德宏傣族景颇族自治州盈江县2014年七年级下期中数学试题(新课标人教版 七年级下 数学试卷)

合集下载

云南省德宏傣族景颇族自治州七年级下学期数学期中考试试卷

云南省德宏傣族景颇族自治州七年级下学期数学期中考试试卷

云南省德宏傣族景颇族自治州七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各式中,计算正确的是()A . x+y=xyB . a2+a2=a4C . |﹣3|=3D . (﹣1)3=32. (2分)空气的密度是1.293×10﹣3g/cm3 ,用小数把它表示出来是()A . 0.1293g/cm3B . 0.01293g/cm3C . 0.001293g/cm3D . 1293g/cm33. (2分)如图,直线l1 , l2 ,被l3所截得的同旁内角为α,β,要使l1∥l2 ,只要使()A . α+β=90°B . α=βC . α+β=36°D . α+β=360°4. (2分) (2019七下·东台期中) 若是一个完全平方式,则的值为()A . ±4B . ±2C . 4D . -45. (2分)方程组的解是()A .B .C .D .6. (2分)如图,在中,,M,N,K分别是PA,PB,AB上的点,且,,若,则的度数为()A .B .C .D .7. (2分)下列图形中,把△ABC平移后,能得到△DEF的是()A .B .C .D .8. (2分)(x﹣a)(x2+ax+a2)的计算结果是()A . x3+2ax+a3B . x3﹣a3 . x3﹣a3C . x3+2a2x+a3D . x2+2ax2+a3C . x3+2a2x+a3D . x2+2ax2+a39. (2分) (2017七下·宁城期末) 如图是我们生活中经常接触的小刀,刀片的外壳是四边形,而且刀片外壳与刀片铆合部分都是直角,刀片的上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2的度数为()A . 80°B . 70°C . 90°D . 100°10. (2分)如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A . (a+b)(a﹣b)=a2﹣b2B . (a+b)2=a2+2ab+b2C . (a﹣b)2=a2﹣2ab+b2D . a(a﹣b)=a2﹣ab二、填空题 (共8题;共9分)11. (1分) (2020七下·溧阳期末) 己知方程,请用含x的代数式表示y,y=________.12. (1分) (2020七下·兴化期中) 若能用完全平方公式因式分解,则的值为________.13. (1分) (2020七下·溧阳期末) 如图,在直角三角形ABC中,点P、Q分别是AC、BC边上的两个动点,MP、NQ分别平分∠APQ和∠BQP,交AB于点M、N,MR、NR又分别平分∠BMP和∠ANQ,两条角平分线交于点R,则∠R=________°.14. (2分) (2015七上·曲阜期中) 单项式的系数是________,次数是________.15. (1分) (2016八上·肇源月考) 若(x+y)2=11,(x-y)2=7,则xy的值为________.16. (1分) (2019七下·平川月考) 若10m=5,10n=3,则102m-3n的值是________17. (1分)一个n边形的内角和为1080°,则n=________ .18. (1分)如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴、y轴于点P,Q.当QE∶DP=4∶9时,图中阴影部分的面积等于________.三、解答题 (共10题;共101分)19. (5分) (2018七上·建昌期末) 计算:20. (20分) (2019七下·江阴期中) 计算:(1);(2)(-2a3)2•3a3+6a12÷(-2a3);(3)(x+1)(x-2)-(x-2)2;(4)(a+2b+3)(a+2b-3)21. (10分)(2012·扬州)(1)计算:﹣(﹣1)2+(﹣2012)0(2)因式分解:m3n﹣9mn.22. (10分) (2019七下·固始期末)(1)计算:;(2)解方程组23. (9分) (2020八上·北仑期末) 已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向右平移5个单位长度,再F向下平移3个单位长度得到△A1B1C1(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标A1 ________,B1 ________,C1 ________,(3)在x轴上找到一点M,当AM+A1M取最小值时,M点的坐标是________ 。

人教版初一下学期期中考试数学试卷含答案

人教版初一下学期期中考试数学试卷含答案

人教版七年级下学期期中考试数学试题一、填空题(本大题共6小题,共24.0分)1.命题:“互为相反数的两数的绝对值相等”,写成如果……,那么……的形式是______.它是______命题(填“真”或“假”)2.如图,已知DE∥BC,CD是∠ACB的平分线,∠BDC=88°,∠AED=40°,那么∠B等于______.3.使有意义的x的取值范围是______.4.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为______.5.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为______个单位.6.同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜如图是两人玩的一盘棋,若白的位置是(1,-5),黑的位置是(2,-4),现轮到黑棋走,你认为黑棋放在______位置就获得胜利了.二、选择题(本大题共8小题,共32.0分)7.下列各点中,在第二象限的是()A. B. C. D.8.0.49的算术平方根的相反数是()A. B. C. D. 09.在实数:3.14159,,1.010010001,4.,π,中,无理数有()A. 1个B. 2个C. 3个D. 4个10.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A. 点到直线的距离B. 垂线段最短C. 两点确定一条直线D. 两点之间线段最短11.下列各组图形,可以通过平移得到的是()A. B. C. D.12.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入,则输出的结果为()A. 5B. 6C. 7D. 813.含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A. B. C. D.14.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个三、解答题(本大题共7小题,共44.0分)15.解下列各式中的x(1)(x-3)2=64;(2).16.已知,求x+yz值.17.如图所示:已知AD∥BC,∠A=∠C.(1)AB与CD平行吗?为什么?(2)如果∠ABC比∠C大60°,试求∠C的度数.18.“小头爸爸”为了检查“大头儿子”对平行线的条件与性质这部分知识的掌握情况,给他出了一道题:如图,AB∥DE,∠B=80°,CM平分∠BCD,CN平分∠BOE,求证CN⊥CM.“大头儿子”稍加思索,就做出来了,你知道他是怎样解的吗?请把你的推理过程写下来吧,19.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(______),且∠1=∠4(______)∴∠2=∠4(等量代换)∴CE∥BF(______)∴∠______=∠3(______)又∵∠B=∠C(已知)∴∠3=∠B(______)∴AB∥CD(______).20.如图,已知A(-2,3)、B(4,3)、C(-1,-3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.21.(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.答案和解析1.【答案】如果两个数互为相反数,那么这两个数的绝对值相等真【解析】解:如果两个数互为相反数,那么这两个数的绝对值相等,是真命题;故答案为:如果两个数互为相反数,那么这两个数的绝对值相等:真.根据命题都可以写成“如果”、“那么”的形式,“如果”后面是题设,“那么”后面是结论,从而得出答案.此题考查了命题与定理,解题的关键是了解“如果”后面是题设,“那么”后面是结论.2.【答案】72°【解析】解:∵DE∥BC,∴∠AED=∠ACB=40°,又∵CD是∠ACB的平分线,∴∠BCD=∠ACB=20°,∵∠BDC=88°,∴∠B=180°-∠B-∠BDC=72°,故答案为:72°.依据平行线的性质,即可得到∠AED=∠ACB=40°,再根据CD是∠ACB的平分线,即可得出∠BCD的度数,最后依据三角形内角和定理即可得到∠B的度数.此题考查了平行线的性质,以及角平分线定义,熟练掌握平行线的性质是解本题的关键.3.【答案】x≥0且x≠2【解析】解:依题意得:.解得x≥0且x≠2.故答案是:x≥0且x≠2.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.【答案】(2,-1)【解析】解:如图,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标(2,-1)故答案为(2,-1).画出点N,根据点N的位置写出坐标即可.本题考查坐标平移,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】8【解析】解:根据题意,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,故四边形ABFD的边长分别为AD=1个单位,BF=3个单位,AB=DF=2个单位;故其周长为8个单位.故答案为:8.根据平移的基本性质作答.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.【答案】(2,0)或(7,-5)【解析】解:∵白的位置是(1,-5),黑的位置是(2,-4),∴如图黑棋放在两圆所在位置,就获得胜利了,∴与(1,-5)在一条水平线上点的坐标为:(7,-5),另一点的坐标为:(2,0)两点的坐标为:(2,0)或(7,-5).根据黑棋放在如图位置就获得胜利,再根据白的位置是(1,-5),黑的位置是(2,-4),即可求出两点的坐标.此题主要考查了坐标确定位置,由已知确定原点的位置,是解决问题的关键.7.【答案】B【解析】解:∵(2,4)在第一象限,∴选项A不正确;∵(-2,4)在第二象限,∴选项B正确;∵(2,-4)在第四象限,∴选项C不正确;∵(-2,-4)在第三象限,∴选项D不正确.故选:B.根据各个象限内点的坐标特征(横坐标的正负、纵坐标的正负)逐一判断,判断出各点中,在第二象限的是哪个点即可.此题主要考查了点的坐标问题,要熟练掌握,解答此题的关键是要明确各个象限内点的坐标特征.8.【答案】B【解析】解:0.49的算术平方根为=0.7,则0.49的算术平方根的相反数为:-0.7.故选:B.先算出0.49的算术平方根,然后求其相反数即可.本题考查了算术平方根及相反数的知识,属于基础题,掌握各知识点概念是解题的关键.9.【答案】A【解析】解:无理数有π一个,故选:A.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.10.【答案】B【解析】解:∵根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故选:B.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.11.【答案】A【解析】解:①要通过轴对称得到,故错误;②通过旋转得到,故错误;③图形的形状和大小没有改变,只是位置发生了变化,符合平移性质,故正确;④图形的形状和大小没有改变,只是位置发生了变化,符合平移性质,故正确;⑤图形的形状和大小没有改变,只是位置发生了变化,符合平移性质,故正确;⑥要通过旋转和平移得到,故错误.故选:A.根据平移的性质,对选项进行一一分析,排除错误答案.本题考查了利用平移设计图案,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.12.【答案】B【解析】解:∵输入一个数后,输出的数比输入的数的平方小1,∴输入,则输出的结果为()2-1=7-1=6.故选:B.根据运算程序得出输出数的式子,再根据实数的运算计算出此数即可.本题考查的是实数的运算,根据题意得出输出数的式子是解答此题的关键.13.【答案】B【解析】解:∵∠ACD=∠A=30°,∴∠CDB=∠A+∠ACD=60°,∵l1∥l2,∴∠1=∠CDB=60°,故选:B.先根据三角形外角性质得到∠CDB的度数,再根据平行线的性质,即可得到∠1的度数.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.14.【答案】A【解析】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.15.【答案】解:(1)(x-3)2=64,x-3=±8,x=-5或x=11;(2)(x-1)3=-,x-1=-2.5,x=-1.5.【解析】(1)根据解方程的方法和平方根的定义可以解答本题;(2)根据解方程的方法和立方根的定义可以解答本题.本题考查立方根、平方根、解方程,解答本题的关键是明确它们各自的计算方法.16.【答案】解:∵,∴x+1=0,2y-1=0,3z+2=0∴x=-1,y=0.5,z=-;原式=-1+0.5×(-)=-.【解析】根据非负数的性质,可求出x、y、z的值,然后将代数式化简再代值计算.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.【答案】解:(1)AB∥CD,∵AD∥BC,∴∠A+∠ABC=180°,∵∠A=∠C,∴∠C+∠ABC=180°,∴AB∥DC;(2)∵∠ABC-∠C=60°,∴∠ABC=∠C+60°,由(1)知,∠ABC+∠C=180°,∴2∠C=120°,∴∠C=60°.【解析】(1)由平行线的性质得∠A+∠ABC=180°,又∠A=∠C,等量代换得∠C+∠ABC=180°,由同旁内角互补,两直线平行得出结论;(2)由(1)中的∠ABC+∠C=180°和已知条件∠ABC-∠C=60°可得2∠C=120°,易得∠C.本题主要考查了平行线的性质及判定定理,综合运用平行线的性质和判定定理是解答此题的关键.18.【答案】解:∵AB∥DE,∠B=80°∴∠B+∠DCB=180°,∴∠DCB=180°-80°=100°,∠BCE=80°,∵CM平分∠BCD,CN平分∠BOE,∴∠BCM=∠BCD=×100°=50°,∠BCN=∠BCE=40°,∴∠MCN=90°,∴CM⊥CN.【解析】依据平行线的性质,即可得到∠DCB=100°,∠BCE=80°,再根据CM平分∠BCD,CN平分∠BOE,即可得到∠MCN=90°,进而得出CM⊥CN.本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.19.【答案】已知对顶角相等同位角相等,两直线平行C两直线平行,同位角相等等量代换内错角相等,两直线平行【解析】解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知,对顶角相等,同位角相等,两直线平行,C,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.先根据等量代换,得出∠2=∠4,进而判定两直线平行,再根据平行线的性质,得出∠C=∠3,再根据等量代换得到∠3=∠B,最后判定两直线平行.本题考查了平行线的判定和平行线的性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.20.【答案】解:(1)∵C(-1,-3),∴|-3|=3,∴点C到x轴的距离为3;(2)∵A(-2,3)、B(4,3)、C(-1,-3)∴AB=4-(-2)=6,点C到边AB的距离为:3-(-3)=6,∴△ABC的面积为:6×6÷2=18.(3)设点P的坐标为(0,y),∵△ABP的面积为6,A(-2,3)、B(4,3),∴6×|y-3|=6,∴|y-3|=2,∴y=1或y=5,∴P点的坐标为(0,1)或(0,5).【解析】(1)点C的纵坐标的绝对值就是点C到x轴的距离解答;(2)根据三角形的面积公式列式进行计算即可求解;(3)设点P的坐标为(0,y),根据△ABP的面积为6,A(-2,3)、B(4,3),所以,即|x-3|=2,所以x=5或x=1,即可解答.本题考查了坐标与图形,解决本题的关键是利用数形结合的思想.21.【答案】解:(1)∠2=∠1+∠3.过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠1,∠CEF=∠3,∴∠2=∠BEF+∠CEF=∠1+∠3;(2)∠2+∠4=∠1+∠3+∠5.分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7.分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.归纳:开口朝左的所有角度之和与开口朝右的所有角度之和相等.【解析】(1)首先过点E作EF∥AB,由AB∥CD,可得AB∥CD∥EF,根据平行线的性质,易得∠2=∠BEF+∠CEF=∠1+∠3;(2)首先分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN,由平行线的性质,可得∠2+∠4=∠1+∠3+∠5.(3)首先分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN∥KL∥PQ,然后利用平行线的性质,即可证得∠2+∠4+∠6=∠1+∠3+∠5+∠7.此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。

云南省德宏傣族景颇族自治州七年级下学期数学期中考试试卷

云南省德宏傣族景颇族自治州七年级下学期数学期中考试试卷

云南省德宏傣族景颇族自治州七年级下学期数学期中考试试卷姓名:________班级:________成绩:________一、 选择题(共 10 小题;共 30 分) (共 10 题;共 29 分)1. (3 分) (2019 七下·乌鲁木齐期中) 方程 3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0 中,二元一次方程的个数是( )A . 1个B . 2个C . 3个D . 4个【考点】2. (3 分) 若代数式 A.2 B . ±2 C.3 D . ±3 【考点】是五次二项式,则 a 的值为( )3. (3 分) 若 a⊥b,c⊥d,则 a 与 c 的关系是( ) A . 平行 B . 垂直 C . 相交 D . 以上都不对 【考点】4. (3 分) 如图,已知直线 AB∥CD,∠A=20°,∠C=40°,则∠E=( )A . 20° B . 40°第 1 页 共 20 页C . 60° D . 80° 【考点】5. (3 分) (2010·华罗庚金杯竞赛) 一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数 之和都相等,下图是这个立方体的平面展开图,若 20、0、9 的对面分别写的是 a、b、c,则 a2+b2+c2-ab-bc-ca 的值为( )。

A . 481 B . 301 C . 602 D . 962 【考点】6. (2 分) 如图,在一张△ABC 纸片中, ∠C=90°, ∠B=60°,DE 是中位线,现把纸片沿中位线 DE 剪开,计划拼 出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼 成的个数为( )A.1 B.2 C.3 D.4 【考点】7. (3 分) (2019 七下·湖州期中) 下列各式能用平方差公式计算的是( )第 2 页 共 20 页A . (3a+b)(a-b) B . (3a+b)(-3a-b) C . (-3a-b)(-3a+b) D . (-3a+b)(3a-b) 【考点】8. (3 分) (2019 七下·江阴期中) 如果多项式 A . ±4 B.4 C.8 D.±8 【考点】是一个完全平方式,则 m 的值是 ( )9. (3 分) 在长为 10m,宽为 8m 的矩形空地上,沿平行于矩形各边的方向分割出三个全等 的小矩形花圃,其示意图如图所示.则花圃的面积为( ).A . 16 B.8 C . 32 D . 24 【考点】10. (3 分) 如果一个数的平方等于这个数的倒数,那么这个数是( ) A.1 B.0 C . ±1 D . -1 【考点】第 3 页 共 20 页二、 填空题(共 6 小题;共 24 分) (共 6 题;共 22 分)11. (4 分) (2020·邗江模拟) 如图,直线 y= x﹣2 与 x 轴交于点 A,以 OA 为斜边在 x 轴的上方作等腰直角三角形 OAB,将△OAB 沿 x 轴向右平移,当点 B 落在直线 y= 的图形面积为________.x﹣2 上时,则线段 AB 在平移过程中扫过部分【考点】12. (4 分) (2017 七下·承德期末) 对于 x+3y=3,用含 x 的代数式表示 y 得________. 【考点】13. (4 分) (2019 七下·定襄期末) 如图是小明设计的一个关于实数的运算程序图,当输入 的值为 81 时, 则输出的数值为________.【考点】14. (4 分) (2015 七下·绍兴期中) 写出一个解为 【考点】的二元一次方程组是________15. (2 分) (2020 七下·北京期末) 完成下面的证明: 已知:如图,AB∥DE,求证:∠D+∠BCD-∠B=180°, 证明:过点 C 作 CF∥AB. ∵AB∥CF(已知), ∴∠B=________ ( 依据:________). ∵AB∥DE,CF∥AB( 已知 ) ,第 4 页 共 20 页∴CF∥DE (依据:________) ∴∠2+________=180° ( 依据:________) ∵∠2=∠BCD -∠1, ∴∠D+∠BCD-∠B=180°.【考点】16. (4 分) (2017·宝山模拟) 如图,D 为直角△ABC 的斜边 AB 上一点,DE⊥AB 交 AC 于 E,如果△AED 沿 DE 翻折,A 恰好与 B 重合,联结 CD 交 BE 于 F,如果 AC═8,tanA═ ,那么 CF:DF═________【考点】三、 解答题(共 8 小题;共 66 分) (共 7 题;共 54 分)17. (6 分) 计算下列各题: (1) (2) 【考点】18. (6 分) (2018 七下·郸城竞赛) 解方程组: (1) (2) 【考点】第 5 页 共 20 页19. (6 分) (2018 八上·梁子湖期末) 如图在平面直角坐标系中, ,各顶点的坐标分别为:,(1) 在图中作使和(2) 写出点的坐标;(3) 求的面积.【考点】20. (8 分) (2019 七下·安阳期末)(1) (问题情境)如图 1,,关于 x 轴对称;,.求的度数.小明想到了以下方法(不完整),请完成填写理由或数学式:如图 1,过点 P 作∴.( ▲ )又,(已知)∴.( ▲ )∵,(已知)∴,( ▲)∴.( ▲ )∵,∴.∴.即.(2) (问题迁移)如图 2,,点 P 在 AB,CD 外,问,关系?请说明理由;第 6 页 共 20 页,,之间有何数量(3) (联想拓展)如图 3 所示,在(2)的条件下,已知线交于点 G,用含有 的式子表示的度数.【考点】,的平分线和的平分21. (8 分) (2016 七下·港南期中) 设计一个商标图案如图中阴影部分所示,长方形 ABCD 中,AB=a,BC=b, 以点 A 为圆心,AD 为半径作圆弧与 BA 的延长线相交于点 F,求商标图案的面积.(其中 a=4,b=2).【考点】22. (10.0 分) (2019 七下·杭州期中) 如图,杭州某化工厂与 A,B 两地有公路,铁路相连.这家工厂从 A 地购买一批每吨 1000 元的原料运回工厂,制成每吨 8000 元的产品运到 B 地.已知公路运价为 1.4 元/(吨•千米), 铁路运价为 1.1 元/(吨•千米),且这两次运输共支出公路运输费 14000 元,铁路运输费 89100 元,求:(1) 该工厂从 A 地购买了多少吨原料?制成运往 B 地的产品多少吨? (2) 这批产品的销售款比原料费与运输费的和多多少元? 【考点】23. (10 分) (2018 八上·信阳月考) 如图 1 是一个长为 4a、宽为 b 的长方形,沿图中虚线用剪刀平均分成 四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图 2).(1) 图 2 中阴影部分的面积为________; (2) 观察图 2,请你写出(a+b)2、(a﹣b)2、ab 之间的等量关系是________; (3) 根据(2)中的结论,若 x+y=5,xy=4,求 x﹣y 的值. 【考点】第 7 页 共 20 页第 8 页 共 20 页参考答案一、 选择题(共 10 小题;共 30 分) (共 10 题;共 29 分)答案:1-1、 考点:解析: 答案:2-1、 考点:解析: 答案:3-1、 考点: 解析:答案:4-1、 考点:第 9 页 共 20 页解析: 答案:5-1、 考点:解析: 答案:6-1、 考点: 解析:第 10 页 共 20 页答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(共6小题;共24分) (共6题;共22分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(共8小题;共66分) (共7题;共54分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。

人教人教版七年级数学下册期中测试卷及答案.doc

人教人教版七年级数学下册期中测试卷及答案.doc

人教人教版七年级数学下册期中测试卷及答案.doc一、选择题1.9的算术平方根是()A .-3B .3C .3±D .192.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A . B . C . D . 3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( )A .点A 在第一象限B .点A 的横坐标是2C .点A 到y 轴的距离是1D .以上都不对4.下列四个命题其中正确的个数是( )①对顶角相等;②在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;③邻补角的平分线互相垂直;④在同一平面内,垂直于同一条直线的两条直线互相垂直A .1个B .2个C .3个D .4个5.如图,AB ∥CD ,∠EBF =∠FBA ,∠EDG =∠GDC ,∠E =45°,则∠H 为( )A .22°B .22.5°C .30°D .45°6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160°8.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2k ≥时,111215551255k k k k k k x x k k y y --⎧⎛⎫--⎡⎤⎡⎤=+--⎪ ⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎝⎭⎨--⎡⎤⎡⎤⎪=+-⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩,[]a 表示非负实数a 的整数部分,例如[]2.82=,[]0.30=.按此方案,第2021棵树种植点的坐标为( ).A .()1,405B .()2,403C .()2,405D .()1,403二、填空题9.364--的算术平方根是________.10.已知点()3,21A a --与点(),3B b -关于x 轴对称,那么点(),P a b 关于y 轴的对称点P '的坐标为__________.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,直线//a b ,//AB CD ,160∠=︒,则4∠=________.13.如图,在四边形ABCD 纸片中,AD ∥BC ,AB ∥CD .将纸片折叠,点A 、B 分别落在G 、H 处,EF 为折痕,FH 交CD 于点K .若∠CKF =35°,则∠A +∠GED =______°.14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.15.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .16.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.三、解答题17.(1)计算:3317362271? 48-++-- (2)比较325- 与-3的大小18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.学习如何书写规范的证明过程,补充完整,并完成后面问题.已知:如图,点D ,E ,F 分别是三角形ABC 的边BC ,CA ,AB 上的点,DE ∥BA ,∠A =∠FDE .求证:FD ∥AC .证明:∵DE ∥BA (已知)∴ ∠BFD = ( )又 ∵ ∠A =∠FDE∴ = (等量代换)∴FD ∥CA ( )模仿上面的证明过程,用另一种方法证明FD ∥AC .20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC ;(2)将ABC 向下平移2个单位长度,再向左平移2个单位长度得到三角形111A B C ,画出平移后的图形并写出1A 、1B 、1C 的坐标.21.已知:a 是93+的小数部分,b 是93-的小数部分.(1)求a b 、的值;(2)求445a b ++的平方根.22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°30-a (β﹣60)2=0,求∠BEM 的度数;(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为 (直接写出答案).【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的概念可直接进行求解.【详解】±=,解:∵()239∴9的算术平方根是3;故选B.【点睛】本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键.2.B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.3.C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可.【详解】解:A 、−1<0,2>0,点A 在第二象限,原说法错误,该选项不符合题意;B 、点A 的横坐标是−1,原说法错误,该选项不符合题意;C 、点A 到y 轴的距离是1,该选项正确,符合题意;D 、以上都不对,说法错误,该选项不符合题意;故选:C .【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键.4.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;②在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交,正确;③邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;④在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D .【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.5.B【分析】过E 作//EQ AB ,过H 作//HI AB ,利用平行线的性质解答即可.【详解】解:过E 作//EQ AB ,过H 作//HI AB , //AB CD ,//////EQ AB CD HI ∴,180QEB ABE ∴∠+∠=︒,180QED EDC ∠+∠=︒,180IHD CDH ∠+∠=︒,180IHB ABH ∠+∠=︒,EBF FBA ∠=∠,EDG GDC ∠=∠,45BED ∠=︒,2245FBA GDC BED ∴∠-∠=∠=︒,1180(180)22.52BHD CDH ABH GDC FBA FBA GDC BED ∴∠=∠-∠=︒-∠-︒-∠=∠-∠=∠=︒. 故选:B .【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.6.C【详解】解:由题意可知4的算术平方根是2,43434的算术平方根是22<22,8的立方根是2,故根据数轴可知,故选C7.A【分析】根据平行线的性质求出∠C,再根据平行线的性质求出∠B即可.【详解】解:∵BC∥DE,∠CDE=140°,∴∠C=180°-140°=40°,∵AB∥CD,∴∠B=40°,故选:A.【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.A【分析】根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,,,,,……,将以上等式相加,得:,当k=20解析:A【分析】根据所给的x k、y k的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.【详解】解:由题意可知,11x=,2110 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,3221 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,4332 15555x x ⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,……112 1555k k k kx x---⎡⎤⎡⎤-=-+⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:155kkx k-⎡⎤=-⎢⎥⎣⎦,当k=2021时,20212020 202152021540415x⎡⎤=-=-⨯=⎢⎥⎣⎦;11y=,2110 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,3221 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,4332 55y y ⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,……112 55k k k ky y---⎡⎤⎡⎤-=-⎢⎥⎢⎥⎣⎦⎣⎦,将以上等式相加,得:11+5kky-⎡⎤=⎢⎥⎣⎦,当k=2021时,202120201+4055y⎡⎤==⎢⎥⎣⎦,∴第2021棵树种植点的坐标为()1,405,故选:A .【点睛】本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键.二、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力. 解析:2【分析】 先求出,再求出算术平方根即可.【详解】解:∵, ∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.10.【分析】先将a,b 求出来,再根据对称性求出坐标即可.【详解】根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.P(2,﹣3)关于y 轴对称的点(﹣2,﹣3)故答案为: (﹣2,﹣解析:()2,3--【分析】先将a ,b 求出来,再根据对称性求出P '坐标即可.【详解】根据题意可得:﹣3=b ,2a -1=3.解得a =2,b =﹣3.P(2,﹣3)关于y 轴对称的点P '(﹣2,﹣3)故答案为: (﹣2,﹣3).【点睛】本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.11.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA =2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.120°.【分析】延长AB 交直线b 于点E ,可得,则 ,再由,可得 ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵,∴,∴ ,∵,,∴ ,∴.故答案为: .【点睛】解析:120°.【分析】延长AB 交直线b 于点E ,可得//AE CD ,则4180AED ∠+∠=︒ ,再由//a b ,可得1AED ∠=∠ ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵//AB CD ,∴//AE CD ,∴4180AED ∠+∠=︒ ,∵//a b ,160∠=︒,∴160AED ∠=∠=︒ ,∴4180120∠=︒-∠=︒AED .故答案为:120︒ .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.13.145【分析】首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.【详解】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解.【详解】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠A=∠C,根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK,∵AD∥BC,∴∠DEF=∠EFB,∠AEF=∠EFC,∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK,∴∠GEF﹣∠DEF=∠EFC﹣∠EFK,∴∠GED=∠CFK,∵∠C+∠CFK+∠CKF=180°,∴∠C+∠CFK=145°,∴∠A+∠GED=145°,故答案为145.【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键.14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n和q互为相反数,O在线段NQ的中点处,∴绝对值最大的是点P表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 15.(6,2)或(4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C 的坐标为(-4,2),点C 在点A 的右边时横坐标为1+5=6,此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可; (2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式= =3163()22-++-- =-1;(2)∵3(3)27-=-2527->- ∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键. 18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13. 【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.(1)∠FDE ,两直线平行,内错角相等; ∠A ,∠BFD , 同位角相等,两直线平行;(2)证明见解析.【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可; (2)根据两直线平行解析:(1)∠FDE ,两直线平行,内错角相等; ∠A ,∠BFD , 同位角相等,两直线平行;(2)证明见解析.【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:∵DE ∥BA (已知)∴ ∠BFD =∠FDE (两直线平行,内错角相等)又 ∵ ∠A =∠FDE∴∠A =∠BFD ,(等量代换)∴FD ∥CA (同位角相等,两直线平行.)故答案为:∠FDE ,两直线平行,内错角相等; ∠A ,∠BFD , 同位角相等,两直线平行. (2)证明:∵DE ∥BA (已知),∴∠A =∠DEC (两直线平行,同位角相等),又 ∵ ∠A =∠FDE (已知),∴∠FDE =∠DEC (等量代换),∴FD ∥CA ;(内错角相等,两直线平行).【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1),;(2)±3.【分析】(1)首先得出1<<2,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】(1)∵1<<2∴10<<11,7<<8∴的整数部分为10,的整数部分为7,解析:(1)31a ,23b =2)±3.【分析】(1)首先得出132,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】(1)∵132∴10<9311,7<938 ∴9310,937,9310,937a b ∴=+=+,31a ∴=,23b = (2)原式()45a b =++415=⨯+9=9∴的平方根为:3±.此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x∴3x=,2x=答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()250 4230a b ab a b⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩,解得:105ab=⎧⎨=⎩,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.解:(1)∵30α-+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为1,2故答案为:1.2【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.。

人教版七年级下册数学期中试卷及答案doc人教

人教版七年级下册数学期中试卷及答案doc人教

人教版七年级下册数学期中试卷及答案doc 人教 一、选择题 1.81的算术平方根是()A .3B .﹣3C .﹣9D .92.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,下列点中位于第四象限的是( )A .()0,3B .()2,1-C .()1,2-D .()1,1-- 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( )A .1个B .2个C .3个D .4个5.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒ 6.下列说法正确的是( )A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.已知直线//m n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=25°,则∠2的度数为( )A .55°B .45°C .30°D .25°8.在平面直角坐标系中,点A (1,0)第一次向左跳动至A 1(﹣1,1),第二次向右跳至A 2(2,1),第三次向左跳至A 3(﹣2,2),第四次向右跳至A 4(3,2),…,按照此规律,点A 第2021次跳动至A 2021的坐标是( )A .(﹣1011,1011)B .(1011,1010)C .(﹣1010,1010)D .(1010,1009)二、填空题9.计算:﹣9=_____.10.点()2,1M -关于y 轴的对称点的坐标为______.11.如图,BE 是△ABC 的角平分线,AD 是△ABC 的高,∠ABC=60°,则∠AOE=_____.12.如图,直线//a b ,//AB CD ,160∠=︒,则4∠=________.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.15.已知点P 位于第一象限,到x 轴的距离为2,到y 轴的距离为5,则点P 的坐标为____.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.三、解答题17.计算下列各题:(1)327-+2(3)--31-(2)3331632700.1251464---++-. 18.求下列各式中x 的值:(1)23126x -=(2)()3180x --=19.如图所示,已知∠1+∠2=180°,∠B =∠3,请你判断DE 和BC 平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE ∥BC .理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ),∴∠2=∠4( ).∴ ∥ ( ).∴∠3= ( ).∵∠3=∠B ( ),∴ = ( ).∴DE ∥BC ( ).20.已知点A (-2,3),B (4,3),C (-1,-3).(1)在平面直角坐标系中标出点A ,B ,C 的位置;(2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离;(4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.21.阅读下面文字: 22的小数部分我们不可能全21221,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:22<2(7)<23,即273<<,∴7的整数部分是2,小数部72.(110的整数部分是________,小数部分是________;(25a 37整数部分是b ,求25b a -+(3)已知103x y +=+,其中x 是整数,且01y <<,求y x -. 22.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)24.模型与应用.(模型)(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)【参考答案】一、选择题1.A解析:A【分析】=,再计算9的算术平方根即可.819【详解】=,993819=故选A【点睛】819是解题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A 、(0,3)在y 轴上,故本选项不符合题意;B 、(2,1)-在第二象限,故本选项不符合题意;C 、(1,2)-在第四象限,故本选项符合题意;D 、(1,1)--在第三象限,故本选项不符合题意.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.B【分析】根据几何初步知识对命题逐个判断即可.【详解】解:①对顶角相等,为真命题;②内错角相等,只有两直线平行时,内错角才相等,此为假命题;③平行于同一条直线的两条直线互相平行,为真命题;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;①③命题正确.故选:B .【点睛】本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.5.A【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠.【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴, 12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠, 180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠, 180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒,1802(24)BKC BKC ∴∠=︒-∠-︒,76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c .6.D【分析】根据平方根和立方根的定义逐项判断即可得.【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意; C 、任何实数都有立方根,则此项说法错误,不符题意;D 3333-=3-的立方根是33故选:D .【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键.7.A【分析】易求ABD ∠的度数,再利用平行线的性质即可求解.【详解】解:30ABC =︒∠,125∠=︒,155ABD ABC ∴∠=∠+∠=︒,直线//m n ,255ABD ∴∠=∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n +1,n ),则第2020次跳动至点的坐标是(1011,1010),第2021次跳动至点A2021的坐标是(﹣1011,1011).故选:A.【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】9﹣3.故答案是﹣3.考点:算术平方根.10.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点2,1解析:()【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M-关于y轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.11.60°【分析】先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD 的度数,由对顶角相等即可得出结论.【详解】∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A解析:60°【分析】先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.【详解】∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=12∠ABC=12×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 12.120°.【分析】延长AB交直线b于点E,可得,则,再由,可得,即可求解.【详解】解:如图,延长AB交直线b于点E,∵,∴,∴,∵,,∴,∴.故答案为:.【点睛】解析:120°.延长AB 交直线b 于点E ,可得//AE CD ,则4180AED ∠+∠=︒ ,再由//a b ,可得1AED ∠=∠ ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵//AB CD ,∴//AE CD ,∴4180AED ∠+∠=︒ ,∵//a b ,160∠=︒,∴160AED ∠=∠=︒ ,∴4180120∠=︒-∠=︒AED .故答案为:120︒ .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB //DE ,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.或.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:4※(-2)=;(-1)※1=[(-1)※1]※m=解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-; 11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.15.(5,2)【分析】根据点P 在第一象限,即可判断P 点横、纵坐标的符号,再根据点P 到x 轴的距离为2,到y 轴的距离为5,即可写出P 点坐标.【详解】解:因为点P 在第一象限,所以其横、纵坐标分别为正数解析:(5,2)【分析】根据点P 在第一象限,即可判断P 点横、纵坐标的符号,再根据点P 到x 轴的距离为2,到y 轴的距离为5,即可写出P 点坐标.【详解】解:因为点P 在第一象限,所以其横、纵坐标分别为正数、正数,又因为点P 到x 轴的距离为2,到y 轴的距离为5,所以点P 的横坐标为5,纵坐标为2,所以点P 的坐标为(5,2),故答案为(5,2).【点睛】此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键.16.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.三、解答题17.(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+=解析:(1)1 (2)11 4 -【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14=11 4 -18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -= ∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.已知;同角的补角相等;AB ;EF ;内错角相等,两直线平行;∠ADE ;两直线平行,内错角相等;已知;∠B ;∠ADE ;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB ;EF ;内错角相等,两直线平行;∠ADE ;两直线平行,内错角相等;已知;∠B ;∠ADE ;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB ∥EF ,根据平行线的性质得出∠3=∠ADE ,求出∠B =∠ADE ,再根据平行线的判定推出即可.【详解】解:DE ∥BC ,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB ∥EF (内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键.20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A (-2,3),B (4,3),∴AB =4-(-2)=6;(3)∵C (-1,-3),∴C 到x 轴的距离为3,到直线AB 的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP 与三角形ABC 同底等高,即为所求∴P (0,-3);同理当P 在AB 的上方还有一个到AB 距离是6的点满足要求,即P (0,9); ∴P (0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)3103;(2)853)123【分析】(110的范围,再求出即可;(2537的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出3x、y的值,最后代入求出即可.【详解】解:(1)∵91016∴310<4,∴10310-3,故答案为:310-3;(2)∵459363747∴253,6377,∴a5,b=6,∴)-+=-+b a256522585(3)∵12,∴11<1012,∴x=11,y=10111=,y x--==∴1111212【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=∴长方形纸片的长为又∵(2=450>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠,BF 平分ABC ∠,DF 平分ADC ∠,1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠.即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 24.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.。

(完整版)人教版七年级数学下册期中试卷及答案doc人教

(完整版)人教版七年级数学下册期中试卷及答案doc人教

(完整版)人教版七年级数学下册期中试卷及答案doc 人教 一、选择题1.81的平方根是()A .9B .9和﹣9C .3D .3和﹣3 2.下列各组图形可以通过平移互相得到的是( )A .B .C .D . 3.平面直角坐标系中,点(a 2+1,2020)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.在同一平面内,下列命题是假命题的是( )A .过直线外一点有且只有一条直线与已知直线相交B .已知a ,b ,c 三条直线,若a c ⊥,b c ⊥,则//a bC .过直线外一点有且只有一条直线与已知直线垂直D .若三条直线两两相交,则它们有一个或三个交点5.如图,直线//a b ,三角板的直角顶点在直线b 上,已知125∠=︒,则2∠等于( ).A .25°B .55°C .65°D .75°6.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数都有平方根和立方根D .任何数的立方根都只有一个7.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,FH 平分∠EFD ,若∠1=110°,则∠2的度数为( )A .45°B .40°C .55°D .35°8.一只青蛙在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2021次跳到点( )A .(6,45)B .(5,44)C .(4,45)D .(3,44)二、填空题9.若,则()m a b +的值为10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,把一把直尺放在含30度角的直角三角板上,量得154∠=︒,则2∠的度数是_______.13.如图,将矩形ABCD 沿MN 折叠,使点B 与点D 重合,若∠DNM =75°,则∠AMD =_____.14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.三、解答题17.(1310.0484-(2)计算:2231(3)0.125(4)64--- 18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC ;(2)将ABC 向下平移2个单位长度,再向左平移2个单位长度得到三角形111A B C ,画出平移后的图形并写出1A 、1B 、1C 的坐标.21.计算:(1239(6)27-- (2)﹣12+(﹣2)3×31127()89--; (3)已知实数a 、b 1a -﹣1|=0,求a 2017+b 2018的值.(45的整数部分为a 51的小数部分为b ,求2a+3b 的值.22.有一块面积为100cm 2的正方形纸片.(1)该正方形纸片的边长为 cm (直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm 2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?23.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.24.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)【参考答案】一、选择题1.D解析:D先化简,再根据平方根的地红衣求解.【详解】解:∵,∴3±,故选D.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.2.B【分析】根据平移的定义逐项分析判断即可.【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可.【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误.故选:B.【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键.3.A【分析】根据点的横纵坐标的正负判断即可.【详解】解:因为a2+1≥1,所以点(a2+1,2020)所在象限是第一象限.故选:A.【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.4.A根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.【详解】解:A 、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题; B 、在同一平面内,已知a ,b ,c 三条直线,若a c ⊥,b c ⊥,则//a b ,是真命题; C 、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题; D 、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题; 故选:A .【点睛】本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.5.C【分析】利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.【详解】解:如图∵a //b∴∠2=∠3,∵∠1+∠3=180°-90°=90°∴∠3=90°-∠1=90°-25°=65°∴∠2=65°.故选C .【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键. 6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.【详解】A 、一个数的立方根只有1个,故本选项错误;B 、负数有立方根,故本选项错误;C 、负数只有立方根,没有平方根,故本选项错误;D 、任何数的立方根都只有一个,故本选项正确.故选:D .【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.7.D【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.【详解】解:∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°-∠3=180°-110°=70°,∵HF平分∠EFD,∴∠DFH=12∠DFE=12×70°=35°,∵AB∥CD,∴∠2=∠DFH=35°.故选:D.【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.8.D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次解析:D【分析】根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标.【详解】解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次.2025-1-3=2021,故第2021次时青蛙所在位置的坐标是(3,44).故选:D.此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b 10.(-2,-1)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本解析:(-2,-1)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD 是△ABC 的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.【详解】已知可知直尺的两边平行故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:114︒【分析】由已知可知460∠=︒,由平行可知13∠=∠,根据三角形外角的性质可知234∠=∠+∠从而求得的答案.【详解】已知可知460∠=︒直尺的两边平行∴13∠=∠∴234145460114∠=∠+∠=∠+∠=︒+︒=︒故答案为:114°本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.13.30°【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.【详解】解:∵四边形ABCD是矩形,∴DN∥AM,∵∠DNM=75º解析:30°【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD 的度数,本题得以解决.【详解】解:∵四边形ABCD是矩形,∴DN∥AM,∵∠DNM=75º,∴∠DNM=∠BMN=75º,∵将矩形ABCD沿MN折叠,使点B与点D重合,∴∠BMN=∠NMD=75º,∴∠BMD=150º,∴∠AMD=30º,故答案为:30º.【点睛】本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.此题主要考查规律的探索, 解析:43. 【分析】先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16∴12AB OC⨯⨯=16∴OC=4∴点C的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.16.(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4解析:(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…A n时所用的间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,各式相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒.所求点应为(10,44).故答案为:(10,44).故答案为:15,(10,44).【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式a n-a n-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1) 2.3;(2)1【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(11=+--0.2(2)2=-;2.3(6-(2)211=---+-3()4622=.1【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案. 【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己知),∴∠ABC =∠ADE =90°(垂直定义),∴BC ∥DE (同位角相等,两直线平行),∴∠1=∠EBC (两直线平行,内错角相等),又∵∠l =∠2 (已知),∴∠2=∠EBC (等量代换),∴BE ∥GF (同位角相等,两直线平行),∴∠BEC +∠FGE =180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4)35.【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用253<的范围进而得出a ,b 的值,即可得出答案.【详解】 解:(2319(6)27--3630=-+=;()2331121(2)2789⎛-+-⨯- ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()+的整数部分为a1的小数部分为b,451∴=,23ab=,∴+=+=a b2366【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm,则宽为3xcm,则4x•3x=90,∴12x2=90,∴x2=30,4解得:x或x=∴长方形纸片的长为,∵56,∴10<∴小丽不能用这块纸片裁出符合要求的纸片.【点睛】本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.23.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B作BG∥DM,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG =90°,∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM ∥CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG ∥DM ,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.24.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。

人教人教版七年级数学下册期中测试卷及答案.doc

人教人教版七年级数学下册期中测试卷及答案.doc

人教人教版七年级数学下册期中测试卷及答案.doc一、选择题1.25的算数平方根是A .5B .±5C .5±D .5 2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( ) A . B . C . D . 3.坐标平面内的下列各点中,在y 轴上的是( )A .()0,3B .()2,3--C .1,2D .3,04.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②一个三角形被截成两个三角形,每个三角形的内角和是90度;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个5.如图,//AB CD ,将一个含30角的直角三角尺按如图所示的方式放置,若1∠的度数为25︒,则2∠的度数为( )A .35︒B .65︒C .145︒D .155︒ 6.下列计算正确的是( )A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,将△OAB 绕点O 逆时针旋转55°后得到△OCD ,此时//CD OB ,若20AOB ∠=︒,则A ∠的度数是( )A .20°B .25°C .30°D .35°8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )A .2504mB .21009m 2C .21011m 2D .21009m二、填空题9.如果,a 的平方根是3±,则317a -=__________.10.将点()14P -,先关于x 轴对称,再关于y 轴对称的点的坐标为_______. 11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________. 12.如图,已知a ∥b ,如果∠1=70°,∠2=35°,那么∠3=_____度.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______15.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2021A 的坐标是______.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯-+- ⎪⎝⎭. 18.求下列各式中x 的值(1)81x 2 =16(2)3(1)64x -=19.完成下面的证明与解题.如图,AD ∥BC ,点E 是BA 延长线上一点,∠E =∠DCE .(1)求证:∠B =∠D .证明:∵AD ∥BC ,∴∠B =∠______________(______________)∵∠E =∠DCE ,∴AB ∥CD (______________).∴∠D =∠______________(______________).∴∠B =∠D .(2)若CE 平分∠BCD ,∠E =50°,求∠B 的度数.20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.21.已知55-的整数部分为a ,小数部分为b .(1)求a ,b 的值:(2)若c 是一个无理数,且乘积bc 是一个有理数,你能写出数c 的值吗?并说明理由. 22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.【参考答案】一、选择题1.D解析:D【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】=,5∴25的算术平方根是:5.故答案为5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.2.C【分析】根据平移变换的定义可得结论.【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.故选:C.【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C【分析】根据平移变换的定义可得结论.【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的.故选:C.【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题.3.A【分析】根据y轴上点的横坐标为0,即可判断.【详解】解:∵y轴上点的横坐标为0,∴点()0,3符合题意.故选:A.【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.4.B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.【详解】解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;④两个无理数的和不一定是无理数,是假命题;⑤坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是①③⑤,个数是3.故选:B.【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.5.A【分析】过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.【详解】如图,过三角板60°角的顶点作直线EF∥AB,∵AB∥CD,∴EF∥CD,∴∠3=∠1,∠4=∠2,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选A.【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A错误;B.原式=1,故B错误;C、(﹣2a2b)2=4a4b2,计算正确;D、原式=﹣a2,故D错误;故选C.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.D【分析】由旋转的性质得出∠AOC=55°,∠A=∠C,根据平行线的性质得出∠BOC=∠C=35°,则可得出答案.【详解】解:∵将△OAB绕点O逆时针旋转55°后得到△OCD,∴∠AOC=55°,∠A=∠C,∵∠AOB=20°,∴∠BOC=∠AOC−∠AOB=55°−20°=35°,∵CD∥OB,∴∠BOC=∠C=35°,∴∠A=35°,故选:D.【点睛】本题考查了旋转的性质,平行线的性质,求出∠BOC的度数是解题的关键.8.C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解析:C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,每四次一循环,每个循环,点向x轴的正方向前进2cm,∴OA4n=2n,∵2021=505×4+1,∴点A2021在x轴上,且OA2021=505×2+1=1011,∴△OA2A2021的面积=12×1×1011=10112(cm2).故选:C.【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.二、填空题9.-4【分析】根据题意先求出,再代入,即可.【详解】解:∵的平方根是,∴,∴,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.解析:-4【分析】根据题意先求出a,即可.【详解】解:∵3±,∴2(3)9=±=,∴81a=,∴4==-,故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a的值.10.(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设()14P -,关于x 轴对称的点为P' 则P'点的坐标为(-1,-4)设点P'和点''P 关于y 轴对称则''P 的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数,关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12. 故答案是:﹣12. 12.75【分析】根据平行线的性质和的度数得到,再利用平角的性质可得的度数.【详解】解:如图:,,.,.故答案为:75.【点睛】此题考查了平行线的性质,解题的关键是注意掌握两直线平解析:75【分析】根据平行线的性质和1∠的度数得到4∠,再利用平角的性质可得3∠的度数.【详解】解:如图://a b ,170∠=︒,4170∴∠=∠=︒.235∠=︒,3180703575∴∠=︒-︒-︒=︒.故答案为:75.【点睛】此题考查了平行线的性质,解题的关键是注意掌握两直线平行,同位角相等定理的应用. 13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,140∠=︒,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键. 14.【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得 解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .15.(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为,点P 到y 轴的距离表示为,根据题意得到=,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,-1)【分析】A的坐标.根据图象可得移动8次图象完成一个循环,从而可得出点2022【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化,横坐标每一次循环增加4∵2021÷8=252…5,∴2021A的坐标为(252×4+2,-1),∴点2021A的坐标是是(1010,-1).故答案为:(1010,-1).【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)32- 【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式12783=-++=(2)原式11342⎛⎫=-⨯+- ⎪⎝⎭ 1342=-+- 542=- 32=- 【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.18.(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:.解析:(1)94x =±;(2)5x =【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【详解】解:(1)方程变形得:21681x =, 解得:94x =±;(2)开立方得:14x -=,x .解得:5【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.19.(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°.【分析】(1)根据平行线的性质及判定填空即可;(2)由∠E=∠DCE,∠E=50°,解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°.【分析】(1)根据平行线的性质及判定填空即可;(2)由∠E=∠DCE,∠E=50°,可得AB∥CD,∠DCE=50°,而CE平分∠BCD,即得∠BCD=100°,故∠B=80°.【详解】(1)证明:∵AD∥BC,∴∠B=∠EAD(两直线平行,同位角相等),∵∠E=∠DCE,∴AB∥CD(内错角相等,两直线平行),∴∠D=∠EAD(两直线平行,内错角相等),∴∠B=∠D;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:∵∠E=∠DCE,∠E=50°,∴AB∥CD,∠DCE=50°,∴∠B+∠BCD=180°,∵CE平分∠BCD,∴∠BCD=2∠DCE=100°,∴∠B=80°.【点睛】本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算.20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);(4)△ABC的面积=111 23131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3a b==2)33--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3a b==(2)3b =-∴3c =3c =-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握. 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1)90°;(2)∠PFC=∠PEA+∠P ;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN=∠PEA+∠FPE ,进而可得∠PF 解析:(1)90°;(2)∠PFC =∠PEA +∠P ;(3)∠G =12α【分析】(1)根据平行线的性质与判定可求解;(2)过P 点作PN ∥AB ,则PN ∥CD ,可得∠FPN =∠PEA +∠FPE ,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.。

(完整版)人教版七年级数学下册期中试卷及答案doc人教

(完整版)人教版七年级数学下册期中试卷及答案doc人教

(完整版)人教版七年级数学下册期中试卷及答案doc 人教一、选择题1.下列各式中,正确的是()A .4=±2B .±16=4C .2(4)-=-4D .38-=-2 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.已知点P 的坐标为(2,4)P -,则点P 在第( )象限.A .一B .二C .三D .四 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒ 6.下列计算正确的是( )A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,在//AB CD 中,∠AEC =50°,CB 平分DCE ∠,则ABC ∠的度数为( )A .25°B .30°C .35°D .40°8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.计算:36的结果为_____.10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.如图,BE 是△ABC 的角平分线,AD 是△ABC 的高,∠ABC=60°,则 ∠AOE=_____.12.如图,AE BC ∥,45BDA ∠=︒,30C ∠=︒,则∠CAD 的度数为____________.13.如图,将矩形ABCD 沿MN 折叠,使点B 与点D 重合,若∠DNM =75°,则∠AMD =_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ,……,第n 次移动到点n A ,则点2021A 的坐标是______.三、解答题17.计算: 239(6)27--(2)﹣12+(﹣2)3×31127()89--- . 18.求下列各式中的x 值.(1)2164x -=(2)3(1)64x -=19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.已知:如图,ΔABC 的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC 的顶点都在格点上),点A ,B ,C 的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P (m ,n )是ΔABC 内部一点,平移ΔABC ,点P 随ΔABC 一起平移,点A 落在A ′(0,4),点P 落在P ′(n ,6),求点P 的坐标并直接写出平移过程中线段PC 扫过的面积. 21.数学张老师在课堂上提出一个问题:“2 1.414≈,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举2-1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(13(2)a 3b 5-3a b +(3)已知3,其中x 是一个正整数,0<y <1,求(20202-3x y +的值. 22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)23.如图1,已AB ∥CD ,∠C =∠A .(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数24.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC 的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .【参考答案】一、选择题1.D解析:D【分析】依据算术平方根、平方根、立方根的性质求解即可.【详解】解:A42,故选项错误;B、4±,故选项错误;C4=,故选项错误;D2=-,故选项正确;故选D.【点睛】本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.B【分析】直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案.【详解】解:∵点P的坐标为P(-2,4),∴点P在第二象限.故选:B.【点睛】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A 、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B 、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C 、一条直线的垂线可以画无数条,正确,不符合题意;D 、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意; 故选:A .【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠.【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴, 12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠, 180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠, 180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒,1802(24)BKC BKC ∴∠=︒-∠-︒,76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,//// b c a c .6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A 错误;B.原式=1,故B 错误;C 、(﹣2a 2b )2=4a 4b 2,计算正确;D 、原式=﹣a 2,故D 错误;故选C .【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 7.A【分析】根据平行线的性质得到∠ABC =∠BCD ,∠ECD =∠AEC =50°再根据角平分线的定义得到∠BCE =∠BCD =12∠ECD =25°,由此即可求解.【详解】解:∵AB ∥CD ,∴∠ABC =∠BCD ,∠ECD =∠AEC =50°∵CB 平分∠DCE ,∴∠BCE =∠BCD =12∠ECD =25°∠ABC =∠BCD =25°故选A .【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数.10.-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称,∴,解得,∴a+b =解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.60°【分析】先根据角平分线的定义求出∠DOB 的度数,再由三角形外角的性质求出∠BOD 的度数,由对顶角相等即可得出结论.【详解】∵BE 是△ABC 的角平分线,∠ABC =60°,∴∠DOB =∠A解析:60°【分析】先根据角平分线的定义求出∠DOB 的度数,再由三角形外角的性质求出∠BOD 的度数,由对顶角相等即可得出结论.【详解】∵BE 是△ABC 的角平分线,∠ABC =60°,∴∠DOB =12∠ABC =12×60°=30°,∵AD 是△ABC 的高,∴∠ADC =90°,∵∠ADC 是△OBD 的外角,∴∠BOD =∠ADC -∠OBD =90°-30°=60°,∴∠AOE =∠BOD =60°,故答案为60°.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 12.【分析】根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.【详解】解:∵∥,,∴,∴故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析:15︒【分析】根据两直线平行内错角相等可得45BDA DAE ∠=∠=︒,30C CAE ∠=∠=︒,再根据角之间的关系即可求出CAD ∠的度数.【详解】解:∵AE ∥BC ,45BDA ∠=︒,30C ∠=︒∴45BDA DAE ∠=∠=︒,30C CAE ∠=∠=︒∴15CAD DAE CAE ∠=∠-∠=︒故答案为:15︒【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 13.30°【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD 的度数,从而可以求得∠AMD 的度数,本题得以解决.【详解】解:∵四边形ABCD 是矩形,∴DN ∥AM ,∵∠DNM =75º解析:30°【分析】由题意,根据平行线的性质和折叠的性质,可以得到∠BMD 的度数,从而可以求得∠AMD 的度数,本题得以解决.【详解】解:∵四边形ABCD 是矩形,∴DN ∥AM ,∵∠DNM =75º,∴∠DNM=∠BMN=75º,∵将矩形ABCD沿MN折叠,使点B与点D重合,∴∠BMN=∠NMD=75º,∴∠BMD=150º,∴∠AMD=30º,故答案为:30º.【点睛】本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本解析:()1,4【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解. 16.(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-解析:(1010,-1)【分析】根据图象可得移动8次图象完成一个循环,从而可得出点2022A 的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,-1),A 6(3,-1),A 7(3,0),A 8(4,0),A 9(4,1),…,可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4∵2021÷8=252…5,∴2021A 的坐标为(252×4+2,-1),∴点2021A 的坐标是是(1010,-1).故答案为:(1010,-1).【点睛】本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8)×18-(-3)×(-13)=-1-1-1=-3.故答案为(1)0;(2)-3.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.18.(1);(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x即可.详解:(1),∴;(2),∴x-1=4,∴x=5.点睛:本题考查了立方解析:(1)52x=±;(2)x=5.【详解】分析:(1)先移项,然后再求平方根即可;(2)先求x-1立方根,再求x即可.详解:(1)225 4x=,∴52x=±;(2)()1x-∴x-1=4,∴x=5.点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,∴线段PC 扫过的面积为313⨯=.【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a 和b 的值,从而求出结论; (3)求出的小数部分即可求出y ,从而求出x 的值,代入解析:(11;(2)1;(3)19【分析】(1(2a 和b 的值,从而求出结论;(3y ,从而求出x 的值,代入求值即可.【详解】解:(1)∵12 ∴1∴1;(2)∵12,23 ∴12∴1;∴1,b=2∴a b +-12+-=1(3)∵1∴1∴1)=9∴(20202x y +-=2020291⨯+-=181+=19 【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键.22.选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x米,由题意得:x2=81,解得:x=±9,∵x>0,∴x=9,∴正方形的周长为4×9=36,设建成圆形时圆的半径为r米,由题意得:πr2=81.r解得:=∵r>0.∴=r∴圆的周长=2π≈∵56<,∴3036<,∴建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案.【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=5∠DEB,求出∠AED=50°,即可得出∠EPD的度数.14【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.24.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.。

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、一.你一定能选对 (共10题;共20分)1. (2分)下列运动属于平移的是()A . 荡秋千B . 推开教室的门C . 风筝在空中随风飘动D . 急刹车时,汽车在地面上的滑动2. (2分) (2017八上·金牛期末) 实数π,,﹣3. ,,中,无理数有()个.A . 1B . 2C . 3D . 43. (2分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3 ,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A . (2014,0)B . (2015,﹣1)C . (2015,1)D . (2016,0)4. (2分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行.(2)在同一平面内,不相交的两条线段必平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A . 1个B . 2个D . 4个5. (2分) (2017七下·枝江期中) 把点(2,﹣3)先向右平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A . (5,﹣1)B . (﹣1,﹣5)C . (5,﹣5)D . (﹣1,﹣1)6. (2分) (2018八上·平顶山期末) -27的立方根是()A . 3B . -3C . 9D . -97. (2分)(2017·海淀模拟) 如图,在Rt△ABC中,∠BAC=90°,AB=AC,点A,点C分别在直线a,b上,且a∥b.若∠1=60°,则∠2的度数为()A . 75°B . 105°C . 135°D . 155°8. (2分)如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为()A . 10°B . 15°C . 30°9. (2分)下列各组数中,互为相反数的是()A . -2与−B . -2与-C . -2与D . |-2|与-210. (2分) (2016九下·津南期中) 如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B 恰好与点O重合,若BC=3,则折痕CE的长为()A . 2B .C .D . 6二、二.填空题 (共6题;共10分)11. (1分) (2016八下·吕梁期末) 计算:3 -2 - =________.12. (1分)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________ .13. (1分)如右图所示,若a∥b,∠1=55°,则∠2=________度。

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法中正确的是()A . 不循环小数是无理数B . 分数不是有理数C . 有理数都是有限小数D . 3.1415926是有理数2. (2分)下列命题中,不正确的是()A . 顺次连结菱形各边中点所得的四边形是矩形B . 有一个角是直角的菱形是正方形C . 对角线相等且垂直的四边形是正方形D . 有一个角是60°的等腰三角形是等边三角形3. (2分)(2017·河西模拟) 正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B 的棱长的()A . 2倍B . 3倍C . 4倍D . 5倍4. (2分) (2017七下·五莲期末) 下列式子正确的是()A . =±5B . =﹣C . ± =8D . =﹣55. (2分)如图,下列说法中错误的是()A . ∠GBD和∠HCE是同位角B . ∠ABD和∠ACE是同位角C . ∠FBC和∠ACE是内错角D . ∠GBC和∠BCE是同旁内角6. (2分) (2016七下·江阴期中) 如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A . 10°B . 20°C . 25°D . 30°7. (2分) (2016七下·大连期中) 如图,AB⊥CD于D,DE⊥DF,若∠BDE=60°,则∠CDF等于()A . 30°B . 45°C . 60°D . 120°8. (2分)下列说法正确的是()A . (2,3)和(3,2)表示的位置相同B . (2,3)和(3,2)是表示不同位置的两个有序数对C . (2,2)和(2,2)表示两个不同的位置D . (m,n)和(n,m)表示的位置不同9. (2分) (2017九上·平桥期中) 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A . (﹣a,﹣b)B . (﹣a,﹣b﹣1)C . (﹣a,﹣b+1)D . (﹣a,﹣b﹣2)10. (2分)在平面直角坐标系中,点坐标为(﹣3,4),则P点所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共10题;共12分)11. (3分) (2016八上·富宁期中) 4的算术平方根是________,9的平方根是________,﹣27的立方根是________.12. (1分)如图,正方形A1A2A3A4 , A5A6A7A8 , A9A10A11A12 ,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1 , A2 , A3 , A4;A5 , A6 , A7 , A8;A9 , A10 , A11 , A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2016的坐标为________.13. (1分)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为________度.14. (1分) (2016七下·五莲期末) 若一个实数的算术平方根等于它的立方根,则这个数是________.15. (1分) (2017八上·西湖期中) 命题“等腰三角形的两腰上的高线相等” 的逆命题是:________.16. (1分)已知:+=0,则=________17. (1分)已知a,b为两个连续整数,且a<<b,则a+b= ________.18. (1分) (2016九上·高安期中) 已知x能使得 + 有意义,则点P(x+2,x﹣3)关于原点的对称点P′在第________象限.19. (1分) (2015八下·临河期中) 若y= + +2,则xy=________.20. (1分)(2017·全椒模拟) 如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED= +1;③四边形AEFG是菱形;④S△ACD= S△OCD .其中正确结论的序号是________.(把所有正确结论的序号都填在横线上)三、计算 (共1题;共10分)21. (10分)综合题。

德宏傣族景颇族自治州七年级下学期数学期中考试试卷

德宏傣族景颇族自治州七年级下学期数学期中考试试卷

德宏傣族景颇族自治州七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·海拉尔期末) 下列各式中,正确的是()A .B .C .D .2. (2分) (2018七下·太原期中) 下列说法正确是()A . 同旁内角互补B . 在同一平面内,若a⊥b,b⊥c,则a⊥cC . 对顶角相等D . 一个角的补角一定是钝角3. (2分) (2018七上·从化期末) 如图所示,将一块直角三角板的直角顶点O放在直尺的一边CD上,如果∠AOC=27°24 , 32,, ,那么∠BOD等于()A . 70°24′32″B . 62°35′28″C . 52°44′38″D . 28°24′32″4. (2分)在等边三角形ABC中,边长为2,CD平分∠ACB,交AB于点D,DE∥BC,则△ADE的周长为()A . 2B . 2.5C . 3D . 45. (2分)(2019·广州模拟) 下列无理数中,在-2与1之间的是()A . -B . -C .D .6. (2分) (2017七下·常州期中) 下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .7. (2分)点P(a , b)关于x轴的对称点为P'(1,-6),则a , b的值分别为()A . -1,6B . -1,-6C . 1,-6D . 1,68. (2分)下列各式中计算正确的是()A .B .C .D .9. (2分)我们习惯选取x轴与y轴的正方向分别是()方向A . 正北,正东B . 正东,正北C . 正西,正南D . 正南,正西10. (2分)(2019·郑州模拟) 如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1 ,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018 ,如果点A的坐标为(1,0),那么点B2018的坐标为()A . (1,1)B . (0,)C . ()D . (﹣1,1)二、填空题 (共9题;共9分)11. (1分) (2017七下·城北期中) 已知点,若点在轴上,则点的坐标为________.12. (1分) (2019八下·天河期末) 若式子x+ 在实数范围内有意义,则x的取值范围是________.13. (1分) (2018八上·宁波期中) 若a>b,则 ________ (填“<”或“>”).14. (1分) (2018八上·宁波期末) 若点A(2,n)在x轴上,则点B(n+2,n-5)位于第________象限.15. (1分)(2017·河南模拟) |﹣3|0+ =________.16. (1分)(2016·宜宾) 在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是________.17. (1分)计算下圆的周长,请记住这些常用数据.d=4厘米,c=________厘米18. (1分) (2019七上·朝阳期末) 如图将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,若∠1=35°,则∠2的大小为________度.19. (1分)已知x的平方根是±8,则x的立方根是________ .三、解答题 (共12题;共95分)20. (5分)(2018·吉林模拟) 计算:(﹣)﹣2﹣|﹣1+ |+2sin60°+(π﹣4)0 .21. (5分)(2018·吉林模拟) 计算:22. (5分)(2016·姜堰模拟) 计算:(1)(﹣1)2015+(﹣)﹣1+ ﹣2sin45°.(2)解不等式,并写出不等式的正整数解.23. (5分) (2015七下·唐河期中) 解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.24. (2分) (2017七下·城北期中) 已知:如图,,,.求证:.25. (10分) (2020九下·丹阳开学考) 如图,在中,,的平分线交于点,点是上一点,过、两点,且分别交、于点、 .(1)求证:是的切线;(2)已知,,求的半径 .26. (10分) (2019七下·宜春期中) 如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系,按要求解答下列问题:(1)写出三个顶点的坐标;(2)画出向右平移6个单位后的图形;(3)求的面积.27. (10分)(2012·北海) 某汽车出租公司为扩大业务,准备购置10辆客车,通过市场调查得到以下信息:客车座位售价(万元)每座日租金(元)出租率大型40458055%中型25358070%(1)现公司预计用390万元购买两种客车,每种客车可以买多少辆?(2)如果公司可用的购车资金为380~400万元(含380万元和400万元),为使公司日收入最大,应如何确定购车方案?28. (15分) (2020七上·长清期末) 如图,O为直线AB上一点,∠BOC=36°.(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE 的度数________(直接写出结果).29. (7分) (2019七下·阜阳期中) 在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级美联点”为Q(3 +4,1+3 ),即Q(7,13).(1)已知点A(一2,6)的“ 级关联点”是点,求点的坐标。

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷

云南省德宏傣族景颇族自治州七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2013·南宁) 下列各式计算正确的是()A . 3a3+2a2=5a6B .C . a4•a2=a8D . (ab2)3=ab62. (2分)若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A . 40°B . 140°C . 40°或140°D . 不确定3. (2分) (2019八上·盘龙镇月考) 如果(x-2)(x-3)=x2+mx+n,那么m,n的值是()A . m = -5, n = 6B . m = 1, n =-6C . m=1,n=6D . m = -1, n = 64. (2分)如图,不能推出a∥b的条件是()A . ∠1=∠3B . ∠2=∠4C . ∠2=∠3D . ∠2+∠3=180°5. (2分)为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比()A . 减少9m2B . 增加9m2C . 保持不变D . 增加6m26. (2分)大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A .B .C .D .二、填空题 (共8题;共13分)7. (1分)计算:(2x2)3=________.8. (2分) (2017八上·建昌期末) 3﹣2=________;0.0000000251=________(用科学记数法表示)9. (2分) (2019八下·海淀期中) 等腰三角形的周长为20cm,设腰长为xcm,底边长为ycm,那么y与x 之间的函数解析式是________,其中自变量x的取值范围是________。

人教版七年级数学下期中考试题.doc

人教版七年级数学下期中考试题.doc

问安中学2014年春期中考试七年级数学试卷满分120分时间120分钟得分 _____一、选择题(每小题3分,共45分)第1题图1. 如图,已知Zl=5()° ,如果CD 〃BE,那么ZB 的度数为2. 以下四个命题: ①若两个角相等,则这两个角是对顶角;②若直线a±b, a±c,则b 〃c ③若两条平行线被第三 条直线所截,则同旁内角的平分线互相垂直;④若一个角的两边与另一个角的两边分别平行,则这两 个角一定相等;其中真命题的个数是4. 以下计算匸确的个数是 ①J(_5)2 =_5;②V25 =±5; @74 =2;④V^8 =-2是关于圮y 的二元一次方程V3x=y + 6/的解,贝U3/的算术平方根是 A. 3 B. ±3 C. V3 D. ±737.在平面直角处标系中,点P (-2, x 2+l)所在的彖限是A.第-•象限B.笫二象限C.笫三象限D.笫四象限&在平面直角坐标系屮,已知线段AB 的两个端点分别是A (4, -1), B (1, 1),将线段AB平A. 50°B.120°C.130°D. 140°A. 3B.2C. 1D.0 3. 点P 为直线/外一点,点A 、B 、C 在直线/上,若PA = 6cm ,PB = 1cm , PC = 8cm ,则点 P 到肓线/的距离是A. 6cmB.小于6c 血C.不人于6c 加D. 8cmA. 3B.2C. 1D.0 5.在一3, -V3 , 一1, 0这四个实数中,最小的是A. —3 C. — 1D.0 6.已知移后得到线段A' B z ,若点A'的坐标为(一2, 2),则点B'的坐标为9.若严宀+佃-1))=6是关于小y 的二元一次方程,则加的值是位于点A 的南偏东25°处,则ZBAC 的度数为12.设a 在两个相邻整数之间,则这两个整数是A. 1 和 2B. 2 和 3C. 3 和 4D.13,请你观察、思考下列计算过程: 因为112=121,所以7121=11 ;因为111 = 12321所以712321 =111;……,由此猜想J12345678987654321 二() A. 111111 B. 1111111 C. 11111111 D. 11111111114若点P (l-2a , a)的横坐标与纵坐标互为相反数,则点P —定在:()A.第一彖限B.第二彖限C.第三彖限 D 、第四彖限15,如图所示,半圆AB 平移到半圆CD 的位置时所扫过的而积为( )二,解答题16,解方程纽(8分)x=3y~ 5(1)用代入法解: ^3y=8- 2x17 (8 分),计算:(1) |-2|- (-1) 20,4 +V^8+A /9.A. (—5, 4)B. (4, 3)C. (一1, —2)D. (一 2, 1)A. 1B.0C.0或 1 D •任意实数10.己知海而上有一渔船位于点A,它在灯塔B 的北偏西30° 处,另有一只渔船在C 点 ,该渔船A. 5°B. 35°C.45°D. 55°11. •已知 {尸7.炳足力程kx-2y=l,贝Uk 等于" ) A. 3B. 4 C- 5 D.B, 3+n C, 6D. 6+71 (2) x+3y=9 用加减法解:(2),抄矩一1)+护+血)弓18,已知:25x2 - 49=0且xVO,求伍二1示的值.(6分)19, 已知二元-次方程组2汀冃无解,求*的值(6分)20, 如图,E 在直线DF 上,B 为直线AC ±, 若ZAGB 二ZEHF, ZC=ZD, 试判断ZA 与ZF 的关系. 证明:VZAGB=ZEHF (已知)又•・• ZAGB=ZDGF _____________ZEHF=ZDGF (等量代换)・•・ BD 〃 CE ____________・•・ ZFEH=ZD _______________又VZC=ZD (已知)AZFEH=ZC (等量代换)・•・ _ // ________・・・ZA=ZF ______________ ..21, ・在如图所示直角坐标系中,A 、B 两点的坐标为(-3, 0)和(・2, 4), (7分)① 请在此坐标系中,描出这两点;② 求I '1'I AAOB 的面积.,22.关于x, y 的方程(加+ n )x + (n- m )y + m + /? = 0 ,当加、n 每取一对数值吋,就得到一个方程, 若所有这些方程有一•组公共解,以这组解的兀,),分别作为点A 的横、纵朋标,然后将点A (x, y ) 向左平移3个单位长度,再向下平移2个单位长度得点B,求三角形ABO 的面积?。

人教版七年级数学(下)期中综合练习题.doc

人教版七年级数学(下)期中综合练习题.doc

A. a + B +丫B・a +B・Y人教版七年级数学(下)期中综合练习题一、选择题:(共12小题,每小题3分,共计36分)1•下列各点中,在第四象限的点是( )A.(2,3)B.(2,・ 1)C.(-2,6)D.(・l,・5)2. 下列哪组长度的三条线段能组成三角形?( )A.5cm, 3cm, 9cmB.4cm, 3cm, 7cmC.6cm, 3cm, 8cm C.6cm, 4cm, 2cm3. 已知点A(・3,2),B(3,2),则A、B两点相距( )A.6个单位长度B.5个单位长度C.4个单位长度D.3个单位长度4. 如图,已知AB〃CD,若ZA=20° , ZE=35°贝JZC 等于( )A.20°B.35°C.45°D.55°5. 下列说法正确的是( )A. 三角形的三条高都在三角形内部B. 直角三角形只冇一条高C. 经过三角形的一个顶点并且平分三角形的内角的射线叫三角形的角平分线D. 三角形的一条中线把三角形分成面积相等的两个部分6. 线段CD是由线段AB平移得到的,点A (-1,4)的对应点C (4,7),则点B (-4, -1)的对应点D的坐标为( )A.(2,9)B.(5,3)C.(l, 2)D.(-9, -4)7. 如图,已知AB〃CD,且ZBAP=60°ZAPC=45° + a , ZPCD=30°— a ,则 a =( )A.10°B.15°C・20° D.30°8 .如图,在Z\ABC中,Z CAB=52°,ZABC=74° ,AD 丄BC,BE丄AC,AD、BE 交于点F,则ZAFB=( )A.126°B.11O0C.116°D.120°9. 一副美丽的图案,在某个顶点处由三条边长相等的正多边形密铺而成,其屮有两个正八边形,那么另一个是( )A.正三角形B.正方形C.正五边形D.正六边形10. 如图,厶〃厶,则下列式子中值为180。

部编人教版七年级数学下册期中试卷【及参考答案】

部编人教版七年级数学下册期中试卷【及参考答案】

部编人教版七年级数学下册期中试卷【及参考答案】 班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共6小题,共72分) 1.解方程
(1)35(2)2x x --= (2)
212134
x x +--=
2.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.
3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.
4.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .
6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:
(1)他们的对话内容,求小明和爸爸的骑行速度,
(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共6小题,共72分)
1、(1)4x =;(2)25
x =
2、1594
3、72°
4、证明略
6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74
钟,小明和爸爸相距50m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20142013-学年下学期七年级数学期中考试卷
(时间120分,满分100分)
班级: 姓名: 考号:
一、选择题:(每小题3分,共30分) 1.27的立方根是( )
A.3
B.-3
C.9
D.-9 2、在平面直角坐标系中,下列哪个点在第四象限 ( ) A.(1,2) B.(1,-2) C.(-1,2) D.(―1,―2) 3.下面四个图形中,∠1与∠2是邻补角的是( )
1
2
2
1
2
1
2
1
A B C D 4.如果一个实数的平方根与它的立方根相等,则这个数是( ) A.0 B.正整数 C.0和1 D.1 5.下列各数中,是无理数的是( )
A. 2.1333…
B. 0.5
C. 2
D. 0.151151115… 6.如图,若 b a //,∠1=115°,则∠2 = ( )
A.55°
B.60°
C.65°
D.75°
7.点),(y x M 的坐标满足0>xy ,则点M 在( )
A.第一象限
B.第一或第三象限
C.第二象限
D.第二或第四象限
8.中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”。

通过平移图中的吉祥物“海宝”得到的图形是( )
(海宝) A B C D 9.下列命题是真命题的是( )
A .相等的角是对顶角
B .互相垂直的直线一定相交 C. 内错角相等 D. 邻补角相等 10.判定两角相等,不正确的是 ( ) A.对顶角相等.
B.两直线平行,同位角相等.
C.∵∠1=∠2,∠2=∠3,∴∠1=∠3.
D.两条直线被第三条直线所截,内错角相等. 二、填空题:(每题3分,共24分) 11.100的平方根是 12.在π,0,2,3,1-
-五个数中,最小的数是
13.将点D (2,3)先向右平移6个单位,再向上平移3个单位, 得到点D ',则点D '的坐标为
14.如右图所示,∠1与∠2的关系是 ,∠2与 ∠4的关系是 ,∠3与∠4的关系是 15.若一个正数的平方根为12+a 和3--a ,这个正数是 16.=-52
17.如图,如果 AB ∥CD ,则∠ =∠ ;如果∠3=∠4,则 ∥ 18.点P 在第二象限,距x 轴2个单位长度,距y 轴3个单位长度,则点P 的坐标为 三、解答题(共46分):
19.(10分)计算下列各式的值: (1)2
3
494925-++ (2)1627
8
64-+
20.(6分)作出下图△ABC 中边BC 上的高
21.(7分)如图:∠1=∠2= 45,∠3=
100,求∠4的度数。

22.(7分)已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD
23.(8分)已知b a ,为实数,且0262=-++b a ,求b a +的值
24.(8分)
多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动 物园的景区地图,如图所示。

可是她忘记了在图中标出原点和x 轴、y 轴。

只知道马 场的坐标为(-3,-3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?

南门
两栖动物
飞禽
A
C
a b
_4
_3
_1
_2。

相关文档
最新文档