人教版七年级上4.1.1 第1课时 认识几何图形

合集下载

4.1.1.1 认识几何图形-2020-2021学年七年级数学上学期堂堂清(人教版)(解析版)

4.1.1.1 认识几何图形-2020-2021学年七年级数学上学期堂堂清(人教版)(解析版)

【人教版七年级第一学期数学堂堂清】4.1.1.1 认识几何图形知识要点知识点:平面图形与立体图形.课堂过关一、单选题1.下列说法错误的是()A.长方体和正方体都是四棱柱B.五棱柱的底面是五边形C.n棱柱有n条侧棱,n个面D.若棱柱的底面边长相等,则它的各个侧面面积相等【答案】C【解析】根据立体图形的概念定义和特性即可求解.解:A、棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.所以长方体和正方体都是四棱柱,故说法正确;B、底面是五边形的棱柱是五棱柱,故说法正确;C、n棱柱有n条侧棱,(n+2)个面,故说法错误;D、若直棱柱的底面边长相等,则它的各个侧面是全等的平行四边形,则它们面积相等,故说法正确.故选:C.2.下列图形中,不是柱体的是()A.B.C.D.【答案】D【解析】根据柱体是上下一样粗的几何体可得答案.解:A圆柱是柱体,B三棱柱是柱体,C长方体是四棱柱,D圆锥是锥体,故选:D.3.下列几何体中,是棱锥的为()A.B.C.D.【答案】D【解析】根据对几何体的识别,选出是棱锥的选项.解:A选项是圆柱;B选项是圆锥;C选项是四棱柱;D选项是四棱锥.故选:D.4.用边长为1的正方形纸片剪出一副七巧板,并将其拼成如图的“小天鹅”,则阴影部分的面积是原正方形面积的()A.12B.38C.716D.916【答案】C【解析】根据正方形性质及图形的特点求出空白图形的面积,故可求解.解:如图,图形1的面积为14×1×1=14;图形2的面积为12×14×1×1=18;图形3的面积为12×12×14×1×1=116;图形4的面积为12×14=18∴阴影部分面积为1-14-18-116-18=716故选C.5.如图,模块①由15个棱长为1的小正方体构成,模块②—⑥均由四个棱长为1的小正方体构成;现在从模块②—⑥中选出三个放在模块①上,与模块①一起组成一个棱长为3的大正方体,下列四个方案中,符合上述要求的是()A.模块②⑤⑥B.模块③④⑥C.模块②④D.模块③⑤⑥【答案】A【解析】根据题目要求,仔细观察每个模块,从模块①的条件可知,模块②补模块①上面的右上角,模块⑤补模块①上面的右下角,模块⑥补模块①上面的左边,则可找到正确选项.解:由图形可知,模块②补模块①上面的右上角,模块⑤补模块①上面的右下角,模块⑥补模块①上面的左边,则可使得模块①成为一个棱长为3的大正方体.符合上述要求的是②,⑤,⑥.故选:A.二、填空题6.若一个直n棱柱共有18条棱,则它是________棱柱,有________个面,________个顶点.【答案】6 8 12解:这个直n棱柱共有18条棱,∴1863n==,画出图形如下所示:则它共8个面,12个顶点, 故答案为:6,8,12.7.将下列几何体分类(用序号填空):(1)按有无曲面分类:有曲面的是______,没有曲面的是______;(2)按柱体、锥体、球体分类:柱体的是______,锥体的是______,球体的是______.【答案】②③④ ①⑤⑥ ①③⑤ ④⑥ ② 【解析】(1)根据曲面和没有曲面的特征进行求解即可; (2)根据柱体,锥体和球体的定义进行求解即可.解:(1)按有无曲面分类:有曲面的是②③④,没有曲面的是①⑤⑥, 故答案为:②③④;①⑤⑥;(2)按柱体,锥体,球体分类:柱体的是①③⑤,锥体的是④⑥,球体的是②. 故答案为:①③⑤;④⑥;②.8.如图所示,足球一般由黑白皮子缝合而成,且黑色的是正五边形,共12块,白色的是正六边形,共20块,我们可以近似地把足球看成一个多面体,已知多面体中两个面的公共边叫做多面体的棱,则该多面体共有______条棱.【答案】90【解析】根据正五边形、正六边形的块数以及多面体的棱的定义进行求解即可. 解:∵每条边都在两个正多边形上 ∴共有棱()512620290⨯+⨯÷= ∴该多面体共有90条棱. 故答案是:909.如图,把一个长方体的礼品盒用丝带打上包装,打蝴蝶结部分需丝带48cm ,那么打好整个包装所用丝带总长为________ cm .【答案】146【解析】根据长方体的特征可得所用丝带的长度等于长方体的两条长、两条宽、四条高的总和加上打蝴蝶结部分的长度,由此即可得出答案.解:由图可知,15210212448146()cm ⨯+⨯+⨯+=, 故答案为:146.10.如图,已知五角星的面积为5,正方形的面积为4,图中对应阴影部分的面积分别是S 1,S 2,则S 1-S 2的值为_____.【答案】1【解析】根据S 1﹣S 2=五角星面积-正方形面积,即可解题. 解:设空白部分面积为S则:S 1﹣S 2=()()12S S S S +-+=五角星面积-正方形面积 ∵正五角星的面积为 5,正方形的为4 ∴S 1﹣S 2=5-4=1 故答案为1. 三、解答题11.将下列几何体与它的名称连起来【答案】见解析【解析】根据常见立体图形的特征直接连线即可.注意正确区分各个几何体的特征. 解:连线如图所示:12.如图,直棱柱的底面边长都相等,底面边长是3.5cm,高是4cm,解答下列问题.(1)这是几棱柱,共有几个面?(2)这个棱柱的侧面积是多少cm²?【答案】(1)直六棱柱;8;(2)84cm2【解析】(1)根据棱柱的定义,即可得到答案;(2)由侧面积的计算方法进行计算,即可得到答案.解:(1)由题意可知,该棱柱是直六棱柱,共有8个面;⨯⨯=(cm2);(2)侧面积为:3.5468413.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.【答案】(1)6,6;(2)V+F-E=2;(3)7.【解析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)代入(2)中的式子即可得到面数解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;(3)由题意得:F+F-12=2,解得F=7.故答案为:(1)6,6;(2)V+F-E=2;(3)7.。

人教版七年级数学上册4.1.1第1课时《认识立体图形与平面图形》说课稿1

人教版七年级数学上册4.1.1第1课时《认识立体图形与平面图形》说课稿1

人教版七年级数学上册4.1.1 第1课时《认识立体图形与平面图形》说课稿1一. 教材分析《认识立体图形与平面图形》是人教版七年级数学上册4.1.1第1课时的内容。

本节课的主要内容是让学生认识立体图形和平面图形,了解它们的特点和区别。

教材通过生动的图片和实例,引导学生观察、思考和交流,从而培养学生的空间想象能力和抽象思维能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形和立体图形有一定的了解。

但学生在学习过程中容易混淆平面图形和立体图形,对它们的特点和区别认识不清晰。

因此,在教学过程中,教师需要注重引导学生观察、思考和交流,帮助学生建立清晰的空间观念。

三. 说教学目标1.知识与技能目标:让学生了解立体图形和平面图形的概念,掌握它们的特点和区别。

2.过程与方法目标:通过观察、思考和交流,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 说教学重难点1.教学重点:立体图形和平面图形的概念及其特点。

2.教学难点:立体图形和平面图形的区别,以及如何运用它们解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。

2.教学手段:利用多媒体课件、实物模型和黑板进行教学。

六. 说教学过程1.导入新课:通过展示生活中常见的立体图形和平面图形,引导学生关注它们,激发学生的学习兴趣。

2.探究新知:(1)教师提问:同学们,你们在生活中见到过哪些立体图形和平面图形?它们有什么特点?(2)学生回答,教师总结:立体图形是有长度、宽度和高度的图形,如正方体、长方体等;平面图形是有边和角的图形,如三角形、矩形等。

(3)教师展示立体图形和平面图形的图片,引导学生观察、思考和交流,从而掌握它们的特点和区别。

3.巩固新知:(1)教师发放实物模型,让学生触摸和观察,进一步加深对立体图形和平面图形的认识。

人教版-数学-七年级上册-:4.1.1认识几何体(第1课时)

人教版-数学-七年级上册-:4.1.1认识几何体(第1课时)

七年级数学上册:4.1.1认识几何体(第1课时)一、学习目标1、通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点得概念;2.能识别一些基本的几何体;3.初步了解立体图形和平面图形的概念。

二、重点与难点重点、难点:了解从物体外形抽象出来的几何体、平面、直线和点得概念。

三、学习过程:(一)基础导读自学教材P114~P116,完成第1~3题。

你认识下面的图形吗?请写出它们的名称。

自我评价:小组评价:家长评价:教师评价:我的问题是:。

(二)自主学习合作探究1.点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure)。

从实物中抽象出的各种图形统称为几何图形。

有些几何图形的各部分不在同一平面内,叫做立体图形。

有些几何图形的各部分都在同一平面内,叫做平面图形。

虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

几何图形一般分为立体图形(solid figure)和平面图形(plane figure)。

2,几何体的概念:几何体简称体,像正方体、球体、棱椎体等都是几何体。

包围着体的是面,面有平面和曲面两种,面与面相交的地方形成线,线与线相交的地方叫做点。

我发现:。

拓展训练(一)填空题1、几何图形:我们观察分析周围事物时,若只注意物体的形状、以及,而不考虑它们的、和,就从中抽象出了几何图形.2、几何图形包括和.3、在下面几何图形中,线段、直线、三角形、正方形、长方形、正方体、棱柱、棱椎、梯形、平行四边形、正六边形、圆、球、圆锥、圆柱.平面图形有个,分别是,立体图形有个,分别是.4、下面的特征中,与杯子盛水的多少有关.A.制成杯子的材料B.杯子的颜色C.杯子的质量D.杯子的坚硬程度E.杯子的形状和大小5、圆锥是由个面组成,其中一个面是的,另一个面是的.(二)、解答题7、生活中有哪些物体类似于几何体,请举例说明.8、你认为下列几何体中有哪些平面图形?试着把它们画出来.9、把图形与对应的图形名称用线连接.教学(学习)反思:。

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

4.1.1立体图形与平面图形 教案-人教版七年级数学上册

用活动一:创设情境导入新课【课堂引入】同学们,祝贺你们步入了一个新的学习起点,你们会越来越走近数学,感受它的多姿多彩!观察我们周围的世界,你会找到许许多多的图形,它们美化了我们生活的空间.欣赏下面的图片时,不妨用数学的眼光观察一下,你发现它们都是由哪些你熟悉的图形构成的?(教师同时用课件展示图片)图4-1-11接下来,我带领大家走进小明的简易书房,看一看哪些物体的形状与你在小学学过的立体图形类似?通过图片的展示使学生能够在丰富多彩的现实生活中辨认出特征鲜明的立体图形.活动二:实践探究交流新知【探究】1.常见的立体图形及其分类图4-1-12内容:在小明的书房中,哪些物知道立体图形的特征是我们认识不同立体图形、区别不同立体图形的金钥匙,鼓励学生用自己的语言进行表述与交流,在交流中发现棱柱面的个数、顶点个数、棱的条数的规律.实践探究交流新知看成由一些常见的立体图形组合而成,你能找出其中常见的立体图形吗?你还能举出其他组合图形的例子吗?图4-1-13处理方式:学生独立思考并进行回答,在学生回答的过程中引导学生分析复杂组合体的构成,并进行补充.6.平面图形教师举出一些几何图形的例子,如线段、角、三角形、长方形、圆,让学生观察这些几何图形有什么共同特点.处理方式:学生独立思考并进行回答,教师可以提示性地提问:这些几何图形的各部分都在同一平面内吗?总结:各部分都在同一平面内的几何图形是平面图形.平面图形和立体图形是有联系的:立体图形的某些部分是平面图形,例如长方体的侧面是长方形.基础训练1.学生完成课本115页思考题。

2.课本116页练习巩固本节课所学知识,加深对立体图形中相应平面图形的认识。

K小结归纳师生共同回顾本节课所学内容。

梳理内容,掌握本节课的核心。

J练习与检测绩优学案96页巩固训练97页达标测评选择题填空题板书设计4.1.1立体图形与平面图形立体图形(部分都不在同一平面内)几何图形平面图形(部分都在同一平面内)媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

人教版数学七年级上册第四章 几何图形初步

人教版数学七年级上册第四章  几何图形初步

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.阅读教材P114~116,思考下列问题.1.几何图形包括平面图形和立体图形.2.立体图形可以分成哪几类?知识探究1.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.自学反馈完成教材P115~116的两个思考题.活动1小组讨论例1生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.例2常见立体图形的归类,小组讨论归纳.活动2跟踪训练1.教材P121习题4.1第1、2、3题.2.教材P122习题4.1第8题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.活动3课堂小结1.常见的立体图形有哪些?常见的平面图形有哪些?2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.阅读教材P117~118,思考下列问题.1.从三个方向看立体图形包括哪三种?2.什么是立体图形的展开图?知识探究1.从三个方向看立体图形:从正面看,从左面看,从上面看.2.将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.自学反馈教材P118练习第1、2题.活动1小组讨论例1教材P117图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?小组合作学习,你摆我动手,画一画,并进行展示.例2教材P118探究,小组合作学习.活动2跟踪训练教材P121~122习题4.1第4、6、7题.活动3课堂小结1.立体图形从三个方向看到的图形.2.学会了简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会了动手实践,与同学合作.4.不是所有立体图形都有平面展开图.。

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

仅供学习交流!
答案:
学前温故
新课早知
2. 立体图形 和 平面图形 是两类不同的几何图形,且立体 图形的各部分不都在 同一平面 内,平面图形的各部分都在 同一平面 内. 3.下图中的平面图形有长方形、直角梯形、圆 .
常见几何图形的识别 【例题】 下图中哪些图形是立体图形,哪些图形是平面图形?分 别说出它们的名称.
第四章
几何图形初步
4.1
几何图形
4.1.1
立体图形与平面图形
第1课时
几何图形
学前温故
新课早知
小学里认识的平面图 形: 三角形 、 正方形 、 长方形 、 平行四边形 、 梯形 等;立体图 圆 、 形: 正方体 、 长方体 、 圆柱 、 圆锥 、 球 .
学前温故
新课早知
1.把下列物体与其相似的图形连接起来.
分析①是由6个面组成的,所以它是一个立体图形,是一个正方体. ②是由1个面组成的,是一个平面图形,是长方形. ③是由1个面组成的,是一个平面图形,是三角形. ④是由3个面组成的,2个平面1个曲面,是一个立体图形,是圆柱. ⑤是由1个曲面组成的,是一个立体图形,是球. ⑥是由1个曲面和1个平面组成的,是一个立体图形,是圆锥. ⑦是由4个平面组成的,是一个立体图形,是棱锥. 解:①④⑤⑥⑦是立体图形,名称分别为正方体、圆柱、球、圆 锥、三棱锥;②③是平面图形,名称分别为长方形、三角形.
1
2
3
4
5
1.下列图形都是平面图形的一组是( C ) A.三角形、圆、球、圆锥 B.点、线、面、体 C.角、三角形、四边形、圆 D.点、相交线、线段、圆柱
1
2
3
4
5
2.在下面四个物体中,最接近圆柱的是(

人教版七年级上册4.1.1《 立体图形与平面图形》教案

人教版七年级上册4.1.1《 立体图形与平面图形》教案

4.1.1《立体图形与平面图形》第一课时教学设计教学目标:【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体。

【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识。

【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣。

【教学重点】理解立体图形与平面图形的概念,能由实物想象出几何图形,由几何图形想象出实物形状,真确区分立体图形和平面图行。

【教学难点】正确理解立体图形与几何图形的区别与联系。

教学准备:课件,学生制作的学具。

教学过程:一、情境导入播放图片:给我最大快乐的,不是已懂的知识,而是不断的学习。

---高斯让学生知道不要满足现状,学无止境,学习是一件快乐的事情。

通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;这就是我们今天要探究的几何图形的奥秘。

从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知1、课件出示三幅图片:教室的桌凳,黑板,写字台上的物品,直线的三种关系,引导学生思考:几何研究的内容是什么?引导学生观察得出:物体的形状、大小、位置关系。

2、几何图形的概念:出示一个长方体纸盒,让学生观察可以看到哪些熟悉的图形?设计说明:在这部分内容中大多数学生可能只会看到长方体,正方形,长方形,而忽略线段和点,针对这一情况老师将引导学生得出还有线段和点。

从而给出几何图形的概念,引出这节课的学习内容。

演练空间:找一找:生活中你熟悉的物体抽象出得几何图形?设计意图:学生刚刚收到几何图形的概念,为了更进一步理解这个概念,也为后面得突出本节课的重点知识打下基础。

3、立体图形的概念:观察:下面这些几何图形有什么共同特点?学生独立思考,试着用自己的语言来说出观察到的特点,其余学生也可以补充。

人教版初中数学七年级上册第四章4.1.1几何图形的概念

人教版初中数学七年级上册第四章4.1.1几何图形的概念
第四章 几何图形初步
4.1.1 第1课时 几何图形的概念
到城雕
从古剪代 纸 到现代 从长城 到立交
从植物 到动物
从四通八达的立交桥 到街头巷尾的交通标志
从日常生活用品 到生产劳动工具
现实世界中有形态各异、丰富多彩的图形,千姿百态的图 形美化了我们的生活空间.
几何------研究图形的形状、大小和位置关系的一门学科.
说一说下面这些几何图形有什么共同特点?
正方体
圆柱体
球体
长方体
三棱柱 圆锥体 四棱锥 六棱柱
三棱锥
这些几何图形的各部分不都在同一平面内,它们
是立体图形.
4.1.1 第1课时 几何图形的概念
知识点 3 平面图形的认识
6. 有下列几何图形:圆、圆柱、球、扇形、等腰三角形、长 方体、正方体、直角,其中平面图形有____4____个.
以半圆的直径所在直线为旋转轴,半圆 面旋转一周形成的旋转体
4.1.1 第1课时 几何图形的概念 4. 在如图 4-1-1 所示的图形中,柱体有_①__②_③__⑦__,锥体有 ___⑤__⑥___,球体有___④_____.(填序号)
图 4-1-1
圆柱 圆锥
圆台
棱柱:
有两个面互相平行,其余各面都是平行四边形,并且每相邻两 个四边形的公共边都互相平行,由这些面所围成的多面体叫做 棱柱。
斜棱柱 直棱柱
长方体和正方体都是特殊的棱柱 (四棱柱)
棱柱
三棱柱
四棱柱 五棱柱 六棱柱
n棱柱
面的个数 顶点个数 棱的条数
圆柱: 棱锥: 圆锥:
一个长方形以一边为轴顺时针或逆时针旋转 一周,所经过的空间叫做圆柱体。
从实物中抽象出的各种图形统称为几何图形.

2022年人教版七年级上册数学第四章几何图形初步单元教案

2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。

人教版七年级数学上册 《立体图形和平面图形》PPT教育课件(第1课时几何图形的认识)

人教版七年级数学上册 《立体图形和平面图形》PPT教育课件(第1课时几何图形的认识)

思考
几何研究图形的内容?
对于各种各样的物体,数学中只研究它们的形状(如方 的、圆的等),大小(如长度、面积、体积等),位置(如垂直、 相交、平行等),而不管其他的性质(如颜色,重量,材料等).
第四页,共十七页。
思考
由盒子的外形上,可以得到哪些图形?
看上 面
看整

外包装箱
看棱
看前 面
从形形色色的物体外形中抽象得出的各种 图形统称为几何图形。
人教版七年级数学上册 《立体图形和平面图形》PPT教育课件(第1课时几 何图形的认识)
科 目:数学
适用版本:人教版
适用范围:【教师教学】
第四章 几何图形初步
4.1.1 立体图形和平面图形
(几何图形的认识)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
看顶 点
看侧 面
第五页,共十七页。
立体图形
观察下面图形,你发现了什么?
有些几何图形的各部分不都在同一平面内,它们是立体图形.
第六页,共十七页。
思考
想一想下面实物形状对应哪些立体图形?
球体
正方体
长方体
第七页,共十七页。
圆锥
圆柱
立体图形的分类柱 圆锥 棱锥
第八页,共十七页。
5.(2019·河北衡水中学初一期中)下列图形属于柱体的有几个( )
A.2个
B.3个
C.4个
D.5个
【详解】 由图象可知,几何体依次是:四棱柱,四棱柱,圆柱,圆锥,球体,三棱柱.

人教版数学七年级上册第四章:4.1.1立体图形与平面图形(人教版七年级上)

人教版数学七年级上册第四章:4.1.1立体图形与平面图形(人教版七年级上)

金字塔—埃及
长方体
正方形
长方形
·
线段

我们把从实物中抽象出的各种图形统称为几何图形.
生活中你会经常见很多实物,由下列实物你能想象
出熟悉的几何体吗?
方体堆砌而成的几何体.那么其三种视图中面积最小的 把你手中的立体图形沿棱展开,看它的平面展开图是什么? 几种常见几何体的特征: 有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形. 下面四幅图中可以折成符合规则的骰子的是( )
从上面看 从正面看
从左面看
从上面看 从正面看
从上面看 从左面看
从正面看
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、左面、上 面观察这个图形,各能得到什么平面图形?
从正面看
从上面看 从左面看
请你从不同角度观察,下列立体图形各是 什么图形?
把你手中的立体图形沿棱展开,看它的平面展开图是什 么?
生活中你会经常见很多实物,由下列实物你能想象 出熟悉的几何体吗?
长方体
正方体
球 圆柱体
圆锥体
有些几何图形(如长方体、正方体、圆柱、圆锥、球 等)的各部分不都在同一平面内,它们是立体图形.
常见的立体图形
长方体 正方体
圆柱
圆锥 球
下列实物与给出的哪个几何体相似?
图1
图2
图3
棱柱和棱锥
三棱柱
六棱柱
2.2012 年奥运会在伦敦举行,它的标志是五环,这五环
的每一个环的形状与下列哪个图形类似( C ).
(A)三角形
(B)正方形
(C)圆
(D)长方形
3.如图所示,将下列图形与对应的图形名称用线连接起来.

4.1.1 第1课时 立体图形与平面图形

4.1.1 第1课时 立体图形与平面图形

有些几何图形(如线段、角、三角形、长方形、圆等)的各部 在 分都________ 同一平面内,它们是平面图形. [点拨] 平面图形和立体图形相互联系,立体图形中的某些部分 是平面图形;它们之间有时也可相互转化,如圆柱的侧面展开 图是长方形,将长方形绕它的一边旋转一周即得圆柱.
4.1 几何图形
重难互动探究
数 学
新课标(RJ) 七年级上册
4.1 几何图形
4.1.1 立体图形与平面图形 第1课时 立体图形与平面图形
4.1 几何图形
教材重难处理
教材【第116页练习第2题】分层分析 图4-1-1中的各立体图形的表面中包含哪些平面图形?试指 出这些平面图形在立体图形中的位置.
图4-1-1
4.1 几何图形
4.1 几何图形
(6)这里六棱锥的表面中全是平面图形,其中有_____ 1 个六边形, 位于六棱锥的__________ 下底面 ,有_____ 6 个三角形,分别位于六棱锥
的________ 侧面 .
(7)这里最后一个立体图形由__________ 四棱锥 和_________ 四棱柱 组合而成, 它们的表面中全是平面图形,其中有______ 4 个三角形位于侧面, 4 个长方形位于侧面,还有_____ 1 个长方形位于下底面. 有_____
4.1 几何图形
变式1
如图4-1-2所示的立体图形的表面中包含的平面图
形有____ 4 个.
图4-1-2
4.1 几何图形
变式2
用棱长都是1的正方体摆放成如图4-1-3所示的几何
体,则这个几何体的表面积是________ . 18
图4-1-3
4.1 几何图形
探 究 新 知 活动1 知识准备
如图4-1-4所示图形,你在小学时学过吗?请写出名称.

人教版七年级数学上册.1立体图形与平面图形第1课时教学课件

人教版七年级数学上册.1立体图形与平面图形第1课时教学课件
1.学生先自主作答; 2.教师展示答案; 3.学生参考答案修改.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例2】下列图形中,哪些是立体图形,哪些是平面图形? 长方体;圆;正方体;圆锥;三角形;梯形;棱锥;棱柱;平行 四边形;球;圆柱;正方形;长方形.
立体图形
长方体 正方体 圆柱 圆锥 棱锥 棱柱 球
再见
棱柱
圆柱
棱锥

圆柱

长方体
圆锥
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例1】说出下列物体的形状所对应的立体图形,并按照柱体、 锥体、球体将这些物体分成三类.
柱体
锥体
球体
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
【例2】下列图形中,哪些是立体图形,哪些是平面图形? 长方体;圆;正方体;圆锥;三角形;梯形;棱锥;棱柱;四 边形;球;圆柱;正方形;长方形.
生活中的立体图形展示
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
生活中的立体图形展示
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
视察 视察下面的物体,从中能抽象出什么立体图形?
帐篷
茶叶盒
金字塔
棱柱
棱柱
棱锥
棱柱、棱锥也是常见的立体图形.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
(1) 圆
(2) 三角形 长方形
(3) 三角形 四边形
(4) 圆
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
立体图形:


各部分不都在同一平面内的图形.

人教版七年级上数学:4.1.1《几何图形(1)》学案(附模拟试卷含答案)

人教版七年级上数学:4.1.1《几何图形(1)》学案(附模拟试卷含答案)

数学:4.1.1《认识几何图形(1)》学案(人教版七年级上)【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:识别简单的几何体是重点;从具体事物中抽象出几何图形是难点。

【导学指导】一、知识链接同学们,你仔细观察过我们生活的世界吗?从城市宏伟的建筑到乡村简朴的住宅,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代化的城市雕塑,从自然界形态各异的动物到北京的申奥标志……,包含着形态各异的图形。

图形的世界是丰富多彩的!那就让我们走进图象的世界去看看吧。

二、自主探究1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

注意:当我们关注物体的形状、大小和位置时,得出了几何图形,它是数学研究的主要对象之一,而物体的颜色、重量、材料等则是其它学科所关注的。

(1)纸盒 (1)长方体 (2)长方形 (3)正方形(4)线段 点2.立体图形思考第117页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

想一想生活中还有哪些物体的形状类似于这些立体图形呢?思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

3.平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版

2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
教学内容分析
核心素养目标
本节课的核心素养目标主要有以下几点:
1.逻辑推理:通过学习几何图形的基本概念和性质,培养学生运用逻辑推理能力,能够从已知信息推出未知信息。
2.空间想象:培养学生空间想象力,能够直观地认识和理解几何图形,并在脑海中形成清晰的图像。
3.几何直观:培养学生运用几何直观能力,能够运用图形语言表达问题和解决问题的能力。
-线:由无数个点组成,有长度没有宽度
-面:由无数个线组成,有长度和宽度
-体:由无数个面组成,有长度、宽度和高度
2.几何图形的性质和特点
- ①几何图形具有稳定性
- ②几何图形具有有序性
- ③几何图形具有简洁性
3.几何图形在实际生活中的应用
- ①几何图形在建筑设计中的应用
- ②几何图形在艺术创作中的应用
-讨论法:学生分组讨论几何图形的问题,促进学生之间的交流和合作。
-案例研究:分析实际问题中的几何图形,培养学生运用几何知识解决问题的能力。
-项目导向学习:学生分组完成几何图形相关的项目,提高学生的自主学习和综合运用知识的能力。
2.设计具体的教学活动:
-角色扮演:学生扮演几何图形的角色,通过情景模拟的方式,加深对几何图形特点的理解。
-《几何图形的故事》:通过讲述几何图形的历史和发展,激发学生对几何图形学习的兴趣。

七年级数学上册 4.1.1几何图形(1)自主学习 人教新课标版

七年级数学上册 4.1.1几何图形(1)自主学习 人教新课标版

导学图(1) §4.1.1几何图形(1) 自主学习制作正方体(大小相等的5个)、长方体、圆柱、圆锥、棱柱、棱锥、球【学习过程】一.独立看书P115~P118页 二. 独立完成下列预习作业:1.指出下列立体图形的名称:_______ __________ ____________ _______ __________ _________2.欣赏章前图“2008年北京奥林匹克公园”,从中找出你熟悉的图形。

3.理解几个概念: 几何图形:立体图形: 平面图形:思考:几何图形根据是否在同一平面内分为___________图形和_________图形。

4.举例说出生活中下面立体图形的实物。

正方体: 长方体: 圆柱: 圆锥: 棱柱: 棱锥: 球:三.合作交流,解决问题:你能说出下列图形之间的区别吗?(提示:从底面、侧面的形状、数量方面比较) (1)圆柱与棱柱:相同点: 不同点: (2)圆锥与棱锥:相同点:不同点:例.说出下列立体图形的名称:四.当堂检测:1.把下列几何图形与对应的名称用线连起来圆柱 圆锥 正方体 长方体 棱柱 球2.下面图形中叫圆柱的是( )3.下列说法,不正确的是( )A 、圆锥和圆柱的底面都是圆.B 、棱锥底面边数与侧棱数相等.C 、棱柱的上、下底面是形状、大小相同的多边形.D 、长方体是四棱柱,四棱柱是长方体.4.正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2. 5.五棱柱是由 个面围成的,它有 个顶点,有 条棱.6.从一个七边形的一个顶点出发,连结其余各顶点,将这个七边形分割成 个三角形。

7.从一个边数为n 的内部一点出发,连结这点与各顶点,将该多边形分割成 个三角形。

8.如图所示的几何体是由一个正方体截去四分之一后形成的,这个几何体是由 个面围成的,其中正方形有 个,长方形有 个.(第8题) (第9题)9.如图,求图中共有 个四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知 识 管 理
第四章
几何图形初步
当 堂 测 评
归 类 探 究
4.1 几何图形 4.1.1 立体图形与平面图形
第1课时 认识几何图形
知识管理
知 识 管 理
几何图形的概念
各种图形 统称为几何图 几何图形:从实物中抽象出的____________ 形. 立体图形:有些几何图形(如长方体、正方体、圆柱、圆 不都 在同一平面内,它 锥、球等)的各部分________
当 堂 测 评
如图4-1-2所示,如果将标号为A,B,C, D的正方形沿图中的虚线剪开后得到标号为P,Q,M,N 的四组图形,找出相互对应的图形,并用线连接.
归 类 探 究
A
BCຫໍສະໝຸດ DPQM 图4-1-2
N
知 识 管 理
解:
当 堂 测 评
归 类 探 究
例2答图
【点悟】 动手操作是解决此类问题的基本方法.
当 堂 测 评
归 类 探 究
们是立体图形.棱柱、棱锥也是常见的立体图
形. 平面图形:有些几何图形(如线段、角、三角形、长方 都 在同一平面内,它们 形、圆等)的各部分______ 是平面图形.
归类探究
知 识 管 理
类型之一
认识立体图形
当 堂 测 评
分别写出图4-1-1中几何体的名称.
归 类 探 究
知 识 管 理
当堂测评
1.下面几种图形:①三角形;②长方形;③正方体;④ 圆;⑤圆锥;⑥圆柱.其中属于立体图形的是( A ) A.③⑤⑥ C.③⑥ B.①②③ D.④⑤
当 堂 测 评
归 类 探 究
【解析】 三角形、长方形、圆是平面图形.
知 识 管 理
2.下列各几何体中,直棱柱的个数是
(
C )
当 堂 测 评
图4-1-1
知 识 管 理
解:(1)正方体;(2)圆柱;(3)圆锥;(4)圆台;(5)长方 体;(6)三棱柱;(7)球体;(8)五棱柱. 【点悟】 认识不同的立体图形应把握它们的实质,
当 堂 测 评
归 类 探 究
如圆柱、圆锥、棱柱和棱锥应分别从底面和侧面的形状加
以区分.
类型之二
知 识 管 理
认识平面图形
归 类 探 究
图4-1-3 A.5 C.3 B.4 D.2
3.下列图形中,是圆柱的是
知 识 管 理
(
A )
当 堂 测 评
归 类 探 究
A
B
C 图4-1-4
D
相关文档
最新文档