第6章 传感器与检测系统的信号处理技术
第6章 传感器与检测系统的信号处理技术
第6章传感器与检测系统的信号处理技术1、应变测量中,希望灵敏度高、线性好、有温度自补偿功能,应选择测量转换电路。
2、直流测量电桥和交流测量电桥有什么区别?3、交流电桥的特点是什么?使用时应注意哪些问题?4、采用阻值ΩR的=120 R,灵敏度系数K=2.0的金属电阻应变片与阻值Ω=120固定电阻组成电桥,供桥电压为10V,当应变片应变为1000με时,若要使输出电压大于10mV,则可采用何种接桥方式(设输出阻抗为无穷大)?5、如图所示为一典型的电阻温度计测量电桥,其测温范围为0~100℃,R5为Rt 在0℃时的电阻值,R6为Rt在100℃时的电阻值,试分析它的测量过程。
6、如图为一个受拉力作用的10#优质碳素钢杆(E=210×109Pa)。
用允许通过的最大电流为20mA的康铜丝应变片组成一单臂电桥。
求电桥后接高阻抗电路时的最大输出电压。
设应变片的电阻为120Ω,电桥为等臂电桥。
7、如图所示,直流电桥电路的4个桥臂是有R1、R2、R3、R4组成,其中a 、c 两端接直流电压Ui ,而b 、d 两端为输出端,其输出电压为U0。
在测量前,取R1R3 = R2R4,输出电压为U0=0。
设电桥输出端的负载电阻为无限大。
当测量时,桥臂电阻R1、R2、R3、R4发生变化为R1+△R1、R2+△R2、R3+△R3、 R4+△R4。
请分析,在什么条件下,电桥输出电压可近似表示为:i U R R R R R R R R R R R R U )()(44332211221210∆-∆+∆-∆+=8、有一平面直线位移型差动电容传感器其测量电路采用变压器交流电桥,结构组成如图所示。
电筒传感器起始时mm b b b 2021===,mm a a a 1021===,极距mm d 2=,极间介质为空气,测量电路中t u i ωsin 3=V ,且i u u =。
试求动极板上输入一位移量mm x 5=∆时的电桥输出电压0u 。
传感器与检测技术教案NO6
传感器与检测技术教案NO6一、教案概述本教案是以传感器与检测技术为主题的教学内容,旨在帮助学生了解传感器的基本概念、分类、原理以及常见的检测技术和应用。
通过理论讲解和实例分析,培养学生对传感器的认知能力和应用能力,为学生今后的学习和工作提供基础。
二、教学目标1. 了解传感器的基本概念、分类和工作原理;2. 掌握常见检测技术的原理和应用;3. 能够应用所学知识解决简单的传感器与检测技术问题;4. 培养学生的实验操作和数据处理能力。
三、教学重点1. 传感器的分类和工作原理;2. 常见检测技术的原理和应用;3. 实验操作和数据处理。
四、教学内容与方法1. 传感器基础知识讲解a. 传感器的定义和作用;b. 传感器的分类和特点;c. 传感器的工作原理和参数。
2. 常见传感器分类与原理a. 接触式传感器和非接触式传感器;b. 模拟传感器和数字传感器;c. 主动传感器和被动传感器;d. 特殊传感器(温度传感器、压力传感器、湿度传感器等)。
3. 常见检测技术原理与应用a. 光电检测技术;b. 电磁感应检测技术;c. 超声波检测技术;d. 激光雷达检测技术;e. 红外线检测技术;f. 微波雷达检测技术。
4. 实验操作和数据处理a. 利用传感器进行温度检测实验;b. 利用传感器进行压力检测实验;c. 利用传感器进行湿度检测实验;d. 实际应用案例分析和讨论。
五、教学步骤与安排1. 引入(5分钟)通过举例引入传感器的作用和应用领域,激发学生的学习兴趣。
2. 传感器基础知识讲解(15分钟)详细讲解传感器的基本概念、分类和工作原理,引导学生理解传感器的本质和功能。
3. 常见传感器分类与原理(30分钟)分别介绍接触式传感器和非接触式传感器的工作原理和应用,让学生了解不同传感器的特点及适用场景。
4. 常见检测技术原理与应用(40分钟)介绍光电检测技术、电磁感应检测技术、超声波检测技术、激光雷达检测技术、红外线检测技术和微波雷达检测技术的原理和应用,加深学生对各种检测技术的理解。
机器人技术基础课件第六章 机器人传感器
物理量
电量
目前,传感器转换后的信号大多为电信号。 因而从狭义上讲,传感器是把外界输入的非电信 号转换成电信号的装置。
6.1 机器人传感器概述
6.1.1 传感器的基本概念
2、传感器的组成
传感器一般由敏感元件、转换部分组成
基
被 测 量
敏 感 元 件
转 换 元 件
本 转 换 电
电 信 号
路
6.1 机器人传感器概述
6.2 内传感器
增量式编码器
6.2.1 位移(位置)传感器
(1)信号性质
输出信号为一串脉冲,每一个脉
冲对应一个分辨角,对脉冲进行计 数N,就是对 的累加,即,角位移 =N。
如: =0.352,脉冲N=1000,
则:
= 0.352×1000= 352
增量式编码器的信号性质
6.2 内传感器
增量式编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
光电编码器是角度(角速度)检测装置,通过光 电转换,将输出轴上的机械几何位移量转换成脉冲 数字量的传感器。具有体积小,精度高,工作可靠 等优点,应用广泛。
编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
轴式
套式
电信号
二进制编码
• 满足机器人控制的要求 • 满足机器人自身安全和机器人使用者的安全性要求
6.1 机器人传感器概述
6.1.4 机器人传感器的分类
1)按被测物理量分类 常见的被测物理量
机械量:长度,厚度,位移,速度,加速度, 旋转角,转数,质量,重量,力,力矩;
热工量:温度、热量、比热容、热流、 热 分布、压力(压强)、压差、真空度、流 量、流速、物位、 液位、界面、噪声
传感器与检测技术期末考试试题与答案
第一章传感器基础l。
检测系统由哪几部分组成? 说明各部分的作用.答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。
当然其中还包括电源和传输通道等不可缺少的部分。
下图给出了检测系统的组成框图。
检测系统的组成框图传感器是把被测量转换成电学量的装置,显然,传感器是检测系统与被测对象直接发生联系的部件,是检测系统最重要的环节,检测系统获取信息的质量往往是由传感器的性能确定的,因为检测系统的其它环节无法添加新的检测信息并且不易消除传感器所引入的误差。
测量电路的作用是将传感器的输出信号转换成易于测量的电压或电流信号。
通常传感器输出信号是微弱的,就需要由测量电路加以放大,以满足显示记录装置的要求。
根据需要测量电路还能进行阻抗匹配、微分、积分、线性化补偿等信号处理工作.显示记录装置是检测人员和检测系统联系的主要环节,主要作用是使人们了解被测量的大小或变化的过程。
2.传感器的型号有几部分组成,各部分有何意义?依次为主称(传感器)被测量—转换原理—序号主称-—传感器,代号C;被测量—-用一个或两个汉语拼音的第一个大写字母标记.见附录表2;转换原理——用一个或两个汉语拼音的第一个大写字母标记。
见附录表3;序号—-用一个阿拉伯数字标记,厂家自定,用来表征产品设计特性、性能参数、产品系列等。
若产品性能参数不变,仅在局部有改动或变动时,其序号可在原序号后面顺序地加注大写字母A、B、C等,(其中I、Q不用)。
例:应变式位移传感器: C WY-YB-20;光纤压力传感器:C Y—GQ—2.3.测量稳压电源输出电压随负载变化的情况时,应当采用何种测量方法?如何进行?答:测定稳压电源输出电压随负载电阻变化的情况时,最好采用微差式测量.此时输出电压认可表示为U0,U0=U+△U,其中△U是负载电阻变化所引起的输出电压变化量,相对U来讲为一小量。
如果采用偏差法测量,仪表必须有较大量程以满足U0的要求,因此对△U,这个小量造成的U0的变化就很难测准。
传感器与检测技术课程标准
《传感器与检测技术》课程标准1.概述1.1课程的性质传感器是现代控制的基本工具,而检测技术则是控制过程获取信息的唯一手段。
《传感器与检测技术》是一门多学科交叉的专业课程,重点介绍各种传感器的工作原理和特性,结合工程应用实际,了解传感器在各种电量和非电量检测系统中的应用,培养学生使用各类传感器的技巧和能力,掌握常用传感器的工程测量设计方法和实验研究方法,了解传感器技术的发展动向。
1.2课程设计理念传感器与检测技术是集工程力学、自动控制原理、信号分析等多方面知识为一体的一门课程,其理论性、实践性、应用性较强。
为体现其特点本课程采用理论与实践紧密结合,分模块教学方法,并根据专业的不同,每一模块安排其对应的教学内容,由浅入深、逐步递进。
在教学过程中采用理论与实践教学相统一的专业教师授课,加大实践教学模式,增加学生的感性认识以提高学习兴趣。
学生通过本课程的学习达到:理解不同传感器的工作原理,常用的测量电路;能够对常用传感器的性能参数与主要技术指标进行校量与标定。
1.3课程开发思路本专业毕业生主要面向自动化设备生产企业和经营单位,从事一般自动化设备的装配、调试、检测和维修工作,以及电子产品、元器件的采购和销售工作。
也可以从事一些电工相关的行业。
分析岗位群对传感器与检测技术课程相关内容的要求确立课程的内容知识点。
2.课程目标本课程的培养目标是培养学生初步掌握检测技术的基本知识和应用。
培养学生使用各类传感器的能力。
使学生能够进一步应用传感器解决工程测控系统中的具体问题。
通过行为导向的项目式教学,加强学生实践技能的培养,培养学生的综合职业能力和职业素养;独立学习及获取新知识、新技能、新方法的能力;与人交往、沟通及合作等方面的态度和能力。
2.1知识目标(1)理解传感器的静态特性、动态特性与技术指标。
(2)掌握电阻传感器原理与应用。
(3)掌握电感传感器原理与应用。
(4)掌握电容传感器原理与应用。
(5)掌握光电(光纤、光栅)传感器原理与应用。
传感器与检测技术(重点知识点总结)
传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与测试技术教案
传感器与测试技术教案一、教学目标1.了解传感器的基本概念和分类;2.掌握传感器的工作原理和特点;3.掌握传感器的应用领域和相关测试技术;4.实践操作传感器的测试技术。
二、教学内容1.传感器的基本概念和分类1.1传感器的定义和作用1.2传感器的分类与特点2.传感器的工作原理和特点2.1传感器的工作原理介绍2.2传感器的特点和性能指标分析3.传感器的应用领域和测试技术3.1传感器在工业自动化领域的应用3.2传感器在环境监测领域的应用3.3传感器在医疗健康领域的应用3.4传感器在农业领域的应用3.5传感器在智能家居领域的应用3.6传感器相关测试技术介绍4.实践操作传感器的测试技术4.1传感器测量系统的搭建4.2传感器信号的处理与分析4.3传感器测试和校准方法4.4传感器测试仪器和设备的使用三、教学方法1.理论讲授:通过课堂讲解传感器的基本概念、工作原理和应用领域,让学生掌握相关的理论知识。
2.案例分析:结合实际案例,分析传感器在不同领域的具体应用和测试技术,激发学生的兴趣和参与度。
3.实践操作:组织学生进行传感器的测试技术实践操作,锻炼学生的实际操作能力和解决问题的能力。
4.讨论交流:鼓励学生在课堂上提问和发表观点,启发学生思考和互相学习。
四、教学过程1.引入:通过引入一些实际案例,让学生了解传感器的基本概念和作用。
2.讲解传感器的基本概念和分类,让学生了解传感器的种类和特点。
3.介绍传感器的工作原理和特点,让学生了解传感器的工作原理和性能指标。
4.通过案例分析,介绍传感器在不同领域的应用和测试技术。
5.组织学生进行传感器的测试技术实践操作,让学生掌握传感器的测试方法和工具的使用。
6.总结与评价:对本节课的学习内容进行总结和评价,鼓励学生提出自己的观点和疑问。
五、教学评估1.课堂讨论中,学生能够积极参与,提出问题并发表观点。
2.实践操作中,学生能够独立搭建传感器测量系统,进行传感器的测试和校准。
3.学生能够正确运用传感器测试技术,分析传感器信号并进行处理。
第六章压电传感器
F Poling axis
应力(106 Pa)
20mm Open circuit Voltage F
Q=kF U=Q/C
19
苏州大学城市轨道交通学院
压电材料的应用 高压打火
压电体
20
苏州大学城市轨道交通学院
压电材料的应用 原子力显微镜中的应用 用作微小位移调节探针
high-voltage amplifier
31
苏州大学城市轨道交通学院
压电传感器的信号调节
电荷放大器(一般情况)
-k
ui 等效电路
Cf
C
Q
uo
Q uo = C + Cf + Cf k
qc + qcf = Q
uo = -kui
32
Cui + Cf(ui - uo )= Q
-Cuo /k + Cf(-uo /k - uo )= Q
苏州大学城市轨道交通学院
压电传感器的信号调节
Q uo = C + Cf + Cf k
选用高增益的运放: 电荷放大器的输出电压
K
Q uo = Cf
只与反馈电容的大小、压电体产生的电荷量有关, 而与压电体的电容、电缆的对地电容等无关。
33
苏州大学城市轨道交通学院
压电振动传感器 压电振动传感器
34
苏州大学城市轨道交通学院
37
苏州大学城市轨道交通学院
Typical Frequency Response Curve
low frequency limit determjned by RC roll-off characteristics
Usable Range
传感器和检测技术ppt课件
17.黄俊钦.静、动态数学模型的实用建模方法.北京:机械工业出版社, 1988
18. 马修水. 瑞士SYLVAC电容测量系统的发展. 工具技术,1989 (12)
19.于静江,周春晖.过程控制中的软测量技术.控制理论与应 用.1996,13(2)
20. 骆晨钟,邵惠鹤.软测量技术及其工业应用.仪表技术及传感器.
17
传感器原理及其应用-教学层次
中专级 大专级 本科级 硕士级 ……
精选ppt课件
18
谢谢!
传感器与检测技术 教学组
精选ppt课件
19
参 考 文 献 (续)
13.张正伟.传感器原理及应用.北京:中央广播电视大学出版社,1997
14.周春晖. 过程控制工程手册. 北京: 化学工业出版社,1993
15. 陈守仁. 自动检测技术及仪表. 北京: 机械工业出版社,1989
16. 费业泰. 误差理论与数据处理. 北京:机械工业出版社, 2002
课时数
2 4 6 2 4 6 8 2 34
作业 实验
* * * * * * *
15
参考文献
1. 王化祥,张淑英.传感器原理及应用.天津:天津大学出版社,1991 2. 常健生. 检测与转换技术. 北京:机械工业出版社. 2001 3. 严钟豪,谭祖根. 非电量电测技术. 北京:机械工业出版社,2003 4. 强锡富. 传感器. 北京:机械工业出版社,1998 5. 贾伯年,俞朴. 传感器技术. 南京:东南大学出版社,1992 6. 王俊杰. 检测技术与仪表. 武汉. 武汉理工大学出版社,2002 7. 郭振芹.非电量的电测量.北京:中国计量出版社,1986 8. 郁有文,常健,程继红编著. 传感器原理及工程应用. 西安:西安电子科
传感器与检测技术笔记
传感器与检测技术2202第一章:概述传感器的定义:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
第一节:机电一体化常用传感器一传感器的组成1敏感元件:一直感受被测物力量并以确定关系输出另一物理量元件2转换元件:将敏感元件输出的非电量转换成电路参数3基本转换电路:将电信号转换成便于输出,处理的电量传感器的组成原理:被测量------敏感元件---转换元件---基本转换电路----电量二传感器的分类1按被测量对象分类①内部信息传感器:主要检测系统内部的位置,速度,力,力矩,温度以及异常变化②外部信息传感器:主要检测系统外部环境,它与人体五种器官相对应的接触式和非接触式2按工作机理分类①物性型传感器:利用某种物质的某种性质随被测参数的变换而变化的激励制成的如光电式传感器,压电式传感器等②结构型传感器:利用物理学中厂的定律和运动定律等构成的,其被测参数变化引起传感器的结构变换,从而使输出电量变化,电感式传感器,电容式传感器,关山是传感器都是这种类型。
3按照被测物理量分类表明了传感器的用途,便于使用者选择。
4 按照工作机理5按照传感器能量源分类①无源型(能量转换型):不需要外加电源,而是将被测相关两转换成电量输出如压电式磁电感应式,电热式,光电式等传感器②有源型(能量控制型):需要外加电源这类传感器有电阻式,电容式,电感式,霍尔式等,电阻式有光敏电阻,热敏电阻,湿敏电阻等形式6 按照输出信号的性质分类①开关型(二值型):接触型(微动开关,行程开关,接触开关)非接触型(光电开关,接触开关)模拟型:电阻型(电位器,电阻应变片)电压电流型(热电偶,光电电池)传感器电感,电容型(电感,电容式位置传感器)数字型:计数型代码型三传感器的特性及主要性能指标传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性1.静态特性:当传感器的输入量为常数或随时间作缓慢变化时,传感器的输出与输入之间的关系2.动态特性:传感器的输出量对于随时间变化的输入量的响应特性3.传感器的性能指标(P5牢记)传感器的性能要求①高精度,低成本②高灵敏度③工作可靠④稳定性好⑤抗干扰能力强⑥动态特性好⑦结构简单,小巧第二节传感检测技术的地位和作用第三节重点:传感器及检测系统基本特性的评价值白哦与选择则原则一、测量范围及量程①测量范围:传感器在允许误差限内,其被测量值的范围②量程:传感器在测量范围内的最高值与最低值之差③过载能力:在不导致引起传感器规定性能直白哦永久改变的条件下传感器允许超过其测量范围的能力④过载能力通常用超值除以量程二灵敏度①灵敏度:传感器的输出量的变化量与引起变化的输入量的变化量之比②总灵敏度:k=k1*k2.....kn③灵敏度误差:rs= k0/k0④灵敏度表示传感器或者传感器检测系统对被测物理量变化的反应能力。
《传感器与检测技术胡向东第2版》习题解答
传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述1、1 什么就是传感器?答:传感器就是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件与装置,通常由敏感元件与转换元件组成。
1、2 传感器的共性就是什么?答:传感器的共性就就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。
1、3 传感器一般由哪几部分组成?答:传感器的基本组成分为敏感元件与转换元件两部分,分别完成检测与转换两个基本功能。
另外还需要信号调理与转换电路,辅助电源。
1、4 传感器就是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量与工作原理的分类方式应用较为普遍。
①按传感器的输入量(即被测参数)进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。
②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器与生物传感器。
1、6 改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。
第2章传感器的基本特性2、1 什么就是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性就是它在稳态信号作用下的输入、输出关系。
静态特性所描述的传感器的输入-输出关系中不含时间变量。
衡量传感器静态特性的主要指标就是线性度、灵敏度、分辨率、迟滞、重复性与漂移。
2、3 利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞与重复性误差。
传感器与检测技术课后习题答案全文
当 yt R 时 t 3ln 2 1.22
3
3
当 yt R 时 t 3ln 1 2.08
2
2
返回
上页
下页
图库
第1章
1.5
解:此题与炉温实验的测飞升曲线类似:
yt1090(1et/T)
由y550T 5 8.51
5
ln
9
1.6
解:
yt2520(1et/T)
T 0.5
y1 7.68 y2 5.36
图库
第3章
3.7
答:应用场合有低频透射涡流测厚仪,探伤,描述转 轴运动轨迹轨迹仪。
R x1100 ,R x2200 ,R x3300 ,R x4400 ,R x5500 , R x6600 ,R x7700 ,R x8800 ,R x9900 ,R x101000
r10.1,r20.2,r30.3,r40.4r50.5
r60.6r70.7r80.8r90.9r101.0
Y111003,Y2
重写表格如下:
x 0.3 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 f 2.523 2.502 2.461 2.432 2.410 2.380 2.362 2.351 2.343 y -1.66 -1.78 -2.06 -2.31 -2.56 -3.06 -3.54 -4.02 -4.61
答:
① mR R m L ax m0.1 RL10Rm ax
② 1 2 11m 1 1100% 0.1
m 0.4 R m ax0 .4R L
返回
上页
下页
图库
第2章
2.5 解:①图 2-32(c)
②圆桶截面积 A R 2 r 2 59.7 106
现代传感技术与系统课后题及答案
特点:
(1)采用两个(或两个以上)性能完全相同的敏感元件。其中一个感受被测量和环境量,另一个只感受环境量作补偿用。
(2)两个敏感元件同时接到电桥的相邻两臂或反串。
(3)能消除环境和条件变化干扰的影响(如温度变化、电源电压波动)。
3.差动结构型
特点:
(1)采用两个(或两个以上)性能完全相同的敏感元件,同时感受相同的环境影响量和方向相反的被测量。
1.传感器的基本概念是什么?一般情况下由哪几部分组成?
国家标准(GB7665-87)传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
2.传感器有几种分类形式,各种分类之间有什么不同?
共有10种分类形式。根据传感器的工作机理:基于物理效应、基于化学效应、基于生物效应;传感器的构成原理:结构型与物性型;能量转换情况:能量转换型和能量控制型;根据传感器的工作原理分类:可分为电容式、电感式、电磁式、压电式、热电式、气电式、应变式等;根据传感器使用的敏感材料分类:可分为半导体传感器、光纤传感器、陶瓷传感器、高分子材料传感器、复合材料传感器等;根据传感器输出信号为模拟信号或数字信号:可分为模拟量传感器和数字量(开关量)传感器;根据传感器使用电源与否:可分为有源传感器和无源传感器;根据传感器与被测对象的空间关系:可分为接触式传感器和非接触式传感器;根据与某种高新技术结合而得名的传感器:如集成传感器、智能传感器、机器人传感器、仿生传感器等;根据输入信息分类:可分为位移、速度、加速度、流速、力、压力、振动、温度、湿度、粘度、浓度等。
传感器通常由敏感元件和转换元件、转换电路组成。1、敏感元件:直接感受被测量,以确定的关系输出某一物理量(包括电学量)。2、转换元件:将敏感元件输出的非电量物理量转换为电学量(包括电路参数量)。3、转换电路:将电路参数量(如电阻、电容、电感)转换成便于测量的电学量(如电压、电流、频率等)。
传感器原理与应用习题第6章压电式传感器
《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。
这种现象称为逆压电效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。
6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
传感器与检测技术-教学大纲精选全文
教学大纲课程名称:传感器与检测技术课程类别:专业基础课适合专业:数控技术、机电一体化、电气自动化、检测技术(课程80学时)课程要求:必修课程先修课程:大学物理、电路基础、电子技术和微机原理等开课时间:第4学期传感器与检测技术是高等院校数控技术、机电一体化、电气自动化、检测技术类专业教学计划中一门必修的专业基础课。
本课程主要研究各类传感器的机理、结构、测量电路和应用方法,主要包括常用传感器、近代新型传感技术及信号调理电路等内容。
本课程的目的和任务是使学生通过本课程的学习,掌握常用传感器的基本原理、应用基础,并初步具有检测和控制系统设计的能力。
第一章检测技术的基础知识(3学时)基本概念(敏感元件、变换器、检测技术、测系统的组成及特点、传感器及检测技术的发展);;误差分析及处理技术第二章传感器的基本概念(4学时)传感器的基本概念、基本特性(静态特性、动态特性、静、动态特性标定)及其选用。
第三章常用传感器的工作原理及应用(15学时)通过对电阻式传感器、电容式传感器、电感式传感器、压电式传感器、霍尔传感器、热敏传感器的学习,掌握各种测量几何量的传感器的基本结构、工作原理、测量转换电路;熟悉几何量测控所需传感器的应用和选用。
第四章数字式传感器(7学时)掌握光栅数字式传感器、磁栅数字式传感器、感应同步器、编码器的工作原理及其应用。
第五章新型传感器(5学时)了解仿生传感器、光纤传感器、微型传感器、集成传感器的工作原理及应用和新型传感器研发的重点领域。
第六章传感器与检测系统的信号处理技术(5学时)通过对电桥电路、信号的放大与隔离、信号的变换的学习,重点掌握检测系统的信号放大与变换电路的处理技术。
第七章传感器与检测系统的干扰抑制技术(3学时)学习噪声干扰的形成、硬件抗干扰技术、软件抗干扰技术,熟悉检测系统的各种干扰拟制技术。
第八章典型非电参量的测试方法(7学时)熟悉掌握各种测量几何量的测试方法和传感器的选用原则。
包括:应变的测量、力及压力的测量、位移的测量、振动的测量、流量的测量。
传感器与检测技术胡向东第版习题解答
传感器与检测技术(胡向东,第2版)习题解答王涛第1章概述什么是传感器答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。
传感器的共性是什么答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、频率、电荷、电容、电阻等)输出。
传感器一般由哪几部分组成答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。
②按传感器的工作原理进行分类根据传感器的工作原理(物理定律、物理效应、半导体理论、化学原理等),可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。
改善传感器性能的技术途径有哪些答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。
第2章传感器的基本特性什么是传感器的静态特性描述传感器静态特性的主要指标有哪些答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。
静态特性所描述的传感器的输入-输出关系中不含时间变量。
衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。
利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。
设压力解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段(多数情况下是用最小二乘法来求出拟合直线)。
(1)端点线性度: 设拟合直线为:y=kx+b, 根据两个端点(0,0)和(,),则拟合直线斜率: ∴*+b= ∴b=0(2)最小二乘线性度: 设拟合直线方程为01y a a x =+, 误差方程01()i i i i i y y y a a x v ∧∧-=-+= 令10x a =,21x a =由已知输入输出数据,根据最小二乘法,有:直接测量值矩阵0.644.047.4710.9314.45L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,系数矩阵10.0210.0410.0610.0810.10A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,被测量估计值矩阵01a X a ∧⎡⎤=⎢⎥⎣⎦由最小二乘法:''A A X A L ∧=,有答:非线性误差公式:max 0.106100%100%0.64%16.50L FS L Y γ∆=±⨯=⨯= ② 迟滞误差公式:max100%H FSH Y γ∆=⨯, 又∵最大行程最大偏差max H ∆=,∴max 0.1100%100%0.6%16.50H FS H Y γ∆=⨯=⨯= ③ 重复性误差公式:max100%L FSR Y γ∆=±⨯, 又∵重复性最大偏差为max R ∆=,∴max 0.08100%100%0.48%16.50L FS R Y γ∆=±⨯=±⨯=± 用一阶传感器测量100Hz 的正弦信号,如果要求幅值误差限制在±5%以内,时间常数应取多少如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少 解:一阶传感器频率响应特性:1()()1H j j ωτω=+幅频特性:()A ω=由题意有()15%A ω-≤15%-≤又22200f Tπωππ=== 所以:0<τ<取τ=,ω=2πf=2π×50=100π幅值误差:()100% 1.32%A ω∆==-所以有%≤△A(ω)<0相位误差:△φ(ω)=-arctan(ωτ)= 所以有≤△φ(ω)<0某温度传感器为时间常数τ=3s 的一阶系统,当传感器受突变温度作用后,试求传感器指示出温差的三分之一和二分之一所需的时间。
《物联网技术与应用(第2版)》第6章 无线传感器网络协议规范与通信技术
网络协 调器
网络协 调器
RFD FFD
信道
图6-1 IEEE 802.15.4网络组件及拓扑关系
IEEE802.15.4通信协议主要是描述和定义物理层和 MAC层的标准。
物理层:实现无线传感器网络的通信架构的基础
MAC层:用来处理所有对物理层的访问,并负责完 成信标的同步、支持个域网络关联和去关联、提供 MAC实体间的可靠连接、执行信道接入CSMA/CA机 制等任务。
信。RFD设备之间不能直接通信,只能与FFD设备通 信,或者通过一个FFD设备向外发送数据。这个与 RFD相关联的FFD设备称为该RFD的协调器 (Coordinator)。
PAN网络协调器(PAN coordinator),是LR-WPAN网络 中的主控制器。PAN网络协调器除了直接参与应用 外,还要完成成员身份管理、链路状态信息管理以 及分组转发等任务。
(ksymbol 征
/s)
20
20 二进制
40
40 二进制
250
62.5
十六进 制
IEEE802.15.4标准定义了27个物理信道,信道编号从0 到26,每个具体的信道对应一个中心频率,这27个物 理信道覆盖了表1中的三个不同频段。
中心频率定义如下:
F 868.3MHz
F 906 2(k 1)MHz
6.2 IEEE 802.15.4网络结构
IEEE 802.15.4网络是指在一个个人操作空间(POS) 内使用相同无线信道并通过IEEE 802.15.4标准相互通 信的一组设备的集合。
全功能设备(Full Function Device,FFD) 精简功能设备(Reduced Function Device, RFD) FFD设备之间以及FFD设备与RFD设备之间都可以通
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
○
第6章 传感器与检测系统的信号处理技术
教学要求
1.掌握直流电桥和交流电桥电路。
2.掌握各种放大器的结构及特点。
3.掌握信号的变换形式。
教学课时 6学时
教学内容:
6.1. 电桥电路
6.1.1直流电桥
直流电桥平衡条件:相邻两臂电阻的比值应相等,或相对两臂电阻的乘积应相等。
按电阻应变片接入电桥电路的接法,电桥可分为:
1.单臂工作电桥:
2.等臂双臂工作电桥
3.等臂全桥工作电桥
三种工作方式中,全桥四臂工作方式的灵敏度最高,双臂半桥次之,单臂半桥灵敏度最低。
采用全桥(或双臂半桥)还能实现温度自补偿。
直流电桥
6.1.2交流电桥
引入原因:由于应变电桥输出电压很小,一般都要加放大器,而直流放大器易于产生零漂,因此应变电桥多采用交流电桥。
由于供桥电源为交流电源,引线分布电容使得二桥臂应变片呈现复阻抗特性,即相当于两只应变片各并联了一个电容。
交流电桥
6.2信号的放大与隔离
从传感器来的信号有许多是毫伏级的弱信号,须经放大才能进行A/D 转换。
系统对放大器的主要要求是:精度高、温度漂移小、共模抑制比高、频带宽至直流。
(a)
(b)A U o
目前常用的放大器有以下几种型式:一种是高精度、低漂移的双极型放大器;另一种为隔离放大器,它带有光电隔离或变压器隔离的低漂移信号放大器,以及一个高隔离的DC/DC 电源。
6.2.1运算放大器
1.反相放大器
2.同相放大器
6.2.2测量放大器
1.测量放大器的结构与特性
具有高共模抑制比、高速度、高精度、高稳定性、高输入阻抗、低输出阻抗、低噪声的特点。
2.测量放大器集成电路(自学)
3.测量放大器的使用
(1)差动输入端的连接:要注意为偏置电流提供回路。
(2)护卫端的连接:电缆的屏蔽层应连接测量放大器的护卫端。
(3)R端、S端的连接:R端接电源地,S端接输出。
6.2.3程控测量放大器PGA
程控测量放大器PGA是通用性很强的放大器,放大倍数可通过编程进行控制。
1.浮点放大器型
2.增益电阻切换型
6.2.4 隔离放大器
1.AD277型双隔离式放大器
2.AD210型三隔离式放大器
6.3信号的变换
6.3.1 电压与电流转换
1.电压转换为电流:以A/D693为例
2.电流转换为电压:电阻式电流/电压转换电路
6.3.2 电压与频率的相互转换
实现电压/频率转换的方法很多,主要有积分复原型和电荷平衡型。
V/F转换器常用集成芯片主要有VFC32和LM31系列。
作业:P135 1、6
一。