数学(文科)答案答题卡

合集下载

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。

成都市2020届高中毕业班第一次诊断性检测文科数学试题及答案

成都市2020届高中毕业班第一次诊断性检测文科数学试题及答案

成都市2017级高中毕业班第一次诊断性检测数学(文科)第I卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数Z1与Z2=-3-i(i为虚数单位)在复平面内对应的点关于实轴对称,则Zl=-3i(B)-3+i(C)3+i(D)3-i(A)2 已知集合A=(-1,0,m),B={1,2}若A|JB={-1,0,1,2},则实数m的值为(A)-l或0(B)0或1(C)-1或2(D)l或23.若sin。

=V^cos6*,则tan2 0=(A)-变(B)曳(C)-变(D)变'33224己知命题p:Vx e R,2X-x2>l,则一p为(A)Vx任R,2X-x2<1(B)3x0史R,2X°-x02<1(C)Vx e R,2X-x2<1(D)3x0e R,2X°-x02<15.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这100名同学的得分都在[50,100]内,按得分分成5 组:[50,60),[60,70),[70,80),[80,90), [90,100],得到如图所示的频率分布直方图则这100名同学的得分的中位数为务率0.0150.0100.0055060708090100得分(A)72.5(B)75(C)77.5(D)80、、,S96.设等差数列{an}的刖n项和为Sn,且a*0,若a5=3a3,贝!!—=如95527(A)-(B)-(C)-(D)一59357已知a,B是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是(A若in//a,n〃B,且a〃B,则m//n(B)若m//a ,n〃&,且a上 B,则m〃n(C)若m_L a,n//B,且a〃B,则m±n(D)若m a,n〃B且a J_P,则m±nTT8.将函数y=sin(4x--)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所671得图象向左平移丁个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为6兀兀(A)f(x)=sin(2x+—)(B)f(x)-sin(2x-—)63兀兀(C)f(x)=sin(8x+—)(D)f(x)=sin(8x-—)o39已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点若|MF|+|NF|=5,贝D线段MN的中点到y轴的距离为35(A)3(B)-(C)5(D)-2211310.已知a=22,b=3\c=}n-,则2(A)a>b>c(B)a>c>b(C)b>a>c(D)b>c>a2211.已知直线)=15与双曲线C:二―二=1(a>0,b>0)相交于不同的两点A,B,F为双a b曲线C的左焦点,且满足|AF|=3|BF|,|OA|=b(O为坐标原点),则双曲线C的离心率为(A)41(B)V3(C)2(D)7512.已知定义在R上的函数f(x)满足f(2-x)=f(2+x),当xs$2时,f(x)=xe x.若关于x的方程f(x)=k(x-2)+2有三个不相等的实数根,贝I实数k的取值范围是(A)(-l,0)(J(0,1)(B)(-l,0)(J(IE(C)(-e,0)\j(0,e)(D)(-e,0)(J第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.x+y-4<013已知实数x,y满足约束条件<x-2y+2Z0,则z=x+2y_的最大值为y>014设正项等比数列{an}满足34=81,ai+a3=36,则an=.15巳知平面向量a,》满足|a|=2,b=3,且b±(a-b),贝I向量a与》的夹角的大小为___.16如图,在边长为2的正方形APi P2P3中,边P1P2,P2P3的中点分别为B,C现将ZkAPiB,△BP2C,ACP3A分别沿AB,BC,CA折起使点Pi,P2,P3重合,重合后记为点P,得到三棱锥P-ABC.则三棱锥P-ABC的外接球体积为三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在AABC中,角A,B,C的对边分别为a,b,c,S.b2+c2-a2=^^bc-3(I)求sinA的值;(II)^AABC的面积为扼,且72sinB=3sinC,求Z\ABC的周长18.(本小题满分12分)某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.①完成下列2X2列联表,并判断是否有95%的把握认为该公司员工属于“追光族”与“性别”有关;属于“追光族”属于“观望者”合计女校员工男杜员工合计100(II)已知被抽取的这100名员工中有6名是人事部的员工,这6名中有3名属于“追光族”现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于“追光族”的概率.附:K ,.....,x ,,...,,其中 n =a + 8+ c+ d.(a + b)(.c + d)(.a + c)Cb -i- d)n (ad-bcVP(K ‘ X.)0. 15。

数学(文科)答题卡(A3,机阅)

数学(文科)答题卡(A3,机阅)

_________________________________________________________________ _________________________________________________________________ _________________________________________________________________
考生禁填
监考员用 2B 铅笔 填涂下面的缺考 考生标记
_________________________________________________________________
注 意 事 项
填 涂 正确填涂 样 例
_________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________________________________________________________________ _________________________________________________________________ ________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ 19 题 _________________________________________ _________________________________________ _________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则( )A. B. C. D. 【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集,集合,所以,又,所以,故选:A.2.( )A. B. 1C. D. 【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】故选:C.3. 已知向量,则( ){}1,2,3,4,5U ={}{}1,4,2,5M N ==U N M = ð{}2,3,5{}1,3,4{}1,2,4,5{}2,3,4,5{1,2,3,4,5}U ={1,4}M ={}2,3,5U M =ð{2,5}N ={2,3,5}U N M = ð()()()351i 2i 2i +=+-1-1i-1i+()()351i 51i 1i(2i)(2i)5+-==-+-()()3,1,2,2a b ==cos ,a b a b +-=A.B.C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.【详解】因为,所以,则,所以.故选:B.4. 某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B.C.D.【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.5. 记为等差数列的前项和.若,则( )A. 25 B. 22C. 20D. 15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列的公差和首项,再根据前项和公式即可解出;方法二:根据等差数列的性质求出等差数列的公差,再根据前项和公式的性质即可解出.117()(),,a b a b a b a b +-+⋅-(3,1),(2,2)a b ==()()5,3,1,1a b a b +=-=- a b b +==== ()()()51312a b a b +⋅-=⨯+⨯-= ()()cos ,a b a b a b a b a b a b+⋅-+-===+- 1613122324C 6=1122C C 4=4263=n S {}n a n 264810,45a a a a +==5S ={}n a n {}n a n【详解】方法一:设等差数列的公差为,首项为,依题意可得,,即,又,解得:,所以.故选:C.方法二:,,所以,,从而,于是,所以.故选:C.6. 执行下边的程序框图,则输出的( )A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;{}n a d 1a 2611510a a a d a d +=+++=135a d +=()()48113745a a a d a d =++=11,2d a ==515455210202S a d ⨯=+⨯=⨯+=264210a a a +==4845a a =45a =89a =84184a a d -==-34514a a d =-=-=53520S a ==B =1k =123A =+=325B =+=112k =+=2k =358A =+=8513B =+=213k =+=3k =81321A =+=211334B =+=314k =+=当时,判断框条件不满足,跳出循环体,输出.故选:B.7. 设为椭圆的两个焦点,点在上,若,则( )A. 1B. 2C. 4D. 5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.8. 曲线在点处的切线方程为( )A. B. C. D. 【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,的4k =34B =12,F F 22:15x C y +=P C 120PF PF ⋅= 12PF PF ⋅=12PF F △120PF PF ⋅= 1290FPF ∠=122121tan 4512FP F S b PF PF ===⨯⋅122PF PF ⋅=120PF PF ⋅= 1290FPF ∠= 25142c c =-=⇒=22221212416PF PF F F +===122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=122PF PF ⋅=e 1=+x y x e 1,2⎛⎫ ⎪⎝⎭e 4y x =e 2y x =e e 44y x =+e 3e24y x =+e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭()e 12y k x -=-e 1xy x =+所以,所以所以所以曲线在点处的切线方程为.故选:C9. 已知双曲线交于A ,B 两点,则( )A. B. C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,所以弦长.故选:D10. 在三棱锥中,是边长为2的等边三角形,为( )A. 1 B.C. 2D. 3【答案】A()()()22e 1e e 11x xxx x y x x +-'==++1e|4x k y ='==()e e124y x -=-e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭e e 44y x =+22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===-P ABC ABC 2,PA PB PC ===【解析】【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,故选:A11. 已知函数.记,则( )A. B. C. D. 【答案】A 【解析】【分析】利用作差法比较自变量大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,,而,由二次函数性质知,的AB ⊥PEC AB E ,PE CE ABC 2PA PB ==,PE AB CE AB ∴⊥⊥,PE CE ⊂PEC PE CE E = AB ∴⊥PEC 2PE CE ===PC =222PC PE CE =+PE CE ⊥11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯=△()2(1)e x f x --=,,a f b f c f ===b c a >>b a c>>c b a>>c a b>>2()(1)g x x =--()g x 1x =4112⎛---=- ⎝22491670-=+-=>41102⎛--=-> ⎝11->g g <,而,,所以,综上,,又为增函数,故,即.故选:A.12. 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,4112⎛--=- ⎝22481682)0-=+=-=-<11-<-g g >g g g <<e x y =a c b <<b c a >>()y f x =cos 26y x π⎛⎫=+ ⎪⎝⎭6π()y f x =1122y x =-()sin 2f x x =-()f x 1122y x =-()f x 1122y x =-πcos 26y x ⎛⎫=+⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. 记为等比数列的前项和.若,则的公比为________.【答案】【解析】【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.【详解】若,则由得,则,不合题意.所以.当时,因为,所以,即,即,即,解得.故答案为:14. 若偶函数,则________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.为3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3n S {}n a n 6387S S ={}n a 12-1q ≠n q 1q =6387S S =118673a a ⋅=⋅10a =1q ≠1q ≠6387S S =()()6311118711a q a q qq--⋅=⋅--()()638171q q ⋅-=⋅-()()()33381171q q q ⋅+-=⋅-()3817q ⋅+=12q =-12-()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭=a【详解】,且函数为偶函数,,解得,故答案为:215. 若x ,y 满足约束条件,则的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1516. 在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为.()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭20a ∴-=2a =323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -4,AB O =1AC OO 4R当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径为体对角线长,即,故;分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,连接,则的外接圆,球的半径达到最小,即的最小值为综上,.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1) (2【解析】分析】(1)根据余弦定理即可解出;【2R '1AC ==2R R ''==max R =1111,,,AA BB CC DD ,,,M H G N MNGH 4O MNGH MG MG =MNGH R R ∈ABC ,,A B C ,,a b c 2222cos b c aA+-=bc cos cos 1cos cos a B b A ba Bb A c--=+ABC 1(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为,所以,解得:.【小问2详解】由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.18. 如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.【答案】(1)证明见解析. (2)【解析】【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.sin A 2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B aB b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC 11sin 122ABC S bc A ==⨯=△111ABC A B C -1A C ⊥,90ABC ACB ∠=︒11ACC A ⊥11BB C C 11,2AB A B AA ==111A BB C C -11A C ⊥ABC 1A C BC ⊥AC BC ⊥BC ⊥11ACC A 11ACC A ⊥11BCC B 1A 11A O CC ⊥1AO 1A C AC =O 1CC 1A C AC x ==x 1AO【小问1详解】证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.【小问2详解】如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,1A C ⊥ABC BC ⊂ABC 1A C BC ⊥90ACB ∠= ACBC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC⊥11ACC A BC ⊂11BCC B 11ACC A ⊥11BCC B 1A 11A O CC ⊥O 11ACC A ⊥11BCC B 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ⊥11BCC B 111A BB C C -1AO 1A C ⊥ABC ,AC BC ⊂ABC 1A C BC ⊥1A C AC ⊥1A B AB =BC ABC 1A BC 1A C AC =1A C AC x ==11A C x =O 1CC 11112OC AA ==又因为,所以,即,解得,所以,所以四棱锥的高为.19. 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.8416.635【答案】(1)1A C AC ⊥22211AC AC AA +=2222x x +=x=11A O ===111A BB C C -1m<m≥()()()()22()n ad bc K a b c d a c b d -=++++()2P K k ≥k19.8(2)(i );列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420试验组14620合计202040(ii )由(i )可得,,所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20. 已知函数.(1)当时,讨论的单调性;23.4m =23.4m =1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==18.819.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, 23.223.623.223.623.42m +==m<m≥2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭1a =()f x(2)若,求的取值范围.【答案】(1)在上单调递减(2)【解析】【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【小问1详解】因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.【小问2详解】法一:()sin 0f x x +<a ()f x π0,2⎛⎫⎪⎝⎭0a ≤1a =()f x ()f x '()()sin g x f x x =+()0g x <()00g =()00g '≤0a ≤0a =a<02sin sin 0cos xx x-<0a =a<00a >0a >1a =()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==cos t x =π0,2x ⎛⎫∈ ⎪⎝⎭()cos 0,1t x =∈()()()23233222cos cos 22221211x x t t t t t tt t t +-=+-=-+-=-++-()()2221t t t =++-()2222110t t t ++=++>10t -<33cos 0x t =>()233cos cos 20cos x x f x x +-'=<π0,2⎛⎫ ⎪⎝⎭()f x π0,2⎛⎫⎪⎝⎭构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭()()sin 0g x f x x =+<()()00sin 00g f =+=()0110g a a '=-+=≤0a ≤0a =22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<211cos x>()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<()sin 0f x x +<0a ≤a (],0-∞()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<2sin sin 0cos x x x-<π0,2⎛⎫⎪⎝⎭0a =()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.21. 已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及0a >()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭()22433sin cos 2sin cos x x xg x a x+'=-()22433sin 0cos 02sin 000cos 0g a a +'=-=>π02x ∀<<()0g x '>()g x π0,2⎛⎫⎪⎝⎭()00g =()()00g x g >=()sin 0f x x +>0π02x ∃<<()00g x '<()()000g g x ''<π0,2⎛⎫⎪⎝⎭0x =1π20,x ⎛⎫∈ ⎪⎝⎭()10g x '=()g x '()10,x ()0g x '>()g x ()10,x ()10,x ()()00g x g >=()sin 0f x x +>0a ≤0a >()00g '>()g x 'π0,2⎛⎫⎪⎝⎭0x =()0g x '>()()00g x g >=210x y -+=2:2(0)C y px p =>,A B AB =p F C ,M N C 0FM FN ⋅=MFN △2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.【答案】(1)(2)【解析】【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.3n =-MNF (2min 212S =-=-,m n ()2,1P 2cos ,:1sin x t l y t αα=+⎧⎨=+⎩t αl l x y ,A B 4PA PB ⋅=αx l 3π4cos sin 30ραρα+-=t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=[选修4-5:不等式选讲](10分)23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,若,则,解得,即,综上,不等式的解集为.【小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以解得,()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3ax a <≤x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x af x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭||=AB a21132224OAD ABC S S OA a AB a a +=⋅+⋅== a =三人行教育资源。

2022-2023学年江西省部分学校2023届高三上学期1月联考数学(文)试卷含答案

2022-2023学年江西省部分学校2023届高三上学期1月联考数学(文)试卷含答案

高三数学考试(文科)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2280A x x x =--<,{}4,2,1,1,2,4B =---,则A B = ()A .{}1,1,2-B .{}2,1,1,2,4--C .{}2,1,1--D .{}4,2,1,1,2---2.已知复数z 满足i 212i z +=+,则z =()A .2i--B .2i-+C .2i-D .2i+3.要得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象()A .向左平移6π个单位长度B .向右平移6π个单位长度C .向左平移12π个单位长度D .向右平移12π个单位长度4.函数()2cos 31xx f x x =+的部分图象大致为()A .B .C .D .5.若α是第二象限角,且5sin 5α=,则tan 4πα⎛⎫+= ⎪⎝⎭()A .3-B .3C .13-D .136.某数学兴趣小组的学生为了了解会议用水的饮用情况,对某单位的某次会议所用矿泉水饮用情况进行调查,会议前每人发一瓶500ml 的矿泉水,会议后了解到所发的矿泉水饮用情况主要有四种:A .全部喝完;B .喝剩约13;C .喝剩约一半;D .其他情况.该数学兴趣小组的学生将收集到的数据进行整理,并绘制成所示的两幅不完整的统计图.根据图中信息,本次调查中会议所发矿泉水全部喝完的人数是()A .40B .30C .22D .147.在四棱雉P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是正方形,PA AB =,2PH HC = ,E ,F 分别是棱CD ,PA 的中点,则异面直线BH 与EF 所成角的余弦值是()A .13B .33C .63D .2238.已知抛物线2:4C y x =的焦点为F ,过点()2,0A 的直线l 与抛物线C 交于,P ,Q 两点,则4PF QF +的最小值是()A .8B .10C .13D .159.当光线入射玻璃时,表现有反射、吸收和透射三种性质.光线透过玻璃的性质,称为“透射”,以透光率表示.已知某玻璃的透光率为90%(即光线强度减弱10%).若光线强度要减弱到原来的125以下,则至少要通过这样的玻璃的数量是(参考数据:lg 20.30≈,lg 30.477≈)A .30块B .31块C .32块D .33块10.已知()f x 是定义在()(),00,-∞+∞ 上的奇函数,()f x '是()f x 的导函数,当0x >时,()()20xf x f x '+>.若()20f =,则不等式()30x f x >的解集是()A .()(),20,2-∞-B .()(),22,-∞-+∞ C .()()2,02,-+∞ D .()()2,00,2- 11.数学中有许多形状优美、寓意独特的几何体,图1所示的礼品包装盒就是其中之一.该礼品包装盒可以看成是一个十面体,其中上、下底面为全等的正方形,所有的侧面是全等的等腰三角形.将长方体1111ABCD A B C D -的上底面1111A B C D 绕着其中心旋转45︒得到如图2所示的十面体ABCD EFGH -.已知2AB AD ==,AE =,则十面体ABCD EFGH -外接球的球心到平面ABE 的距离是()A .(51248π-B .364312+C .(81248π+D .(81212π+12.已知函数()f x ,()g x 的定义域均为R ,且()()25f x g x --=-,()()23g x f x ++=.若()f x 的图象关于直线1x =对称,且()33f =-,则()221k g k ==∑()A .80B .86C .90D .96二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知向量(),2AB m = ,()1,3AC = ,()4,2BD =--,若B ,C ,D 三点共线,则m =________.14.已知实数x ,y 满足约束条件230301x y x y x --≤⎧⎪+-≤⎨⎪≥-⎩,则z x y =-的最大值为________.15.在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,cos 14B =,且ABC △的周长和面积分别是10和215b =________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,过1F 作圆222x y a +=的切线交双曲线C 的右支于点P ,切点为M .若13PM MF = ,则双曲线C 的离心率为________.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)公差不为0的等差数列{}n a 的前n 项和为n S ,且满足310a =,2a ,4a ,7a 成等比数列.(1)求{}n a 的前n 项和n S ;(2)记26n n b S =+,求数列{}n b 的前n 项和n T .18.(12分)某商场在周年庆举行了一场抽奖活动,抽奖箱中所有乒乓球都是质地均匀,大小与颜色相同的,且每个小球上标有1,2,3,4,5,6这6个数字中的一个,每个号都有若干个乒乓球.抽奖顾客有放回地从抽奖箱中抽取小球,用x 表示取出的小球上的数字,当5x ≥时,该顾客积分为3分,当35x ≤<时,该顾客积分为2分,当3x <时,该顾客积分为1分.以下是用电脑模拟的抽芕,得到的30组数据如下:131163341241253126316121225345(1)以此样本数据来估计顾客的抽奖情况,分别估计某顾客抽奖1次,积分为3分和2分的概率:(2)某顾客抽奖3次,求该顾客至多有1次的积分大于1的概率.19.(12分)如图,在正三棱柱111ABC A B C -中,12AA AB ==,D ,E 分别是棱BC ,1BB 的中点.(1)证明:平面1AC D ⊥平面1A CE .(2)求点1C 到平面1A CE 的距离.20.(12分)已知椭圆()2222:10x y C a b a b+=>>的离心率是22,点()0,2M 在椭圆C 上.(1)求椭圆C 的标准方程.(2)已知()0,1P ,直线():0l y kx m k =+≠与椭圆C 交于A ,B 两点,若直线AP ,BP 的斜率之和为0,试问PAB △的面积是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.21.(12分)已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)若4a ≥,证明:对于任意[)1,x ∈+∞,()2323f x x ax >-+恒成立.(参考数据:ln10 2.3≈)(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 22sin x y αα=-+=+⎧⎨⎩(α为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos 2sin 40ρθρθ-+=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知()4,0P -,设直线l 和曲线C 交于A ,B 两点,线段AB 的中点为Q ,求PQ 的值.23.[选修4—5:不等式选讲](10分)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.高三数学考试参考答案(文科)1.A 【解析】本题考查集合的运算,考查数学运算的核心素养.由题意可得{}24A x x =-<<,则{}1,1,2A B =- .2.D 【解析】本题考查复数,考查数学运算的核心素养.设(),z a bi a b =+∈R ,则()2212a bi i ai b i ++=+-=+,即221a b =⎧⎨-=⎩,解得2a =,1b =,故2z i =+.3.C【解析】本题考查三角函数的图象,考查数学运算的核心素养.因为2sin 22sin 23126y x x πππ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以要得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度.4.B【解析】本题考查函数的图象,考查数学抽象的核心素养.当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,则排除A ,D ;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <,则排除C .故选B .5.D【解析】本题考查三角恒等变换,考查函数与方程的数学思想.因为α是第二象限角,且sin 5α=,所以cos 5α=-,所以1tan 2α=-,故11tan 112tan $141tan 312πααα-++⎛⎫+=== ⎪-⎛⎫⎝⎭-- ⎪⎝⎭.6.C【解析】本题考查统计图表,考查数据分析的核心素养.由题中统计图可知参加这次会议的总人数为4040%100÷=,则所发矿泉水喝剩约一半的人数为10030%30⨯=,故会议所发矿泉水全部喝完的人数为1004030822---=.7.A 【解析】本题考查异面直线所成角,考查直观想象的核心素养.如图,分别取PB ,PH 的中点M ,N ,连接MF ,CM ,MN .易证四边形CEFM 是平行四边形,则CM EF ∥,CM EF =.因为M ,N 分别是PB ,PH 的中点,所以MN BH ∥,则CMN ∠是异面直线BH 与EF 所成的角(或补角).设6AB =,则CM EF ==,12PM PB ==,2CN PN ==,MN ==,故1cos 3CMN ==∠.8.C 【解析】本题考查抛物线的性质,考查数学运算的核心素养.设直线:2l x my =+,()11,P x y ,()22,Q x y ,联立224x my y x=+=⎧⎨⎩,整理得2480y my --=,则128y y =-,故()21212416y y x x ==.因为11PF x =+,21QF x =+,所以122244454513PF QF x x x x +=++=++≥,当且仅当21x =时,等号成立.9.B【解析】本题考查指数、对数的运算,考查数学建模的核心素养.设原来的光线强度为()0a a >,则要想通过n 块这样的玻璃之后的光线强度()190%25na a ⨯<,即0.1925n <,即1lg 0.9lg25n <,即()21lg 22lg522033042lg312lg3..1247.071n ----+⨯>==≈--⨯-,故至少要通过31块这样的玻璃,才能使光线强度减弱到原来的125以下.10.B【解析】本题考查导数的运用,考查化归与转化的数学思想.设()()2g x x f x =,则()()()22g x xf x x f x ''=+.当0x >时,因为()()20xf x f x '+>,所以()0g x '>,所以()g x 在()0,+∞上单调递增.因为()f x 是奇函数,所以()()f x f x -=-,所以()()()()()22g x x f x x f x g x -=--=-=-,则()g x 是奇函数.()30x f x >,即()0xg x >.因为()20f =,所以()()220g g -=-=,则()0xg x >等价于()00x g x ⎧>>⎪⎨⎪⎩或()00x g x ⎧<<⎪⎨⎪⎩,解得2x <-或2x >.11.B 【解析】本题考查多面体的外接球,考查直观想象的核心素养.由题中数据可知)221114A E =+=-,则11AA ==+.因为十面体ABCD EFGH -是由长方体1111ABCD A B C D -的上底面1111A B C D 绕着其中心旋转45︒得到的,所以长方体1111ABCD A B C D -的外接球就是十面体ABCD EFGH -的外接球.设十面体ABCD EFGH -外接球的半径为R ,则211224R +=.因为AE BE ==,2AB =,所以42sin7BAE =∠=.设ABE △外接圆的半径为r ,则22492sin 24BAE BE r ⎛⎫==⎪∠ ⎝⎭,则该十面体ABCD EFGH -外接球的球心到平面ABE的距离是364312=.12.C【解析】本题考查函数的基本性质,考查逻辑推理的核心素养.因为()y f x =的图象关于直线1x =对称,所以()()2f x f x =-,所以()()2f x f x +=-.因为()()25f x g x --=-.所以()()225f x g x ---=-,所以()()5f x g x ---=-.因为()()23g x f x ++=,所以()()3g x f x +-=,所以()()8g x g x +-=,则()g x 的图象关于点()0,4对称,且()04g =.因为()()25f x g x --=-,所以()()25f x g x --+=-,所以()()28g x g x ++=,所以()()248g x g x +++=,则()()4g x g x =+,即()g x 的周期为4.因为()33f =-,且()()23g x f x ++=,所以()16g =.因为()()28g x g x ++=,所以()32g =.因为()04g =,所以()24g =,则()()()()()()()22151234125161090k g k g g g g g g ==+++++=⨯+=⎡⎤⎣⎦∑.13.1-【解析】本题考查平面向量,考查数学运算的核心素养.由题意可得()1,1BC AC AB m =-=-.因为B ,C ,D 三点共线,所以BC BD ∥,所以()2140m --+=,解得1m =-.14.4【解析】本题考查线性规划,考查数形结合的数学思想.画出可行域(图略),当直线z x y =-经过()1,5A --时,z 取得最大值,最大值为4.15.3【解析】本题考查余弦定理,考查数学运算的核心素养.因为cos 14B =,所以sin 154B =,所以1158sin 2a ac B c ==16ac =.因为10a b c ++=,所以10a c b +=-,所以222210020a c ac b b ++=-+,所以2226820a c b b +-=-.由余弦定理可得2222cos b a c ac B =+-,即2228b a c =+-,所以2228a c b +-=,则68208b -=,解得3b =.16.53【解析】本题考查双曲线的性质,考查数形结合的数学思想.如图,取1PF 的中点N ,连接ON .由题意可知1OM NF ⊥,OM a =,1OF c =.则1MF b =,ON c =.因为13PM MF =,所以14PF b =.因为O ,N 分别是线段11F F ,1PF 的中点,所以222PF ON c ==.由双曲线的定义可知12422PF PF b c a -=-=,即2b a c =+,即22242b a ac c =++.因为222b c a =-,所以223250c ac a --=,即23250e e --=,解得53e =.17.解:(1)设数列{}n a 的公差为d ,由题意可得()()()1211121036a d a d a d a d +=+=++⎧⎪⎨⎪⎩,即121210330a d d a d +=-=⎧⎨⎩,2分因为0d ≠,所以16a =,2d =,4分则()21152n n n dS na n n -=+=+.6分(2)由(1)可知22211265623n n b S n n n n ⎛⎫===- ⎪+++++⎝⎭,9分则1211111111234455623n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,10分故11223339n n T n n ⎛⎫=-=⎪++⎝⎭.12分评分细则:(1)第一问中,也可以将2a ,4a ,7a 用3a 和d 表示,从而求出d ,再根据前n 项和公式求出n S ;(2)第二问中,求出2233n T n =-+,不扣分;(3)若用其他解法,参照评分标准按步骤给分.18.解:(1)由题意可知某顾客抽奖1次,积分为3分的频率是61305=,则估计某顾客抽奖1次,积分为3分的概率为15.2分某顾客抽奖1次,积分为2分的频率是933010=,则估计某顾客抽奖1次,积分为2分的概率为310.4分(2)由(1)可知某顾客抽奖1次,积分为1分的概率是12,则某顾客抽奖1次,所得积分是1分和所得积分大于1分是等可能事件.6分设某顾客抽奖1次,积分为1分,记为A ,积分大于1分,记为a ,则某顾客抽奖2次,每次所得积分的情况为aaa ,aaA ,aAA ,aAa ,AAa ,AAA ,AaA ,Aaa ,共8种,8分其中符合条件的情况有aAA ,AAa ,AAA ,AaA ,共4种,10分故所求概率4182P ==.12分评分细则:(1)第一问中,直接求出概率,不予扣分;(2)第二问中,也可以先求出有2次和3次的积分大于1的概率,再由对立事件的概率计算公式求出该顾客至多有1次的积分大于1的概率;(3)若用其他解法,参照评分标准按步骤给分.19.(1)证明:由正三棱柱的性质,易证1BCE D CC △≌△,则1BCE D CC ∠∠=,因为1190CC C D DC ∠∠+=︒,所以190C BCE C D ∠=∠+︒,即1CE C D ⊥.1分因为AB AC =,D 是棱BC 的中点,所以AD BC ⊥.由正三棱柱的定义可知1CC ⊥平面ABC ,则1CC AD ⊥.2分因为BC ,1CC ⊂平面11BCC B ,且1BC C CC = ,所以AD ⊥平面11BCC B .3分因为CE ⊂平面11BCC B ,所以AD CE ⊥.4分因为AD ,1C D ⊂平面1AC D ,且1AD D C D = ,所以CE ⊥平面1AC D .5分因为CE ⊂平面1A CE ,所以平面1AC D ⊥平面1A CE .6分(2)解:连接1EC .因为12AA AB ==,所以1E CC △的面积112222S =⨯⨯=.由正三棱柱的性质可知1AA ∥平面11BCC B ,则点1A 到平面11BCC B 的距离为AD .因为ABC △是边长为2的等边三角形,所以AD =故三棱锥11A CC E -的体积11233V =⨯=.8分因为12AA AB ==,E 是1BB的中点,所以1A E CE ==,1A E =,则1E A C △的面积212S =⨯=设点1C 到平面1A CE 的距离是d ,则三棱锥11C A CE -的体积21633V d ==.10分因为12V V =,所以62333d =,解得d =12分评分细则:(1)第一问中,证出1CE D C ⊥,得1分,证出AD ⊥平面11BCC B ,得2分;(2)第二问中,也可以记1CE F C D = ,连接1A F ,过1C 作1A F 的垂线,垂足为H ,则1C F 是点1C 到平面1A CE 的距离;(3)若用其他解法,参照评分标准按步骤给分.20.解:(1)由题意可得222222c a b c a b ===-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得28a =,24b =.3分故椭圆C 的标准方程为22184x y +=.4分(2)设()11,A x y ,()22,B x y ,联立22184y kx mx y ⎧=++=⎪⎨⎪⎩,整理得()222214280k x kmx m +++-=,则122421kmx x k +=-+,21222821m x x k -=+.5分设直线AP ,BP 的斜率分别是1k ,2k ,()()()121212121221212122121111124kx x m x x km m y y kx m kx m k k k x x x x x x m +-+---+-+-+=+=+=--.因为120k k +=,所以()221204km m k m --=-,解得4m =,7分则12AB x =-=,8分因为点P到直线l的距离d=,所以PAB△的面积2112221S AB dk===+.9分设t=,则2223k t=+,从而2626232442St t=≤=+,当且仅当24t=,即2234k-=,即272k=时,等号成立.11分经验证当272k=时,直线l与椭圆C有两个交点,则PAB△的面积存在最大值322.12分评分细则:(1)第一问中,求出b的值得1分,求出a的值得2分;(2)第二问中,没有检验直线l与椭圆C的位置关系,扣1分;(3)若用其他解法,参照评分标准按步骤给分.21.(1)解:由题意可得()xf x e a'=-.1分当0a≤时,()0f x'>,则()f x在R上单调递增;2分当0a>时,由()0f x'>,得lnx a>,由()0f x'<,得lnx a<,则()f x在()ln,a-∞上单调递减,在()ln,a+∞上单调递增.4分综上,当0a≤时,()f x在R上单调递增;当0a>时,()f x在()ln,a-∞上单调递减,在()ln,a+∞上单调递增.5分(2)证明:因为4a≥,且1x≥,所以4ax x≥,则要证()2323f x x ax>-+对于任意[)1,x∈+∞恒成立,即证233x e x ax>-+对于任意[)1,x∈+∞恒成立,即证2343x e x x>-+对于任意[)1,x∈+∞恒成立,即证23431xx xe-+<对一切[)1,x∈+∞恒成立.7分设()2343xx xg xe-+=,则()()()23713107x xx xx xg xe e----+-'==.8分当71,3x⎛⎫∈ ⎪⎝⎭时,()0g x'>,当7,3x⎛⎫∈+∞⎪⎝⎭时,()0g x'<,则()g x在71,3⎛⎫⎪⎝⎭上单调递增,在7,3⎛⎫+∞⎪⎝⎭上单调递减.9分故()213777max33773437101000333g x g e e e ⎛⎫⨯-⨯+ ⎪⎛⎫⎛⎫⎝⎭==== ⎪ ⎪⎝⎭⎝⎭.10分因为ln1023.≈,所以ln100067.9≈<,即71000e <,所以710001e<,则()max 1g x <.11分故23431xx x e-+<对一切[)1,x ∈+∞恒成立,即()2323f x x ax >-+对一切[)1,x ∈+∞恒成立.12分评分细则:(1)第一问中,正确求导得1分,判断出0a ≤的单调性,得1分,判断出0a >的单调性,得2分;(2)第二问中,构造出函数()g x 得1分,直接得出()137max 10001g x e ⎛⎫=< ⎪⎝⎭,扣1分;(3)若用其他解法,参照评分标准按步骤给分.22.解:(1)由12cos 22sin x y αα=-+=+⎧⎨⎩,(α为参数),得()()22124x y ++-=,故曲线C 的普通方程为()()22124x y ++-=.3分由cos 2sin 40ρθρθ-+=,得240x y -+=,故直线l 的直角坐标方程为240x y -+=.5分(2)由题意可知点P 在直线l 上,则直线l 的参数方程为254555x y =-+=⎧⎪⎪⎨⎪⎪⎩,(t 为参数),6分将直线l 的参数方程代入曲线C 的普通方程,整理得25450t -+=.7分设A ,B 对应的参数分别为1t ,2t,则125t t +=,8分故128525t t PQ +==.10分评分细则:(1)第一问中,曲线C 的普通方程写成222410x y x y ++-+=,不予扣分;(2)第二问中,也可以由点到直线的距离公式求出圆心C 到直线l 的距离d ,再由两点之间的距离公式求出CP 的值,最后根据勾股定理求出PQ 的值;(3)若用其他解法,参照评分标准按步骤给分.23.解:(1)()82f x x ≤-+,即3182x x -+≤-+,等价于23182x x x <--++≤++⎧⎨⎩或232831x x x --++≤-≤-≤⎧⎨⎩或33182x x x >-+≤--⎧⎨⎩,3分解得34x -≤≤,即不等式()82f x x ≤-+的解集是[]3,4-.5分(2)当03x <<时,()f x ax ≥恒成立等价于()31a x x --+≥恒成立,6分则41a x ≤-在()0,3上恒成立,故13a ≤;7分当3x ≥时,()f x ax ≥恒成立等价于31x ax -+≥恒成立,8分则21a x ≤-在[)3,+∞上恒成立,故13a ≤.9分综上,a 的取值范围是1,3⎛⎤-∞ ⎥⎝⎦.10分评分细则:(1)第一问中,也可以按2x <-,23x -≤≤和3x >这三种情况分别求出x 的取值范围,再求它们的并集,即不等式的解集,只要计算正确,不予扣分:(2)第二问中,最后结果没有写成集合或区间的形式,扣1分;(3)若用其他解法,参照评分标准按步骤给分.。

2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版

2022-2023学年陕西省部分名校高二上学期期末数学(文)试题 解析版

2022-2023学年陕西省部分名校高二上学期期末数学试卷(文科)考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:北师大版必修5占30%,选修1-1占70%.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆C :22143x y +=的长轴为( ) A. 1B. 2C. 3D. 42. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若3c =,4b =,3A π=,则a =( )A.B. C. 5 D. 63. 已知p :0x ∀>,230x x +>;q :x ∃∈R ,210x +=.则下列命题中,真命题是( )A. p q ⌝∧B. p q ⌝∨C. p q ∧⌝D. p q ∧4. 设0(3)(3)lim 6x f x f x x∆→+∆--∆=-∆,则()3f '=( )A. -12B. -3C. 3D. 125. 已知等比数列{}n a 的前n 项乘积为n T ,若25T T =,则4a =( ) A. 1B. 2C. 3D. 46. 已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为340x y +=,则该双曲线的离心率是( )A.43B.53C.54D.7. 已知抛物线C :220x y =-的焦点为F ,抛物线C 上有一动点P ,且()3,6Q --,则PF PQ +的最小值为( )A. 8B. 16C. 11D. 268. 已知数列{}n a 满足1n n a a d -=+,2n ≥,n ∈N ,则“2m n a a d -=”是“2m n -=”的( ) A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件9. 函数21()ln 32f x x x =++的最小值是( ) A.92 B. 4C.72D. 310. 设1a <,则1211a a+-+的最小值为( )A.32B. 32- C. 1D. 211. 已知P 为抛物线C :216x y =-上一点,F 为焦点,过P 作C 的准线的垂线,垂足为H ,若PFH △的周长不小于30,则点P 的纵坐标的取值范围是( ) A. (],5-∞-B. (],4-∞-C. (],2-∞-D. (],1-∞-12. 定义在()0,+∞上的函数()f x 的导函数为()f x ',且()()4xf x f x '<恒成立,则( )A. 16(1)4(2)f f f >>B. 16(1)(2)4f f f >>C. 16(1)4(2)f f f <<D. 16(1)(2)4f f f <<第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13. 已知双曲线C :2221(0)x y a a-=>的焦距为10,则a =______.14. 若x ,y 满足约束条件10201x y x y x +-≥⎧⎪-≥⎨⎪≤⎩,则z y x =-的最小值为______.15. 已知函数()ln 1f x x x mx =++的零点恰好是()f x 的极值点,则m =______.16. 已知椭圆C :2214x y +=的左、右焦点分别为1F ,2F ,P 为椭圆C 上的一点,若121cos 3F PF ∠=-,则12PF PF ⋅=______.三、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(10分) 已知函数()f x 满足32()(1)1f x x f x '=-⋅+.(1)求()1f '的值;(2)求()f x 的图象在2x =处的切线方程. 18.(12分)已知抛物线C :()220y px p =->,()06,A y -是抛物线C 上的点,且10AF =.(1)求抛物线C 的方程;(2)已知直线l 交抛物线C 于M ,N 两点,且MN 的中点为()4,2-,求直线l 的方程. 19.(12分)已知数列{}n a 的前n 项和为n S ,且(7)2n n n S +=. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 20.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin()bC A B a=--. (1)求A ;(2)设2a =,当b 的值最大时,求ABC △的面积. 21.(12分)已知函数()()ln 1f x x x a x =+-. (1)当2a =-时,求()f x 的单调区间;(2)证明:当1a <-时,()f x 在()1,+∞上存在唯一零点. 22.(12分)已知双曲线C :()222210,0x y a b a b-=>>的右焦点为),渐近线方程为2y x =±. (1)求双曲线C 的标准方程;(2)设D 为双曲线C 的右顶点,直线l 与双曲线C 交于不同于D 的E ,F 两点,若以EF 为直径的圆经过点D ,且DG EF ⊥于点G ,证明:存在定点H ,使GH 为定值.高二数学试卷参考答案(文科)1. D 椭圆C :22143x y +=的长轴为4. 2. A 由余弦定理可得2222cos 13a b c bc A =+-=,所以a = 3. C 由题意可得p 为真命题,q 为假命题.故p q ∧⌝为真命题.4. B 因为0(3)(3)lim2(3)6x f x f x f x∆→+∆--∆'==-∆,所以()33f '=-.5. A 因为25T T =,所以3451a a a =.因为2354a a a =,所以41a =.6. C 因为()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,所以:3:4b a =,54c e a ===.7. C 记抛物线C 的准线为l ,作PT l ⊥于T ,当P ,Q ,T 共线时,PF PQ +有最小值,最小值为6112p+=. 8. C 因为()2m n a a m n d d -=-=,所以2m n -=或0d =,故“2m n a a d -=”是“2m n -=”的必要不充分条件.9. C 由题意可得233111()x f x x x x -'=-=,令()0f x '>,1x >,令()0f x '<,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,故()f x 的最小值是()712f =.10. A12112(11)11211a a a a a a ⎛⎫+=+-++ ⎪-+-+⎝⎭12(1)331122a a a a +-++-+=≥,当且仅当12(1)11a a a a+-=-+,即3a =-. 11. A 如图,设点P 的坐标为(),m n ,准线4y =与y 轴的交点为A ,则4PF PH n ==-,FH ====PFH △的周长为()24n -.设函数()2(4)(0)f n n n =-≤,则()f n 为减函数,因为()530f -=,所以()30f n ≥的解为5n ≤-.12. A 设函数4()()f x g x x=,0x >,则4385()4()()4()()0x f x x f x xf x f x g x x x''--'==<, 所以()g x 在()0,+∞上单调递减,从而(1)(2)g g g >>,即44(1)(2)12f f >>,则16(1)4(2)f f f >>.13. 2125a +=,解得a =a =-(舍去).14. -1 作出可行域(图略),当直线y x z =+经过点()1,0时,z y x =-取最小值,最小值为-1.15. -1 设0x 是()ln 1f x x x mx =++的零点,也是()f x 的极值点,则()ln 1f x x m '=++,所以0000ln 10ln 10x x mx x m ++=⎧⎨++=⎩,解得01x =,1m =-. 16. 3 因为22212121212cos 2PF PF F F F PF PF PF +-∠=⋅()21212122122PFPF PFPF PF PF +-⋅-=⋅122113PF PF =-=-⋅,所以123PF PF ⋅=.17. 解:(1)因为2()32(1)f x x f x ''=-⋅,所以(1)32(1)f f ''=-,解得(1)1f '=. (2)由(1)可得32()1f x x x =-+,2()32f x x x '=-,则()25f =,()28f '=.故所求切线的方程为()582y x -=-,即811y x =-. 18. 解:(1)因为6102pAF =+=, 所以8p =,故抛物线C 的方程为216y x =-.(2)易知直线l 的斜率存在,设直线l 的斜率为k ,()11,M x y ,()22,N x y ,则2112221616y x y x ⎧=-⎨=-⎩,两式相减得()22121216y y x x -=--,整理得12121216y y x x y y -=--+.因为MN 的中点为()4,2-,所以12121644y y k x x -==-=--,所以直线l 的方程为()244y x -=-+,即4140x y ++=. 19. 解:(1)当1n =时,111842a S ⨯===. 当2n ≥时,1(1)(6)2n n n S --+=,所以1(7)(1)(6)322n n n n n n n a S S n -+-+=-=-=+,因为1n =也满足,所以通项公式为3n a n =+.(2)因为11111(3)(4)34n n n b a a n n n n +===-++++, 所以1111111145563444416n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 20. 解:(1)三角形的性质和正弦定理可知sin sin sin()sin()sin()2cos sin sin b B C A B A B A B A B a A==--=+--=⋅,其中sin 0B ≠,所以2sin cos sin 21AA A ==,因为()0,A π∈,所以()20,2A π∈,故22A π=,4A π=.(2)由正弦定理有22sin 4sin sin b B Cb B C a A++===+,且34sin 4sin 4B C B B π⎛⎫+=+-⎪⎝⎭cos ))B B B ϕ=+=+,其中1tan 2ϕ=,所以当()sin 1B ϕ+=时,b +有最大值,此时sin cos 5B ϕ==,cos 5B =,所以sin sin()sin (sin cos )42C A B B B B π⎛⎫=+=+=+=⎪⎝⎭由正弦定理有sin sin a bA B=,故b =,所以1112sin 2225ABC S ab C ==⨯=△. 21.(1)解:当1a =时,()ln 1f x x '=-.令()0f x '<,得0e x <<,令()0f x '>,得e x >, 所以()f x 的单调递减区间为()0,e ,单调递增区间为()e,+∞. (2)证明:()()ln 1f x x a '=++,令()0f x '=,得1e a x --=,因为1a <-,所以10e e 1a -->=.当()11,e a x --∈时,()0f x '<,()f x 在()11,e a --上单调递减;当()1e ,a x --∈+∞时,()0f x '>,()f x 在()1e ,a --+∞单调递增. 而()1e (1)0af f --<=,且()()e e ln e e 10a a a af a a ----=+-=->, 又因为()f x 在()1e ,a --+∞上单调递增, 所以()f x 在()1e ,a --+∞上有唯一零点. 当()11,e a x --∈时,恒有()()10f x f <=,()f x 无零点.综上,当1a <-时,()f x 在()1,+∞上存在唯一零点.22.(1)解:由题意知c =因为双曲线C 的渐近线方程为2y x =±,所以2b a =.因为222a cb =-,所以2a =,b =故双曲线C 的标准方程为22143x y -=. (2)证明:设()11,E x y ,()22,F x y .①当直线l 的斜率存在时,设l 的方程为y kx m =+,联立方程组22143y kx m x y =+⎧⎪⎨-=⎪⎩,化简得()()2223484120k x kmx m ---+=,则()()222(8)4412340km m k ∆=++->,即22430m k -+>,且122212283441234km x x k m x x k ⎧+=⎪⎪-⎨--⎪=⎪-⎩. 因为()()1212220DE DF x x y y ⋅=--+=, 所以()()2212121(2)4k x x km x x m ++-+++()2222241281(2)403434m km k km m k k--=+⋅+-⋅++=--, 化简得221628(2)(14)0m km k m k m k ++=++=, 所以2m k =-或14m k =-,且均满足22430m k -+>.当2m k =-时,直线l 的方程为()2y k x =-,直线过定点()2,0,与已知矛盾; 当14m k =-时,直线l 的方程为()14y k x =-,过定点()14,0M . ②当直线l 的斜率不存在时,由对称性不妨设直线DE :2y x =-,联立方程组222143y x x y =-⎧⎪⎨-=⎪⎩,得2x =(舍去)或14x =,此时直线l 也过定点()14,0M .因为DG EF ⊥,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径. 故存在定点()8,0H ,使GH 为定值6.。

2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)

2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)

绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸、答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。

4、考试结束后,将本试卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。

高考全国卷文科数学带答案

高考全国卷文科数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3 B .{}5 C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为A .y =B .y =C .y =D .y =7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A .B C D .8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ABC .10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1-B .2CD .112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50 二、填空题:本题共4小题,每小题5分,共20分。

宁夏银川重点名校2023届高三上学期第二次月考数学(文)试题及答案

宁夏银川重点名校2023届高三上学期第二次月考数学(文)试题及答案

2023届高三年级第二次月考文 科 数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示A .无症状感染者B .发病者C .未感染者D .轻症感染者2.已知2i z =+,则(i)z z -= A .2i - B .12i +C .62i -+D .62i -3.如图所示的程序框图,输入3个数,0.12a =,0.23b -=,41log 2c =,则输出的a 为 A .0 B .0.12C .0.23-D .41log 24.已知{}n a 是等差数列,172a a +=-,32a =,则{}n a 的公差d 等于 A .3B .4C .-3D .-45.设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=,n N ∈,则()2020f x = A .sin x B .sin x -C .cos xD .cos x -6.若110a b<<,则下列不等式成立的是 A .a b ab -> B .a b ab -< C .b a ab -> D .b a ab -<7.若x ,y 满足约束条件423x y x y y +≤⎧⎪-≤⎨⎪≤⎩,则3z x y =+的最大值为A .6B .10C .14D .188.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]9.函数()ln e e x xy -=+的图像大致是A .B .C .D .10.已知实数,0x y >,且11y x+=,则12x y +的最小值是A .6B .322+C .232+D .1211.已知⎪⎩⎪⎨⎧<-≥=0,30,)(3x x x x exx f x ,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为A .72(,)(,)2e e -∞--+∞B .72](,2e e--C .72(,)2e e--D .72(,(,2])e e-∞--+∞12.英国物理学家牛顿用“作切线”的方法求函数的零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{}n x 满足()()1n n n n f x x x f x +=-',则称数列{}n x 为牛顿数列,如果()22f x x x =--,数列{}n x 为牛顿数列,设1ln2n n n x a x +=-且11a =,2n x >,数列{}n a 的前n 项和为n S ,则2022S = A .202221-B .202222-C .20221122⎛⎫- ⎪⎝⎭D .2022122⎛⎫- ⎪⎝⎭二、填空题(本大题共4小题,每小题5分.共20分)13.已知函数2,0()2,0x x a x f x x ⎧+≤=⎨>⎩,若f [ f ( - 1 ) ] = 4 ,且a > - 1 ,则 a =______.14.若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立是假命题,则实数λ的取值范围是___________.15.数列121321,,,,n n a a a a a a a ---⋯-,…是首项为1,公比为2的等比数列,那么n a =________.16.已知定义域为R 的偶函数()f x ,其导函数为()f x ',满足2()()4,(1)1f x xf x f >'+=,则21()2f x x >-的解集为_________. 三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。

2022年全国甲卷数学(文科)高考真题文档版(原卷)含答案

2022年全国甲卷数学(文科)高考真题文档版(原卷)含答案

2022年普通高等学校招生全国统一考试(全国甲卷)数学(文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=<⎨⎬⎩⎭∣,则A B =( ) A .{}0,1,2 B .{2,1,0}-- C .{0,1} D .{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差 3.若1i z =+.则|i 3|z z +=( )A .5B .2C .25D .224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .20 5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16 B .14 C .13 D .126,从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15 B .13 C .25 D .237.函数()()33cos x x f x x -=-在区间,22ππ⎡⎤-⎢⎥⎣⎦的图像大致为( )A .B .C .D .8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12- C .12D .19.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒ C .1AC CB = D .1B D 与平面11BB C C 所成的角为45︒10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5 B .22 C 10 D 51011.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,12,A A 分别为C 的左、右顶点,B为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y += B .22198x y += C .22132x y += D .2212x y += 12.已知910,1011,89mmma b ==-=-,则( )A .0a b >>B .0a b >>C .0b a >>D .0b a >>二、填空题:本题共4小题,每小题5分,共20分。

加美学校12-13学年(下)3月份月考考试高二文科数学(答题卡)

加美学校12-13学年(下)3月份月考考试高二文科数学(答题卡)

加美学校12-13学年(下)3月份月考考试 高二文科数 学答题卷二、填空题答题:(本大题共4小题,每小题5分,满分20分)11、___________________ 12、______________________13、___________________ 14、______________________三、解答题:(本大题共6小题,满分80分)解答须写出文字说明,证明过程或演算步骤. 15.(本题满分12分) 已知抛物线y ax bx =++29在点(2,-1)处的切线的斜率为1,求a ,b 的值.16.(本题满分12分)已知32()2=+-+f x ax bx xc 在2x =-时有极大值6,在1x =时有极小值,(1) 求a ,b ,c 的值;(2) 求()f x 区间[3,3]-上的最大值和最小值.17. (本题满分14分)用长为90c m ,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?xx班级 姓名 学号-----------------------------------------------------------密----------------------------------------封----------------------------线---------------------- ---18.(本题满分14分)如图,在底面为平行四边形的四棱锥P-ABCD 中,AB ⊥AC , PA ⊥平面ABCD ,点E 是PD 的中点. (1)求证:PB//平面AEC ;2)求证:AC ⊥PB ;(3)若PA=AB=AC=2,求三棱锥P-ACE 的体积..19. (本题满分14分)一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的(1)画散点图(2)如果y 对x 有线性相关关系,求回归直线方程; (3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:13805=∑i i i y x ,14525=∑i i x )20.(本题满分14分)已知函数x a x x f ln )(2+=.(1) 当2-=a 时,求函数)(x f 的单调区间和极值; (2) 若xx f x g 2)()(+=在),1[∞+上是单调增函数,求实数a 的取值范围.AP B CD E。

2022年高考真题:全国乙卷(文科)数学【含答案及解析】

2022年高考真题:全国乙卷(文科)数学【含答案及解析】
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合 ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】根据集合的交集运算即可解出.
【详解】因为 , ,所以 .
故选:A.
2.设 ,其中 为实数,则()
A. B. C. D.
【答案】A
【解析】
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系 中,曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为 .
(1)写出l的直角坐标方程;
(2)若l与C有公共点,求m的取值范围.
23.[选修4—5:不等式选讲](10分)
已知a,b,c都是正数,且 ,证明:
【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.
【详解】因为 R, ,所以 ,解得: .
故选:A.
3.已知向量 ,则 ()
A. 2B. 3C. 4D. 5
【答案】D
【解析】
【分析】先求得 ,然后求得 .
【详解】因为 ,所以 .
故选:D
4.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
(1)证明:平面 平面ACD;
(2)设 ,点F在BD上,当 的面积最小时,求三棱锥 的体积.
19.(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位: )和材积量(单位: ),得到如下数据:
样本号i
1
2
【解析】
【分析】根据奇函数的定义即可求出.

2024全国高考甲卷文科数学试题及答案

2024全国高考甲卷文科数学试题及答案

2024 年普通高等学校招生全国统一考试全国甲卷文科数学使用范围: 陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前, 务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时, 必须使用2B铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦擦干净后, 再选涂其它答案标号.3.答非选择题时, 必须使用 0.5 毫米黑色签字笔, 将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答, 在试题卷上答题无效.5.考试结束后, 只将答题卡交回.一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.集合A={1,2,3,4,5,9},B={x∣x+1∈A}, 则A∩B=( )(A) {1,2,3,4}(B) {1,2,3,4}(C) {1,2,3,4}(D) {1,2,3,4}【参考答案】A【详细解析】因为A={1,2,3,4,5,9},B={x∣x+1∈A}={0,1,2,3,4,8}, 所以A∩B= {1,2,3,4}, 故选(A).2. 设z=√2i, 则z⋅z‾=( )(A) 2(B) 2(C) 2(D) 2【参考答案】D【详细解析】因为z=√2i, 所以z⋅z‾=2, 故选(D).3.若实数x,y满足约束条件(略), 则z=x−5y的最小值为 ( )(A)5(B) 12(C) -2(D) −72【参考答案】D【详细解析】将约束条件两两联立可得 3 个交点: (0,−1)、(32,1)和(3,12), 经检验都符合约束条件. 代入目标函数可得: z min=−72, 故选(D).4.等差数列{a n}的前n项和为S n, 若S9=1,a3+a7=( )(A) -2(B) 73(C) 1(D) 29【参考答案】D【详细解析】令d=0, 则S9=9a n=1,a n=19,a3+a7=29, 故选(D).5.甲、乙、丙、丁四人排成一列, 丙不在排头, 且甲或乙在排尾的概率是( )(A) 14(B) 13(C) 12(D) 23【详细解析】甲、乙、丙、丁四人排成一列共有 24 种可能. 丙不在排头, 且甲或乙在排尾的共有 8 种可能, P=824=13, 故选(B).6. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1(0, 4)、F2(0,−4), 且经过点P(−6,4), 则双曲线C的离心率是( ) (A) 135(B) 137(C) 2(D) 3【参考答案】C【详细解析】e=c=|F1F2|a=2, 故选(C).7.曲线f(x)=x6+3x在(0,−1)处的切线与坐标轴围成的面积为 ((A) 1(B)3 2(C) 12(D) √3 2【参考答案】A【详细解析】因为y′=6x5+3, 所以k=3,y=3x−1,S=12×13×1=16, 故选(A).8.函数f(x)=−x2+(e x−e−x)sin x的大致图像为 ( ) 【参考答案】B【详细解析】选(B).9.已知cos αcos α−sin α=13, 则tan (α+π4)=( )(A) 3(B) 2√3−1(C) -3(D) 13【参考答案】B【详细解析】因为cos αcos α−sin α=√3, 所以tan α=1−√33,tan (α+π4)=tan α+11−tan α=2√3−1, 故选(B).10.直线过圆心, 直径【参考答案】直径【详细解析】直线过圆心, 直径.11.已知已知m、n是两条不同的直线,α、β是两个不同的平面: (1)若m⊥α,n⊥α, 则m//n; (2)若α∩β=m,m//n, 则n//β; (3)若m//α,n//α,m与n可能异面, 也可能相交, 也可能平行; (4)若α∩β=m,n与α和β所成的角相等, 则m⊥n, 以上命题是真命题的是( )(A)(1)(3)(B)(2)(3)(C)(1)(2)(3)(D)(1)(3)(4)【参考答案】A【详细解析】选(A).12.在△ABC中, 内角A,B,C所对边分别为a,b,c, 若B=π3, b2=94ac, 则sin A+sin C=( )(A)23913(B) √3913 (C) 72(D)3√1313【参考答案】C【详细解析】因为 B =π3,b 2=94ac , 所以 sin A sin C =49sin 2 B =13. 由余弦定理可得: b 2=a 2+c 2 −ac =94ac , 即: a 2+c 2=134ac,sin 2 A +sin 2 C =134sin A sin C =1312, 所以 (sin A +sin C)2=sin 2A +sin 2C +2sin A sin C =74,sin A +sin C =√72, 故选(C).二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.13.略14. 函数 f(x)=sin x −√3cos x 在 [0,π] 上的最大值是【参考答案】2【详细解析】 f(x)=sin x −√3cos x =2sin (x −π3)⩽2, 当且仅当 x =5π6时取等号. 15. 已知 a >1,1log8a−1log a4=−52, 则 a = . 【参考答案】 64【详细解析】因为 1log8a−1loga4=3log 2a−12log 2 a =−52, 所以 (log 2 a +1)(log 2 a −6)=0, 而 a >1,故 log 2 a =6,a =64.16. 曲线 y =x 3−3x 与 y =−(x −1)2+a 在 (0,+∞) 上有两个不同的交点, 则 a 的取值范围为 .【参考答案】 (−2,1)【详细解析】令 x 3−3x =−(x −1)2+a , 则 a =x 3−3x +(x −1)2, 设 φ(x)=x 3−3x +(x −1)2,φ′(x) =(3x +5)(x −1),φ(x) 在 (1,+∞) 上递增, 在 (0,1) 上递减. 因为曲线 y =x 3−3x 与 y =−(x −1)2+a 在 (0,+∞) 上有两个不同的交点, φ(0)=1,φ(1)=−2, 所以 a 的取值范围为 (−2, 1).三、解答题:共 70 分. 解答应写出文字说明, 证明过程或演算步骤. 第 17 题 第 21 题为必考题, 每个考题考生必须作答. 第 22、23 题为选考题, 考生根据要求作答.(一)必考题: 共 60 分.17.(12 分)已知等比数列 {a n } 的前 n 项和为 S n , 且 2S n =3a n+1−3. (1)求 {a n } 的通项公式; (2)求数列 {S n } 的通项公式. 【参考答案】见解析.【详细解析】(1)因为 2S n =3a n+1−3, 所以 2S n+1=3a n+2−3, 两式相减可得: 2a n+1=3a n+2− 3a n+1, 即: 3a n+2=5a n+1, 所以等比数列 {a n } 的公比 q =53, 又因为 2S 1=3a 2−3=5a 1−3, 所以 a 1=1,a n =(53)n−1;(2) 因为 2S n =3a n+1−3, 所以 S n =32(a n+1−1)=32[(53)n−1].18.(12 分)题干略. 【详细解析】(1) χ2=150(70×24−26×30)296×54×50×100<6.635, 没有 99% 的把握;(2) p ‾>p +1.65√p(1−p)150, 故有优化提升. 19.(12 分)如图, 已知 AB//CD,CD//EF,AB =DE =EF =CF =2, CD =4,AD =BC =√10,AE =2√3,M 为 CD 的中点. (1)证明: EM// 平面 BCF ; (2)求点 M 到 ADE 的距离.【参考答案】见解析【详细解析】(1)由题意: EF//CM,EF =CM , 而 CF 平面 ADO,EM ⊈ 平面 ADO , 所以 EM //平面BCF;(2)取DM的中点O, 连结OA,OE, 则OA⊥DM,OE⊥DM,OA=3,OE=√3, 而AE=2√3,故OA⊥OE,S△AOE=2√33. 因为DE=2,AD=√10, 所以AD⊥DE,S△AOE=√10.DM设点M到平面ADE的距离为ℎ, 所以V M−ADE=13S△ADE⋅ℎ=13S△AOE⋅DM,ℎ=4√3√10=2√305, 故点M到ADE的距离为2√30 5.20.(12 分) 已知函数f(x)=a(x−1)−ln x+1.(1)求f(x)的单调区间; ◻(2)若a⩽2时, 证明: 当x>1时, f(x)<e x−1恒成立. 【参考答案】见解析若a⩽0,f′(x)<0,f(x)的减区间为(0,+∞), 无增区间;若a>0时, 当0<x<1a 时, f′(x)<0, 当x>1a时, f′(x)>0, 所以f(x)的减区间为(0,1a ), 增区间为(1a,+∞);(2)因为a⩽2, 所以当x>1时, e x−1−f(x)=e x−1−a(x−1)+ln x−1⩾e x−1−2x+ ln x+1. 令g(x)=e x−1−2x+ln x+1, 则g′(x)=e x−1−2+1x. 令ℎ(x)=g′(x), 则ℎ′(x)=e x−1−1x2在(1,+∞)上递增, ℎ′(x)>ℎ′(1)=0, 所以ℎ(x)=g′(x)在(1,+∞)上递增, g′(x)>g′(1)=0, 故g(x)在(1,+∞)上递增, g(x)>g(1)=0, 即: 当x>1时, f(x)< e x−1恒成立.21.(12 分) 已知粗圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点M(1, 32在椭圆C上, 且MF⊥x轴.(1)求椭圆C的方程;(2) P(4,0), 过P的直线与椭圆C交于A,B两点, N为FP的中点, 直线NB与MF交于Q,证明: AQ⊥y轴.【参考答案】见解析【详细解析】(1)设椭圆C的左焦点为F1, 则|F1F|=2,|MF|=32. 因为MF⊥x轴, 所以∣MF1=52,2a=|MF1|+|MF|=4, 解得: a2=4,b2=a2−1=3, 故椭圆C的方程为: x24+y 23=1;{3x 12+4y 12=123(λx 2)2+4(λy 2)2=12λ2可得: 3⋅x 1+λx 21+λ⋅x 1−λx 21−λ+4⋅y 1+λy 21+λ⋅y 1−λy 21−λ=12, 结合上式可得: 5λ− 2λx 2+3=0.P(4,0),F(1,0),N (52,0), 则 y Q =3y 25−2x 2=3λy 25λ−2λx 2=−λy 2=y 1, 故AQ ⊥y 轴.x 2y 1)(x 1y 2+x 2y 1)=x 12y 22−x 22y 12=(4+4y 123)y 22−(4+4y 223)y 12=4(y 2−y 1)(y 2+y 1)=4(y 2−y 1)(x 1y 2+x 2y 1),即: x 1y 2+x 2y 1=y 2+y 1,2x 2y 1=5y 1−3y 2.P(4,0),F(1,0),N (52,0), 则 y Q =3y 25−2x 2=3y 1y 25y1−2y 1x 2=y 1, 故 AQ ⊥y 轴.(二)选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答, 并用 2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分, 如果多做, 则按所做的第一题计分.22.[选修 4-4: 坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, 以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系, 曲线 C 的极坐标方程为 ρ= ρcos θ+1. (1)写出 C 的直角坐标方程;(2)直线 {x =ty =t +a (t 为参数)与曲线 C 交于 A 、B 两点, 若 |AB|=2, 求 a 的值.【参考答案】见解析【详细解析】(1)因为 ρ=ρcos θ+1, 所以 ρ2=(ρcos θ+1)2, 故 C 的直角坐标方程为: x 2+y 2=(x +1)2, 即: y 2=2x +1; ◻(2) 将 {x =ty =t +a 代入 y 2=2x +1 可得: t 2+2(a −1)t +a 2−1=0,|AB|=√2|t 1−t 2|=√16(1−a)=2,解得: a =34.[选修 4-5: 不等式选讲](10 分)实数 a,b 满足 a +b ⩾3. (1)证明: 2a 2+2b 2>a +b ;(2)证明: |a−2b2|+|b−2a2|⩾6.【解析】(1)因为a+b⩾3, 所以2a2+2b2⩾(a+b)2>a+b;(2) |a−2b2|+|b−2a2|⩾|a−2b2+b−2a2|=|2a2+2b2−(a+b)|=2a2+2b2−(a+b)⩾(a+b)2−(a+b)=(a+b)(a+b−1)⩾6.。

2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】

2020年高考真题——数学(文)(全国卷Ⅰ)+Word版含解析【KS5U+高考】

绝密★启用前2020 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x | x2- 3x - 4 < 0}, B = {-4,1, 3, 5},则A B =()A. {-4,1}B. {1, 5}C. {3, 5}D. {1, 3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得A B ,得到结果.【详解】由x2- 3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1, 3, 5},所以A B ={1, 3},故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若z =1 + 2i + i3,则|z | = ()A. 0B. 1212 +12 2 b 2- a2 4b 2 b CD. 2【答案】C【解析】【分析】先根据i 2 = -1将 z 化简,再根据向量的模的计算公式即可求出.【详解】因为 z = 1+2i + i 3 = 1+2i - i = 1+ i ,所以 z = = .故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.1. 胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.5 -1 4B.5 -1 2C.5 +1 4D.5 +1 2【答案】D【解析】【分析】设CD = a , PE = b ,利用 PO 2 = 1CD ⋅ PE 得到关于a , b 的方程,解方程即可得到答案.2CD = a , PE = b【详解】如图,设,则 PO=由题意 PO 2= 1 ab ,即b 2- a 2 =1 4( ) -2 ⋅ -1 = 0 ,化简得,ab 24 2aaPE 2 - OE 2解得b=1 + 5 (负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.为正方形ABCD 的中心,在O,A,B,C,D 中任取3 点,则取到的3 点共线的概率为()1 2A. B.5 514C. D.25【答案】A【解析】【分析】列出从5 个点选3 个点的所有情况,再列出3 点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O,A,B,C,D 5 个点中任取3 个有{O, A, B},{O, A, C},{O, A, D},{O, B, C}{O, B, D},{O,C, D},{A, B,C},{A, B, D}{A,C, D},{B,C, D} 共10 种不同取法,3 点共线只有{A,O, C} 与{B,O, D} 共2 种情况,由古典概型的概率计算公式知,取到 3 点共线的概率为2= 1 .故选:A10 5【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.3. 一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:°C )的关系,在 20个不同的温度条件下进行种子发芽实验,由实验数据(x i , y i )(i = 1, 2,, 20) 得到下面的散点图:由此散点图,在 10°C 至 40°C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x的回归方程类型的是()A. y = a + bxB. y = a + bx 2C. y = a + b e xD. y = a + b ln x【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是y =a +b ln x .故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.4.圆x2+y2- 6x = 0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据直线和圆心与点(1, 2) 连线垂直时,所求的弦长最短,即可得出结论.【详解】圆x2+y2- 6x = 0 化为(x - 3)2+y2= 9 ,所以圆心C 坐标为C(3, 0) ,半径为3 ,设P(1, 2) ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为= 2 = 2 .故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.5.数f (x) = cos(ωx +π) 在[-π,π]的图像大致如下图,则f(x)的最小正周期为()610π7πA. B.96 4π3πC. D.32【答案】C9- | CP |29 -8+= -【解析】【分析】由图可得:函数图象过点⎛ - 4π ,0⎫ ,即可得到cos ⎛ - 4π ⋅ω + π ⎫ = 0 ,结合⎛ - 4π ,0⎫是 9 ⎪ 9 6 ⎪ 9 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭函数 f (x ) 图象与 x 轴负半轴的第一个交点即可得到- 4π⋅ω + π = - π ,即可求得ω = 3, 9 6 2 2再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点⎛ - 4π ,0⎫,9 ⎪ ⎝ ⎭将它代入函数 f (x ) 可得: cos ⎛ - 4π⋅ω + π ⎫ = 0 9 6 ⎪ ⎝ ⎭又⎛ - 4π ,0⎫是函数 f (x ) 图象与 x 轴负半轴的第一个交点, 9 ⎪ ⎝ ⎭所以-4π ⋅ω ππ,解得:ω = 39622T =2π = 2π = 4π所以函数 f (x ) 的最小正周期为故选:Cω 3 32【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6. l og 3 4 = 2 ,则4- a= ()1 1 1 1 A.B.C.D.16986【答案】B【解析】【分析】首先根据题中所给的式子,结合对数的运算法则,得到log 3 4a= 2 ,即 4a = 9 ,进而求得4-a = 1,得到结果.9【详解】由a log 3 4 = 2 可得log 3 4a= 2 ,所以4a = 9 ,所以有4-a = 1,9故选:B.【点睛】该题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目. 7. 下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C【解析】【分析】根据程序框图的算法功能可知,要计算满足1+ 3 + 5 + + n > 100 的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足1+ 3 + 5 ++ n > 100 的最小正奇数,因为1+ 3 + 5 += 1 (n +1)2 4> 100 ,解得n > 19 ,所以输出的n =21.故选:C【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题.8.n } 是等比数列,且a 1 + a 2 + a 3 = 1 ,a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ( )A. 12B. 24C. 30D. 32(1+ n )⨯⎛ n -1 +1⎫⎪ + n =⎝ 2 2 ⎭1 2 1 2 1 2 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1 【答案】D【解析】【分析】根据已知条件求得q 的值,再由a + a + a = q 5(a + a + a ) 可求得结果.678123【详解】设等比数列{a } 的公比为q ,则a + a + a = a (1+ q + q 2)= 1 , a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2) = q = 2 , 因此, a + a + a = a q 5 + a q 6 + a q 7 = a q 5 (1+ q + q 2 )= q 5 = 32 .故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.F , F2y 2 | OP |= 29. 2 是双曲线C : x-= 1 的两个焦点,O 为坐标原点,点 P 在C 上且 ,3则△PF 1F 2 的面积为()A.725 B. 3C.2D. 2【答案】B【解析】【分析】由是以 P 为直角直角三角形得到| PF |2 + | PF|2= 16 ,再利用双曲线的定义得到| PF | - | PF | = 2 ,联立即可得到| PF || PF| ,代入 S △= 1 | PF || PF |中计算即可.1212F 1F 2 P 21 2【详解】由已知,不妨设 F 1(-2, 0), F 2 (2, 0) , 则 a = 1, c = 2 ,因为| OP |= 1 = 1| F F | ,21 2所以点 P 在以 F 1F 2 为直径的圆上,即 F 1F 2 P 是以 P 为直角顶点的直角三角形,故| PF |2 + | PF |2 =| F F |2 ,121 2即| PF |2+ | PF |2 = 16 ,又 | PF | - | PF | = 2a = 2 ,F 1F 2 P3 3 1 2 1 2 所以4 = | PF 1 | - | PF 2 | 2= | PF |2 + | PF |2-2 | PF|| PF |= 16 - 2 | PF 1 || PF 2 | ,解得| PF || PF |= 6 ,所以 S △= 1 | PF || PF|= 3 12故选:BF 1F 2 P 21 2【点晴】本题考查双曲线中焦点三角面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.10. , B , C 为球O 的球面上的三个点,⊙ O 1 为 ABC 的外接圆,若⊙ O 1 的面积为4π ,AB = BC = AC = OO 1 ,则球O 的表面积为() A. 64π B. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边 ABC 的外接圆半径,进而求出其边长,得出OO 1 的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆O 1 半径为 r ,球的半径为 R ,依题意,得π r 2 = 4π ,∴r = 2 ,由正弦定理可得 AB = 2r sin 60︒ = 2 ,∴OO 1 = AB = 2 ,根据圆截面性质OO 1 ⊥ 平面 ABC ,∴OO ⊥ O A , R = OA === 4 ,1 1∴球O 的表面积 S = 4π R 2 = 64π .故选:AOO 2 + O A 2 1 1 OO 2 + r 2 1⎨⎩⎩ 【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共 4 小题,每小题 5 分,共 20 分.⎧2x + y - 2 ≤ 0,11. y 满足约束条件⎪x - y -1 ≥ 0, 则z =x +7y 的最大值为 .⎪ y +1 ≥ 0,【答案】1【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数 z = x + 7 y 即: y = - 1 x + 1z ,77其中 z 取得最大值时,其几何意义表示直线系在 y 轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点 A 处取得最大值, 联立直线方程:⎧2x + y - 2 = 0 ,可得点 A 的坐标为: A (1, 0),⎨x - y -1 = 0据此可知目标函数的最大值为: z max = 1+ 7 ⨯ 0 = 1 . 故答案 :1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0 时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0 时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.x 12. a = (1, -1), b = (m +1, 2m - 4) ,若a ⊥ b ,则m =.【答案】5【解析】【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.【详解】由a ⊥ b 可得a ⋅ b = 0 ,又因为a = (1, -1), b = (m +1, 2m - 4),所以a ⋅ b = 1⋅(m +1) + (-1) ⋅ (2m - 4) = 0 ,即 m = 5 , 故答案为:5.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.13. = ln x + x +1的一条切线的斜率为 2,则该切线的方程为 .【答案】 y = 2x【解析】【分析】设切线的切点坐标为(x 0 , y 0 ) ,对函数求导,利用 y ' |x = 2 ,求出 x 0 ,代入曲线方程求出 y 0 ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为( x , y ), y = ln x + x + 1, y ' = 1+ 1 ,y ' |=1 + 1 = 2, x = 1, y 0 0x= 2,所以切点坐标为(1, 2) ,x = x 00 0所求的切线方程为 y - 2 = 2(x -1) ,即 y = 2x . 故答案为: y = 2x .【点睛】本题考查导数的几何意义,属于基础题.14. a } 满足a+ (-1)n a = 3n -1,前 16 项和为 540,则a =.nn +2n1【答案】7n +2 n 【解析】【分析】对 n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用a 1 表示,由偶数项递推公式得出偶数项的和,建立a 1 方程,求解即可得出结论.【详解】a + (-1)n a = 3n -1,当 n 为奇数时, a n +2 = a n + 3n - 1 ;当n 为偶数时, a n +2 + a n = 3n - 1 . 设数列{a n } 的前n 项和为 S n ,S 16 = a 1 + a 2 + a 3 + a 4 += a 1 + a 3 + a 5= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为 必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分.15. 受了一项加工业务,加工出来 产品(单位:件)按标准分为 A ,B ,C ,D 四个等级.加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取加工费 90 元,50 元,20 元;对于D 级品,厂家每件要赔偿原料损失费 50 元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25 元/件,乙分厂加工成本费为20 元/件.厂家为决定由哪个分厂承接加工业务, 在两个分厂各试加工了 100 件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表 + a 16+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )等级ABCD乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100 件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A 级品的概率为0.4 ,乙分厂加工出来的A 级品的概率为0.28 ;(2)选甲分厂,理由见解析.【解析】【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100 件产品的总利润,即可求出平均利润,由此作出选择.40【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为= 0.4 ,乙厂加工出10028= 0.28 ;来的一件产品为A 级品的概率为100(2)甲分厂加工100 件产品的总利润为40⨯(90 - 25)+ 20⨯(50 - 25)+ 20⨯(20 - 25)- 20⨯(50 + 25)= 1500 元,所以甲分厂加工100 件产品的平均利润为15 元每件;乙分厂加工100 件产品的总利润为28⨯(90 - 20)+17 ⨯(50 - 20)+ 34⨯(20 - 20)- 21⨯(50 + 20)= 1000 元,所以乙分厂加工100 件产品的平均利润为10 元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出3 A + C = 决策,属于基础题.16. 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 B =150°.(1)若 a = c ,b =2 ,求 ABC 的面积;(2)若 sin A +【答案】(1) sin C =2 ,求 C .2;(2)15︒ .【解析】【分析】(1) 已知角 B 和b 边,结合 a , c 关系,由余弦定理建立c 的方程,求解得出 a , c ,利用面积公式,即可得出结论;(2) 将 A = 30︒ - C 代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得b 2 = 28 = a 2 + c 2 - 2ac ⋅ cos150︒ = 7c 2 ,∴c = 2, a = 2 3,∴△ABC 的面积S = 1ac sin B = ; 2(2) 30︒ ,∴sin A + 3 sin C = sin(30︒ - C ) + 3 sin C= 1 cos C + 3 sin C = sin(C + 30︒) =2, 2 2 20︒ < C < 30︒,∴30︒ < C + 30︒ < 60︒ , ∴C + 30︒ = 45︒,∴C = 15︒ .【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.17. D 为圆锥的顶点,O 是圆锥底面的圆心, ABC 是底面的内接正三角形,P 为 DO上一点,∠APC =90°.3 7 3 33 3= 3(1) 证明:平面 PAB ⊥平面 PAC ;(2) 设 DO =,圆锥的侧面积为 3π ,求三棱锥 P −ABC 的体积.【答案】(1)证明见解析;(2)6 .8【解析】【分析】(1) 根据已知可得 PA = PB = PC ,进而有△PAC ≅ △PBC ,可得∠APC = ∠BPC = 90,即PB ⊥ PC ,从而证得 PC ⊥ 平面 PAB ,即可证得结论; (2) 将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形 ABC 边长,在等腰直角三角形 APC 中求出 AP ,在 Rt APO 中,求出 PO ,即可求出结论.【详解】(1) Q D 为圆锥顶点, O 为底面圆心,∴OD ⊥ 平面 ABC ,P 在 DO 上, OA = OB = OC ,∴ PA = PB = PC ,ABC 是圆内接正三角形,∴ AC = BC , △PAC ≅ △PBC ,∴∠APC = ∠BPC = 90︒ ,即PB ⊥ PC , PA ⊥ PC , PA PB = P ,∴ PC ⊥ 平面 PAB , PC ⊂ 平面 PAC ,∴平面 PAB ⊥ 平面 PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为π rl =3π , rl = ,OD 2 = l 2 - r 2 = 2 ,解得r = 1, l = , AC = 2r sin 60 ,在等腰直角三角形 APC 中, AP =2 AC =6 ,22在 Rt PAO 中, PO ==2 ,22 AP 2 - OA 26 - 1 4∴三棱锥 P - ABC 的体积为V= 1PO ⋅ S= 1 ⨯ 2 ⨯ 3 ⨯ 3 = 6 . P - ABC 3 △ABC3 24 8【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.18. 数 f (x ) = e x - a (x + 2) .(1) 当a = 1 时,讨论 f (x ) 的单调性; (2) 若 f (x ) 有两个零点,求a 的取值范围.【答案】(1)减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)(1, +∞) . e 【解析】【分析】(1) 将a = 1 代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2) 若 f (x ) 有两个零点,即e x- a (x + 2) = 0 有两个解,将其转化为a = ex x + 2有两个解,令h (x ) = e xx + 2(x ≠ -2) ,求导研究函数图象的走向,从而求得结果.【详解】(1)当a = 1 时, f (x ) = e x - (x + 2) , f ' (x ) = ex -1,令f ' (x ) < 0 ,解得 x < 0 ,令 f ' (x ) > 0 ,解得 x > 0 ,所以 f (x ) 的减区间为(-∞, 0) ,增区间为(0, +∞) ;(2)若 f (x ) 有两个零点,即e x - a (x + 2) = 0 有两个解,1+2从方程可知, x = 2 不成立,即a = e x x + 2有两个解,ex'e x (x + 2) - e x e x (x +1) 令 h (x ) =(x ≠ -2) ,则有h (x ) =x + 2(x + 2)2=(x + 2)2,令 h ' (x ) > 0,解得 x > -1 ,令h ' (x ) < 0 ,解得 x < -2 或-2 < x < -1 ,所以函数h (x ) 在(-∞, -2) 和(-2, -1) 上单调递减,在(-1, +∞) 上单调递增,且当 x < -2 时, h (x ) < 0 ,而 x → -2+ 时, h (x ) → +∞ ,当 x → +∞时, h (x ) → +∞ ,所以当a =e x x + 2有两个解时,有a > h (-1) = 1 ,e所以满足条件的a 的取值范围是: ( , +∞) .e【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线 y = e x 和直线 y = a ( x + 2) 有两个交点,利用过点(-2, 0) 的曲线 y = e x 的切线 斜率,结合图形求得结果.19. 、B 分别为椭圆 E :x 2a 2y= 1(a >1)的左、右顶点,G 为 E 的上顶点,AG ⋅ GB = 8 ,P 为直线 x =6 上的动点,PA 与 E 的另一交点为 C ,PB 与 E 的另一交点为 D .(1) 求 E 的方程;(2) 证明:直线 CD 过定点.x 2 2【答案】(1)+ y 9= 1;(2)证明详见解析.【解析】 【分析】(1)由已知可得: A (-a ,0) , B (a ,0) , G (0,1) ,即可求得 AG ⋅ G B = a 2 -1 ,结合已知 即可求得: a 2 = 9 ,问题得解.AG ⋅ G B = a 2 x 0 ⎝ ⎭y (2)设 P (6, y 0 ) ,可得直线 AP 的方程为: y = y(x + 3) ,联立直线 AP 的方程与椭圆方 9⎛ -3y 2 + 27 6 y ⎫ 程即可求得点C 的坐标为 0 , 0 ⎪ ,同理可得点D 的坐标为 y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2 - 3 -2 y ⎫ 0 , 0 ⎪ ,即可表示出直线CD 的方程,整理直线CD 的方程可得: y 2 +1 y 2 +1⎝ 0 0 y =4 y 0⎭⎛ x - 3 ⎫,命题得证. 3(3 - y 2 )2 ⎪【详解】(1)依据题意作出如下图象:2由椭圆方程 E : + a2 y 2 = 1(a > 1) 可得: A (-a ,0) , B (a ,0) , G (0,1)∴ AG = (a ,1) , GB = (a , -1)∴ -1 = 8 ,∴ a 2 = 9∴ x 2 2椭圆方程为: + y = 19(2)证明:设 P (6, y 0 ) ,则直线 AP 的方程为: y =y 0 - 0 6 - (-3) ( x + 3) ,即: y = y 0 ( x + 3) 9 ⎧ x 2+ 2 = ⎪ 9联立直线 AP 的方程与椭圆方程可得: ⎨ y ,整理得: ⎪ y = 0 ( x + 3)⎪⎩9 1-3y 2 + 27 0 0 0 0⎝ 0 0 0 0 6 (3 - y )0 ⎩ 0 ⎭ ⎝ 2 0 ⎭ ( y 2 + 9) x 2 + 6 y 2 x + 9 y 2 - 81 = 0 ,解得: x = -3 或 x = 0-3y 2 + 27 y6 y 0y 2 + 9将x =代入直线y = 0 ( x + 3) 可得: y = 2y 2+ 99⎛ -3y 2 + 27 6 y ⎫ y 0 + 9所以点C 的坐标为 0 , 0 ⎪ .y 2 + 9 y 2 + 9 ⎝ 0 0 ⎭⎛ 3y 2- 3 -2 y ⎫ 同理可得:点 D 的坐标为 0 , 0 ⎪ y 2 +1 y 2 +1 ⎝ 0 0 ⎭6 y 0 - ⎛ -2 y 0 ⎫ ⎛ -2 y ⎫y 2 + 9 y 2 +1 ⎪ ⎛ 3y 2 - 3 ⎫ ∴直线CD 的方程为: y - 0 ⎪ = 0 ⎝ 0 ⎭ x - 0 ⎪ , ⎝ y 2 +1 ⎭ -3y 2 + 27 3y 2- 3 - y 2 +1 ⎭ y 2 + 9 y 2 +12 y 8 y (y 2+ 3)⎛ 03y 2 - 3 ⎫ 8 y⎛ 3y 2 - 3 ⎫ 整理可得: y + 0= y 2 +1 0 0 6 (9 - y 4)x - ⎝ y 2 +1 ⎪ = 0 x - 0 y 2 +1 ⎪ 整理得: y =4 y 0 x + 2 y 0= 4 y 0 ⎛ x - 3 ⎫ 3(3 - y 2) y 2 - 3 3(3 - y 2 )2 ⎪ 00 故直线CD 过定点⎛ 3 ,0 ⎫ 0 ⎝ ⎭ 2 ⎪ ⎝ ⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共 10 分。

2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
整理得 ,因为 ,所以 ,
【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.
18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则A∩B中元素的个数为()
A.2B.3C.4D.5
【答案】B
【解析】
【分析】
采用列举法列举出 中元素的即可.
【详解】由题意, ,故 中元素的个数为3.
故选:B
【点晴】本题主要考查集合 交集运算,考查学生对交集定义的理解,是一道容易题.
【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,
其中 ,且点M为BC边上的中点,
设内切圆的圆心为 ,
由于 ,故 ,
设内切圆半径为 ,则:
,
解得: ,其体积: .
故答案为: .
【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
2.若 ,则z=()
A. 1–iB. 1+iC. –iD.i
【答案】D
【解析】
【分析】
先利用除法运算求得 ,再利用共轭复数的概念得到 即可.
【详解】因为 ,所以 .

2022年甘肃高考数学(文科)真题及参考答案

2022年甘肃高考数学(文科)真题及参考答案

2022年甘肃高考数学真题及参考答案文科数学注意事项1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}1086,42,,,=M ,{}61<<-=x x N ,则=⋂N M ()A.{}4,2 B.{}6,4,2 C.{}86,4,2, D.{}1086,42,,,2.若()i b a i 221=++,其中a ,b 为实数,则()A.1,1-==b a B.1,1==b a C.1,1=-=b a D.1,1-=-=b a 3.已知向量()1,2=a ,()4,2-=b=-()A.2B.3C.4D.54.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.65.若y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥+0422y y x y x ,则y x z -=2的最大值是()A.2- B.4C.8D.126.设F 为抛物线x y C 4:2=的焦点,点A 在C 上,点()0,3B ,若BF AF =,则=AB ()A.2B.22C.3D.237.执行右图的程序框图,输出的=n ()A.3B.4C.5D.68.右图是下列四个函数中的某个函数在区间[]3,3-的大致图象,则该函数是()A.1323++-=x x x y B.1323+-=x x x y C.1cos 22+=x x x y D.1sin 22+=x x y 9.在正方体1111D C B A ABCD -,E ,F 分别为AB ,BC 的中点,则()A.平面EF B 1⊥平面1BDDB.平面EF B 1⊥平面BD A 1C.平面EF B 1∥平面ACA 1 D.平面EFB 1∥平面DC A 1110.已知等比数列{}n a 的前3项和为168,4252=-a a ,则=6a ()A.14B.12C.6D.311.函数()()1sin 1cos +++=x x x x f 在区间[]π2,0的最小值、最大值分别为()A.22ππ,-B.223ππ,-C.222+-ππ, D.2223+-ππ,12.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.31B.21 C.33 D.22二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档