速度B.第一宇宙速度是地球同步卫星的发射速度C.人造地球卫星运行时的速度介于第一宇宙速度和第二宇宙速度之间D.第三宇宙速度是物体逃离地球的最小速度【答案】A江西九江11月月考)星球上的物体脱离星球引力所需的最小速度称为该星球的第二宇宙速度。

星球的第二宇宙速度v2与其第一宇宙速度v1的关系是v2=v1。

已知某星球的半径为r,星球表面的重力加速度为地球表面重力加速度g的,不计其他星球的影响,则该星球的第二宇宙速度为()。

A.B.C.D.gr【答案】C2 人造地球卫星(1)地球同步卫星的特点①轨道平面一定:轨道平面和赤道平面重合。

②周期一定:与地球自转周期相同,即T=24 h=86400 s。

③角速度一定:与地球自转的角速度相同。

④高度一定:根据G=mπr得r=≈4.24×104 km,卫星离地面高度h=r-R≈3.6×104 km(为恒量)。

⑤速率一定:运行速度v=≈3.08 km/s(为恒量)。

⑥绕行方向一定:与地球自转的方向一致。

(2)极地卫星和近地卫星①极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。

②近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行时的线速度约为7.9 km/s。

2020高考物理第12讲万有引力与天体运动

2020高考物理第12讲万有引力与天体运动

第12讲万有引力与天体运动一、开普勒三定律1.开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个上.2.开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的相等.3.开普勒第三定律:所有行星的轨道的的三次方跟的二次方的比值都相等.二、万有引力定律1.内容:自然界中任何两个物体都互相吸引,引力的大小与物体的质量的乘积成,与它们之间距离的二次方成.2.公式:(其中引力常量G=6.67×10-11 N·m2/ kg2).3.适用条件:公式适用于质点之间以及均匀球体之间的相互作用,对均匀球体来说,r是两球心间的距离.三、天体运动问题的分析1.运动学分析:将天体或卫星的运动看成运动.2.动力学分析:(1)由万有引力提供,即F向=G Mmr2=man=m v2r=mω2r=m(2πT)2r.(2)在星球表面附近的物体所受的万有引力近似等于,即G Mmr2=mg(g 为星球表面的重力加速度).【辨别明理】(1)牛顿利用扭秤实验装置比较准确地测出了引力常量.()(2)行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越小.()(3)近地卫星距离地球最近,环绕速度最小.()(4)地球同步卫星根据需要可以定点在北京正上空.()(5)极地卫星通过地球两极,且始终和地球某一经线平面重合.()(6)发射火星探测器的速度必须大于11.2 km/s.()考点一万有引力及其与重力的关系例1 (多选)设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R.宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F1=F0;第二次在赤道处,弹簧测力计的读数为F2=F02.假设第三次在赤道平面内深度为R2的隧道底部,示数为F3;第四次在距星表高度为R处绕行星做匀速圆周运动的人造卫星中,示数为F4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是()A.F3=F04 B.F3=15F04C.F4=0D.F4=F04■题根分析1.万有引力与重力的关系地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向,如图12-1所示.图12-1(1)在赤道处:G MmR2=mg1+mω2R.(2)在两极处:G MmR2=mg2.(3)在一般位置:万有引力G MmR2等于重力mg与向心力F向的矢量和.越靠近南、北两极,g值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即G MmR2=mg.2.星体表面及上空的重力加速度(以地球为例)(1)在地球表面附近的重力加速度g(不考虑地球自转):mg=G MmR2,得g=GMR2.(2)在地球上空距离地心r=R+h处的重力加速度g':mg'=G Mm(R+ℎ)2,得g'=GM(R+ℎ)2,所以gg'=(R+ℎ)2R2.■变式网络变式题1 (多选)火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器,如图12-2所示.火箭从地面起飞时,以加速度g02竖直向上做匀加速直线运动(g0为地面附近的重力加速度),已知地球半径为R,升到某一高度时,测试仪器对平台的压力刚好是起飞时压力的1727,此时火箭离地面的高度为h,所在位置重力加速度为g,则()图12-2A.g=2g03B.g=4g09C.h=RD.h=R2变式题2 假设地球是一半径为R、质量分布均匀的球体,一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为()A.1-dR B.1+dRC.(R-dR )2D.(RR-d)2变式题3 假设地球可视为质量均匀分布的球体.已知地球表面的重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常量为G,则地球的密度为()A.3π(g0-g)GT2g0B.3πg0GT2(g0-g)C.3πGT2D.3πg0GT2g考点二天体质量及密度的计算(1)利用卫(行)星绕中心天体做匀速圆周运动求中心天体的质量计算天体的质量和密度问题的关键是明确中心天体对它的卫星(或行星)的引力就是卫星(或行星)绕中心天体做匀速圆周运动的向心力.由G Mmr2=m4π2T2r,解得M=4π2r3GT2;ρ=MV=M43πR3=3πr3GT2R3,R为中心天体的半径,若为近地卫星,则R=r,有ρ=3πGT2.由上式可知,只要用实验方法测出卫星(或行星)做圆周运动的半径r及运行周期T,就可以算出中心天体的质量M.若再知道中心天体的半径,则可算出中心天体的密度.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G,天体密度ρ=MV =M43πR3=3g4πGR.例2[2017·北京卷]利用引力常量G和下列某一组数据,不能计算出地球质量的是()A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离变式题1 我国成功地进行了“嫦娥三号”的发射和落月任务,进一步获取月球的相关数据.该卫星在月球上空绕月球做匀速圆周运动时,经过时间t,卫星的路程为s,卫星与月球中心连线扫过的角度是θ弧度,引力常量为G,月球半径为R,则可推知月球密度的表达式是()A.3t 2θ4πGs3R3B.4θπR3Gt23s3C.3s 34θπGt2R3D.4πR3Gs33θt2变式题2 已知“慧眼”卫星绕地球做匀速圆周运动,其轨道半径为r,运动周期为T,地球半径为R,引力常量为G,则下列说法正确的是()A.“慧眼”卫星的向心加速度大小为4π2rT2B.地球的质量大小为4π2R3GT2C.地球表面的重力加速度大小为4π2RT2D.地球的平均密度大小为3πGT2■要点总结天体质量和密度的估算问题是高考命题热点,解答此类问题时,首先要掌握基本方法(两个等式:①由万有引力提供向心力;②天体表面物体受到的重力近似等于万有引力),其次是记住常见问题的结论,主要分两种情况:(1)利用卫星的轨道半径r和周期T,可得中心天体的质量M=4π2r3GT2,并据此进一步得到该天体的密度ρ=MV =M43πR3=3πr3GT2R3(R为中心天体的半径),尤其注意当r=R时,ρ=3πGT2.(2)利用天体表面的重力加速度g和天体半径R,可得天体质量M=gR2G ,天体密度ρ=MV=M43πR3=3g4πGR.考点三黑洞与多星系统1.双星系统系统可视天体绕黑洞做圆周运动黑洞与可视天体构成的双星系统两颗可视天体构成的双星系统图示向心力的来源黑洞对可视天体的万有引力彼此给对方的万有引力彼此给对方的万有引力2.多星系统系统 三星系统(正三角形排列)三星系统(直线等间距排列)四星系统图示向心力 的来源 另外两星球对其万有引力的合力 另外两星球对其万有引力的合力 另外三星球对其万有引力的合力例3 天文学家们推测,超大质量黑洞由另外两个超大质量黑洞融合时产生的引力波推射出该星系核心区域.在变化过程中的某一阶段,两个黑洞逐渐融入到新合并的星系中央并绕对方旋转,这种富含能量的运动产生了引力波.假设在合并前,两个黑洞互相绕转形成一个双星系统,如图12-3所示,若黑洞A 、B 的总质量为1.3×1032 kg ,球心间的距离为2×105 m ,产生的引力波周期和黑洞做圆周运动的周期相当,则估算该引力波周期的数量级为(G=6.67×10-11 N ·m 2/kg 2) ( )图12-3A .10-1sB .10-2sC .10-3sD .10-4s变式题 [2018·江西新余二模] 天文观测中观测到有三颗星位于边长为l 的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T 的匀速圆周运动.已知引力常量为G ,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是 ( )图12-4A.它们两两之间的万有引力大小为16π4l49GT4B.其中一颗星的质量为3GT 24π2l3C.三颗星的质量可能不相等D.它们的线速度大小均为2√3πlT■要点总结多星问题的解题技巧(1)挖掘一个隐含条件:在圆周上运动的天体的角速度(或周期)相等.(2)重视向心力来源分析:双星做匀速圆周运动的向心力由它们之间的万有引力提供,三星或多星做圆周运动的向心力往往是由多个星的万有引力的合力提供. (3)区别两个长度关系:圆周运动的轨道半径和万有引力公式中两天体的距离是不同的,不能误认为一样.完成课时作业(十二)。

2020届高考物理总复习第五单元万有引力定律第1讲万有引力定律及其应用教师用书含解析

2020届高考物理总复习第五单元万有引力定律第1讲万有引力定律及其应用教师用书含解析

万有引力定律及其应用万有引力定律与航空是每年高考的必考内容之一,一般以选择题的形式出现,命题素材突出物理与现代科技,特别是在当前星际探索成为世界新的科技竞争焦点的形势下,试题与现代航天技术的联系会更加密切。

该部分内容常与牛顿运动定律、机械能守恒、动能定理等力学规律来综合考查。

具体特点有:(1)考查万有引力定律的应用,结合牛顿第二定律,估算重力加速度、天体质量、密度等问题。

(2)以卫星或探测器的匀速圆周运动为背景,考查速度、角速度、周期和向心加速度与轨道半径的关系。

(3)考查卫星的发射与变轨时各物理量的比较。

(4)考查万有引力定律在双星或多星中的应用。

(5)结合卫星或探测器的运动考查动能定理与机械能守恒等知识在天体运动中的具体应用。

预测2020年高考对万有引力定律与航空的考查主要有两点:一是该定律与牛顿第二定律结合估算重力加速度、天体质量、密度;二是以卫星、飞船等航天器为素材分析其运行规律。

值得注意的是,由于近年来我国在航天方面的迅猛发展,高考常常结合我国的航天实际成就来命题,特别是我国的载人航天已取得了成功,我国载人空间站工程启动实施,我国自主研发的“北斗卫星导航系统”的运用,探月计划也进入实质性进程之中,等等,高考结合这些素材命题的可能性较大,因此我们应高度重视这些知识点的应用。

第1讲万有引力定律及其应用1 开普勒行星运动定律(1)开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

说明:每个椭圆有两个焦点,所有行星的椭圆轨道有一个焦点是相互重合的,太阳就处在这个重合的焦点上;不同行星绕太阳运行时的椭圆轨道是不同的。

(2)开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。

说明:行星运动的线速度大小在轨道上各点是不同的;行星在近日点的速率大于在远日点的速率。

(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式为=k。

高考物理专题复习《万有引力定律 》真题汇编含答案

高考物理专题复习《万有引力定律 》真题汇编含答案

高考物理专题复习《万有引力定律 》真题汇编考点一:开普勒行星运动定律一、单选题1.(22·23·河北·学业考试)西汉时期,《史记·天官书》作者司马迁在实际观测中发现岁星呈青色,与“五行”学说联系在一起,正式把它命名为木星。

如图甲所示,两卫星Ⅰ、Ⅰ环绕木星在同一平面内做圆周运动,绕行方向相反,卫星Ⅰ绕木星做椭圆运动,某时刻开始计时,卫星Ⅰ、Ⅰ间距离随时间变化的关系图象如图乙所示,其中R 、T 为已知量,下列说法正确的是( )A .卫星Ⅰ在M 点的速度小于卫星Ⅰ的速度B .卫星Ⅰ、Ⅰ的轨道半径之比为1:2C .卫星Ⅰ的运动周期为TD .绕行方向相同时,卫星Ⅰ、Ⅰ连续两次相距最近的时间间隔为78T【答案】C【解析】A .过M 点构建一绕木星的圆轨道,该轨道上的卫星在M 点时需加速才能进入椭圆轨道,根据万有引力定律有22GMm v m r r= 可得GMv r=则在构建的圆轨道上运行的卫星的线速度大于卫星Ⅰ的线速度,根据以上分析可知,卫星Ⅰ在M 点的速度一定大于卫星Ⅰ的速度,A 错误;BC .根据题图乙可知,卫星Ⅰ、Ⅰ间的距离呈周期性变化,最近为3R ,最远为5R ,则有213R R R -=,215R R R +=可得1R R =,24R R =又根据两卫星从相距最远到相距最近有111222t t T T πππ+= 其中149t T =,根据开普勒第三定律有21122233T R R T = 联立解得1T T =,28T T =B 错误,C 正确;D . 运动方向相同时卫星Ⅰ、Ⅰ连续两次相距最近,有2212222t t T T πππ-= 解得287t T =D 错误。

故选C 。

2.(19·20·北京·学业考试)2012年12月,经国际小行星命名委员会批准,紫金山天文台发现的一颗绕太阳运行的小行星被命名为“南大仙林星”。

如图所示,“南大仙林星”绕太阳依次从a→b→c→d→a 运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点1 万有引力定律及其应用 【要点解读】1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma 向=m v 2r =mω2r =m 4π2r T2。

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度)。

2.重力加速度的计算(1)在行星表面重力加速度:G Mm R 2=mg ,所以g =GMR2。

(2)在离地面高为h 的轨道处重力加速度:G Mm (R +h )2=mg h ,所以g h =GM(R +h )2。

3.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R 。

由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR。

(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r 。

①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2。

可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度。

【考向1】天体质量和密度【例题】为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R ,地球质量为m ,太阳与地球中心间距为r ,地球表面的重力加速度为g ,地球绕太阳公转的周期为T 。

则太阳的质量为( )A .4π2r 3T 2R 2gB .T 2R 2g 4π2mr 3C .4π2mgr 2r 3T 2D .4π2mr 3T 2R 2g【审题指导】(1)知道地球绕太阳公转的周期T 和太阳与地球中心间距r ,能求太阳质量吗? 提示:能。

利用GMm r 2=m 4π2T2r 。

(2)太阳质量的四个选项中没有引力常量G ,可以考虑用哪一信息替代? 提示:地球表面重力加速度g =GmR 2。

【答案】D 。

故选项D 正确。

【名师点睛】估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量。

(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径。

【考向2】天体表面重力加速度与抛体运动的综合【例题】若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7。

已知该行星质量约为地球的7倍,地球的半径为R 。

由此可知,该行星的半径约为( )A .12RB .72RC .2RD .72R 【答案】 C【名师点睛】重力是由于物体受到地球的万有引力而产生的,严格说重力只是万有引力的一个分力,另一个分力提供物体随地球自转做圆周运动的向心力,但由于向心力很小,一般情况下认为重力约等于万有引力,即mg =GMmR2,这样重力加速度就与行星质量、半径联系在一起,高考也多次在此命题。

【考向3】填补法求解万有引力【例题】如图所示,一个质量为M 的匀质实心球,半径为R ,如果从球中挖去一个直径为R 的小球,放在相距为d =2.5R 的地方,分别求下列两种情况下挖去部分与剩余部分的万有引力大小。

(答案必须用分式表示,已知G 、M 、R )(1)从球的正中心挖去。

(2)从球心右侧挖去。

【答案】(1)7GM 2400R 2 (2)103GM 26 400R 2【名师点睛】(1)万有引力定律只适用于求质点间的万有引力。

(2)在质量分布均匀的实心球中挖去小球后其质量分布不再均匀,不可再随意视为质点处理。

(3)可以采用先填补后运算的方法计算万有引力大小。

(4) 运用“填补法”解题的关键是紧扣万有引力定律的适用条件,先填补后运算,运用“填补法”解题主要体现了等效思想。

重点2 人造卫星 宇宙速度 【要点解读】 1.一种模型无论自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看做质点,围绕中心天体(视为静止)做匀速圆周运动。

2.两条思路(1)万有引力提供向心力即G Mmr2=ma 。

(2)天体对其表面的物体的万有引力近似等于重力,即GMmR 2=mg 或gR 2=GM (R 、g 分别是天体的半径、表面重力加速度),公式gR 2=GM 应用广泛,被称为“黄金代换”。

3.三个比较求解卫星运行问题时,要认清赤道上的物体、近地卫星、同步卫星之间的关系。

“四个关系”是指人造卫星的加速度、线速度、角速度、周期与轨道半径的关系。

GMmr 2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r 3GM→T ∝r 3越高越慢5.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合。

(2)周期一定:与地球自转周期相同,即T =24 h =86400 s 。

(3)角速度一定:与地球自转的角速度相同。

(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.23×104 km ,卫星离地面高度h =r -R ≈6R (为恒量)。

(5)绕行方向一定:与地球自转的方向一致。

6.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。

(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s 。

(3)两种卫星的轨道平面一定通过地球的球心。

7.宇宙速度的理解与计算 (1)第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R得v 1=GMR= 6.67×10-11×5.98×10246 370×103m/s=7.9×103 m/s 。

方法二:由mg =m v 12R得v 1=gR =9.8×6 370×103 m/s =7.9×103 m/s 。

第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5 075 s≈85 min 。

(2)宇宙速度与运动轨迹的关系①v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。

②7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆。

③11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动。

④v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。

【考向1】人造卫星的运动规律【例题】太阳系中的行星受到太阳的引力绕太阳公转,但它们公转的周期却各不相同。

若把地球和水星绕太阳的运动轨迹都近似看作圆周,根据观测得知,地球绕太阳公转的周期大于水星绕太阳公转的周期,则由此可以判定( )A .地球的线速度大于水星的线速度B .地球的质量小于水星的质量C .地球的向心加速度小于水星的向心加速度D .地球到太阳的距离小于水星到太阳的距离 【审题指导】(1)地球围绕太阳公转的周期大于水星绕太阳公转的周期,揭示出了地球公转半径与水星公转半径哪个大?提示:据T =4π2r 3GM知地球公转半径大。

(2)有没有办法比较地球质量和水星质量。

提示:没有,因为它们不是中心天体。

【答案】C向心加速度,故C 正确。

【名师点睛】人造卫星问题的解题技巧(1)利用万有引力提供向心加速度的不同表述形式。

①G Mm r 2=ma n ;②a n =v 2r =rω2=4π2T2r 。

(2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿第二定律。

①卫星的a n 、v 、ω、T 是相互联系的,其中一个量发生变化,其他各量也随之发生变化。

②a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定。

【考向2】第一宇宙速度【例题】随着世界航空事业的发展,深太空探测已逐渐成为各国关注的热点.假设深太空中有一颗外星球,质量是地球质量的2倍,半径是地球半径的12,则下列判断正确的是 A .该外星球的同步卫星周期一定小于地球同步卫星周期B .某物体在该外星球表面上所受重力是在地球表面上所受重力的4倍C .该外星球上第一宇宙速度是地球上第一宇宙速度的2倍D .绕该外星球的人造卫星和以相同轨道半径绕地球的人造卫星运行速度相同 【答案】C【名师点睛】了解第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度;要比较一个物理量大小,我们可以把这个物理量先表示出来,在进行比较。

难点1 航天器的变轨问题 【要点解读】1.卫星轨道的渐变:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将做变轨运行:(1)当卫星的速度突然增加时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时小。

(2)当卫星的速度突然减小时,G Mm r 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时大。

卫星的发射和回收就是利用这一原理。

2.卫星轨道的突变:由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。

如图所示,发射同步卫星时,可以分多过程完成:(1)先将卫星发射到近地轨道Ⅰ;(2)使其绕地球做匀速圆周运动,速率为v 1,变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;(3)卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

【考向】航天器的变轨问题【例题】(多选)如下图是“嫦娥三号”飞行轨道示意图。

假设“嫦娥三号”运行经过P 点第一次通过近月制动使“嫦娥三号”在距离月面高度为100 km 的圆轨道Ⅰ上运动,再次经过P 点时第二次通过近月制动使“嫦娥三号”在距离月面近地点为Q 、高度为15 km ,远地点为P 、高度为100 km 的椭圆轨道Ⅱ上运动,下列说法正确的是( )A .“嫦娥三号”在距离月面高度为100 km 的圆轨道Ⅰ上运动时速度大小可能变化B .“嫦娥三号”在距离月面高度100 km 的圆轨道Ⅰ上运动的周期一定大于在椭圆轨道Ⅱ上运动的周期C .“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的加速度一定大于经过P 点时的加速度D .“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的速率可能小于经过P 点时的速率 【审题指导】(1)如何比较圆轨道的周期和椭圆轨道的周期? 提示:据开普勒第三定律,比较半径与半长轴。

相关文档
最新文档