2017-2018七年级数学下册期末试卷(无答案) (13)
2017-2018学年度下学期期末考试七年级数学试题
2017-2018学年度下学期期末考试七年级数学试题一、选择题:(本大题共10个小题,每小题3分,共30分) ( )1. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )2. 下列计算正确的是:A.24±=B.3)3(2-=- C.5)5(2=-D.3)3(2-=-( )3. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标 相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3C. 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )4. 下列各式是二元一次方程的是:A. y x 21+B.342=+-y yx C. 95-=yx D.02=-y x( )5. 若n m >,则下列各式一定成立的是:A. 33+<+n mB. 33-<-n mC.33n m > D. n m 33->-( )6. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个 ( )7. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A. ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )8. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A. 4±B. 2±C. 4D. 2( )9. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种 ( )10. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A. 65≤≤mB. 65<<mC. 65<≤mD. 65≤<m二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上. 11. 已知无理数b a <+<51,并且b a ,是两个连续的整数,则ab 的值为___________. 12. 如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13. 课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用 )1,2(表示,那么邓祖男的位置可以表示成________.14. 把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm.15. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有 36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________. 16. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 三、解答题:(本大题共8个小题,共72分) 17.(本小题满分10分) 解下列方程组:(1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x18.(本小题满分10分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2) ⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x20.(本小题满分6分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱 的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 21.(本小题满分8分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示. 求图中阴影部分的面积.22.(本小题满分8分)先阅读理解下面的例题,再按要求解答:例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球 25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元. (1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球 按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一 次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分12分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________.(2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得 △ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段 OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC, ∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).七年级数学试题参考答案一.选择题题号 12345678910 答案A C ABC CD B BD二.填空题11. 12 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. ⎩⎨⎧⨯==+xy y x 2524036 16.23<a(第12题只填一种且正确的给2分,填了两种但有一种错误的不给分;第15题第二个方程用比例式的也对)三.解答题17.(1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③ ②2⨯,得 661210=-y x ④ ③+④,得 11419=x6=x把6=x 代入①,得 16463=+⨯y 24-=y 21-=y 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分)18.(1)解:去分母,得 6)13(3)12(2≥---x x 去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:① ② (2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x 52=-y x ④ 把④代入①,得 1528=+y x ⑤ ④+⑤,得 1517=x ④-⑤,得 1511=y 所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x①②所以不等式组的解集:32≤<x …….......................................……6分 19.解:(1)300;....................................………………………2分 (2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分20.证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC…………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 21.解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分 ∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分22.解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分 有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分 解不等式组②,得不等式组②无解………………………..............……………4分 故原不等式组的解集为:5132<<-x ……………………........………………5分23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分 ⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分 (2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24. (1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP 3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO。
2017-2018学年北师大版初一数学下册期末测试题及答案
第 I 卷(选择题共 48 分)
一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)
1.下列计算正确的是( A. a3+ a2=a5
) B.a3· a2= a6
C.a3÷ a2= a
D.( a3 )2= a9
2.某个观测站测得:空气中 pm2.5 含量为每立方米 0.000023g,则将 0.0000023 用科学记数法表示为
15.已知( x- a)( x+ a)= x2- 9,那么 a= _________________. 16.若 a、 b、 c 为三角形的三边长,且 a、 b 满足 |a 一 3|+( b- 2)2= 0,则第三边长 c 的取值范围是
___________.
17. 已知,一个等腰三角形的一个内角比另一个内角的
)
A.72 ° B.60 ° C.58 ° D.50 °
8. 若长方形面积是 2a2 一 2ab+ 6a,一边长为 2a,则这个长方形的周长是(
)
A . 6a-2b+ 6
B. 2a- 2b+6
C. 6a- 2b
D . 3a- b+ 3
9.如图,要测量河两岸相对两点 A、B 间的距高,先在过点 B 的 AB 的垂线上取两点 C、D ,使得 CD = BC,再在过点 D 的垂线上取点 E,使 A、C、E 三点在一条直线上,可以证明△ EDC ≌△ ABC,
意列二元一次方程组正确的是(
)
x,宽为 y,则依题
5x+ 2y= 75 A. y= 3x
2x+y= 75 B. y=3x
x+2y= 75 C. x=3y
2x+ y=75 D . x= 3y
第2 页
人教版2017-2018学年七年级数学(下册)期末测试卷及答案
2017-2018学年七年级(下)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分)1.的算术平方根是()A. B.C.±D.2.已知m,n满足方程组,则m+n的值为()A.3 B.﹣3 C.﹣2 D.23.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数4.已知不等式组,其解集正确的是()A.﹣1≤x<3 B.﹣1<x≤3 C.x>3 D.x≤﹣15.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有6.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a7.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间8.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.510.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°二、填空题(本大题共6小题,每小题3分,共18分)11.=.12.方程组的解是.13.(3分)x的与12的差不小于6,用不等式表示为.14.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是.15.如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少20°,则较大角的度数为.16.已知关于x的不等式组的整数解共有5个,则a的取值范围是.三、解答题(本大题共9小题,共72分)17.(6分)解方程组:.18.(6分)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A. B. C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.19.(7分)解不等式组,并将解集在数轴上表示出来.20.(7分)解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?21.(7分)完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴(同角的补角相等)①∴(内错角相等,两直线平行)②∴∠ADE=∠3()③∵∠3=∠B()④∴(等量代换)⑤∴DE∥BC()⑥∴∠AED=∠C()⑦22.(8分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b 于点E,已知∠1=25°,求∠2的度数.23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)24.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.25.(11分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/个)售价(元/个)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个,且电饭煲的数量不少于23个,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.的算术平方根是()A. B.C.±D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故选:B.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.已知m,n满足方程组,则m+n的值为()A.3 B.﹣3 C.﹣2 D.2【分析】应用代入法,求出方程组的解,即可求出m+n的值为多少.【解答】解:由②,可得:n=3m﹣2③,把③代入①,解得m=,∴n=3×﹣2=,∴原方程组的解是,∴m+n=+=3故选:A.【点评】此题主要考查了解二元一次方程组问题,要熟练掌握,注意代入法和加减法的应用.3.已知a>2a,那么对于a的判断正确的是()A.是正数B.是负数C.是非正数D.是非负数【分析】求出不等式的解集,即可作出判断.【解答】解:由a>2a,移项得:0>2a﹣a,合并得:a<0,则a是负数,故选B【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.4.已知不等式组,其解集正确的是()A.﹣1≤x<3 B.﹣1<x≤3 C.x>3 D.x≤﹣1【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x>3,由②得:x≥﹣1,则不等式组的解集为x>3,故选C【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.6.关于x、y的方程组,那么y是()A.5 B.2a+5 C.a﹣5 D.2a【分析】方程组中两方程相减消去x求出y的值即可.【解答】解:,②﹣①得:y=5,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;C、全面人口普查,适合全面调查,故选项正确;D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)9.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°【分析】由对顶角求得∠AEC=10°,由角平分线的定义求得∠2=85°,根据平行线的性质即可求得结果.【解答】解:∵∠3=10°,∴∠AEC=10°,∴∠BEC=180°﹣10°=170°,∵EN平分∠CEB,∴∠2=85°,∵FM∥AB,∴∠F=∠2=85°,故选D.【点评】本题主要考查了对顶角的定义,角平分线的性质,平行线的性质,熟练掌握平行线的性质是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.=﹣2.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.【点评】此题考查了立方根的意义.注意负数的立方根是负数.12.方程组的解是.【分析】根据观察用加减消元法较好,①+②消去y,解出x的值,再把x的值代入①,解出y.【解答】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【点评】此题考查的是解二元一次方程组,解题的关键是用加减消元法求解.13.x的与12的差不小于6,用不等式表示为x﹣12≥6.【分析】理解:差不小于6,即是最后算的差应大于或等于6.【解答】解:根据题意,得x﹣12≥6.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以可得点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.15.如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少20°,则较大角的度数为140°.【分析】由题可知两个角不相等,结图形可知这两个角互补,列出方程,可求得较大的角.【解答】解:∵两个角不相等,∴这两个角的情况如图所示,AB∥DE,AF∥CD,∴∠A=∠BCD,∠D+∠BCD=180°,∴∠A+∠D=180°,即这两个角互补,设一个角为x°,则另一个角为(4x﹣20)°,则有x+4x﹣20=180,解得x=40,即一个角为40°,则另一个角为140°,∴较大角的度数为140°,故答案为:140°.【点评】本题考查两个角的两边分别平行,这两个角相等或互补,而本题中这两个角只能互补,需要注意要求的是较大的角.16.已知关于x的不等式组的整数解共有5个,则a的取值范围是﹣3<a≤﹣2.【分析】将a看做已知数,求出不等式组的解集,根据解集中整数解有5个,即可确定出a的范围.【解答】解:不等式组解得:a≤x≤2,∵不等式组的整数解有5个为2,1,0,﹣1,﹣2,∴﹣3<a≤﹣2.故答案为:﹣3<a≤﹣2.【点评】此题考查了一元一次不等式组的整数解,弄清题意是解本题的关键.三、解答题(本大题共9小题,共72分)17.(6分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:②×3﹣①得:11y=22,即y=2,把y=2代入②得:x=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A. B. C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为x=y;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【分析】(1)分别求出三个方程组的解即可;(2)观察三个方程组的解,找出x与y的关系即可;(3)仿照以上外形特征写出方程组,并写出解即可.【解答】解:(1)方程组A的解为,方程组B的解为,方程组C的解为;故答案为:(1);;;(2)以上每个方程组的解中,x值与y值的大小关系是x=y;故答案为:x=y;(3)根据题意举例为:,其解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(7分)解不等式组,并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x<3,由②得,x≥﹣1,故不等式组的解集为:﹣1≤x<3.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(7分)解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?【分析】(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.【解答】解(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40人;(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).【点评】此题考查了条形统计图与扇形统计图的知识.注意掌握条形统计图与扇形统计图各量的对应关系是解此题的关键.21.(7分)完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴∠EFD=∠2(同角的补角相等)①∴AB∥EF(内错角相等,两直线平行)②∴∠ADE=∠3(两直线平行,内错角相等)③∵∠3=∠B(已知)④∴∠ADE=∠B(等量代换)⑤∴DE∥BC(同位角相等,两直线平行)⑥∴∠AED=∠C(两直线平行,同位角相等)⑦【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴∠EFD=∠2(同角的补角相等)①∴AB∥EF(内错角相等,两直线平行)②∴∠ADE=∠3(两直线平行,内错角相等)③∵∠3=∠B(已知)④∴∠ADE=∠B(等量代换)⑤∴DE∥BC(同位角相等,两直线平行)⑥∴∠AED=∠C(两直线平行,同位角相等)⑦.故答案为:∠EFD=∠2;AB∥EF;两直线平行,内错角相等;已知;∠ADE=∠B;同位角相等,两直线平行;两直线平行,同位角相等.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.22.(8分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b 于点E,已知∠1=25°,求∠2的度数.【分析】先过点D作DG∥b,根据平行线的性质求得∠CDG和∠GDE的度数,再相加即可求得∠CDE的度数.【解答】解:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.【点评】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用平行线的性质进行求解.本题也可以延长CD(或延长ED),利用三角形外角性质求解.23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)【分析】(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.【解答】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.【点评】此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.24.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(0,y),再根据三角形的面积公式得×4×|h|=6,进而可得y的值.【解答】解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(0,y),再根据三角形的面积公式得:S△PBC=×4×|h|=6,解得|h|=3,求出y的值为(0,1)或(0,﹣5).【点评】此题主要考查了作图﹣﹣平移变换,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可.25.(11分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/个)售价(元/个)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个,且电饭煲的数量不少于23个,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据橱具店购进这两种电器共30台且用去了5600元,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据总利润=单个利润×购进数量即可得出结论;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50个且电饭煲的数量不少于23个,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由此即可得出各进货方案;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润,比较后即可得出结论.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,根据题意得:,解得:,∴20×(250﹣200)+10×(200﹣160)=1400(元).答:橱具店在该买卖中赚了1400元.(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据题意得:,解得:23≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①购买电饭煲23台,购买电压锅27台;②购买电饭煲24台,购买电压锅26台;③购买电饭煲25台,购买电压锅25台.(3)设橱具店赚钱数额为w元,当a=23时,w=23×50+27×40=2230;当a=24时,w=24×50+26×40=2240;当a=25时,w=25×50+25×40=2250;综上所述,当a=25时,w最大,即购进电饭煲、电压锅各25台时,橱具店赚钱最多.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据数量关系,列出关于a的一元一次不等式组;(3)根据总利润=单个利润×购进数量分别求出各进货方案的利润.。
2017---2018学年度最新人教版七年级数学第二学期期末考试题及答案
2017---2018学年度七年级数学第二学期期末考试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x xC .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.42 48 52 69686023.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷(解析版)
2017-2018学年陕西省西安市新城区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. B.C. D.2.西安市2017年生产总值(GDP)约为7700亿元人民币,用科学记数法表示7700亿为()A. B. C. D.3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A. B.C. D.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去5.如图所示:AB∥CD,MN交CD于点E,交AB于F,BE⊥MN于点E,若∠DEM=55°,则∠ABE=()A.B.C.D.6.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A. B. C. D.7.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是()A. B.C. D.8.下列图形中,不一定是轴对称图形的是()A. 等腰三角形B. 线段C. 钝角D. 直角三角形9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A. A、C两点之间B. E、G两点之间C. B、F两点之间D. G、H两点之间10.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)11.“早上的太阳从东方升起”是______事件.(填“确定”或“不确定”)12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为______.13.则∠BAC的度数=______.14.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为______.三、计算题(本大题共1小题,共8.0分)15.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19升,求排水时y与x之间的关系式.如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.四、解答题(本大题共9小题,共70.0分)16.计算(1)-32+()-2+(π-2018)0(2)[(a-2b)2-b(a+4b)]÷(-3a)17.先化简再求值:(x+2y)(x-2y)-2y(x-2y),其中x=-1,y=.18.尺规作图,已知线段a、线段c和∠α,用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠α.(要求:作图时,保留作图痕迹,不写作法)19.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.20.某种产品的商标如图所示,O是线段AC、BD的交点,并且AO=DO.请你在不作辅助线的情况下添加一个条件,证明△ABO和△DCO全等.添加条件______.证明:21.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是______;(2)若∠BFE=65°,求∠EBF的度数.22.某校在汉字听写大赛活动中需要一名主持人小丽和小芳都想当主持人,小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23.如图,E,F分别是等边△ABC边AB,AC上的点,且AE=CF,CE,BF交于点P.(1)证明:CE=BF;(2)求∠BPC的度数.24.如果一个三角形有两个角相等,那么这个三角形是等腰三角形,这个结论可以简称为“等角对等边”.(1)如图1,在△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F点,则图中共有______个等腰三角形;(2)如图2,若AB≠AC,在其他条件不变的情况下,边EF与BE、CF间的数量关系为______;(3)如图3,若在△ABC中,∠B的平分线BO与三角形外角平分线CO交于O点,过O点作OE∥BC交AB于E点,交AC于F点,则EF与BE、CF之间有怎样的数量关系?并说明理由.答案和解析1.【答案】C【解析】解:A、a2、a3不是同类项,不能合并,此选项错误;B、(a-2)2=a2-4a+4,此选项错误;C、2a2-3a2=-a2,此选项正确;D、(a+2)(a-2)=a2-4,此选项错误;故选:C.根据合并同类项法则、完全平方公式、平方差公式逐一计算即可判断.此题考查了整式的混合运算,熟练掌握合并同类项法则、完全平方公式、平方差公式是解本题的关键.2.【答案】B【解析】解:7700亿=7700 00000000=7.7×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】A【解析】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.4.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.【答案】B【解析】解:如图,∵BE⊥MN,∴∠MEB=90°.∵∠DEM=55°,∴∠DEB=90°-55°=35°.∵AB∥CD,∴∠ABE=∠DEB=35°.故选:B.由平行线的性质和余角的定义解答.本题考查了平行线的性质和垂线,正确观察图形,熟练掌握平行线的性质和垂直的定义.6.【答案】C【解析】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证即可.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,∴反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系,难度适中.8.【答案】D【解析】解:A、是轴对称图形,故选项错误;B、是轴对称图形,故选项错误;C、是轴对称图形,故选项错误;D、不一定是轴对称图形如不是等腰直角三角形,故选项正确.故选:D.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.【答案】B【解析】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.【答案】B【解析】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选:B.找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】确定【解析】解:“早上的太阳从东方升起”是必然事件,属于确定事件,故答案为:确定.根据事件的可能性得到相应事件的类型即可.本题主要考查随机事件,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【答案】【解析】解:输出数据的规律为,当输入数据为8时,输出的数据为=.根据图表找出输出数字的规律,直接将输入数据代入即可求解.此题主要考查根据已有输入输出数据找出它们的规律,进而求解.13.【答案】110°【解析】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,则2(∠B+∠C)=140°,解得,∠B+∠C=70°,∴∠BAC=110°,故答案为:110°.根据线段的垂直平分线的性质得到DA=DB,EA=EC,根据等腰三角形的性质得到∠DAB=∠B,∠EAC=∠C,根据三角形内角和定理计算即可.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】70°【解析】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为:70°.此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.15.【答案】解:(1)依题意得洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升;(2)∵洗衣机的排水速度为每分钟19升,从第15分钟开始排水,排水量为40升,∴y=40-19(x-15)=-19x+325,∵排水时间为2分钟,∴y=-19×(15+2)+325=2升.∴排水结束时洗衣机中剩下的水量2升.【解析】(1)根据函数图象可以确定洗衣机的进水时间,清洗时洗衣机中的水量;(2)①由于洗衣机的排水速度为每分钟19升,并且从第15分钟开始排水,排水量为40升,由此即可确定排水时y与x之间的关系式;②根据①中的结论代入已知数值即可求解.此题主要考查了一次函数应用,解题的关键首先正确理解题意,然后利用数形结合的思想和待定系数法即可求解.16.【答案】解:(1)原式=-9+4+1=-4;(2)[(a-2b)2-b(a+4b)]÷(-3a)=[(a2-4ab+4b2)-ab-4b2]÷(-3a)=(a2-5ab)÷(-3a)=-a+b.【解析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算,进而得出答案.此题主要考查了整式的混合运算以及实数运算,正确掌握相关运算法则是解题关键.17.【答案】解:(x+2y)(x-2y)-2y(x-2y)=x2-4y2-2xy+4y2=x2-2xy,当x=-1,y=时,原式=(-1)2-2×(-1)×=2.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.【答案】解:如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.【解析】如图,作∠MAN=α,在射线BN上截取BC=a,在射线BM上截取BA=c,连接AC,△ABC即为所求.本题考查作图-复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,∴△ACD的周长=DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【解析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.20.【答案】BO=CO【解析】解:添加条件为BO=CO,证明:在△ABO和△DCO中,∵,∴△ABO≌△DCO.故答案为:BO=CO.由AO=DO,结合隐含的条件∠AOB=∠DOC,依据全等三角形的判定添加合适的条件即可得.本题主要考查全等三角形的判定,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题注意:不是所有的条件都可以当作全等的条件.21.【答案】BC'【解析】解:(1)矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上,∴DC的对应线段是BC',故答案为:BC';(2)由翻折的性质得:∠DEF=∠BEF,∵四边形ABCD为矩形,∴AD∥BC.∴∠DEF=∠BFE.∴∠BEF=∠BFE=65°.∴△BEF中,∠EBF=180°-2×65°=50°.(1)依据折叠的性质即可得到DC的对应线段;(2)由翻折的性质得∠DEF=∠BEF,由长方形纸片的上下两边平行,可得∠DEF=∠BFE,所以∠BEF=∠BFE,根据“三角形内角和定理”可知∠EBF的度数.本题主要考查的是翻折的性质、矩形的性质、等腰三角形的判定,解题时注意运用:两直线平行,内错角相等.22.【答案】解:不会同意.因为转盘中有两个3,一个2,这说明小丽去的可能性是=,而小丽去的可能性是,所以游戏不公平.【解析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中只要计算出指针指到2和指针指到3概率是否相等,求出概率比较,即可得出结论.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】证明:(1)∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°-60°=120°.即:∠BPC=120°【解析】(1)欲证明CE=BF,只需证得△BCE≌△ABF;(2)利用(1)中的全等三角形的性质得到∠BCE=∠ABF,则由图示知∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,所以根据三角形内角和定理求得∠BPC=120°.本题考查了全等三角形的判定与性质、等边三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.【答案】5 EF=BE+CF【解析】解:(1)如图1,图中共有5个等腰三角形,分别是△AEF、△OEB、△OFC、△OBC、△ABC;(1分)理由是:∵AB=AC,∴∠ACB=∠ABC,△ABC是等腰三角形;∵BO、CO分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=,∠OCB=∠ACO=∠ACB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠ABO=∠OBC=∠EOB=∠OCB=∠FOC=∠FCO,∴△EOB、△OBC、△FOC都是等腰三角形,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∴△AEF是等腰三角形,故答案为:5;(2)如图2,EF=BE+FC.(2分)理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;(5分)∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF;(7分)故答案为:EF=BE+FC(3)如图3,EF=BE-CF,(8分)理由是:∵OE∥BC,BO平分∠ABC,∴∠EBO=∠EOB=∠OBC,∴EB=OE,(10分)同理得:OF=CF,∴EF=OE-OF=BE-CF.(11分)(1)根据等腰三角形的判定、平分线的性质及角平分线可得有5个等腰三角形;(2)由△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(3)同理得△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,根据图3可得结论.此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.运用等角对等边这一性质并进行线段的等量代换是正确解答本题的关键.。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年人教版数学七年级(下册)期末考试试卷及答案
2017-2018学年七年级(下)期末数学试卷一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为.17.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)20.(4分)计算:.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.参考答案与试题解析一、相信你的选择(每小题3分,共30分)1.下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【分析】根据整式的运算法则即可求出答案.【解答】解:①原式=2ab,故①错误;②原式=﹣6x2y2,故②错误;③原式=﹣64c,故③错误;④原式=(﹣ab2)2=a2b4,故④正确;故选(C)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b【分析】分别根据零指数幂,负指数幂、乘方的运算法则计算,然后再比较大小.【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.在学校操场上,小明处在小颖的北偏东70°方向上,那么小颖应在小明的(假设两人的位置保持不变)()A.南偏东20°B.南偏东70°C.南偏西70°D.南偏西20°【分析】两人互相看时,说明方向正好是相反关系,故小颖应在小明的南偏西70°.【解答】解:∵小明处在小颖的北偏东70°方向上,∴小颖应在小明的南偏西70°,故选:C.【点评】此题主要考查了方向角,关键是掌握方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.4.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.5.下列说法正确的是()A.三角形三条高都在三角形内B.三角形三条中线相交于一点C.三角形的三条角平分线可能在三角形内,也可能在三角形外D.三角形的角平分线是射线【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【解答】解:A、只有锐角三角形三条高都在三角形内,故本选项错误;B、三角形三条中线相交于一点正确,故本选项正确;C、三角形的三条角平分线一定都在三角形内,故本选项错误;D、三角形的角平分线是线段,故本选项错误.故选B.【点评】本题考查了三角形的高线、中线、角平分线,是基础题,熟记概念是解题的关键.6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【分析】根据三角形的内角和等于180°,当三个角都相等时每个角等于60°,所以最大的角不小于60°.【解答】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C.【点评】本题主要考查三角形内角和定理的运用.7.如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到AB=BE=EC,∠ABC=∠DBE=∠C,根据直角三角形的判定得到∠A=90°,计算即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴AB=BE=EC,∠ABD=∠DBE=∠C,∴∠A=90°,∴∠C=30°,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.8.赵悦同学骑自行车上学,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上课时间,于是就加快了车速,如图所示的四个图象中(S为距离,t为时间),符合以上情况的是()A.B.C.D.【分析】一开始是匀速行进,随着时间的增多,行驶的距离也将由0匀速上升,停下来修车,距离不发生变化,后来加快了车速,距离又匀速上升,由此即可求出答案.【解答】解:由于先匀速再停止后加速行驶,故其行驶距离先匀速增加再不变后匀速增加.故选B.【点评】本题考查了函数的图象,应首先看清横轴和纵轴表示的量,然后根据实际情况进行确定.9.有五条线段,长度分别是2,4,6,8,10,从中任取三条能构成三角形的概率是()A.B.C.D.【分析】找出五条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.【解答】解:所有的情况有:2,4,6;2,4,8;2,4,10;2,6,8;2,6,10;2,8,10;4,6,8;4,6,10;4,8,10;6,8,10,共10种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,则P=.故选B.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.10.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.二、试试你的身手(每小题3分,共24分)11.水的质量0.00204kg,用科学记数法表示为 2.04×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00204=2.04×10﹣3,故答案为:2.04×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【分析】根据两直线平行,同位角相等可得∠1=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和解答.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.若三角形的三边长分别为2,a,9,且a为整数,则a的值为8或9或10.【分析】根据三角形的三边关系即可确定a的范围,则a的值即可求解.【解答】解:a的范围是:9﹣2<a<9+2,即7<a<11,则a=8或9或10.故答案为:8或9或10.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为y=x2+6x.【分析】增加的面积=边长为3+x的新正方形的面积﹣边长为3的正方形的面积,把相关数值代入即可求解.【解答】解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.【点评】解决本题的关键是得到增加的面积的等量关系,注意新正方形的边长为3+x.15.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=1.【分析】由Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,可得S△ABC=AC•BC=(AC+BC+AB)•r,继而可求得答案.【解答】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,=AC•BC=(AC+BC+AB)•r,∴S△ABC∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.=【点评】此题考查了角平分线的性质.此题难度适中,注意掌握S△ABCA C•BC=(AC+BC+AB)•r.16.等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,则这个等腰三角形的周长为22cm或14cm.【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为2cm,可得x﹣6=2或6﹣x=2,继而可求得答案.【解答】解:设腰长为xcm,根据题意得:x﹣6=2或6﹣x=2,解得:x=8或x=4,∴这个等腰三角形的周长为:22cm或14cm.故答案为:22cm或14cm.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握方程思想与分类讨论思想的应用.17.观察下列图形的构成规律,根据此规律,第8个图形中有65个圆.【分析】观察图形可知,每幅图可看成一个正方形加一个圆,利用正方形的面积计算可得出结果.【解答】解:第一个图形有2个圆,即2=12+1;第二个图形有5个圆,即5=22+1;第三个图形有10个圆,即10=32+1;第四个图形有17个圆,即17=42+1;所以第8个图形有82+1=65个圆.故答案为:65.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.18.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是115°.【分析】根据角平分线的定义求出∠EBC的度数,根据线段垂直平分线的性质得到EB=EC,求出∠C的度数,根据邻补角的概念计算即可.【解答】解:∵BE是∠ABC的平分线,∠ABC=50°,∴∠EBC=25°,∵AD垂直平分线段BC,∴EB=EC,∴∠C=∠EBC=25°,∴∠DEC=90°﹣25°=65°,∴∠AEC=115°,故答案为:115°.【点评】本题考查的是线段垂直平分线的概念和性质以及等腰三角形的性质,掌握线段垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、挑战你的技能(本大题共66分)19.(4分)计算:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)【分析】直接利用同底数幂的乘法、幂的乘方与积的乘方以及合并同类项的知识求解即可求得答案.【解答】解:(x4)2+(x2)4﹣x(x2)2•x3﹣(﹣x)3•(﹣x2)2•(﹣x)=x8+x8﹣x8﹣x8=0.【点评】此题考查了同底数幂的乘法、幂的乘方与积的乘方.此题比较简单,注意掌握指数与符号的变化是解此题的关键.20.(4分)计算:.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,同底数幂相乘底数不变指数相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:=﹣a4b2c.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.21.(4分)计算:[(a+b)2﹣(a﹣b)2]÷(﹣4ab)【分析】先去小括号,再合并同类项,再根据单项式除以单项式的法则计算即可.【解答】解:原式=﹣[a2+2ab+b2﹣a2+2ab﹣b2]÷4ab=﹣4ab÷4ab=﹣1.【点评】本题考查了整式的除法.解题的关键是注意灵活掌握去括号法则、单项式除单项式的法则.22.(8分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣10m2n3+8m3n2;(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.【点评】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.23.(6分)先化简,再求值:(x3+2)2﹣(x3﹣2)2﹣2(x+2)(x﹣2)(x2+4),其中x=.【分析】原式前两项利用完全平方公式化简,最后一项利用平方差公式化简,去括号合并得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=x6+4x3+4﹣x6+4x3﹣4﹣2x4+32=8x3﹣2x4+32,当x=时,原式=1﹣+32=32.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.24.(8分)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD.(2)若∠1=∠BOC,求∠AOC与∠MOD.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,是基础题,熟记概念并准确识图,找准各角之间的关系是解题的关键.25.(8分)如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.【分析】由全等三角形的判定定理SSS证得△ABC≌△DEF,则对应角∠BCA=∠EFD,易证得结论.【解答】证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.【点评】本题考查了全等三角形的判定与性质,平行线的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.26.(8分)如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB、CD的位置关系如何?并说明理由.【分析】首先根据角平分线的定义,可得:∠1=∠ABD,∠2=∠BDC,然后根据等量代换,求出∠ABD+∠BDC=180°,即可判断出AB∥CD.【解答】证明:直线AB、CD的位置关系为:AB∥CD,理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠1=∠ABD,∠2=∠BDC.∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD.【点评】此题主要考查了平行线的判定,解答此题的关键是熟练掌握角平分线定义和平行线的判定方法.27.(8分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?【分析】O是AB、A′B′的中点,得出两组对边相等,又因为对顶角相等,通过SAS得出两个全等三角形,得出AA′、BB′的关系.【解答】解:数量关系:AA′=BB′;理由如下:∵O是AB′、A′B的中点,∴OA=OB′,OA′=OB,在△A′OA与△BOB′中,,∴△A′OA≌△BO B′(SAS),∴AA′=BB′.【点评】本题考查最基本的三角形全等知识的应用;用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,是一种很重要的方法,注意掌握.28.(8分)如图,△ABC中,AB=AC,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足AE=CF.求证:DE=DF.【分析】首先可判断△ABC是等腰直角三角形,连接AD,根据全等三角形的判定易得到△ADE≌△CDF,继而可得出结论.【解答】证明:连AD,如图所示:∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∵D为BC中点,∴AD=DC,AD平分∠BAC,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是利用等腰直角三角形的性质得出证明全等需要的条件,难度一般.。
2017-2018年度七年级期末数学试题(含答案)
12017——2018学年度下学期七 年 级 数 学 期 末 试 题数学试题共6页,包括六道大题,共26道小题。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试题和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。
一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 . 学校 年 班 姓名: 考号:21 3 4 AB CDE (第6题)(第10题)2三、解答题(每小题5分,共20分) 15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知),所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页)七年级数学试题 第2页 (共6页) HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)3五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay5 25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2017年-2018北师大版七年级[下册]数学期末试题和的答案解析
2016—2017学年下学期期末水平质量检测初一数学试卷(全卷满分:120分钟考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题3分,共计24分)1.计算:2)3(2x y+= ;)2b-b-2a a-)((= .2.如果12++kxx是一个完全平方式,那么k的值是.3.温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为万元.4. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .5.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.6.现在规定两种新的运算“﹡”和“◎”:a﹡b=22ba+;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .7.某物体运动的路程s(千米)与运动的时间t(小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为千米.8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)9.下列图形中不是..正方体的展开图的是()A B C D10.下列运算正确..的是()A.1055aaa=+B.2446aaa=⨯C.aaa=÷-10D.144=-aa11.下列结论中,正确..的是()A.若22ba,ba≠≠则B.若22ba,ba>>则C.若ba,ba22±==则D.若b1a1,ba>>则12. 如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是( )A.15°B.20°C.25°D.30°13. 观察一串数:0,2,4,6,….第n 个数应为( )A .2(n -1)B .2n -1C .2(n +1)D .2n +1 14.下列关系式中,正确..的是( ) A .()222b a b a -=- B.()()22b a b a b a -=-+C .()222b a b a +=+ D.()222b 2ab a b a +-=+15. 如图表示某加工厂今年前5)A .1月至3月每月产量逐月增加,4、5两月产量逐月减小B .1月至3月每月产量逐月增加,4、5两月产量与3持平C .1月至3月每月产量逐月增加,4、5生产D . 1月至3月每月产量不变,4、5两月均停止生产 16.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角17. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A .1B .2C . 3D .4三、精心算一算(18题5分,19题6分,共计11分)18.()()3426y y 2-19.先化简()()()()1x 5x 13x 13x 12x 2-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.四、认真画一画(20题5分,21题5分,共计10分)20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是:21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)五、请你做裁判(第22题小5分,第23小题5分,共计10分)22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?23. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米; 小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?六、生活中的数学(8分),24.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且在△ABO 和△DCO 中 ⎪⎩⎪⎨⎧=∆≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.(请将答案写在右侧答题区)七.探究拓展与应用满分30分,25.几何探究题(30分)请将题答在右侧区域。
2017-2018学年七年级(下)期末数学试卷
2017-2018学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.36的平方根是()A.﹣6 B.36 C.±D.±62.在平面直角坐标系中,点M(﹣6,4)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查中,调查方式选择合理的是()A.为了了解全国中学生的视力情况,选择全面调查B.为了了解一批袋装食品是否含有防腐剂,选择全面调查C.为了检测某城市的空气质量,选择抽样调查D.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查4.不等式x+5<2的解在数轴上表示为()A.B. C.D.5.若x>y,则下列式子中错误的是()A.x+>y+B.x﹣3>y﹣3 C.>D.﹣3x>﹣3y6.如图,在数轴上标有字母的各点中,与实数对应的点是()A.A B.B C.C D.D7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是()A.(3,3)B.(3,2)C.(5,2)D.(4,3)8.如图,直线a∥b,c是截线.若∠2=4∠1,则∠1的度数为()A.30°B.36°C.40°D.45°9.下列各对x,y的值中,不是方程3x+4y=5的解的是()A.B.C.D.10.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.11.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣112.如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是多少()A.160°B.150°C.120°D.110°二、填空题(本大题共6小题,每小题3分,共18分)13.=.14.写出一个第四象限的点的坐标.15.不等式﹣3x+6>0的正整数解有.16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值),则职工人数最多年龄段的职工人数占总人数的百分比为.17.关于x,y的方程组的解满足x+y=6,则m的值为.18.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.三、解答题(本大题共6小题,共46分)19.解方程组:20.如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.请将以下解答补充完整,解:因为∠DAB+∠D=180°所以DC∥AB()所以∠DCE=∠B()又因为∠B=95°,所以∠DCE=°;因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,所以∠CAB==°,因为DC∥AB所以∠DCA=∠CAB,()所以∠DCA=°.21.解不等式组:,并在数轴上表示它的解集.22.如图,∠1+∠2=180°,∠3=∠B.(Ⅰ)求证:AB∥EF;(Ⅱ)试判断DE与BC的位置关系,并证明你的结论.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.24.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?2017-2018学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.36的平方根是()A.﹣6 B.36 C.±D.±6【考点】21:平方根.【分析】依据平方根的定义求解即可.【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:D.2.在平面直角坐标系中,点M(﹣6,4)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据点M的坐标确定出所在的象限即可.【解答】解:在平面直角坐标系中,点M(﹣6,4)在第二象限,故选B3.下列调查中,调查方式选择合理的是()A.为了了解全国中学生的视力情况,选择全面调查B.为了了解一批袋装食品是否含有防腐剂,选择全面调查C.为了检测某城市的空气质量,选择抽样调查D.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查【考点】V2:全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、为了了解全国中学生的视力情况,人数较多,应选择抽样调查,故错误;B、为了了解一批袋装食品是否含有防腐剂,食品数量较大,应选择抽样调查,故错误;C、为了检测某城市的空气质量,选择抽样调查,正确;D、为了检测乘坐飞机的旅客是否携带违禁物品,事关重大,应选择全面调查,故错误;故选:C.4.不等式x+5<2的解在数轴上表示为()A.B. C.D.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,x<2﹣5,合并同类项得,x<﹣3,在数轴上表示为;故选D.5.若x>y,则下列式子中错误的是()A.x+>y+B.x﹣3>y﹣3 C.>D.﹣3x>﹣3y【考点】C2:不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x+>y+,故A选项正确;B、根据不等式的性质1,可得x﹣3>y﹣3,故B选项正确;C、根据不等式的性质2,可得>,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.6.如图,在数轴上标有字母的各点中,与实数对应的点是()A.A B.B C.C D.D【考点】29:实数与数轴.【分析】先估算出的取值范围,进而可得出结论.【解答】解:∵4<5<9,∴2<<3.故选C.7.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是()A.(3,3)B.(3,2)C.(5,2)D.(4,3)【考点】D3:坐标确定位置.【分析】根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【解答】解:由题意可得,如图所示的平面直角坐标系,故点C的坐标为(3,3),故选A.8.如图,直线a∥b,c是截线.若∠2=4∠1,则∠1的度数为()A.30°B.36°C.40°D.45°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补可得∠1+∠2=180°,然后把∠2换成∠1列出方程求解即可.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠2=4∠1,∴∠1+4∠1=180°,解得∠1=36°.故选B.9.下列各对x,y的值中,不是方程3x+4y=5的解的是()A.B.C.D.【考点】92:二元一次方程的解.【分析】将各对x与y的值代入方程检验即可得到结果.【解答】解:A、将x=1,y=代入3x+4y=5的左边得:3×1+4×=5,右边为5,左边=右边,不合题意;B、将x=﹣1,y=2代入3x+4y=5的左边得:3×(﹣1)+4×2=5,右边为5,左边=右边,不合题意;C、将x=0,y=代入3x+4y=5的左边得:3×0+4×=5,右边为5,左边=右边,不合题意;D、将x=,y=0代入3x+4y=5的左边得:3×+4×0=,右边为5,左边≠右边,符合题意,故选D.10.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.【考点】9A:二元一次方程组的应用.【分析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨,甲仓库、乙仓库共存粮450吨.【解答】解:设甲仓库原来存粮x吨,乙仓库原来存粮y吨.根据题意得:.故选C.11.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1【考点】CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.【解答】解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得:a≤﹣1.故选:D.12.如图1是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE度数是多少()A.160°B.150°C.120°D.110°【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=10°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【解答】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=10°.由翻折的性质可知:∠EFC=180°﹣∠BFE=170°,∠BFC=∠EFC﹣∠BFE=160°,∠CFE=∠BFC﹣∠BFE=150°.故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.=﹣2.【考点】24:立方根.【分析】因为﹣2的立方是﹣8,所以的值为﹣2.【解答】解:=﹣2.故答案为:﹣2.14.写出一个第四象限的点的坐标(1,﹣1)(答案不唯一).【考点】D1:点的坐标.【分析】根据第四项限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:写出一个第四象限的点的坐标(1,﹣1),故答案为:(1,﹣1).15.不等式﹣3x+6>0的正整数解有1.【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:移项得:﹣3x>﹣6,系数化为1得:x<2,则正整数解为:1.故答案为:1.16.如图是某单位职工年龄(取正整数)的频数分布直方图(每组数据含最小值,不含最大值),则职工人数最多年龄段的职工人数占总人数的百分比为28%.【考点】V8:频数(率)分布直方图.【分析】用40~42的人数除以总人数即可得.【解答】解:由图可知,职工人数最多年龄段的职工人数占总人数的百分比为×100%=28%,故答案为:28%.17.关于x,y的方程组的解满足x+y=6,则m的值为﹣1.【考点】97:二元一次方程组的解.【分析】首先应用代入法,求出关于x,y的方程组的解,然后根据x+y=6,求出m的值为多少即可.【解答】解:由②,可得:x=5m﹣2③,把③代入①,解得y=4﹣9m,∴原方程组的解是,∵x+y=6,∴5m﹣2+4﹣9m=6,解得m=﹣1.故答案为:﹣1.18.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是21.【考点】9A:二元一次方程组的应用.【分析】设掷中外环区、内区一次的得分分别为x,y分,根据等量关系列出方程组,再解方程组即可.【解答】解:设掷中A区、B区一次的得分分别为x,y分,依题意得:,解这个方程组得:,则小亮的得分是2x+3y=6+15=21分.故答案为21;三、解答题(本大题共6小题,共46分)19.解方程组:【考点】98:解二元一次方程组.【分析】先把原方程组化为一般方程的形式,再消元求解即可.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.20.如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度数.请将以下解答补充完整,解:因为∠DAB+∠D=180°所以DC∥AB(同旁内角互补,两直线平行)所以∠DCE=∠B(两直线平行,同位角相等)又因为∠B=95°,所以∠DCE=95°;因为AC平分∠DAB,∠CAD=25°,根据角平分线定义,所以∠CAB=∠CAD=25°,因为DC∥AB所以∠DCA=∠CAB,(两直线平行,内错角相等)所以∠DCA=25°.【考点】JB:平行线的判定与性质.【分析】先根据∠DAB+∠D=180°得出DC∥AB,故可得出∠DCE=∠B.再由∠B=95°可得出∠DCE的度数,由角平分线的定义可知∠CAB=∠CAD.再由DC∥AB得出∠DCA=∠CAB,进而可得出结论.【解答】解:∵∠DAB+∠D=180°,∴DC∥AB(同旁内角互补,两直线平行),∴∠DCE=∠B(两直线平行,同位角相等).又∵∠B=95°,∴∠DCE=95°;∵AC平分∠DAB,∠CAD=25°,∴∠CAB=∠CAD=25°,∵DC∥AB∴∠DCA=∠CAB,(两直线平行,内错角相等),∴∠DCA=25°.故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;95;∠CAD,25;两直线平行,内错角相等;25.21.解不等式组:,并在数轴上表示它的解集.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为;﹣1<x≤1.在数轴上表示为:.22.如图,∠1+∠2=180°,∠3=∠B.(Ⅰ)求证:AB∥EF;(Ⅱ)试判断DE与BC的位置关系,并证明你的结论.【考点】JB:平行线的判定与性质.【分析】(1)要证明∠AED=∠C,则需证明DE∥BC.根据等角的补角相等,得∠DFE=∠2,根据内错角相等,得直线EF∥AB;(2)由EF∥AB,得到∠3=∠ADE,从而∠ADE=∠B,即可证明结论.【解答】证明:(1)∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠DFE=∠2,∴EF∥AB;(2)DE∥BC,理由如下:由(1)知EF∥AB,∴∠3=∠ADE.又∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C,∴DE∥BC.23.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)利用C的人数÷所占百分比可得被调查的学生总数;(2)利用总人数减去其它各项的人数=A的人数,再补图即可;(3)计算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.【解答】解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).24.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【考点】9A:二元一次方程组的应用.【分析】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可;(2)总利润=甲的利润+乙的利润.【解答】解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.。
2017-2018学年度第二学期期末考试七年级数学试题及答案
火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2017-2018学年北师大版初一数学下册期末测试卷及答案
2017-2018学年北师大版初一数学下册期末测试卷及答案2017-2018学年第二学期期末考试七年级数学试卷第I卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分)1.下列计算正确的是()A。
$a^3+a^2=a^5$B。
$a^3\cdot a^2=a^6$C。
$a^3\div a^2=a$D。
$(a^3)^2=a^9$2.某个观测站测得:空气中pm2.5含量为每立方米0.g,则将0.xxxxxxx用科学记数法表示为()A。
$2.3\times10^7$B。
$2.3\times10^6$C。
$2.3\times10^5$D。
$2.3\times10^4$3.下列图形中,不属于轴对称图形的是()删除此段4.如图,直线$l_1//l_2$,则∠α为()A.120°B.130°C.140°D.150°5.下列运算正确的是()A。
$(x+y)^2=x^2+2xy+y^2$B。
$(x-y)^2=x^2-2xy+y^2$C。
$(x-2y)^2=x^2-4xy+4y^2$D。
$(-x+y)^2=x^2-2xy+y^2$6.如图,已知点D是△ABC的重心,若AE=4,则AC的长度为()A.4B.8C.10D.127.如图,已知两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°8.若长方形面积是$2a^2-2ab+6a$,一边长为2a,则这个长方形的周长是()A。
$6a-2b+6$B。
$2a-2b+6$C。
$6a-2b$D。
$3a-b+3$9.如图,要测量河两岸相对两点A、B间的距高,先在过点B的$AB$的垂线上取两点C、D,使得$CD=BC$,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SASB.SSSC.ASAD.AAS10.下列命题中,是假命题的是()A.对顶角相等B.同角的余角相等C.到线段两端点距离相等D.到角两边距离相等的点,在这个角的角平分线上11.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长为x,宽为y,则依题意列二元一次方程组正确的是()begin{cases}5x+2y=75\\2x+y=75\end{cases}$begin{cases}x+2y=75\\2x+y=75\end{cases}$删除此段begin{cases}3x+y=75\\y=3x\end{cases}$12.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,点E、F分别是线段BC、DC上的的动点.当三角形的周长最小时,∠EAF的度数为()删除此段二、填空题1.-13.3 + ( )1的值为。
2017-2018年七年级下学期数学期末测试卷及答案
2017-2018学年度第一学期期末学情调研七年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有6小题,每小题3分,共18分)1.如图,是一个正方体的表面展开图,原正方体中“祝”的对面是(▲ )A. 考B. 试C. 顺D. 利(第1题图)(第2题图)(第5题图)2.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是(▲ )A. ∣a∣>∣b∣B. a>bC. b>−aD. ab>03.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是(▲)A. 2B. 3C. 4D. 54.6.25∘可以化为(▲ )A. 6∘10ʹB. 6∘15ʹC. 6∘25ʹD. 6∘30ʹ5.如图,已知线段AB=12cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN 的长为(▲ )A. 5cmB. 4cmC. 3cmD. 2cm6.中心幼儿园给小朋友分苹果.若每个小朋友分3个,则剩1个;若每个小朋友分4个,则少2个.问苹果有多少个?若设共有x个苹果,则列出的方程是(▲ )A. 3x+1=4x−2B. 3x−1=4x+2C. x−13=x+24D. x+13=x−24二、填空题(本大题共10小题,每小题3分,共30分)7.圆柱的侧面展开图的形状是▲.8. −6的倒数是▲.9.如图,点D在直线AB上,当∠1=∠2时,CD与AB的位置关系是▲.10.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC= 120∘,∠BCD=60∘.这个零件▲.(填“合格”或“不合格”)(第9题图)(第10题图)(第11题图)(第14题图)11.如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段▲.12.“ x与−4的和的3倍”用代数式表示为▲.13.若关于x的方程2x+a=3的解为x=−1,则a=▲.14.如图,直线AB、CD相交于点O,OE平分∠AOD.若∠BOD=100∘,则∠AOE=▲.15.已知P=xy−5x+3,Q=x−3xy+1,若无论x取何值,代数式2P−3Q的值都等于3,则y=▲.16. 甲、乙二人在圆形跑道上从同一点A同时出发,并按相反方向跑步,甲的速度为每秒5m,乙的速度为每秒8m,到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了▲次.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)7−(−2)+(−3)(2)(−16)÷(−2)218.(6分)先化简,再求值:x2+(2xy−3y2)−2(x2+yx−2y2),其中x=−1,y=2.19.(8分)如图是由6个相同的小立方块搭成的几何体,这个几何体的部分三视图在所给的四个平面图形中,请选择正确的视图,标出相应名称,其余图形打“×”.(1)▲(2)▲(3)▲(4)▲20.(8分)请写出下列几何体的名称.(1)▲(2)▲(3)▲(4)▲21.(8分)如图,AB⊥BD,CD⊥BD,∠A=∠FEC,以下是小明同学证明EF∥CD的过程,请你在横线上补充完整其说理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知),∴∠ABD=∠CDB=90∘(垂直定义).∴∠ABD+∠CDB=180∘.∴AB∥CD(①▲).∵∠A=∠FEC(已知),∴AB∥(②▲)(③▲).∴ EF∥CD(④▲).22.(10分)小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?23.(10分)如图,已知CD∥BF,∠B+∠D=180∘,求证:AB∥DE.24.(10分)甲、乙两人从学校到2000米远的展览馆去参观,甲走了4分钟后乙才出发,已知甲的速度是80米/分,乙的速度是100米/分.(1)乙出发后经过多长时间能追上甲?(2)乙追上甲时离展览馆还有多远?25.(10分)将长度为2n(n为不小于4的自然数)的一根铅丝折成各边长均为整数的三角形,把三边长分别为a、b、c且满足a≤b≤c的三角形简记为数组(a,b,c).如当n=4时,有(2,3,3).(1)就n=5、6的情况,分别写出所有满足题意的(a,b,c);(2)根据前面的结果猜想:当铅丝的长度为2n(n为不小于4的自然数)时,对应(a,b,c)的个数是▲.为了检验这个的猜想是否正确,请分别写出当n=8、10时所有的(a,b,c),并判断这个猜想▲.(选填“正确”或“不正确”)26.(12分)王老师为学校购买运动会的奖品后,回学校向吴会计交账说:“我买了两种书,共100本,单价分别为8元和12元,买书前我领了1500元,现在还余463元.”吴会计算了一下,说:“你肯定搞错了.”(1)吴会计为什么说他搞错了?试用方程的知识给予解释;(2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.笔记本的单价不小于5元且不超过10元,你能推算出笔记本的单价可能为多少元吗?27.(14分)如图,已知AM∥BN,∠A=50∘.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C、D.(1)①∠ABN的度数是▲;②∵AM∥BN,∴∠ACB=∠▲;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是▲.2017-2018学年度第一学期期末学情调研七年级数学答案一、选择题(本大题共有6小题,每小题3分,共18分)1.C 2.A 3.D 4.B 5.B 6.C二、填空题(本大题共10小题,每小题3分,共30分)9.垂直10.合格11.PN 7.长方形8.−1616.14 12.3(x−4)13.5 14.40°15.111三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)解:(1)7−(−2)+(−3)=6 ――――3分(2)(−16)÷(−2)2=−4――――3分18.(6分)解: x2+(2xy−3y2)−2(x2+yx−2y2)=−x2+y2,――――3分当x=−1,y=2时,原式=−(−1)2+22=−1+4=3.――3分19.(8分)解:(1)左视图、(2)主视图、(3)×、(4)×――――各2分20.(8分)解:圆柱,正方体(长方体),圆锥,棱柱――――各2分21.(8分)解:同旁内角互补,两直线平行EF同位角相等,两直线平行平行于同一条直线的两条直线平行――――各2分22.(10分)解:(1)S=2n+6m+3×4+2×3=6m+2n+18. ――――4分(2)当n=1.5时,2n=3.根据题意,得6m=8×3=24. ――――4分∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用为4500元.――――2分23.(10分)证明∵CD∥BF,(∴∠AOC=∠B,∵∠AOC=∠BOD,)―――可有可无∴∠BOD=∠B,――――4分∵∠B+∠D=180∘,∴∠BOD+∠D=180∘,――――3分∴AB∥DE.――――3分24.(10分)解:(1)设乙要x分钟才能追上甲,――――1分根据题意得:100x=80x+4×80.――――3分解方程得:x=16.答:乙出发后经过16分钟能追上甲.――――2分(2)乙追上甲时离展览馆还有2000−100×16=400(米).答:乙追上甲时离展览馆还有400米.――――4分25.(10分)解:(1)当n=5时,有(2,4,4),(3,3,4);――――2分当n=6时,有(2,5,5),(3,4,5),(4,4,4).――――2分(2)n−3――――1分当n=8时,a+b+c=16,可得(a,b,c)共5组:――――2分(2,7,7),(3,6,7),(4,5,7),(4,6,6),(5,5,6).当n=10时,a+b+c=20,可得(a,b,c)共8组:――――2分(2,9,9),(3,8,9),(4,7,9),(5,6,9),(4,8,8),(5,7,8),(6,6,8),(6,7,7).猜想“不正确”.――――1分26.(12分)解:(1)设单价为8.00元的课外书为x本,则单价为12.00元的课外书则为(100-x)本.根据题意,得8x+12(100-x)=1500-463,――――4分解之得x=40.75(不符合题意),所以王老师肯定搞错了.――――2分(2)设笔记本的单价为a元,根据题意,得8 x +12(100-x)=1500-463-a,即163+a=4 x,因为a、x都是整数,且163+a应被4整除,又因为a为不小于5且不超过10的整数,所以a可能为5、9.当a=5时,4x=168,x=42,符合题意;――――3分当a=9时,4x=172,x=43,符合题意.――――3分所以笔记本的单价可能5元或9元.27.(14分)解:(1)130∘――――2分CBN(或NBC)――――2分(2)∠CBD=65∘.――――2分(3)不变,∠PBN=2∠DBN.――――2分∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,――――2分(4)32.5∘――――2分。
2017-2018学年第二学期七年级数学下册期末试卷
七年级数学 第1页,共3页密学校 班级姓名 考生号密 封 线 内 不 得 答 题2017-2018学年第二学期期终考试七年级数学试卷一.选择题(共10小题,每小题3分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .2.下列各式计算正确的是( )A .2a 2+3a 2=5a 4B .(﹣2ab )3=﹣6ab 3C .(3a +b )(3a ﹣b )=9a 2﹣b 2D .a 3•(﹣2a )=﹣2a 33.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4B .5C .6D .94.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带( ) A .第1块 B .第2块 C .第3块D .第4块5.如图,从边长为a 的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a (a ﹣b )=a 2﹣abC .(a ﹣b )2=a 2﹣b 2D .a 2﹣b 2=(a +b )(a ﹣b )6.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB ,CD 两根木条),这样做是运用了三角形的( )A .全等性B .灵活性C .稳定性D .对称性7.下列事件,是必然事件的是( )A .掷一枚六个面分别标有1~6的数字的均匀正方体骰子,停止后偶数点朝上B .从一幅扑克牌中任意抽出一张,花色是红桃C .在同一年出生的 367 名学生中,至少有两人的生日是同一天D .任意选择在播放中电视的某一频道,正在播放新闻8.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的依据是( ) A .(S 、S、S )B.(S 、A 、S )C .(A 、S 、A )D .(A 、A 、S )9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m )与他所用的时间t (单位:min )之间的函数关系如图所示,下列说法中正确的是( )A .小涛家离报亭的距离是900mB .小涛从家去报亭的平均速度是60m/minC .小涛从报亭返回家中的平均速度是80m/minD .小涛在报亭看报用了15min10.如图:①AB=AD .②∠B=∠D ,③∠BAC=∠DAC ,④BC=DC ,以上4等式中的2个等式不能作为依据来证明△ABC ≌△ADC座次号七年级数学 第2页,共3 页的是( )A .①,②B .①,③C .①,④D .②,③ 二.填空题(共10小题,每小题4分) 11.计算:(﹣2xy 2)3= .12.已知a +b=10,a ﹣b=8,则a 2﹣b 2= .13.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为 .14.如图,CD 平分∠ECB ,且CD ∥AB ,若∠A=36°,则∠B= . 15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= . 16.如图,在△ABC 中,AB=AC ,∠A=30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为 。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年四川省成都市青羊区七年级(下)期末数学试卷(解析版)
2017-2018学年四川省成都市青羊区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列运算正确的是()A. a2⋅a3=a6B. 3a−a=3C. (b3)2=b9D. x6÷x2=x42.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,2C. 1,2,3D. 1,2,43.低炭环保的理念深入人心,共享单车已成为人们出行的重要工具.下列共享单车图标(不考虑颜色)中,是轴对称图形的有()个.A. 1B. 2C. 3D. 44.下列事件为必然事件的是()A. 任意买一张机票,座位靠窗B. 打开电视机,正在播放新闻联播C. 13个同学中少有两个同学的生日在同一个月D. 某彩票中奖机率1%,小东买100张此彩票会中奖5.如图,在下列条件中,能判断AB∥CD的是()A. ∠DAC=∠ACBB. ∠DCB+∠ADC=180∘C. ∠ABD=∠BDCD. ∠BAC=∠ADC6.已知(x-2)•(x+3)=x2+mx-6,则m的值是()A. −1B. 1C. 5D. −57.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A. (a−b)2=a2−2ab+b2B. a(a+b)=a2+abC. (a+b)2=a2+2ab+b2D. (a−b)(a+b)=a2−b28.a x=2,a y=3,则a x+y=()A. 5B. 6C. 3D. 29.如图,△ABC中AC的垂直平分线交AB于点D,交AC于点E,若AC比AD的2倍少4,△ADC的周长是16,则DC=()A. 4B. 5C. 6D. 4.510.小亮从家出发步行到公交站台后,等公交车去学校,如图,折线表示这个过程中行程s(千米)与所花时间t(分)标之间的关系.下列说法错误的是()A. 他家到公交车站台需行1千米B. 他等公交车的时间为4分钟C. 公交车的速度是500米/分D. 他步行与乘公交车行驶的平均速度是300米/分二、填空题(本大题共9小题,共36.0分)11.(-3a3b)2=______.12.化简:-1x2(6x2-2x+1)=______.313.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作DE⊥BD交AC的延长线于点E,垂足为点D,测得ED=3,CD=4,则A、B两点间的距离等于______.14.如图,AD是△ABC中BC边上的高,AE是∠BAC的平分线,若∠B=44°,∠C=76°,则∠DAE=______.15.如果9x2-mx+4是完全平方式,则m=______.16.已知2a÷4b=16,则代数式2b-a+1的值是______.17.新定义运算“◎”,对于任意有理数a、b,都有a◎b=a2-ab+b-1,例如:3◎5=32-3×5+5-1=-2,若任意投掷一枚印有数字1~6的质地均匀的骰子,将朝上的点数作为x的值,则代数式(x-3)◎(3+x)的值为非负数的概率是______.18.图1为五边形纸片ABCDE;如图2,将∠A以BE为折痕往下折,A点恰好落在CD上;如图3再分别以AB,AE为折痕,将∠C与∠D往上折,使得A、B、C、D、E 五点均在同一平面上,若图3中∠CAD=54°,则图1中∠A的度数为______.19.如图,△ABC与△ADE中,DE=BC,EA=CA,CB的延长线交DE于点G,∠CAE=∠EGC,过A作AF⊥DE于点F,连接AG,若AF=8,DF:FG:GE=2:3:5,BC=15,则四边形DGBA的面积是______.三、计算题(本大题共1小题,共12.0分)20.(1)计算:(-1)2018÷2-3-(π-3.14)0(2)先化简,再求值:[(x-5y)(x+5y)-(x-2y)2+y2]÷2y,其中x=-1,y=1.2四、解答题(本大题共8小题,共72.0分)21.如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(______),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥______(______)∴∠1=______(______)又∵∠1=∠2(已知)∴______(______)∴DG∥AB(______)22.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=______.23.为了了解某种车的耗油量,实验人员对这种车进行了试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(单位:0123……小时)油箱中剩余油量Q(单50443832……位:升)(1)根据上表的数据,试验前油箱中共有油______升,当汽车行驶5小时后,油箱中的剩余油量是______升;(2)剩余油量Q(单位:升)与汽车行驶时间t(单位:小时)的关系式是______;(3)当剩余油量为4升时汽车将自动报警提醒加油,请问该试验行驶几小时汽车将会报警?24.水果种植大户小芳组织了“草莓采摘游”活动,为了吸引更多的顾客,每一位来采摘草莓的顾客都有一次抽奖机会.现有一只不透明的盒子,盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄).(1)抽奖活动1:若顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券,请问顾客获得50元的优惠券的概率;(2)抽奖活动2:若顾客从盒子中任意摸一个球后放回盒子,摇匀后再摸一个,两次摸到的球都是草莓就可获得一张100元的优惠券,请列出顾客摸到球的所有可能情况,并求出获得100元的优惠券的概率是多少?25.已知点C为直线AB上一点,D为AB外一点,分别以CA、CB为边在AB的同侧作△ACD和△CEB,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与直线BD交于点F.(1)如图1,若α=90°,且点E在CD上,求证AE=DB,并求∠AFB的度数:(2)如图2,若α>90°,求∠AFB的度数(用含α的式子表示).26.(1)若代数式(m-2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2-2x-5=0,求2x3-8x2-2x+2018的值.27.为加强公民的节水意识,某城市制定了新的“阶梯”水费收费标准,如图所示,y1与y2分别表示该城市居民的生活用水水费(单位:元)、商业用水水费(单位:元)与一年的用水量x(单位:m3)之间的关系.如某家庭一年的生活用水量是300m3,所交的居民生活用水水费=第一阶梯水量200m3的水费+第二阶梯水量100m3(即超过200的部分)的水费=1000元.(1)李东结合如图将该城市居民的两种用水标准制成了表格,如表,请帮助李东完善表格,并写出当居民生活用水量超过200m3且不超过300m3时,y1与x的关系式______;(2)若李东家某年所缴纳的居民生活用水水费平均每m3的费用为3.2元,求李东家该年的居民生活用水量;(3)当居民的生活用水和商业用水量分别为500m3时,请比较此时生活用水与商业用水的水费哪种更少,少多少?类别类型收费标准(元/m3)居民生活用水第一阶梯水量:不超过200m33第二阶梯水量:超过200不超过300m3的部分______ 第三阶梯水量:超过300m3的部分 6.5商业用水除居民生活用水、特种行业用水以水外的其他用水______28.如图:在△ABC中,∠BAC=110°,AC=AB,射线AD、AE的夹角为55°,过点B作BF⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,若射线AD、AE都在∠BAC的内部,且点B与点B′关于AD对称,求证:CG=B'G;(2)如图2,若射线AD在∠BAC的内部,射线AE在∠BAC的外部,其他条件不变,求证:CG=BG-2GF;(3)如图3,若射线AD、AE都在∠BAC的外部,其他条件不变,若CG=145GF,AF=3,S△ABG=7.5,求BF的长.答案和解析1.【答案】D【解析】解:A、a2•a3=a5,故此选项错误;B、3a-a=2a,故此选项错误;C、(b3)2=b6,故此选项错误;D、x6÷x2=x4,正确.故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则和合并同类项法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.2.【答案】B【解析】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2>2,能组成三角形,故B选项正确;C、1+2=3,不能组成三角形,故C选项错误;D、1+2<4,不能组成三角形,故D选项错误;故选:B.根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.3.【答案】A【解析】解:第一个是轴对称图形.故选项正确;第二个不是轴对称图形.故选项错误;第三个不是轴对称图形.故选项错误;第四个不是轴对称图形.故选项错误.故选:A.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.4.【答案】C【解析】解:A、任意买一张机票,座位靠窗可能靠窗户,也可能不靠窗户,故A错误;B、打开电视机,正在播放新闻联播是随机事件,故B错误;C、13个同学中少有两个同学的生日在同一个月是必然事件,故C正确;D、某彩票中奖机率1%,小东买100张此彩票会中奖是随机事件,故D错误;故选:C.根据事件发生的可能性大小判断相应事件的类型即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【答案】C【解析】解:A、∵∠DAC=∠ACB,∴AD∥BC,故本选项错误;B、∵∠DCB+∠ADC=180°,∴AD∥BC,故本选项错误;C、∵∠ABD=∠BDC,∴AB∥CD,故本选项正确;D、∠BAC=∠ADC不能判定任何一组直线平行,故本选项错误.故选:C.根据平行线的判定定理对各选项进行逐一判断即可本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.【答案】B【解析】解:(x-2)•(x+3)=x2+3x-2x-6=x2+x-6,∵(x-2)•(x+3)=x2+mx-6,∴m=1,故选:B.先根据多项式乘以多项式法则展开,合并后即可得出答案.本题考查了多项式乘以多项式,能够灵活运用法则进行计算是解此题的关键.7.【答案】D【解析】解:由题意这两个图形的面积相等,∴a2-b2=(a+b)(a-b),故选:D.根据面积相等,列出关系式即可.本题主要考查对平方差公式的知识点的理解和掌握,能根据根据在边长为a的大正方形中剪去一个边长为b的小正方形是解此题的关键.8.【答案】B【解析】解:a x+y=a x•a y,∵a x=2,a y=3,∴a x+y=a x•a y=2×3=6,故选:B.根据同底数幂的乘法法则计算,先把a x+y写成a x•a y的形式,再求解就容易了.本题考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数),解题时牢记定义是关键.9.【答案】B【解析】解:∵AC比AD的2倍少4,∴AC=2AD-4,∵△ABC中AC的垂直平分线交AB于点D,交AC于点E,∴AD=DC,∵△ADC的周长是16,∴AD+DC+AC=16,∴AD+AD+2AD-4=16,∴AD=5,∴DC=AD=5,故选:B.根据线段垂直平分线性质得出AD=DC,求出AD+DC+AC=16,AC=2AD-4,代入求出即可.本题考查了线段垂直平分线性质,能根据线段垂直平分线性质求出AD=DC 是解此题的关键.10.【答案】D【解析】解:由函数图象可知他家到公交车站台需行1千米,他等公交车的时间=14-10=4分钟,故A、B正确,与要求不符;公交车的速度=(5-1)×1000÷(22-14)=4000÷8=500米/分,故C正确,与要求不符;他步行与乘公交车行驶的平均速度=5×1000÷(22-4)=米/分,故D错误,与要求相符.故选:D.观察函数图象可对A、B直接作出判断,依据函数图象确定出乘公交车的时间和路程可求得公交车的速度,故此可对C作出判断,依据函数图象确定出步行和乘公交车的总时间,然后依据速度=路程÷时间可求得他步行与乘公交车行驶的平均速度.本题主要考查的是一次函数的应用,能够从函数图象中获取有效信息是解题的关键.11.【答案】9a6b2【解析】解:(-3a 3b )2=9a 6b 2.故答案为9a 6b 2.利用积的乘方运算法则计算即可.本题考查了积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.即(ab )n =a n b n (n 是正整数).12.【答案】-2x 4+23x 3-13x 2【解析】 解:原式=-2x 4+x 3-x 2,故答案为:-2x 4+x 3-x 2.根据单项式乘多项式法则计算可得.本题主要考查单项式乘多项式,解题的关键是掌握单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】3【解析】解:在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ),∴AB=DE=3.故答案为:3.利用“角边角”证明△ABC 和△EDC 全等,根据全等三角形对应边相等可得AB=DE .本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.14.【答案】16°【解析】解:∵∠B=44°,∠C=76°,∴∠BA=180°-∠B-∠C=60°, ∵AE 平分∠BAC ,∴∠CAE=BAC=30°,∵AD是BC边上的高,∴∠ADC=90°,∵∠C=76°,∴∠CAD=180°-∠ADC-∠C=14°,∴∠DAE=∠CAE-∠CAD=30°-14°=16°,故答案为:16°.根据三角形内角和定理求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案.本题考了三角形内角和定理、三角形的高、三角形的角平分线定义等知识点,能求出∠CAE和∠CAD的度数是解此题的关键.15.【答案】±12【解析】解:∵9x2-mx+4是完全平方式,∴9x2-mx+4=(3x±2)2=9x2±12x+4,∴m=±12,故答案为:±12.这里首末两项是3x和2这两个数的平方,那么中间一项为加上或减去3x和2积的2倍.此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.16.【答案】-3【解析】解:∵2a÷4b=16,∴2a÷22b=24,2a-2b=24,∴a-2b=4,则2b-a+1=-(a-2b)+1=-4+1=-3,故答案为:-3.由2a÷4b=16得2a-2b=24,即a-2b=4,代入计算可得.本题主要考查同底数幂的除法,解题的关键是掌握同底数幂的除法与幂的乘方的运算法则及代数式的求值.17.【答案】23【解析】解:∵对于任意有理数a、b,都有a◎b=a2-ab+b-1,∴(x-3)◎(3+x)=(x-3)2-(x-3)(3+x)+3+x-1=-5x+20,当x=1时,-5x+20=15;当x=2时,-5x+20=10;当x=3时,-5x+20=5;当x=4时,-5x+20=0;当x=5时,-5x+20=-5;当x=6时,-5x+20=-10;∴代数式(x-3)◎(3+x)的值为非负数的概率==,故答案为:.对于任意有理数a、b,都有a◎b=a2-ab+b-1,即可得到(x-3)◎(3+x)=(x-3)2-(x-3)(3+x)+3+x-1=-5x+20,进而得出代数式(x-3)◎(3+x)的值为非负数的概率.本题主要考查了概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.【答案】117°【解析】解:根据折叠可知:∠MAB=∠CAB,∠NAE=∠DAE,∵∠MAB+∠CAB+∠CAD+∠NAE+∠DAE=180°,∠CAD=54°,∴2∠CAB+2∠DAE=180°-54°=126°,∴∠CAB+∠DAE=63°,∴原来的∠A的度数是54°+63°=117°,故答案为:117°.根据折叠得出∠MAB=∠CAB,∠NAE=∠DAE,根据∠MAB+∠CAB+∠CAD+∠NAE+∠DAE=180°和∠CAD=54°求出∠CAB+∠DAE=63°,即可求出答案.本题考查了多边形的内角、折叠的性质、平角的定义等知识点,能正确求出∠BAC+∠DAE的度数是解此题的关键.19.【答案】36【解析】解:如图,过点A作AH⊥BC于H,∵∠CAE=∠CGE,∴∠C=∠E,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ABC=∠D,DE=BC=15,AB=AD,设DF=2x,FG=3x,GE=5x,∴DE=2x+3x+5x=15,∴x=,∴DF=3,FG=,∴DG=DF+FG=,∵△ABC≌△ADE,∴AH=AF=8,∵AF⊥DE,∴∠AFD=90°=∠AHB,在△ADF和△ABH中,,∴△ADF≌△ABH(AAS),∴BH=DF=3,在Rt△AHG和Rt△AFG中,,∴Rt△AHG≌Rt△AFG(HL),∴HG=FG=,∴BG=GH-BH=,∴S四边形ADGB=S△ADG+S△ABG=DG×AF+BG×AH=××8+××8=36,故答案为:36.先判断出△ABC≌△ADE,进而得出∠ABC=∠D,DE=BC=15,AB=AD,进而求出DF=3,FG=,DG=,再判断出△ADF≌△ABH,得出BH=DF=3,再判断出Rt△AHG≌Rt△AFG,得出HG=FG=,进而BG=GH-BH=,最后用面积的和即可得出结论.此题主要考查了全等三角形的判定和性质,三角形的面积公式,作出辅助线求出BG是解本题的关键.20.【答案】解:(1)原式=1×8-1=8-1=7;(2)原式=(x2-25y2-x2+4xy-4y2+y2)÷2y=(-28y2+4xy)÷2y=-14y+2x,当x=-1,y=1时,原式=-7-2=-9.2【解析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】已知AD同位角相等,两直线平行∠3 两直线平行,同位角相等∠2=∠3 等量代换内错角相等,两直线平行【解析】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG∥AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;根据三角形内角和定理以及平行线的性质即可求出答案.本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.22.【答案】5【解析】解:(1)四边形AB′CD′如图所示;(2)S四边形ABCD=×6×3=9.(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.(1)根据要求画出图形即可;(2)对角线垂直的四边形的面积=对角线乘积的一半;(3)作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.本题考查作图-轴对称变换、勾股定理、轴对称-最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.【答案】50 20 Q=50-6t【解析】解:(1)根据上表的数据,试验前油箱中共有油50升,当汽车行驶5小时后,油箱中的剩余油量是:50-5×6=20(升);故答案为:50,20;(2)剩余油量Q(单位:升)与汽车行驶时间t(单位:小时)的关系式是:Q=50-6t;故答案为:Q=50-6t;(3)当Q=5时,则50-6t=4,解得:t=,则该试验行驶小时汽车将会报警.(1)利用表格中数据变化规律可得出答案;(2)利用数据变化规律得出每小时的耗油量进而得出答案;(3)利用Q=4代入进而得出答案.此题主要考查了函数关系式,正确得出每小时的耗油量是解题关键.24.【答案】解:(1)∵盒子里有三个外形与质地完全相同的球,分别印有A(草莓),B(枇杷),C(葡萄),∴顾客从盒子中任意摸一个球,摸到草莓就获得一张50元的优惠券的概率=1;3(2)所有可能出现的结果列表如下:(A,A)(A,B)(A,C)(B,A)(B,B)(B,C)(C,A)(C,B)(C,C)由列表可知所有可能的结果共9种,其中两次摸到的球都是草莓的情况数是1种,∴求出获得100元的优惠券的概率=19.【解析】(1)直接利用概率公式计算即可;(2)首先列表,再根据列表求得的两张卡片是草莓的可能性,再求比值即可求得.此题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】解:(1)在△ACE和△DCB中,{CA=CD∠ACD=∠BCE CE=CB,∴△ACE≌△DCB(SAS),∴AE=DB,∠AEC=∠DBC∵∠AEC+∠EAC=90°,∴∠DBC+∠EAC=90°,∴∠AFB=90°.(2)∵∠ACD=∠BCE,∴∠ACE=∠BCD,∵AC=CD,CE=CB,∴△ACE≌△DCB(SAS),∴∠AEC=∠B,∵∠AEC+∠FEC=180°,∴∠B+∠FEC=180°,∴∠F+∠BCE=180°,∴∠AFB=180°-α.【解析】(1)只要证明△ACE≌△DCB(SAS),即可解决问题;(2)只要证明△ACE≌△DCB(SAS),即可解决问题;本题考查全等三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.26.【答案】解:(1)(m-2y+1)(n+3y)+ny2=mn+3my-2ny-6y2+n+3y+ny2=mn+n+(3m-2n+3)y+(n-6)y2∵代数式的值与y无关,n−6=0∴{3m−2n+3=0n=6∴{m=3①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2-2x-5=0∴x2=2x+5∴2x3-8x2-2x+2018=2x(2x+5)-8x2-2x+2018=4x2+10x-8x2-2x+2018=-4x2+8x+2018=-4(2x+5)+8x+2018=-8x-20+8x+2018=1998【解析】根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.本题主要考查了利用因式分解简化计算问题.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.27.【答案】y=4x-200(200<x≤300) 4 5.7【解析】解:(1)如表,当用水量超过200不超过300m3的部分用水水费是1000-600=400(元)则用水收费标准为:=4(元/m3).如表,商业用水用水收费标准为:=5.7(元/m3).设y1与x的关系式为y=kx+b(k≠0),把(200,600)、(300,1000)分别代入,得解得,所以y1与x的关系式为y=4x-200(200<x≤300).故答案是:4;5.7;y=4x-200(200<x≤300).(2)∵当年用水量为300m3时,平均水量为:元/m3).3<3.2∴设李东家该年的居民生活用水量为am3,由此可得:4a-200=3.2a解得:a=250.∴李东家该年的居民生活用水量为250m3;(3)当x=500时,y1=1000+6.5×(500-300)=2300y2=5.7×500=2850∵2300<2850∴y2>y1,即当居民的生活用水和商业用水量分别为500m3时,生活用水的水费少,少550元.(1)结合用水水费与用水量间的关系填空;利用待定系数法求函数关系式;(2)与当年用水量为300m3时水的单价进行比较,确定李东家用水单价属于哪一阶段,然后确定用水量;(3)利用函数关系式解答.本题考查了一次函的应用,首先读懂题意,然后根据题意列出函数关系式,再利用函数解析式即可解决实际问题.28.【答案】(1)证明:如图1,连接AB',∵B,B'关于AD对称,∴BB'被AD垂直平分,∴AB'=AB,∵AC=AB,∴AC=AB',∵AF⊥BG,∴∠BAF=∠B'AF,∵∠GAF=55°,∴∠B'AF+GAB'=55°,∵∠CAB=110°,∴∠CAG+∠FAB=55°,∴∠B'AF+∠GAB'=∠CAG+∠FAB,∵∠BAF=∠B'AF,∴∠GAB'=∠CAG,∵AG=AG,∴△CGA≌△B'GA,∴CG=B'G,(2)证明:如图2,在FB上截取FG'=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'-∠CAG'=∠CAB-∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵FG'=GF,∴CG'=2GF,∵GB=GG'+G'B,∴GB=2GF+CG,∴CG=GB-2GF,(3)解:延长BF至点G',使G'F=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'-∠CAG'=∠CAB-∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵CG=14GF,5∴设GF=5k,CG=14k,∴G'F=5k,BG'=14k,∴BG=4k,∵S△ABG=7.5,AF=3,∴1BG•AF=7.5,2∴1×4k×3=7.5,2∴k=5,4∴BF=9k=45.4【解析】(1)先判断出AC=AB',再用等式的性质判断出∠BAF=∠B'AF,进而判断出△CGA≌△B'GA,即可得出结论;(2)先判断出∠GAF=∠G'AF,再判断出∠GAC=∠G'AB,进而得出△GAC≌△G'AB,即CG=G'B,即可得出结论;(3)同(2)的方法判断出CG=G'B,最后用面积建立方程求出k的值,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,对称的性质,垂直平分线的性质,判断出CG=GB'是解本题的关键.。
2017-2018学年度新人教版初中数学七年级下册期末模拟试卷及答案解析13-精品试卷
2017-2018学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)观察下面图案,在A、B、C、D四幅图案中,能通过图案(如图所示)的平移得到的是()A.B.C.D.考点:生活中的平移现象.分析:根据平移不改变图形的形状和大小可知.解答:解:将题图所示的图案平移后,可以得到的图案是C选项.故选:C.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生容易混淆图形的平移、旋转或翻转的概念.2.(3分)(2015春•双城市期末)4的算术平方根是()A. 2 B.±C.D.±2考点:算术平方根.分析:根据算术平方根解答即可.解答:解:4的算术平方根是2,故选A.点评:此题考查算术平方根,关键是根据算术平方根只有一个,为非负数.3.(3分)(2015春•双城市期末)若m<n,则下列各式正确的是()A.2m>2n B.m﹣2>n﹣2 C.﹣3m>﹣3n D.>考点:不等式的性质.分析:根据不等式的性质,分别分析后直接得出答案.解答:解:A、∵m<n,∴2m<2n,故本选项错误;B、∵m<n,∴m﹣2<n﹣2,故本选项错误;C、正确;D、∵m<n,∴,故本选项错误;故选:C.点评:此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(3分)(2015春•双城市期末)平面直角坐标系中,点A(﹣1,﹣3)在第()象限.A.一B.二C.三D.四考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点A(﹣1,﹣3)在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)(2011•崇川区校级模拟)如图,直线AB、CD被直线EF所截,则∠3的同位角是()A.∠1 B.∠2 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义进行分析解答即可,两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角.解答:解:A、∠3与∠1属于同位角,故本选项正确;B、∠3与∠2属于同旁内角,故本选项错误;C、∠3与∠4于邻补角,故本选项错误;D、∠3与∠5于内错角,故本选项错误.故选A.点评:本题主要考查同位角的定义,关键在于运用相关的定义正确地进行分析.6.(3分)(2015春•双城市期末)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:A:因为∠1与∠2没有公共顶点,所以∠1与∠2不是对顶角,据此判断即可.B:因为∠1的两边不分别是∠2的两边的反向延长线,所以∠1与∠2不是对顶角,据此判断即可.C:因为∠1与∠2有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,所以∠1与∠2是对顶角,据此判断即可.D:因为∠1的两边不分别是∠2的两边的反向延长线,所以∠1与∠2不是对顶角,据此判断即可.解答:解:∵∠1与∠2没有公共顶点,∴∠1与∠2不是对顶角,∴选项A不正确;∵∠1的两边不分别是∠2的两边的反向延长线,∴∠1与∠2不是对顶角,∴选项B不正确;∵∠1与∠2有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,∴∠1与∠2是对顶角,∴选项C正确;∵∠1的两边不分别是∠2的两边的反向延长线,∴∠1与∠2不是对顶角,∴选项D不正确.故选:C.点评:此题主要考查了对顶角的特征和应用,要熟练掌握,解答此题的关键是要明确:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.7.(3分)(2015春•双城市期末)点M(﹣2,﹣5)向上平移4个单位后得到的点M′的坐标为()A.(﹣6,﹣5)B.(2,﹣5)C.(﹣2,﹣1)D.(﹣2,﹣9)考点:坐标与图形变化-平移.分析:让点的横坐标不变,纵坐标加4即可.解答:解:平移后点M的横坐标为﹣2;纵坐标为﹣5+4=﹣1;∴点P(﹣2,﹣5)向上平移4个单位后的点的坐标为(﹣2,﹣1).故选C.点评:本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.8.(3分)(2015春•双城市期末)是下列哪个方程组的解()A.B.C.D.考点:二元一次方程组的解.分析:把分别代入四个选项中的方程组进行验证即可.解答:解:A、当x=4,y=2时,则有2x﹣y=8﹣2=6≠1,故不是该方程组的解;B、当x=4,y=2时,则有2x+y=8+2=10,3x+4y=12+8=20,故是该方程组的解;C、当x=4,y=2时,则有2x﹣y=8﹣2=6≠1,故不是该方程组的解;D、当x=4,y=2时,则有2x+y=8+2=10,故不是该方程组的解;故选B.点评:本题主要考查方程组解的定义,掌握方程组的解满足方程组中的每一个方程是解题的关键.9.(3分)(2015春•双城市期末)下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C. 3个D. 4个考点:平行线的判定.分析:根据对顶角的性质和平行线的判定定理,逐一判断.解答:解:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.点评:平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.10.(3分)(2015春•双城市期末)如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2﹣∠3=90°B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3﹣∠1=180°考点:平行线的性质.分析:由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可找到关系式.解答:解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,即∠2+∠3﹣∠1=180°,故选D.点评:本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.二、填空题(共10小题,每小题3分,满分30分)11.(3分)(2015春•双城市期末)已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3= 180°.考点:对顶角、邻补角.分析:根据对顶角、邻补角的性质,可得∠1=∠2,∠1+∠3=180°,则∠2+∠3=∠1+∠3=180°.解答:解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是邻补角,∴∠1+∠3=180°,等角代换得∠2+∠3=180°,故答案为:180°.点评:本题主要考查对顶角的性质以及邻补角的定义,熟记对顶角和邻补角的性质是解题的关键.12.(3分)(2015春•双城市期末)若方程组的解是,那么|a﹣b|= 55 .考点:二元一次方程的解.分析:把方程组的解代入可分别求得a、b的值,可求得答案.解答:解:∵方程组的解是,∴把代入方程组可得,解得,∴|a﹣b|=|﹣47﹣8|=|﹣55|=55,故答案为:55.点评:本题主要考查方程组解的定义,根据方程组解的定义求得a、b的值是解题的关键.13.(3分)(2014•北仑区模拟)27的立方根是 3 .考点:立方根.分析:根据立方根的定义进行运算即可.解答:解:27的立方根为3.故答案为:3.点评:本题考查了立方根的运算,属于基础题,注意一个数的立方根只有一个.14.(3分)(2015春•双城市期末)3+4﹣8= ﹣.考点:实数的运算.专题:计算题.分析:原式合并同类二次根式即可得到结果.解答:解:原式=(3+4﹣8)=﹣,故答案为:﹣点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.(3分)(2015春•双城市期末)不等式组的解集是﹣2≤x<0 .考点:解一元一次不等式组.分析:根据不等式的解集求出不等式组的解集即可.解答:解:不等式组的解集为﹣2≤x<0,故答案为:﹣2≤x<0.点评:本题考查了解一元不等式组的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.16.(3分)(2015春•双城市期末)已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2= 1 .考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的性质分别得出a,b的值进而求出即可.解答:解:∵点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,∴a﹣1=2,﹣5=b﹣1,解得:a=3,b=﹣4,则(a+b)2=(3﹣4)2=1.故答案为:1.点评:此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.17.(3分)(2015春•双城市期末)如图,AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则AE与CE的位置关系是互相垂直.考点:平行线的性质.分析:先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠EAC+∠ACE=90°,根据三角形内角和定理即可得出结论.解答:解:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠BAC的平分线和∠ACD的平分线交于点E,∴∠EAC+∠ACE=(∠BAC+∠ACD)=90°,∴∠AEC=180°﹣90°=90°,∴AE与CE互相垂直.故答案为:互相垂直.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.18.(3分)(2009•梅州)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于50 °.考点:翻折变换(折叠问题).分析:首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.解答:解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.点评:此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.19.(3分)(2015春•双城市期末)扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的占总体的比值为.考点:扇形统计图.分析:利用这个扇形的圆心角除以前360°就是这个扇形所表示的占总体的比值求解即可.解答:解:这个扇形所表示的占总体的比值为=.故答案为:.点评:本题主要考查了扇形统计图,解题的关键是理解题意.20.(3分)(2015春•双城市期末)甲乙两人从相距1500米的A、B两地同时出发相向而行,甲骑自行车,速度是7.5米/秒,乙步行,速度是2.5米/秒,甲出发1分钟后忘记带东西,迅速返回去取(掉头时间及取东西时间不计),则在乙出发283或323 秒后,两人相距100米.考点:一元一次方程的应用.分析:由题意可知:甲出发1分钟后忘记带东西,迅速返回去取,相当于乙提前2分钟,由此分两种情况探讨:①乙在甲前面100米;②甲在乙前面100米;由此设出未知数,列出方程解答即可.解答:解:乙出发x秒后,两人相距100米.由题意得①乙在甲前面100米;2.5x+1500﹣7.5(x﹣2)=100解得:x=283②甲在乙前面100米;7.5(x﹣2)﹣(2.5x+1500)=100解得x=323答:则在乙出发283或323秒后,两人相距100米.故答案为:283或323.点评:此题考查一元一次方程的实际运用,掌握行程问题中的追击问题的基本数量关系是解决问题的关键.三、解答题(共8小题,满分60分)21.(6分)(2015春•双城市期末)(1)(2).考点:解一元一次不等式组;解二元一次方程组.分析:(1)①+②×5得出13x=13,求出x=1,把x的值代入②求出y即可;(2)求出每个不等式的解集,再根据不等式组的解集即可.解答:解:(1)①+②×5得:13x=13,解得:x=1,把x=1代入②得:3+5y=8,解得:y=1,所以原方程组的解为:;(2)∵解不等式①得:x≤2,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x≤2.点评:本题考查了解一元一次不等式组和解二元一次方程组的应用,解(1)小题的关键是能把二元一次方程组转化成一元一次方程,解(2)小题的关键是能根据不等式的解集求出不等式组的解集.22.(6分)(2015春•双城市期末)如图:(1)将△ABO向右平移4个单位,画出平移后的图形.(2)求△ABO的面积.考点:作图-平移变换.分析:(1)根据图形平移不变性的性质画出平移后的三角形即可;(2)利用正方形的面积减去三个顶点上三角形的面积即可.解答:解:(1)如图所示;(2)S△ABO=4×4﹣×2×4﹣×2×2﹣×2×4=16﹣4﹣2﹣4=6.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.(6分)(2015春•双城市期末)如图所示,已知直线AB、CD相交于点O,OE、OF 为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=51°,求∠EOD的度数.考点:对顶角、邻补角;角平分线的定义;垂线.分析:根据对顶角相等得到∠AOC=∠BOD,由角平分线的性质得到∠AOF=∠AOC=∠BOD,求得∠AOF=17°,∠BOD=34°,再根据邻补角的性质即可得到结论.解答:解:∵∠AOC=∠BOD,∵OF平分∠AOC,∴∠AOF=∠AOC=∠BOD,∵∠AOF+∠BOD=51°,∴∠AOF=17°,∠BOD=34°,∵∠AOE=90°,∴∠BOF=180°﹣∠AOE=90°,∴∠DOE=90°+34°=124°.点评:本题考查了角平分线的定义,对顶角相等的性质,角的计算,是基础题,准确识图,理清图中各角度之间的关系是解题的关键.24.(6分)(2015春•双城市期末)x取哪些正整数时,代数式的值不小于代数式﹣3的值.考点:一元一次不等式的整数解.分析:代数式的值不小于代数式﹣3的值,即:﹣3,解不等式求得解集,然后确定正整数解即可.解答:解:根据题意得:﹣3,解得:x≤.∵x是正整数,∴x=1、2、3.点评:本题考查了不等式的解法,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.25.(8分)(2014•益阳)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.解答:解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.点评:本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.26.(8分)(2014•呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?考点:二元一次方程组的应用.专题:应用题.分析:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.解答:解:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,由题意得,,解得:,则四月份电费为:160×0.6=96(元),五月份电费为:180×0.6+230×0.7=108+161=269(元).答:这位居民四月份的电费为96元,五月份的电费为269元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.27.(10分)(2015春•双城市期末)某校为了解2015年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“文艺类”所对应的圆心角α的度数;(2)该校2015年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?考点:扇形统计图;用样本估计总体;统计表.分析:(1)利用借阅总册数=科普类册数÷对应的百分比,教辅类的圆心角=360°×教辅类的百分比求解即可,(2)设该年级学生共借阅教辅类书籍约x本,根据题意列出方程求解即可.解答:解:(1)观察扇形统计图知识:科普类有关128册,占有率0%,∴借阅总册数为了128÷40%=320(本)∴m=320﹣128﹣80﹣48=64,教辅类的圆心角为:360°×=90°;(2)设该年级学生共借阅教辅类书籍约x本,根据题意得=,解得x=1000,∴该年级学生共借阅教辅类书籍约1000本.点评:本题主要考查了扇形统计图,解题的关键是读懂统计图,获得准确信息.28.(10分)(2014•邵阳)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?考点:二元一次方程组的应用;一元一次不等式的应用.专题:应用题.分析:(1)设彩色地砖采购x块,单色地砖采购y块,根据彩色地砖和单色地砖的总价为5600及地砖总数为100建立二元一次方程组求出其解即可;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据采购地砖的费用不超过3200元建立不等式,求出其解即可.解答:解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.点评:本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答时认真分析单价×数量=总价的关系建立方程及不等式是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第二学期期末教学质量自测
七年级数学试题
一. 选择题(每小题3分,共30分)
1.若点P (a-2, a+3)在第二象限内,则a 的取值范围是( )
A. a ﹤2
B. a ﹥-3
C. a ﹥-3
D. -3﹤a ﹤2
2. 如图,直线AB 与CD 相交于点O ,∠EOC=70°,OA 平分∠EOC, 则∠BOD 的度数为( )
A .30° B. 35° C. 40° D. 45°
3. 线段A ′B ′是由线段AB 平移得到的,若点A(-1,4)
A ′(4,7),则点
B (-4,-1)的对应点B ′的坐标为( )
A (1,2)
B (-1,2)
C (1,3)
D (-1,3)
4a 的值有( )
A.0个
B.1个
C.2个
D.3个
5. 如图,已知直线AB 、DF 和PQ 相交于点C 、E 下列条件中可以 判定AB ∥DF 的有( )
①∠PCB =∠DEQ ; ②∠BCE =∠DEC ; ③∠PCA =∠QEF ; ④∠ACE =∠DEC ; A.①②③ B.①②④ C.①③④ D.②③④
6.一张试卷有30道题,做对1题得4分,做错1题扣1分,小明做了全部题目共得80分,则他做对了的题数为( )
A.20
B.21
C.22
D.23 7.一个体积是1003cm 的正方体水晶砖,它的棱长大约在( ) A. 4~5cm B. 5~6cm C. 6~7cm D. 7~8cm
8.不等式组10{20
x x +-≥>的解集在数轴上表示正确的是( )
学校_____________________ 班级:_____________________ 姓名:____________________ 考号:__________________
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2
2
-1
D
C A
B
D F
P
Q
C
E
第5题图
O
A
E
D
B
第1题图
C
9 .下列调查,适用普查方式的是( )
A.调查一些灯泡的使用寿命
B.调查一批食品是否含有防腐剂
C.调查你所在班级全体学生的身高
D.调查全国初中生的视力情况 10. 学校为了了解七年级学生参加课外兴趣 小组活动情况,随机调查了40名学生,将 则参加绘画兴趣小组的百分比是( ) A 15% B 20% C 30% D 40%
二、填空题(每小题4分,共24分)
11.
4 ( 填“ > = 或 < ”) 12. 已知2
{
1
x y ==是方程组1
{8mx ny my nx -=+=的解,则m=_________,n= __________;
13.“所有的质数都是奇数”的题设是___________________,结论是_______________ ;
这是一个________ (“真” 、“假”)命题;
14.已知点P 在x 轴上,点A (-1,0),B(0,2),若△PAB 的面积为6,则点P 的坐标为
_________.
15.若方程2x-my=-1,2x+y=3和3x-y=2有公共解,则m 的值为____________. 16.在第一次射击比赛中,某运动员前6次射击共中52环,如果他要打破89环(10次射击)的大会记录,则他第七次射击不能少于_________环。
三、解答题(每小题6分,共18分)
17.解方程组:2(134
6()4(2)16x y x y x y x y -+⎧-=-⎪⎨⎪+--=⎩) 18.解不等式组:13453
2475x x x x x +⎧
--⎪⎪⎨⎪--⎪⎩
≤> 19.已知2a-1的平方根是±3, 3a+b-1的算术平方根是4
四、解答题(每小题7分,共21分)
20. 如图BCD 是一条直线,AB ∥CE ,试证明:∠A +∠B+∠ACB=180°。
2
B
A
书法 舞蹈 其他 组别
绘画 E
F
C
B
A
第20题图
21.已知点A (1,2), B(-3,1), C(2,1)
( 1 )如图10,在平面直角坐标系中标出点A 、B 、 C ,并顺次连接起来;
(2)若△ABC 中任意一点P (a ,b )平移后的 对应点为P ′(a+3,b-2),将△ABC 作同样的平移 得到△A ′、B ′、C ′的坐标; (3)求△ABC 的面积。
22.某校图书馆将图书分为数学、科学、文学、艺术四类,在“读书月”活动期间,为了解图书的借阅情况,管理员对有关数据进行了统计分析,绘制成两幅不完整的统计图、表,请根据图表中提供的信息,解答下列问题。
频数分布表
(1)补全频数分布表和频数直方图;
(2)用扇形图表示借阅各类图书所占的百分比;
(3)若该校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?
五、应用题(每小题9分,共27分)
艺术
数学 图书
文学
第22题图
200
23. 为了保护环境,某企业决定购买10台污水处理设备,现有 A 、B 两种型号的设备,A 型设备的价格是每台12万元,B 型的价格是每台10万元,经预算,该企业购买设备的资金不高于105万元。
(1)请你设计该企业有几种设计方案。
(2)若企业每月生产的污水量为2040吨,A 型设备每月可以处理污水240吨,B 型设备每天可以处理污水200吨,为了节约资金,应选用哪种方案?
24.雨季期间某班同学到水库区了解汛情。
现水库水位已超过安全线,上游河水仍以相同的速度流入水库。
同学们经过一天的观察做了如下记录:上午打开一个泄洪闸,2小时水位继续上涨了6cm ;下午再打开2个泄洪闸后,4小时水位下降了10cm 。
目前水位仍超安全线1.2m 。
① 如果打开5个泄洪闸,还需几小时水位降到安全线?
② 若防汛指挥部要求在6小时内使水位降到安全线以下,则至少应打开几个泄洪闸?
25.如图12,△AOB 是含45°角的直角三角尺,即OA=OB,且AOB S △=2. (1)求A 、B 两点的坐标;
(2) M 是AB 的中点,C 是x 轴负半轴上的一点,问;是否存在点C 使得ACM S △=S △OAB ?若存在,求出C 点的坐标;若不存在,请说明理由。
(3)在(2)的条件下,设P 是OC 上的动点,过P 作PD ⊥AB 于D,交y 轴于Q ,当P 在OC 上运动时,下列两个结论:①∠PQB+∠OAB 的值不变;②S △POQ +S △BDQ 的值不变,只有一个正确,请判断出正确结论并求其值。
x
x。