高中物理奥赛讲义(磁场) - 第一讲 基本知识介绍
中学生奥林匹克物理竞赛 磁场一
S sin
角度为磁感应强度与法向量的夹角。 方向:垂直于线圈平面
稳定、非稳定平衡 稳定平衡 非稳定平衡
与
同向
与
反向
第三节
电场中的载流子
霍耳效应
续17
霍耳效应测磁场
测载流子密度
2r r
0, B 向外
第一节
安培定律
长度为 的通电直导线在匀强磁场 中受的作用力
方向:左手定则 当 当 或 时, 时, 极大, max
【例题1】如图所示,一长方体绝缘容器内部高为L,前后面间距为d,左右两侧装有两根 开口向上的管子a、b,上下两侧装有电极C(正极)和D(负极),并经开关S与电源连 接。容器中注满了能导电的液体,液体的密度为ρ,将容器置于一匀强磁场中,磁场方 向垂直纸面向里。当开关断开时,竖直管子中的液面高度相同,开关闭合时,a、b管中 (1)开关S闭合后,a、b (2)若在回路中接一电流表,并测得电流为I,两管液面高度差为h,则磁感应强度B的 大小为多少?
R
r
h
*p
B
o
h
R cos r 2 2 2 r R h
0 I l 0 I l B sin90 2 4 r 4 r 2 0 I l 0 I l BP B cos cos cos 2 2 4 r 4 r 2 0R I
【例题2】在原子反应堆中抽动液态金属时,由于不允许转动机械部分和液态金属接触,常使 用一种电磁泵.如图所示,图甲表示这种电磁泵的结构。将导管放在磁场中,当电流I穿过 导电液体时,液体即被驱动,并保持匀速运动。求: (1)说明这种电磁泵的工作原理; (2) 导管内截面为 ,磁场区域宽为L,磁感应强度为B 。液体穿过磁场区域的电流为I, 求驱动力造成的压强差。 h
最新高中物理竞赛讲义(完整版)
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (139)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。
奥赛辅导电磁现象讲义-十堰第一中学
《电磁现象》第一讲电流周围的磁场一、磁场基本性质1、磁场高斯定理:磁场中通过任一封闭曲面的磁通量一定为零。
说明磁场是无源场。
类比于静电场:静电场中通过任一封闭曲面的电通量不一定为零。
静电场是有源场。
2、安培环路定理:磁感应强度沿任意闭合回路的线积分等于穿过该闭合回路的全部电流的代数和的μ0倍。
说明磁场是有旋场。
类比于静电场:静电场中场强沿任意闭合回路的线积分一定等于零。
静电场是无旋场。
二、电流产生磁场的规律1、毕奥-萨伐尔定律(电流元“I△L”周围磁场的分布规律;类似于点电荷场强的关系式)对于电流强度为I 、长度为△L 的导体元段,设其在距离为r 的点激发的“元磁感应强度”为△B 。
则:△B=μ0I 4πr 2 △Lsin θ(式中θ为电流方向与r 之间的夹角,μ0=4π×10-7Tm/A 、真空磁导率);△B 的方向由矢量积的右手螺旋关系确定。
应用毕萨定律再结合矢量叠加原理,理论上可以求解任意形状导线在任何位置激发的磁感强度。
2、典型的电流分布的磁场(了解即可,不要求推导)(1)无限长直线电流的磁场:B=μ0I 2πr (r 是场点P 到导线的垂直距离)若直导线的长度是有限的,则其周围磁场:B=μ0I4πr (cos θ1-cos θ2) ;显然,当L 趋于无限长时,θ1→0︒,θ2→180︒,B=μ0I2πr 。
(2)细长密绕通电螺线周围的磁场:管内:B=μ0nI (式中n 是螺旋管单位长度上线圈的匝数),由此可知,这是一个匀强磁场。
而管外的磁场为零。
(3)圆形电流中心的磁感应强度:B=μ0I2r(r 为圆形电流的半径)例题1:如图所示,M l M 2和 M 3 M 4都是由无限多根无限长的外表面绝缘的细直导线紧密排列成的导线排横截面,两导线排相交成120°,O O /为其角平分线。
每根细导线中都通有电流 I ,两导线排中电流的方向相反,其中M l M 2中电流的方向垂直纸面向里。
高中物理竞赛《磁场》内容讲解
磁 场一、恒定电流的磁场1、直线电流的磁场通有电流强度为I 的无限长直导线,距导线为R 处的磁感应强度为:RIB πμ20=;如下图距通有电流强度为I 的有限长直导线为R 处的P 点的磁感应强度为:)cos (cos 40βαπμ+=RIB ----------------------------------①若P 点在通电直导线的延长线上,则R=0 α=0 β=π 无法直接应用上述式子计算,可进行如下变换lR d d 21)sin(2121=+βα 上式中1d 、2d 分别为P 点到A 、B 的距离,l 为直导线的长度所以:l d d R )sin(21βα+=代入①式得:)sin(cos cos 4210βαβαπμ++=d d Il B令2sin2cos2cos 2sin 22cos2cos2)sin(cos cos βαβαβαβαβαβαβαβα+-=++-+=++=y将α=0 β=π代入上式得0=y所以:在通电直导线的延长线上任意一点的磁感应强度为0=B2、微小电流元产生的磁场微小电流元的磁场,根据直线电流的磁场公式)cos (cos 40βαπμ+=rIB得:Ⅰ若α、β都是锐角,如左图,有:)cos (cos 40βαπμ+=r I B =)sin (sin 4210θθπμ∆+∆rI因1θ∆、2θ∆0→,所以≈∆+∆=)sin (sin 4210θθπμr I B )(4210θθπμ∆+∆rI所以:θπμ∆=rIB 40Ⅱ若α、β中有一个是钝角,如β(右图),则:]sin )[sin(cos 4)cos (cos 400000θθθθπμβαπμ-+∆=+=r Id I B -------------①00000sin sin cos cos sin sin )sin(θθθθθθθθ-∆+∆=-+∆因0→∆θ,所以:0000cos cos sin sin )sin(θθθθθθθ∆≈∆≈-+∆--------------------------------②②式代入①式得:θπμ∆=rIB40总上所述,电流元I 在空间某点产生的磁场为:θπμ∆=rIB 40,式中r 为电流元到该点的距离,θ∆为电流元端点与该点连线张开的角度。
高中物理一轮复习 专题:磁场 第1讲 动量 冲量 动量定理 讲义
第1讲动量冲量动量定理[学生用书P108]【基础梳理】一、动量冲量1.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=m v.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.2.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.二、动量定理1.动量定理(1)内容:物体所受合力的冲量等于物体的动量变化量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量的方向与合力的方向相同,可以在某一方向上应用动量定理.2.动量、动能、动量的变化量的比较(1)动量越大的物体,其速度越大.()(2)物体的动量越大,其惯性也越大.()(3)物体所受合力不变,则动量也不变.()(4)物体沿水平面运动时,重力不做功,其冲量为零.()(5)物体所受合外力的冲量方向与物体末动量的方向相同.()(6)物体所受合外力的冲量方向与物体动量变化的方向相同.()提示:(1)×(2)×(3)×(4)×(5)×(6)√篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,这样做可以() A.减小球对手的冲量B.减小球对手的冲击力C.减小球的动量变化量D.减小球的动能变化量提示:B(多选)一个质量为m的物体以初速度v0开始做平抛运动,经过时间t下降的高度为h,速度变为v,则在这段时间内物体的动量变化大小为()A.m(v-v0) B.mgtC.m v2-v20D.m2gh提示:BCD对动量和冲量的理解[学生用书P109]【知识提炼】1.对动量的理解(1)动量是矢量,方向与速度方向相同.动量的合成与分解遵循平行四边形定则、三角形法则.(2)动量是状态量.通常说物体的动量是指运动物体某一时刻的动量(状态量),计算物体此时的动量应取这一时刻的瞬时速度.(3)动量是相对量.物体的动量与参照物的选取有关,通常情况下,指相对地面的动量.单位是kg·m/s.2.冲量的计算(1)恒力的冲量计算恒力的冲量可直接根据定义式来计算,即用恒力F乘以其作用时间Δt而得.(2)方向恒定的变力的冲量计算若力F的方向恒定,而大小随时间变化的情况如图所示,则该力在时间Δt=t2-t1内的冲量大小在数值上就等于图中阴影部分的“面积”.(3)一般变力的冲量计算在中学物理中,一般变力的冲量通常是借助于动量定理来计算的.(4)合力的冲量计算几个力的合力的冲量计算,既可以先算出各个分力的冲量后再求矢量和,又可以先算各个分力的合力再算合力的冲量.【跟进题组】1.(2017·高考天津卷)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点时,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变解析:选B.摩天轮转动过程中乘客的动能不变,重力势能一直变化,故机械能一直变化,A错误;在最高点乘客具有竖直向下的向心加速度,重力大于座椅对他的支持力,B正确;摩天轮转动一周的过程中,乘客重力的冲量等于重力与周期的乘积,C错误;重力瞬时功率等于重力与速度在重力方向上的分量的乘积,而转动过程中速度在重力方向上的分量是变化的,所以重力的瞬时功率也是变化的,D错误.2.(2018·江苏六校联考)如图所示,在倾角为θ的斜面上,有一个质量为m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是F f,在整个运动过程中,摩擦力对滑块的总冲量大小为____________,方向是____________;合力对滑块的总冲量大小为____________,方向是____________.解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为F f(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sin θ+F f(t1-t2),沿斜面向下.答案:F f(t2-t1)沿斜面向上mg(t1+t2)sin θ+F f(t1-t2)沿斜面向下对动量定理的理解和应用[学生用书P109]【知识提炼】1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp 越小.4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程:研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析:只分析研究对象的受力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.【典题例析】如图所示,一高空作业的工人重为600 N ,系一条长为L =5 m 的安全带,若工人不慎跌落时安全带的缓冲时间t =1 s ,求安全带受的冲力?(g 取10 m/s 2)[审题指导] 转换研究对象,先以人为研究对象,利用动量定理求出人受安全带的冲力,再利用牛顿第三定律求安全带受的冲力.[解析] 法一:程序法设工人刚要拉紧安全带时的速度为v ,v 2=2gL ,得v =2gL经缓冲时间t =1 s 后速度变为0,取向下为正方向,工人受两个力作用,即拉力F 和重力mg ,对工人由动量定理知,(mg -F )t =0-m v ,F =mgt +m vt将数值代入得F =1 200 N .由牛顿第三定律,工人给安全带的冲力F ′为1 200 N ,方向竖直向下. 法二:全过程整体法在整个下落过程中对工人应用动量定理,重力的冲量大小为mg ⎝⎛⎭⎫2L g +t ,拉力F 的冲量大小为Ft .初、末动量都是零,取向下为正方向,由动量定理得mg ⎝⎛⎭⎫2L g +t -Ft =0 解得F =mg ⎝⎛⎭⎫2L g +t t=1 200 N .由牛顿第三定律知工人给安全带的冲力大小为F ′=F =1 200 N ,方向竖直向下.[答案] 1 200 N,方向竖直向下动量定理的两个重要应用(1)应用I=Δp求变力的冲量.如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft求变力的冲量,可以求出该力作用下物体动量的变化量Δp,等效代换为力的冲量I.(2)应用Δp=FΔt求动量的变化量.例如,在曲线运动中,速度方向时刻在变化,求动量变化(Δp=p2-p1)需要应用矢量运算方法,计算比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化量.【迁移题组】1运用动量定理解释生活现象1.(多选)有关实际中的现象,下列说法正确的是()A.火箭靠喷出气流的反冲作用而获得巨大速度B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好解析:选ABC.火箭升空时,内能减小,转化为机械能,火箭向后喷出气流,火箭对气流有向后的力,由于力的作用是相互的,气流对火箭有向前的力的作用,从而推动火箭前进,故选项A正确;体操运动员在落地的过程中,动量变化一定,由动量定理可知,运动员受到的冲量I一定,着地时屈腿是延长时间t,由I=Ft可知,延长时间t可以减小运动员所受到的平均冲力F,故B正确;用枪射击时要用肩部抵住枪身是为了减少反冲的影响,故选项C正确;为了减轻撞车时对司乘人员的伤害程度,就要延长碰撞时间,由I=Ft可知,车体前部的发动机舱不能太坚固,故选项D错误.2动量定理的应用2.(多选)(2017·高考全国卷Ⅲ)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动.F随时间t变化的图线如图所示,则()A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零解析:选AB.根据F-t图线与时间轴围成的面积的物理意义为合外力F的冲量,可知在0~1 s、0~2 s、0~3 s、0~4 s内合外力冲量分别为2 N·s、4 N·s、3 N·s、2 N·s,应用动量定理I=mΔv可知物块在1 s、2 s、3 s、4 s末的速率分别为1 m/s、2 m/s、1.5 m/s、1 m/s,物块在这些时刻的动量大小分别为2 kg·m/s、4 kg·m/s、3 kg·m/s、2 kg·m/s,则A、B项均正确,C、D项均错误.动量定理与微元法的综合应用[学生用书P110]【知识提炼】1.流体作用模型对于流体运动,可沿流速v的方向选取一段柱形流体,设在极短的时间Δt内通过某一横截面S的柱形流体的长度为Δl,如图所示.设流体的密度为ρ,则在Δt的时间内流过该截面的流体的质量为Δm=ρSΔl=ρS v Δt,根据动量定理,流体微元所受的合外力的冲量等于该流体微元动量的增量,即FΔt=ΔmΔv,分两种情况:(1)作用后流体微元停止,有Δv=-v,代入上式有F=-ρS v2;(2)作用后流体微元以速率v反弹,有Δv=-2v,代入上式有F=-2ρS v2.2.微粒类问题【跟进题组】1.如图所示,自动称米机已在许多大粮店广泛使用.买者认为:因为米流落到容器中时对容器有向下的冲力而不划算;卖者则认为:当预定米的质量达到要求时,自动装置即刻切断米流,此刻有一些米仍在空中,这些米是多给买者的,因而双方争执起来.下列说法正确的是()A .买者说的对B .卖者说的对C .公平交易D .具有随机性,无法判断解析:选C .设米流的流量为d ,它是恒定的,米流在出口处速度很小可视为零,若切断米流后,设盛米的容器中静止的那部分米的质量为m 1,空中还在下落的米的质量为m 2,落到已静止的米堆上的一小部分米的质量为Δm .在极短时间Δt 内,取Δm 为研究对象,这部分米很少,Δm =d ·Δt ,设其落到米堆上之前的速度为v ,经Δt 时间静止,如图所示,取竖直向上为正方向,由动量定理得(F -Δmg )Δt =Δm v即F =d v +d ·Δt ·g ,因Δt 很小,故F =d v 根据牛顿第三定律知F =F ′,称米机的读数应为 M =N g =m 1g +F ′g =m 1+d v g因切断米流后空中尚有t =v g 时间内对应的米流在空中,故d vg=m 2可见,称米机读数包含了静止在袋中的那部分米的质量m 1,也包含了尚在空中的下落的米的质量m 2,即自动称米机是准确的,不存在哪方划算不划算的问题,选项C 正确.2.(2016·高考全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析:(1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则 Δm =ρΔV ① ΔV =v 0S Δt②由①②式得,单位时间内从喷口喷出的水的质量为 ΔmΔt=ρv 0S . ③(2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12(Δm )v 2+(Δm )gh =12(Δm )v 20 ④在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp =(Δm )v ⑤ 设水对玩具的作用力的大小为F ,根据动量定理有 F Δt =Δp⑥由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g2ρ2v 20S 2.答案:(1)ρv 0S (2)v 202g -M 2g2ρ2v 20S2两类流体运动模型第一类是“吸收模型”,即流体与被碰物质接触后速度为零,第二类是“反弹模型”,即流体与被碰物质接触后以原速率反弹.设时间t 内流体与被碰物质相碰的“粒子”数为n ,每个“粒子”的动量为p ,被碰物质对“粒子”的作用力为F ,以作用力的方向为正,则“吸收模型”满足Ft =0-n (-p ),“反弹模型”满足Ft =np -n (-p ).“反弹模型”的动量变化量为“吸收模型”的动量变化量的2倍,解题时一定要明辨模型,避免错误.[学生用书P111]1.(2018·山东淄博一中质检)如图所示是一种弹射装置,弹丸的质量为m ,底座的质量M =3m ,开始时均处于静止状态,当弹簧释放将弹丸以对地速度v 向左发射出去后,底座反冲速度的大小为14v ,则摩擦力对底座的冲量为 ( )A .0B .14m v ,方向向左C .14m v ,方向向右 D .34m v ,方向向左解析:选B .设向左为正方向,对弹丸,根据动量定理:I =m v ;则弹丸对底座的作用力的冲量为-m v ,对底座根据动量定理:I f +(-m v )=-3m ·v 4得:I f =+m v4,正号表示正方向,向左;故选B .2.如图所示,PQS 是固定于竖直平面内的光滑的14圆弧轨道,圆心O 在S 的正上方.在O 和P 两点各有一质量为m 的小物体a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑.以下说法正确的是( )A .a 比b 先到达S ,它们在S 点的动量不相同B .a 与b 同时到达S ,它们在S 点的动量不相同C .a 比b 先到达S ,它们在S 点的动量相同D .b 比a 先到达S ,它们在S 点的动量相同解析:选A .在物体下落的过程中,只有重力对物体做功,故机械能守恒,故有mgh =12m v 2,解得v =2gh ,所以在相同的高度,两物体的速度大小相同,即速率相同.由于a 的路程小于b 的路程,故t a <t b ,即a 比b 先到达S ,又因为到达S 点时a 的速度竖直向下,而b 的速度水平向左,故两物体的动量不相同,A 正确.3.在水平力F =30 N 的作用下,质量m =5 kg 的物体由静止开始沿水平面运动.已知物体与水平面间的动摩擦因数μ=0.2,若F 作用6 s 后撤去,撤去F 后物体还能向前运动多长时间才停止?(g 取10 m/s 2)解析:法一:用动量定理解,分段处理选物体为研究对象,对于撤去F 前物体做匀加速运动的过程,受力情况如图甲所示,始态速度为零,终态速度为v ,取水平力F 的方向为正方向,根据动量定理有(F -μmg )t 1=m v -0.对于撤去F 后,物体做匀减速运动的过程,受力情况如图乙所示,始态速度为v ,终态速度为零.根据动量定理有-μmgt 2=0-m v .以上两式联立解得 t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s =12 s .法二:用动量定理解,研究全过程选物体作为研究对象,研究整个运动过程,这个过程的始、终状态的物体速度都等于零. 取水平力F 的方向为正方向,根据动量定理得 (F -μmg )t 1+(-μmg )t 2=0解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6 s =12 s .答案:12 s4.(2016·高考北京卷)(1)动量定理可以表示为Δp =F Δt ,其中动量p 和力F 都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x 、y 两个方向上分别研究.例如,质量为m 的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是v ,如图1所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化Δp x、Δp y;b.分析说明小球对木板的作用力的方向.(2)激光束可以看做是粒子流,其中的粒子以相同的动量沿光传播方向运动.激光照射到物体上,在发生反射、折射和吸收现象的同时,也会对物体产生作用.光镊效应就是一个实例,激光束可以像镊子一样抓住细胞等微小颗粒.一束激光经S点后被分成若干细光束,若不考虑光的反射和吸收,其中光束①和②穿过介质小球的光路如图2所示.图中O点是介质小球的球心,入射时光束①和②与SO的夹角均为θ,出射时光束均与SO平行.请在下面两种情况下,分析说明两光束因折射对小球产生的合力的方向.a.光束①和②强度相同;b.光束①比②强度大.解析:(1)a.x方向:动量变化为Δp x=m v sin θ-m v sin θ=0y方向:动量变化为Δp y=m v cos θ-(-m v cos θ)=2m v cos θ方向沿y轴正方向.b.根据动量定理可知,木板对小球作用力的方向沿y轴正方向;根据牛顿第三定律可知,小球对木板作用力的方向沿y轴负方向.(2)a.仅考虑光的折射,设Δt时间内每束光穿过小球的粒子数为n,每个粒子动量的大小为p.这些粒子进入小球前的总动量为p1=2np cos θ从小球出射时的总动量为p2=2npp1、p2的方向均沿SO向右根据动量定理得FΔt=p2-p1=2np(1-cos θ)>0可知,小球对这些粒子的作用力F的方向沿SO向右;根据牛顿第三定律,两光束对小球的合力的方向沿SO向左.b.建立如图所示的Oxy直角坐标系.x方向:根据(2)a同理可知,两光束对小球的作用力沿x轴负方向.y方向:设Δt时间内,光束①穿过小球的粒子数为n1,光束②穿过小球的粒子数为n2,n1>n2.这些粒子进入小球前的总动量为p1y=(n1-n2)p sin θ从小球出射时的总动量为p2y=0根据动量定理得F yΔt=p2y-p1y=-(n1-n2)p sin θ可知,小球对这些粒子的作用力F y的方向沿y轴负方向,根据牛顿第三定律,两光束对小球的作用力沿y轴正方向.所以两光束对小球的合力的方向指向左上方.答案:见解析[学生用书P313(单独成册)])(建议用时:60分钟)一、单项选择题1.一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s.则这一过程中动量的变化量为()A.大小为3.6 kg·m/s,方向向左B.大小为3.6 kg·m/s,方向向右C.大小为12.6 kg·m/s,方向向左D.大小为12.6 kg·m/s,方向向右解析:选D.选向左为正方向,则动量的变化量Δp=m v1-m v0=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,D正确.2.关于冲量,以下说法正确的是()A.只要物体受到了力的作用,一段时间内物体受到的总冲量就一定不为零B.物体所受合外力的冲量小于物体动量的变化量C.物体受到的冲量越大,动量越大D.如果力是恒力,则其冲量的方向与该力的方向相同解析:选D.合外力的冲量等于动量的变化,如果动量的变化为零,则合外力的冲量为零,所以物体所受外力的合冲量可能为零,故A错误;由动量定理可知物体所受合外力的冲量等于物体动量的变化量,故B错误;冲量越大,动量的变化量越大,动量不一定大,故C错误;如果力是恒力,则冲量的方向与该力的方向相同,故D正确.3.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,下列说法正确的是() A.掉在水泥地上的玻璃杯动量小,而掉在草地上的玻璃杯动量大B.掉在水泥地上的玻璃杯动量改变小,掉在草地上的玻璃杯动量改变大C.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小D.掉在水泥地上的玻璃杯动量改变量与掉在草地上的玻璃杯动量改变量相等解析:选D.玻璃杯从同样高度落下,到达地面时具有相同的速度,即具有相同的动量,与地面相互作用后都静止.所以两种地面的情况中玻璃杯动量的改变量相同,故A 、B 、C 错误,D 正确.4.(2015·高考重庆卷)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A .m 2gh t+mg B .m 2gh t -mg C .m gh t +mg D .m gh t-mg 解析:选A .设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由动量定理得(mg -F )·t =0-m v ,解得F =m 2gh t+mg . 5.(2018·北京西城区模拟)1966年,在地球的上空完成了用动力学方法测质量的实验.实验时,用“双子星号”宇宙飞船去接触正在轨道上运行的火箭组(后者的发动机已熄火),接触以后,开动“双子星号”飞船的推进器,使飞船和火箭组共同加速.推进器的平均推力F =895 N ,推进器开动时间Δt =7 s .测出飞船和火箭组的速度变化Δv =0.91 m/s .已知“双子星号”飞船的质量m 1=3 400 kg .由以上实验数据可测出火箭组的质量m 2为( )A .3 400 kgB .3 485 kgC .6 265 kgD .6 885 kg解析:选B .根据动量定理得F Δt =(m 1+m 2)Δv ,代入数据解得m 2≈3 485 kg ,B 选项正确.6.如图所示,一铁块压着一纸条放在水平桌面上,当以足够大的速度v 抽出纸条后,铁块掉在地上的P 点.若以2v 速度抽出纸条,则铁块落地点为( )A .仍在P 点B .在P 点左边C .在P 点右边不远处D .在P 点右边原水平位移的两倍处解析:选B .纸条抽出的过程,铁块所受的滑动摩擦力一定,以v 的速度抽出纸条,铁块所受滑动摩擦力的作用时间较长,即加速时间较长,由I =F f t =m Δv 得铁块获得速度较大,平抛运动的水平位移较大,以2v 的速度抽出纸条的过程,铁块所受滑动摩擦力作用时间较短,即加速时间较短,铁块获得速度较小,平抛运动的位移较小,故B 选项正确.二、多项选择题7.如图所示,足够长的固定光滑斜面倾角为θ,质量为m的物体以速度v从斜面底端冲上斜面,达到最高点后又滑回原处,所用时间为t.对于这一过程,下列判断正确的是()A.斜面对物体的弹力的冲量为零B.物体受到的重力的冲量大小为mgtC.物体受到的合力的冲量大小为零D.物体动量的变化量大小为mg sin θ·t解析:选BD.由冲量的求解公式可知,斜面对物体的弹力的冲量为mg cos θ·t,选项A错误;物体受到的重力的冲量大小为mgt,选项B正确;物体回到斜面底端的速度仍为v,方向与初速度方向相反,故根据动量定理可知,物体受到的合力的冲量大小为2m v,选项C错误;因整个过程中物体所受的合力为mg sin θ,则根据动量定理可知,物体动量的变化量大小为mg sin θ·t,选项D正确.8.我国女子短道速滑队在世锦赛上实现了女子3 000 m接力三连冠.如图所示,观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量大小一定等于乙对甲的冲量大小B.甲、乙的动量变化一定大小相等,方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功解析:选AB.乙推甲的过程中,他们之间的作用力大小相等,方向相反,作用时间相等,根据冲量的定义,甲对乙的冲量与乙对甲的冲量大小相等,但方向相反,选项A正确;乙推甲的过程中,遵守动量守恒定律,即Δp甲=-Δp乙,他们的动量变化大小相等,方向相反,选项B正确;在乙推甲的过程中,甲、乙的位移不一定相等,所以甲对乙做的负功与乙对甲做的正功不一定相等,结合动能定理知,选项C、D错误.9.如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C、D、E处,三个过程中重力的冲量依次为I1、I2、I3,动量变化量的大小依次为Δp1、Δp2、Δp3,则有()A.三个过程中,合力的冲量相等,动量的变化量相等B.三个过程中,合力做的功相等,动能的变化量相等C.I1<I2<I3,Δp1=Δp2=Δp3D.I1<I2<I3,Δp1<Δp2<Δp3解析:选ABC .由机械能守恒定律可知物体下滑到底端C 、D 、E 的速度大小v 相等,动量变化量Δp =m v 相等,即Δp 1=Δp 2=Δp 3;根据动量定理,合力的冲量等于动量的变化量,故合力的冲量也相等,注意不是相同(方向不同);设斜面的高度为h ,从顶端A 下滑到底端C ,由h sin θ=12g sin θ·t 2得物体下滑的时间t =2h g sin 2θ,所以θ越小,sin 2θ越小,t 越大,重力的冲量I =mgt 就越大,故I 1<I 2<I 3;故A 、C 正确,D 错误,物体下滑过程中只有重力做功,故合力做的功相等,根据动能定理,动能的变化量相等,故B 正确.10.如图所示,倾斜的传送带保持静止,一木块从顶端以一定的初速度匀加速下滑到底端.如果让传送带沿图中虚线箭头所示的方向匀速运动,同样的木块从顶端以同样的初速度下滑到底端的过程中,与传送带保持静止时相比( )A .木块在滑到底端的过程中,摩擦力的冲量变大B .木块在滑到底端的过程中,摩擦力的冲量不变C .木块在滑到底端的过程中,木块克服摩擦力所做功变大D .木块在滑到底端的过程中,系统产生的内能数值将变大解析:选BD .滑动摩擦力的大小为f =μN ,与相对速度的大小无关,所以,当皮带运动时,木块所受的摩擦力未变,空间位移未变,则滑到底端的时间、速度以及摩擦力所做的功均不变,所以摩擦力的冲量I =ft 不变,故A 、C 错误,B 正确;但由于相对滑动的距离变长,所以木块和皮带由于摩擦产生的内能变大,故D 正确.三、非选择题11.(2018·安徽铜陵五中月考)高压采煤水枪出口的截面积为S ,水的射速为v ,水平射到煤层上后,水速度为零,若水的密度为ρ,求煤层对水的平均冲力的大小?解析:取一小段时间的水为研究对象,它在此时间内速度由v 变为零,煤对水产生了力的作用,即水对煤冲力的反作用力.设在Δt 时间内,从水枪射出的水的质量为Δm ,则Δm =ρS v ·Δt ,以Δm 为研究对象,它在Δt 时间内动量变化量为:Δp =Δm (0-v )=-ρS v 2Δt .设F 为煤层对水的平均冲力,根据动量定理有F Δt =Δp =-ρS v 2Δt ,故F =-ρS v 2.所以煤层对水的平均冲力大小为ρS v 2.答案:ρS v 212.(2015·高考安徽卷)一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.一物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止,g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;。
中学物理竞赛培训讲义第一讲电磁学部分
Ei Eiy Ei cos , Ei// Eix Ei sin
E Ei 0, (对称性)
Ex Eix Ei sin
E
Ex i
k
2 R
i
l i sin k R2
k
y
R2
k
2 R
k
1 4 0
,
E
2 0R
i
例3: 试证弯成如图所示形
状的无限长均匀带电细线在
圆心处的场强为零. (AB弧是
5.电场线:
E线与E大小方向的关系, E线的性质,
6.电通量:
穿过电场中某一曲面的电场线的数目,
e
N
E S
E
nS
Ecos S
n
E
S
由电荷Q发出的场线总数△N正比于Q,
即
e
N
Q 0
三、电势
1.电势能W: 量值上等于将试探电荷
从场点移至参考点, 静电场力所做的功
2.电势:
U WP P q0
分布等),并反过来影响电场的现象
自由电荷 束缚电荷 极化电荷
电介质对电容器电容的影响: 使电容变大
3. 电场对带电粒子的作用:
带电粒子在外电场 E中所受的电场力为:
F qE
结合运动学和动力学讨论带电粒子的运动规律
五、例题
1.小量分析法
尽管中物竞赛不允许用微积分的方法, 但应要求 参加竞赛者掌握微(小量), 积(求和)的概念或思想, 这有助于绕过微积分达到求解的目的.
APP 0 q0
P0是零电势参考点
点电荷的电势:
U
Q
4 0r
电势差, 电势能差与做功的关系:
Aa →b= Wa - Wb = q (Ua - Ub)
高中物理奥赛讲义(磁场) - 第一讲 基本知识介绍
磁 场第一讲 基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a 、电流的磁场引进定量计算;b 、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力1、磁场a 、永磁体、电流磁场→磁现象的电本质b 、磁感强度、磁通量c 、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savart law ):对于电流强度为I 、长度为dI 的导体元段,在距离为r 的点激发的“元磁感应强度”为dB 。
矢量式d B= k 3rrl Id⨯,(d l 表示导体元段的方向沿电流的方向、r 为导体元段到考查点的方向矢量);或用大小关系式dB = k2r sin Idl θ结合安培定则寻求方向亦可。
其中 k = 1.0×10−7N/A 2 。
应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k rI ;*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 2/3222)r R (R + ;*毕萨定律应用在“无限长”螺线管内部的结论:B= 2πknI 。
其中n 为单位长度螺线管的匝数。
2、安培力a 、对直导体,矢量式为 F= I B L⨯;或表达为大小关系式 F = BILsin θ再结合“左手定则”解决方向问题(θ为B与L 的夹角)。
b 、弯曲导体的安培力 ⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN 段导体的安培力F 1与NO 段导体的安培力F 2的合力为F ,则F 的大小为F =)cos(F F 2F F 212221θ-π++= BI )cos(L L 2L L 212221θ-π++= BI MO关于F 的方向,由于ΔFF 2P ∽ΔMNO ,可以证明图9-1中的两个灰色三角形相似,这也就证明了F 是垂直MO 的,再由于ΔPMO 是等腰三角形(这个证明很容易),故F 在MO 上的垂足就是MO 的中点了。
高中物理奥赛讲义(电磁感应)doc.
电磁感应在第十部分,我们将对感应电动势进行更加深刻的分析,告诉大家什么是动生电动势,什么是感生电动势。
在自感和互感的方面,也会分析得更全面。
至于其它,如楞次定律、电磁感应的能量实质等等,则和高考考纲差别不大。
第一讲基本定律一、楞次定律1、定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
注意点:阻碍“变化”而非阻碍原磁场本身;两个磁场的存在。
2、能量实质:发电结果总是阻碍发电过程本身——能量守恒决定了楞次定律的必然结果。
判断移动过程中线圈的感应电流的方向。
【解说】法一:按部就班应用楞次定律;法二:应用“发电结果总是阻碍发电过程本身”。
由“反抗磁通增大”→线圈必然逆时针转动→力矩方向反推感应电流方向。
【答案】上边的电流方向出来(下边进去)。
〖学员思考〗如果穿过线圈的磁场是一对可以旋转的永磁铁造成的,当永磁铁逆时针旋转时,线圈会怎样转动?〖解〗略。
〖答〗逆时针。
——事实上,这就感应电动机的基本模型,只不过感应电动机的旋转磁场是由三相交流电造就的。
3、问题佯谬:在电磁感应问题中,可能会遇到沿不同途径时得出完全相悖结论的情形,这时,应注意什么抓住什么是矛盾的主要方面。
【例题2】如图10-2所示,在匀强磁场中,有圆形的弹簧线圈。
试问:当磁感应强度逐渐减小时,线圈会扩张还是会收缩?【解说】解题途径一:根据楞次定律之“发电结果总是阻碍发电过程本身”,可以判断线圈应该“反抗磁通的减小”,故应该扩张。
解题途径二:不论感应电流方向若何,弹簧每两圈都是“同向平行电流”,根据安培力的常识,它们应该相互吸引,故线圈应该收缩。
这两个途径得出的结论虽然是矛盾的,但途径二有不严谨的地方,因为导线除了受彼此间的安培力之外,还受到外磁场的安培力作用,而外磁场的安培力是促使线圈扩张的,所以定性得出结论事实上是困难的。
但是,途径一源于能量守恒定律,站的角度更高,没有漏洞存在。
【答案】扩张。
〖学员思考〗如图10-3所示,在平行、水平的金属导轨上有两根可以自由滚动的金属棒,当它们构成闭合回路正上方有一根条形磁铁向下运动时,两根金属棒会相互靠拢还是相互远离?〖解〗同上。
高中物理竞赛讲座14(磁场word)
第十一章 磁 场第一讲 电流的磁场一、方向 右手螺旋定则二、大小 毕奥—萨伐尔定律电流元(一小段电流)的磁场电流微元dL ,在P 点所产生的磁场02sin 4I dB dL r μθπ=其中:70410m T A μπ-=⨯1、有限长直导线电流I 的磁场长度为L ,电流为I ,研究点取P ,P 到导线的垂直距离为a ,P 点和导线两端连线的夹角分别为1θ和2θ取微元dL ,其在P 点的磁感应强度02sin 4IdL dB r μθπ=由图可知:cot L a θ=- 上式取导:2sin ad dL θθ= 而 sin a r θ= 将dL 和r 代入上式 210sin 4I d B dB a θθμθθπ==⎰⎰()012cos cos 4I a μθθπ=- 2、无限长直导线电流的磁场 02I B aμπ= a 为场点到电流的垂直距离 3、园形电流中心的磁场每个微元dL 在中心产生的dB 都是一样的 024IdL dB rμπ= 2002042rI I B dB dL r rπμμπ===⎰⎰ 4、园形电流中心轴线上的磁场研究点取P 点,P 点和园电流园心间距为a,园电流流为I ,半径为R 。
取微元dL ,到P 点距离为r ,024IdL dB r μπ= 1003223/2cos sin 44()R dB dB db db ru IdL u R IRdL r a R αβππ=====+ ()201302224R IR B dB dL a R πμπ==+⎰⎰ ()2032222IR a R μ=+当a=0时,即为园心处的磁场。
5、细长密绕通电螺线管内的磁场0B nI μ=n 为螺线管单位长度上的匝数6、运动电荷的磁场电流的磁场,本质上是运动电荷在其周围激发的磁场。
dL 电流元的磁场 2sin 4u I dB dL r θπ= 电流 I nqsv = (n 单位体积内的电荷数,s 导线截面积)dL 电流元内的电荷数目 N nsdL =电量为q ,以速度υ运动的电荷所产生的磁场02sin 4dB q B N r μυθπ==⋅ 例:两个电量分别为q 1和q 2的电荷,以相同速度υ平行运动,他们之间的磁场力多大?(间距为r ) 答案: 21224q q f q B rμυυπ==⋅二、高斯定理在磁场中,通过任意闭合曲面S 的磁通量为零 0SB d S φ==⎰⎰ (S ─任意闭合曲面)该表达式用到高等数学的微积分知识,可以从磁感线上进行理解:1、通过任意闭合曲面的磁通量是0 0SB d Sφ==⎰⎰磁感线是闭合曲线,对任意闭合曲面,若某根磁感线穿入了该闭合曲面,必然会穿出v q该闭合曲面,所以,对任意闭合曲面的磁通量为零。
高中物理竞赛《磁场》内容讲解
磁 场一、恒定电流的磁场1、直线电流的磁场通有电流强度为I 的无限长直导线,距导线为R 处的磁感应强度为:RIB πμ20=;如下图距通有电流强度为I 的有限长直导线为R 处的P 点的磁感应强度为:)cos (cos 40βαπμ+=RIB ----------------------------------①若P 点在通电直导线的延长线上,则R=0 α=0 β=π 无法直接应用上述式子计算,可进行如下变换lR d d 21)sin(2121=+βα 上式中1d 、2d 分别为P 点到A 、B 的距离,l 为直导线的长度所以:l d d R )sin(21βα+=代入①式得:)sin(cos cos 4210βαβαπμ++=d d Il B令2sin2cos2cos 2sin 22cos2cos2)sin(cos cos βαβαβαβαβαβαβαβα+-=++-+=++=y将α=0 β=π代入上式得0=y所以:在通电直导线的延长线上任意一点的磁感应强度为0=B2、微小电流元产生的磁场微小电流元的磁场,根据直线电流的磁场公式)cos (cos 40βαπμ+=rIB得:Ⅰ若α、β都是锐角,如左图,有:)cos (cos 40βαπμ+=r I B =)sin (sin 4210θθπμ∆+∆rI因1θ∆、2θ∆0→,所以≈∆+∆=)sin (sin 4210θθπμr I B )(4210θθπμ∆+∆rI所以:θπμ∆=rIB 40Ⅱ若α、β中有一个是钝角,如β(右图),则:]sin )[sin(cos 4)cos (cos 400000θθθθπμβαπμ-+∆=+=r Id I B -------------①00000sin sin cos cos sin sin )sin(θθθθθθθθ-∆+∆=-+∆因0→∆θ,所以:0000cos cos sin sin )sin(θθθθθθθ∆≈∆≈-+∆--------------------------------②②式代入①式得:θπμ∆=rIB40总上所述,电流元I 在空间某点产生的磁场为:θπμ∆=rIB 40,式中r 为电流元到该点的距离,θ∆为电流元端点与该点连线张开的角度。
高中物理磁场讲义
第1单元 基本概念和安培力Ⅰ基本概念一、磁场和磁感线(三合一)1、磁场的来源:磁铁和电流、变化的电场2、磁场的基本性质:对放入其中的磁铁和电流有力的作用3、磁场的方向(矢量)方向的规定:磁针北极的受力方向,磁针静止时N 极指向。
4、磁感线:切线~~磁针北极~~磁场方向5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则))6、磁感线特点: ① 客观不存在、② 外部N 极出发到S ,内部S 极到N 极③ 闭合、不相交、④ 描述磁场的方向和强弱二.磁通量(Φ 韦伯 Wb 标量)通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通二.磁通密度(磁感应强度B 特斯拉T 矢量)SB Φ=1 T = 1 Wb / m 2方向:B 的方向即为磁感线的切线方向 意义:1、描述磁场的方向和强弱2、由场的本身性质决定三.匀强磁场1、定义:B2、来源:①距离很近的异名磁极之间四.了解一些磁场的强弱永磁铁――10 -3 T ,电机和变压器的铁芯中――0.8~1.4 T 超导材料的电流产生的磁场――1000T ,地球表面附近――3×10-5~7×10-5 T比较两个面的磁通的大小关系。
如果将底面绕轴L 旋转,则磁通电直导线周围磁场 通电环行导通量如何变化?Ⅱ 磁场对电流的作用——安培力一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。
(向里和向外的表示方法(类比射箭))规律:(1)左手定则(2)F ⊥B ,F ⊥I ,F 垂直于B 和I 所决定的平面。
但B 、I 不一定垂直安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力=0。
猜想由90度到0度力的大小是怎样变化的二.安培力的大小:匀强磁场,当B ⊥ I 时,F = B I L在匀强磁场中,当通电导线与磁场方向垂直时,电流所受的安培力等于磁感应将度B 、电流I 和导线的长度L 三者的乘积在非匀强磁场中,公式F =BIL 近似适用于很短的一段通电导线 三.磁感应强度的另一种定义匀强磁场,当B ⊥ I 时,ILF B练习1、 有磁场就有安培力(×)2、 磁场强的地方安培力一定大(×)3、 磁感线越密的地方,安培力越大(×)4、 判断安培力的方向Ⅲ电流间的相互作用和等效长度一.电流间的相互作用I不受力FFF转向同向, 同转向同向, 同总结:通电导线有转向电流同向的趋势推导:水平方向:向左=F1 sin α = BIL 1 sin α = B I h 向右=F2 sin β = BIL 2 sin β = B I h⇒ 水平方向平衡 竖直方向:左导 F 1 cos α = BIL 1 cos α 右导 F 2 cos β= BIL 2 cos β⇒ F = B I L推广:等效长度为导线两端连线的长度例题:1、安培力的方向【例1】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。
高中物理《磁场》知识梳理
不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运 动的轨迹半径随速度的变化而变化。 2)模型特点:速度v越大,运动半径也越大,如图,这些带电粒子运动轨迹的 圆心在垂直初速度方向的直线PP'上。
3)界定方法:以入射点P为定点,圆心位于PP'直线上,将半径放缩作轨迹圆, 从而探索出临界条件。
解析
(1)粒子在电压为U的电场中加速,由动能定理可得qU=
1 2
mv0
2
,所以
粒子到达P点时的速度v0=
2qU ①;粒子由P点到A点做类平抛运动,时间
m
为t,沿y轴正方向粒子直线运动,则 3 L= 1 ·qE t2③;联立①②③可得E= 3U 。
答案 C
拓展二 带电粒子在匀强磁场中的临界问题
1.“平移圆”法探索临界条件 1)适用条件:速度大小一定、方向一定,入射点在同一直线上。粒子源发 射速度大小、方向一定,入射点不同但在同一直线上的带电粒子进入匀 强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v0,则半径 R= mv0 ,如图所示。
2)直角三角形的应用(勾股定理) 找到AB的中点C,连接O、C,则△ACO、△BCO都是直角三角形。 3.时间的计算方法 方法一:由运动弧长计算,t=l (l为弧长)。
v
方法二:由旋转角度计算,t=
α 360
T(或t=
α 2
T)。
4.常见的三类边界磁场
1)直线边界:进出磁场具有对称性。
2)平行边界:存在临界条件。
v2
A. 1
B. 3
C. 3
D. 3
2
3
2
解析 带电粒子在磁场中运动,洛伦兹力提供其做圆周运动的向心力,该
高中物理奥林匹克竞赛电磁学讲义1
可令三个电荷量为q的相同点电荷排成正三角形,中心处放一异号电荷−������′
显然,中心处电荷受合力为0。对顶点处,其受力大小分别为
������2 ������1 = ������2 = ������ ������2
������������′
������3
=
������
(
3 3
������)2
合力
������
������
������2
������������′
������ = ������1 cos 6 + ������2 cos 6 − ������3 = 3������ ������2 − 3������ ������2 = 0
可得
������′ =
3 3 ������
=
1 4������������0
������1������2 ������2
������1Ƹ 2
k = 9.0×109 N ·m2·C-2
ε0 = 8.85×10-12 C2 ·N-1 ·m-2
F
真空介电常数 叠加原理
F2
r10 q
F1
q1
q2 r20
【例1】(1)请在空间放置四个点电荷(每个点电荷的电荷量及位置由你确定),使
Δ������ ⋅ cos ������ = Δ������′
������
=
������
������������ ������2
������
cos
������
=
������
������������ ������2
Δ������′
磁场竞赛辅导讲义精选全文完整版
B 可编辑修改精选全文完整版高三物理竞赛辅导磁场与电磁感应第一讲 磁场主讲:孙琦一、毕奥——萨伐尔定律与磁力矩1.毕奥——萨伐尔定律如图所示,设ΔL 为导线的一段微元,其电流强度为I ,则在真空中距该“线微元”为r 的P 处,此通电线微元产生的磁感应强度为:θπμsin 420L r I B ∆=∆,式中θ为电流方向与r 之间的夹角,A m T /10470⋅⨯=-πμ,B ∆的方向可由右手定则得。
⑷细长密绕通电螺线管内的磁感应强度为:nI B 0μ=,n 是螺线管单位长度上线圈的匝数,此式表示的是匀强磁场2.磁力矩匀强磁场对通电线圈作用力的磁力矩的计算式为:θcos NBIS M = 式中的N 为线圈匝数,I 为线圈中通过的电流强度,θ为线圈平面与磁场方向所夹的角,S 为线圈的面积,而不管线圈是否是矩形,且磁力矩的大小与转轴的位置无关。
例1.如图所示,将均匀细导线做成的环上的任意两点A 和B 与固定电源相连接起来,计算由环上电流引起的环中心的磁感应强度。
例2.一个质量均匀分布的细圆环,其半径为r ,质量为m ,令此环均匀带正电,总电量为Q 。
现将此环放在绝缘的光滑水平面上,如图所示,并处于磁感应强度为B 的匀强磁场中,磁场方向竖直向下,当此环绕通过其中心的竖直轴以匀速度ω沿图示方向旋转时,试求环中的张力。
例3.两根互相平行的长直导线相距10cm ,其中一根通电的电流是10A ,另一根通电电流为20A ,方向如图。
试求在两导线平面内的P 、Q 、R 各点的磁感强度的大小和方向。
例4.如图所示,无限长竖直向上的导线中通有恒定电流0I ,已知由0I 产生磁场的公式是r I k B 0=,k 为恒量,r 是场点到0I 导线的距离。
边长为2L 的正方形线圈轴线OO ‘与导线平行。
某时刻该线圈的ab 边与导线相距2L ,且过导线与中心轴线OO ‘的平面与线圈平面垂直,已知线圈中通有电流I ,求此时线圈所受的磁力矩。
高中物理 奥赛教练员培训讲义磁场部分课件 新人教
2bm0v e(b2a2)
(3) Fr(eBrv)r L t(eB r)rveB rtr1 2eB rt2
(L1eB2r)0 t 2
L1eBr2 常量 2
mav1 2eB2amv1 2beB2 b
B 2m(vbva) e(b2 a2)
1 2m (vr2v2vz2)eV 1 2m (v2vz2)
磁场
一、磁感应强度和磁感应通量:
磁感应强度: 磁感应通量:
B F
方向:
qv s in
B S B c o Ss
B c o Ss
均匀场中线圈的磁通: BS
二、磁感应强度的计算
1..毕奥—萨B伐你定4律0 Irl2rˆ
例:如图所示,半径为R的圆形载流导线中通有电流强度为I的稳恒电流。求 圆形载流导线轴线上与圆心相距x的p点的磁感应强度。
线圈受力平衡,即
I0Br(z0)2amg
(6)
B0a2 3B0a2amg 求得
LZ03 2Z4
Z0
7
3B02 2a4
Lmg
(7)
(2)线圈在平衡位置上移小量ΔZ,则线圈中电流变为I0+i,由(2)式得
(Z0B0Z)3a2L(I0i)0
ZB003a2(13 ZZ0)L(I0i)0
利用(3)、(4)式得
五、霍耳效应
如图所示,一厚为d,宽为b的载流导体薄板放 在磁场B中,如果磁场与薄板板面垂直,则板的两 侧A、A’间会出现电势差,这一现象叫霍耳效.A、 A’间的电势差叫霍耳电势差(或霍耳电压).
若导体板中电子的浓度为n,电流为I,则霍耳电势差为:
URH
IB d
IB ned
式中
RH
1 ne
高二物理选修磁场讲义
高二物理选修磁场讲义 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN磁场第一节我们周围的磁现象知识点回顾:1、地磁场(1)地球磁体的北(N)极位于地理南极附近,地球磁体的南(S)极位于地理北极附近。
(2)地球磁体的磁场分布与条形磁铁的磁场相似。
(3)地磁两极与地理两极并不完全重合,存在偏差。
2、磁性材料(1)按去磁的难易程度划分可分为硬磁性材料和软磁性材料。
(2)按材料所含化学成分划分可分为和。
(3)硬磁性材料剩磁明显,常用来制造等。
(4)软磁性材料剩磁不明显,常用来制造等。
知识点1:磁现象一切与磁有关的现象都可称为磁现象。
磁在我们的生活、生产和科技中有着广泛的应用,归纳大致分为:(1)利用磁体对铁、钴、镍等磁性物质的吸引力;(2)利用磁体对通电线圈的作用力;(3)利用磁化现象记录信息。
知识点2:地磁场(重点)地球由于本身具有磁性而在其周围形成的磁场叫地磁场。
关于地磁场的起源,目前还没有令人满意的答案。
一种观点认为,地磁场是由于地核中熔融金属的运动产生的,而且熔融金属运动方向的变化会引起地磁场方向的变化。
科学研究发现,从地球形成迄今的漫长年代里,地磁极曾多次发生极性倒转的现象。
地磁场具有这样的特点:(1)地磁北极在地理南极附近,地磁南极在地理北极附近;(2)地磁场与条形磁铁产生的磁场相似,但地磁场磁性很弱;(3)地磁场对宇宙射线的作用,保护生命(极光、宇宙射线的伤害);地磁场对生物活动的影响(迁徙动物的走南闯北如信鸽,但候鸟南飞确是受气候的影响的,不是磁场)拓展:地磁两极与地理两极并不重合,存在地磁偏角。
这种现象最早是由我国北宋的学者沈括在《梦溪笔谈》中提出的,比西方早400多年。
并不是所有的天体都有和地球一样的磁性,如火星就没有磁性知识点3:磁性材料磁性材料一般指铁磁性物质。
按去磁的难易程度,磁性材料可分为硬磁性材料和软磁性材料。
硬磁性材料具有很强的剩磁,不易去磁,一般用于制造永磁体,如扬声器、计算机硬盘、信用卡、饭卡等;软磁性材料没有明显的剩磁,退磁快,常用于制造电磁铁、电动机、发电机、磁头等。
物理磁场的知识点总结
物理磁场的知识点总结一、磁场基础知识1. 磁场的定义磁场是指物体周围的力场,其产生原理是由磁物质或电流所产生的,可以引起其它磁物质或带电粒子的受力和受磁,是物理学中的一个重要概念。
2. 磁场的来源磁场的产生主要来源于两种情况:一是由于磁物质的存在而产生的磁场,例如铁磁体和永磁体等;二是由于电流的存在而产生的磁场,例如直流电流和交流电流等。
3. 磁场的性质磁场具有磁力线、磁通量、磁感应强度等特性,它们对磁场的性质有着重要的影响,例如磁力线的形状决定了磁场的分布规律,而磁感应强度则表示了磁场对单位磁极产生的力的大小。
二、磁场的产生和作用1. 磁场的产生磁场的产生主要来源于电流的存在,当电流通过导线或线圈时,就会产生磁场,根据安培定则可以得知电流元产生的磁场强度的方向和大小。
2. 磁场的作用磁场的作用主要体现在力的作用和磁感生效应两个方面,其力的作用可以引起带电粒子或磁物质受力受磁的现象,而磁感生效应则可以产生感应电动势和感应电流等。
三、磁场的测量和计算1. 磁场的测量方法测量磁场强度可以采用罗盘、霍尔元件等器件进行测量,通过测量磁场的大小和方向可以确定磁场的分布情况和磁力线的方向。
2. 磁场的计算方法磁场的计算主要涉及到磁场强度、磁感应强度和磁通量等方面,通过安培定则和比奥-萨伐特定则可以计算电流元和磁场产生的磁感应强度,从而得到磁场的分布情况和磁场的大小。
四、磁场与电磁感应1. 磁场与电动势磁场对导线内的运动电荷产生作用力,这种作用力可以引起电动势的产生,当导线跨越磁场线时,将会产生感应电动势,从而让导线内的电荷流动,实现磁场对电动势的转化。
2. 磁场与感应电流当磁场对导体内的运动电荷产生作用力时,导体内将会产生感应电流,这种感应电流可以产生磁场,并且对外就像产生电流一样产生磁场。
五、磁场与天体物理1. 磁场与地球磁场地球内部包含有磁性物质,并且地球自转会使地球内部形成复杂的磁场结构,这种磁场对地球表面的物理现象有着重要影响,例如指南针的指向和地磁暴等现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁 场第一讲 基本知识介绍《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a 、电流的磁场引进定量计算;b 、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力1、磁场a 、永磁体、电流磁场→磁现象的电本质b 、磁感强度、磁通量c 、稳恒电流的磁场*毕奥-萨伐尔定律(Biot-Savart law ):对于电流强度为I 、长度为dI 的导体元段,在距离为r 的点激发的“元磁感应强度”为dB 。
矢量式d B= k 3rrl Id⨯,(d l 表示导体元段的方向沿电流的方向、r 为导体元段到考查点的方向矢量);或用大小关系式dB = k2rsin Idl θ结合安培定则寻求方向亦可。
其中 k = 1.0×10−7N/A 2 。
应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k rI ;*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI 2/3222)r R (R + ;*毕萨定律应用在“无限长”螺线管内部的结论:B =2πknI 。
其中n 为单位长度螺线管的匝数。
2、安培力a 、对直导体,矢量式为 F= I B L⨯;或表达为大小关系式 F = BILsin θ再结合“左手定则”解决方向问题(θ为B 与L 的夹角)。
b 、弯曲导体的安培力 ⑴整体合力折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN 段导体的安培力F 1与NO 段导体的安培力F 2的合力为F ,则F 的大小为 F =)cos(F F 2F F 212221θ-π++= BI )cos(L L 2L L 212221θ-π++= BI MO关于F 的方向,由于ΔFF 2P ∽ΔMNO ,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO 的,再由于ΔPMO 是等腰三角形(这个证明很容易),故F 在MO 上的垂足就是MO 的中点了。
证毕。
由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。
(说明:这个结论只适用于匀强磁场。
)⑵导体的内张力弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。
c、匀强磁场对线圈的转矩如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为M = BIS几种情形的讨论——⑴增加匝数至N ,则M = NBIS ;⑵转轴平移,结论不变(证明从略);⑶线圈形状改变,结论不变(证明从略);*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα,如图9-3;证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ,如图9-4。
证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。
如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。
二、洛仑兹力1、概念与规律a 、f= q B v,或展开为f = qvBsin θ再结合左、右手定则确定方向(其中θ为B与v的夹角)。
安培力是大量带电粒子所受洛仑兹力的宏观体现。
b 、能量性质由于f 总垂直B与v确定的平面,故f总垂直v,只能起到改变速度方向的作用。
结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。
或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。
问题:安培力可以做功,为什么洛仑兹力不能做功?解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。
我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v 1和导体运动v 2的合运动,其合速度为v ,这时的洛仑兹力f 垂直v 而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f 1 = qv 1B 的合力(见图9-5)。
很显然,f 1的合力(安培力)做正功,而f 不做功(或者说f 1的正功和f 2的负功的代数和为零)。
(事实上,由于电子定向移动速率v 1在10−5m/s 数量级,而v 2一般都在10−2m/s 数量级以上,致使f 1只是f 的一个极小分量。
)☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。
而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。
动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。
由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。
所以,导体棒动能的增加是以回路焦耳热的减少为代价的。
2、仅受洛仑兹力的带电粒子运动 a 、v⊥B时,匀速圆周运动,半径r =qBmv,周期T = qB m 2πb 、v与B成一般夹角θ时,做等螺距螺旋运动,半径r = qBsin mv θ ,螺距d =qBcos mv 2θπ 这个结论的证明一般是将v分解…(过程从略)。
☆但也有一个问题,如果将B分解(成垂直速度分量B 2和平行速度分量B 1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B 2的平面内做圆周运动?其实,在图9-7中,B 1平行v 只是一种暂时的现象,一旦受B 2的洛仑兹力作用,v 改变方向后就不再平行B 1了。
当B 1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。
(而在分解v 的处理中,这种局面是不会出现的。
)3、磁聚焦a 、结构:见图9-8,K 和G 分别为阴极和控制极,A 为阳极加共轴限制膜片,螺线管提供匀强磁场。
b 、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P 点。
4、回旋加速器a 、结构&原理(注意加速时间应忽略)b 、磁场与交变电场频率的关系因回旋周期T 和交变电场周期T ′必相等,故 qBm 2 =f 1c 、最大速度 v max = mqBR= 2πRf 5、质谱仪速度选择器&粒子圆周运动,和高考要求相同。
第二讲 典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a 、b 相距40cm ,通过电流的大小都是3.0A ,方向相反。
试求位于两根导线之间且在两导线所在平面内的、与a 导线相距10cm 的P 点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。
解题过程从略。
【答案】大小为8.0×10−6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I 的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。
因为θ → 0(在图9-10中,为了说明问题,θ被夸大了),弧形导体可视为直导体,其受到的安培力F = BIL ,其两端受到的张力设为T ,则T 的合力ΣT = 2Tsin 2θ再根据平衡方程和极限xxsin limx →= 0 ,即可求解T 。
方法二:隔离线圈的一半,根据弯曲导体求安培力的定式和平衡方程即可求解… 【答案】BIR 。
〖说明〗如果安培力不是背离圆心而是指向圆心,内张力的方向也随之反向,但大小不会变。
〖学员思考〗如果圆环的电流是由于环上的带正电物质顺时针旋转而成(磁场仍然是进去的),且已知单位长度的电量为λ、环的角速度ω、环的总质量为M ,其它条件不变,再求环的内张力。
〖提示〗此时环的张力由两部分引起:①安培力,②离心力。
前者的计算上面已经得出(此处I = ωπλ∙π/2R 2 = ωλR ),T 1 = BωλR 2;力,方后者的计算必须..应用图9-10的思想,只是F 变成了离心程 2T 2 sin 2θ = πθ2M ω2R ,即T 2 = πω2R M 2 。
〖答〗B ωλR 2+πω2RM 2 。
【例题3】如图9-11所示,半径为R 的圆形线圈共N 匝,处在方向竖直的、磁感强度为B 的匀强磁场中,线圈可绕其水平直径(绝缘)轴OO ′转动。
一个质量为m 的重物挂在线圈下部,当线圈通以恒定电流I后,求其静止时线圈平面和磁场方向的夹角。
【解说】这是一个应用安培力矩定式的简单问题,解题过程从略。
【答案】arctgmgNBIRπ 。
二、带电粒子在匀强磁场中的运动【例题4】电子质量为m 、电量为q ,以初速度v 0垂直磁场进入磁感强度为B 的匀强磁场中。
某时刻,电子第一次通过图9-12所示的P点,θ为已知量,试求:(1)电子从O 到P 经历的时间; (2)O →P 过程洛仑兹力的冲量。
【解说】圆周运动的基本计算。
解题过程从略。
值得注意的是,洛仑兹力不是恒力,故冲量不能通过定义式去求,而应根据动量定理求解。
【答案】(1)eBm 2θ;(2)2mv 0sin θ 。
【例题5】如图9-13所示,S 是粒子源,只能在纸面上的360°范围内发射速率相同、质量为m 、电量为q 的电子。
MN 是一块足够大的挡板,与S 相距OS = L 。
它们处在磁感强度为B 、方向垂直纸面向里的匀强磁场中,试求:(1)要电子能到达挡板,其发射速度至少应为多大? (2)若发射速率为meBL,则电子击打在挡板上的范围怎样? 【解说】第一问甚简,电子能击打到挡板的临界情形是轨迹与挡板相切,此时 r min =2L; 在第二问中,先求得r = L ,在考查各种方向的初速所对应的轨迹与挡板相交的“最远”点。
值得注意的是,O 点上方的最远点和下方的最远点并不是相对O 点对称的。
【答案】(1)m2eBL;(2)从图中O 点上方距O 点3L 处到O 点下方距O 点L 处的范围内。
【例题6】如图9-14甲所示,由加速电压为U 的电子枪发射出的电子沿x 方向射入匀强磁场,要使电子经过x 下方距O 为L 且∠xOP = θ的P 点,试讨论磁感应强度B 的大小和方向的取值情况。