10-溶液吸附法测定固体比表面积-p61
溶液吸附法测定固体比表面积
2 -1 2 -1
次甲基蓝原始溶液 2g·dm ;次甲基蓝标准溶液 0.1g·dm ;颗粒活性炭。 三、实验步骤 1.活化样品 将活性炭置于瓷坩埚中放入 500℃马福炉中活化 1h(或在真空箱中 300℃活化 1h), 然后 置于干燥器中备用。 2.溶液吸附 取 50mL 带塞锥形瓶 5 只,分别准确称取活化过的活性炭约 0.1g,按照下表给出的比例 配制不同浓度的次甲基蓝溶液 50mL,塞上包有锡纸的软木塞,然后放在振荡器上振荡 3h。 编号 V(次甲基蓝溶液)/mL V(蒸馏水)/mL 3.配制次甲基蓝标准溶液 用台称分别称取 2g、4g、6g、8g、11g 浓度为 0.3126×10 mol·dm 的标准次甲蓝溶液 于 100mL 容量瓶中,用蒸馏水稀释至刻度,待用。 4.原始溶液的稀释 为了准确测定原始溶液的浓度,在台称上称取浓度为 0.2%的原始溶液 2.5g 放入 500mL 容量瓶中,稀释至刻度。 5.平衡液处理 样品振荡 3h 后,取平衡溶液 5mL 放入离心管中,用离心机旋转 10min,得到澄清的上 层溶液。分别取 5g 澄清液放入 500mL 容量瓶中,并用蒸馏水稀释到刻度。 6.选择工作波长 用某一待用标准溶液,以蒸馏水为空白液,在 600nm~700nm 范围 内测量吸光度,以最 大吸收时的波长作为工作波长。 7.测量吸光度。 在工作波长下, 依次分别测定五个标准溶液的吸光度, 以及稀释以后的原始溶液及平衡 溶液的吸光度。 四、注意事项 1.标准溶液的浓度要准确配制,原始溶液及吸附平衡后溶液的浓度都应选择适当的范围, -3 -3 本实验原始溶液的浓度为 2g·dm 左右,平衡溶液的浓度不小于 1g·dm 。 2.活性炭颗粒要均匀,且五份称重应尽量接近。 3.振荡时间要充足,以达到吸附饱和,一般不应小于 3h。 五、数据处理 1.把数据填入下表 稀释后原始溶液的吸光度:1.332 标准溶液 A 平衡溶液 A 标准溶液称 取量 浓 度 /(mol/L) 2g 0.289 1 2.121 2.作 A—C 工作曲线。 2g 0.0626 4g 0.125 6g 0.188 8g 0.25 11g 0.344 4g 0.662 2 0.466 6g 1.257 3 0.137 8g 1.672 4 0.118 11g 1.999 5 0.044
物化实验 溶液吸附法测定固体比表面积数据处理
溶液吸附法测定固体比表面积数据处理
浓度 2 4 6 原始平衡
吸光度0.138 0.397 0.529 0.813 1.104
工作波长:645nm
实验误差分析
吸光度大于0.8时,朗伯比尔定律已有偏差,而平衡浓度吸光度都
1.104,所以用标准曲线法测得的部分溶液浓度不准,影响后面计算。
溶液吸附法测定固体材料比表面积误差较大, 一般在10%甚至更高些, 对同一吸附剂,影响测定结果的因素有: 吸附温度、吸附质浓度、吸附振荡时间、吸附剂表面处理、仪器、药品等。
我们采用的紫外分光光度计无恒温装置, 测定吸光度时有一定误差.
测量吸光度时要按从稀到浓的顺序,每个溶液要测3~4次,取平均值,而我们做的只是一次,有一定的误差。
溶液吸附法测固体吸附剂比表面积结果分析
溶液吸附法测固体吸附剂比表面积结果分析田福平;张艳娟;姚云龙;武烨;盛炳琛;刘潇彧【摘要】溶液吸附法测定活性炭的比表面积是研究多孔材料表面吸附的一个经典实验,但其实验结果往往与N2吸附方法存在较大差异.给出两种方法的测量结果,并从吸附剂的孔道和表面性质、吸附质的分子大小和吸附预处理、吸附过程等方面详细分析了导致结果差异的主要因素.该实验的进行,加深了学生对相关知识的理解,并提高了学生分析问题和解决问题的能力.【期刊名称】《实验室科学》【年(卷),期】2017(020)006【总页数】4页(P25-28)【关键词】活性炭;亚甲基蓝;溶液吸附;比表面积【作者】田福平;张艳娟;姚云龙;武烨;盛炳琛;刘潇彧【作者单位】大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024;大连理工大学化工与环境生命学部化学学院, 辽宁大连 116024【正文语种】中文【中图分类】G482“溶液吸附法测定固体吸附剂比表面积”是物理化学实验开设的实验项目之一,是研究多孔材料表面吸附的一种重要手段[1-2]。
学生在做完实验后,往往将实验计算结果与用低温N2吸附法得到的结果对照。
面对两种实验方法所得结果之间的巨大差异,学生难免存在疑问:结果差异的来源是什么?能否用实验操作原因来简单解释此结果差异?为了客观地回答学生的疑问,我们指导学生一方面大量查阅相关文献,获得影响实验结果因素的初步认识;另一方面,设计了几组对比实验,探讨一些实验因素对测试结果的影响。
该过程的进行,不仅拓展了本科生的专业知识,而且培养了他们解决问题的能力,并提高了学生的综合能力,这正是实验教学的主要目的之一[3-6]。
溶液吸附法测固体比表面积
溶液吸附法测固体比表面积
由实验结果看到,该吸附剂的比表面积不是很大。
这与所用的活性碳为颗粒状有关。
颗粒状的活性炭吸附能力较弱,吸附平衡需要的时间更长。
由于粒径较大,可以直接用玻璃漏斗过滤,否则若用粉末状的活性炭,需要使用其它方法过滤。
分光光度法的应用不限于可见光区,可以扩大到紫外和红外区,因此对于一系列没有颜色的物质也可以应用。
同时,还可以在同一样品中,对两种以上的物质(不需预先分离)进行测量。
由于吸收光谱实际上决定于物质内部结构和相互作用,一次该法还有助于了解溶液中分子结构及溶液中发生的各种相互作用(如离解、络合、氢键等性质)。
有几组溶液,由于其浓度过大,导致吸光度较大,超出量程,无法测量,需要二次稀释,这样会增加实验误差。
在以后的实验中,可根据已有经验,在开始时候,主要选择合适的稀释倍数,使得吸光度的值在正常范围内。
— 1 —。
溶液吸附法测量固体物质的比表面
溶液吸附法测量固体物质的比表面一、实验目的1、了解溶液吸附法测量固体物质的比表面的原理方法;2、用溶液吸附法测定活性炭的比表面;3、掌握分光光度计的原理及使用方法。
二、实验原理1、平衡吸附量T、吸附剂比表面S的关系固体在某些溶液中吸附溶质的情况与固体对气体的吸附很相似,可用Langmuir方程来处理:T=Tm*Kc/(1+Kc)T为平衡吸附量mol/g,Tm为饱和吸附量mol/g,c为平衡浓度mol/l,K为经验常数。
S=Tm*L*AS为吸附剂比表面,L为阿伏伽德罗常数,A为每一个吸附质分子在吸附剂表面占据的面积。
c/T=c/Tm+1/(Tm*K)根据实验数据,做出c/T-c的图像,直线斜率可求出Tm。
综上计算可得,T=(c0-c)V/m,式中c0为吸附前吸附质的浓度,c为平衡时吸附质的浓度,V为溶液体积,m为吸附质量。
2、比表面积物理意义是通常称1g固体所占有的总表面积为该物质的比表面积S。
一般比表面积大、活性大的多孔物,吸附能力强。
活性炭具有很强的吸附能力原因活性炭是用木材、煤、果壳等含碳物质在高温缺氧条件下活化制成,它具有巨大的比表面积(500-1700m2/g)。
活性炭结在结构上有两大特点:一是内部与表面孔隙发达。
二是比表面积大。
孔隙结构越发达比表面积越大,其吸附功能越强。
2、分光光度计的使用开机预热30min。
调整波长665nm。
准备空白溶液、标准溶液、待测溶液分别装入同一规格的比色皿中,放于比色皿架内。
调整模式为"透射比"。
空白溶液置于测量位置,开仓门保证示数为0%,关闭仓门保证示数为100%,若不是,则手动调整。
重复数次。
调整模式为"吸光度"。
标准液、待测液分别置于测量位置,读取吸光度。
调整模式为“浓度直读”,标准液置于测量位置,调整示数为其浓度值或其浓度值的10n倍。
再次按下“模式键”,现实仍为“浓度直读”,测量待测液浓度。
三、仪器与试剂分光度光度计722型、恒温振荡器、锥形瓶(磨口100ml)、容量瓶(100ml,50ml)、移液管(10ml刻度、20ml、25ml)、活性炭、滴管、亚甲基蓝水溶液(10-3mol/l)。
液体吸附法测固体的比表面积
实验六 液体吸附法测固体的比表面积1 实验目的(1)学会用次甲基蓝水溶液吸附法测定活性炭的比表面积。
(2)了解郎缪尔单分子层吸附理论及溶液法测定比表面积的基本原理。
2 实验原理在一定温度下,固体在某些溶液中的吸附与固体对气体的吸附很相似,可用朗缪尔单分子层吸附方程来处理。
朗缪尔吸附理论的基本假定是:固体表面是均匀的,吸附是单分子层吸附,被吸附在固体表面上的分子相互之间无作用力,吸附平衡是动态平衡。
根据以上假定,推导出吸附方程:Kc Kc+Γ=Γ∞1 (2-1)式中:K 为吸附作用的平衡常数,也称为吸附系数,与吸附质、吸附剂性质及温度有关,其值越大,则表示吸附能力越强;Γ为平衡吸附量,1g 吸附剂达吸附平衡时,吸附的溶质的物质的量(mol/g );Γ∞为饱和吸附量,1g 吸附剂的表面上盖满一层吸附质分子时所能吸附的最大量(mol/g );c 为达到吸附平衡时,溶质在溶液本体中的平衡浓度。
将(2-1)式整理得:c K 1111∙Γ+Γ=Γ∞∞ (2-2)以1/Γ对1/c 作图得一直线,由此直线的斜率和截距可求得Γ∞、K 以及比表面积S 比。
S 比= Γ∞N A A (2-3) 式中,N A 阿伏伽德罗常数;A 为吸附质分子的截表面积(m 2);S 比为比表面积。
假设吸附质分子在表面是直立的,A=1.52×10-18m 2。
活性炭是一种固体吸附剂,对染料次甲基蓝具有很大的吸附倾向。
研究表明,在一定的浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合朗缪尔吸附理论。
本实验以活性炭为吸附剂,将定量的活性炭与一定量的几种不同浓度的次甲基蓝相混合,在常温下振荡,使其达到吸附平衡。
用分光光度计测量吸附前后次甲基蓝溶液的浓度。
从浓度的变化求出每克活性炭吸附次甲基蓝的吸附量Γ。
m c)V-(c 0=Γ (2-4)式中:V 为吸附溶液的总体积(L);m 为加入溶液的吸附剂质量(g);c 和c 0分别为平衡浓度和原始浓度(mol/g)。
溶液吸附法测定固体比表面积
实验五溶液吸附法测定固体比表面积一、实验目的了解Langmuir吸附理论及溶液法测定比表面积的基本原理二、实验原理比表面积是粉末及多孔性物质的一个重要特性参数。
它在催化、色谱、环保及纺织等生产和科研部门有着广泛的应用。
测定比表面积的方法有电子显微镜法、色谱法及BET法。
常用BET法(又分静态法和动态法),但仪器及数据处理复杂是其缺点。
而本法所用仪器简单,操作方便。
本实验采用亚甲蓝染料水溶液吸附法测定硅胶的比表面积,亚甲蓝具有很强的吸附倾向,可被大多数固体物质吸附,在一定条件下为单层吸附,该吸附具有Langmuir吸附特征。
根据Langmuir理论,当吸附达饱和时,吸附质(亚甲蓝)分子铺满整个吸附剂(硅胶)表面而不留下空位。
此时,单位质量的吸附质分子所占的面积就等于被吸附的吸附质的分子数与每个分子在表面层所占面积的乘积。
通常通过测定吸附质的重量而求得吸附质分子数。
按下式计算吸附剂的比表面积S(m2/g):S=Γ∞N A A/ΓM 5-1式中:M为吸附质分子量(亚甲蓝的分子量为373.88),N A为阿弗伽德罗常数(6.0222 ×1023),Γ为吸附剂的质量(g),Γ∞为吸附达饱和时吸附质的质量(g),A为吸附质(亚甲蓝)分子吸附投影面积。
亚甲蓝易溶于水呈天蓝色,在空气中较稳定,不易受吸附剂酸碱性的影响。
亚甲蓝水溶液在445nm和665nm处具有吸收峰,用紫外分光光度计测定吸附前后溶液吸收度值的变化,求出Γ∞。
由于亚甲蓝分子具有矩形结构,分子长16.0 Å,宽8.4 Å,最小的宽度为4.7 Å,如下图所示:它吸附于吸附剂上有三种取向,平面吸附投影面积为135 Å2,侧面吸附投影面积为75 Å2,端积吸附投影面积为39.5 Å2。
因此,对于不同吸附剂或同种吸附剂的不同条件,吸附取向不同,投影面积也不同,测得的A也不同。
所以实验时要严格控制实验条件的一致。
溶液吸附法测定比表面实验报告
溶液吸附法测定比表面实验报告溶液吸附法测定固体的比表面韩山师范学院化学系化学专业物化实验课实验报告溶液吸附法测定固体的比表面实验目的:1、掌握溶液吸附法测定固体比表面的原理和方法。
2、测定硅胶的比表面。
实验原理:表面化学是物理化学的重要组成部分,固体比表面的测定是表面化学的基本实验之一,其测定方法有BET法、电子显微镜法、色谱法、和溶液吸附法等。
其中溶液吸附法所用仪器简,故是较常用的方法之一。
固体吸附剂从溶液中吸附溶质的过程是一个复杂的过程,然而其等温吸附线的形式一般来说与气体等温吸附线大致相似。
本实验用层析硅胶作吸附剂,次甲基蓝作吸附质,测定硅胶的比表面,设吸附剂达到单层饱和吸附时所吸附的吸附质的重量为△W(毫克),吸附剂的重量为W(毫克),被吸附的次甲基蓝在硅胶表面上的投影面积为A(米2/分子),次甲基蓝的分子量为M,N为阿佛加德罗常数,根据朗格谬尔的假定,吸附剂的比表面S(米2/克),可用下式表示:S=WNA(1) MW次甲基蓝是一种吸附倾向较大的水溶性染料,它易溶于水,形成天兰色溶液,在空气中较稳定,不易受吸附剂酸碱性的影响。
在可见光区有两个吸收峰(445nm和665nm),若用724型分光光度计在波长为570nm处,以蒸馏水为空白,测定吸附前后溶液光密度的变化,求得吸附前后次甲基蓝溶液溶液浓度的变化,则△W可用下式求得:△W=(c0-c1)V (2)式中c0为吸附前次甲基蓝标准溶液的浓度(毫克/毫升);c1为吸附达平衡时次甲基蓝溶液的浓度(毫克/毫升);V为所用次甲基蓝标准溶液的体积(毫升)。
△W的准确测定是本实验的关键,影响△W准确测定的因素很多,其中最重要的是次甲基蓝标准溶液的浓度应达到饱和吸附的最低浓度和振荡吸附的时间要达到饱和吸附所需的时间。
A为次甲基蓝阳离子在硅胶上吸附的投影面积。
次甲基阳离子是长方形的,因此它在硅胶上的吸附有三种可能的取向,即平面吸附,侧面吸附和端基吸附,取向不同,A值也不同,本实验采用振荡吸附方法,以使能测得较为稳定的A值。
《物理化学基础实验》溶液吸附法测定固体的比表面积实验
《物理化学基础实验》溶液吸附法测定固体的比表面积实验一、实验目的学会用次甲基蓝水溶液吸附法测定活性炭的比表面积;了解郎缪尔单分子层吸附理论及溶液法测定比表面积的基本原理。
二、原理与方法溶液的吸附可用于测定固体比表面积。
次甲基蓝是易于被固体吸附的水溶性染料,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合郎缪尔吸附理论。
郎缪尔吸附理论的基本假设是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能被再吸附;在吸附平衡时候,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。
设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有吸附速率: r 吸 = k 1N(1-θ)c (k 1为吸附速率常数) 脱附速率: r 脱 = k -1N θ (k -1为脱附速率常数) 当达到吸附平衡时: r 吸 = r 脱 即 k 1N (1-θ)c = k -1N θ 由此可得: cK c K 吸吸+=1θ (1)式中K 吸=k 1/k -1称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温度,K 吸值越大,固体对吸附质吸附能力越强。
若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则:θ =Γ /Γ∞带入式(2-25-1)得:cK cK 吸吸+=∞1ΓΓ(2) 整理式(2-25-2)得到如下形式c K c∞∞+=ΓΓΓ11吸 (3)作c/Γ~c 图,从直线斜率可求得Γ∞,再结合截距便可得到K 吸。
Γ∞指每克吸附剂对吸附质的饱和吸附量(用物质的量表示),若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面积可以按照下式计算S =Γ∞L σA(4)式中S 为吸附剂比表面积,L 为阿伏加德罗常数。
次甲基蓝的结构为:阳离子大小为17.0 ×7.6× 3.25 ×10-30 m 3次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20 m 2,侧面吸附投影面积为75×10–20 m 2,端基吸附投影面积为39×10–20 m 2。
溶液吸附法测固体比表面
溶液吸附法测固体比表面
1、样品的活化(已备好)。
2、溶液吸附:取两只100ml洗净烘干的带塞磨口锥形瓶,分
别准确称量约0.2g活化后的活性炭(两份尽量平行),再
分别加入50ml0.2%的次甲基蓝溶液,盖上磨口塞,轻轻摆
动,放置过夜。
3、次甲基蓝标准溶液的配制:用带刻度移液管分别移取2ml、
4ml、5ml 0.01%次甲基蓝标准溶液于100ml容量瓶中。
稀
释至刻度,分别得到2、4、5 ppm三种浓度的标准溶液。
5、平衡液的处理:将吸附后的平衡溶液,用玻璃漏斗过滤去
活性炭,滤液分别用100ml洗净干燥的三角瓶接收,再用
移液管分别移取0.4ml至100ml容量瓶中,稀释至刻度。
6、选择工作波长:使用5ppm的次甲基蓝标准溶液,在
600-700nm范围内测量其吸光度,以吸光度最大的波长作
为工作波长,每隔5nm测量一次。
7、测量吸光度:以蒸馏水为空白液,分别测量2、4、5ppm
三个标准溶液及稀释后的原始溶液和稀释后的平衡溶液的
吸光度。
溶液吸附法测量固体物质的比表面积
实验十 溶液吸附法测量固体物质的比表面积一、实验目的:1.了解溶液吸附法测定固体比表面的原理和方法。
2.用溶液吸附法测定活性炭的比表面。
3.掌握分光光度计工作原理及操作方法。
二、实验原理:本实验采用溶液吸附法测定固体物质的比表面。
在一定温度下,固体在某些溶液中吸附溶质的情况可用Langmuir 单分子层吸附方程来处理。
其方程为KcKcm+Γ=Γ1式中:Γ为平衡吸附量,单位质量吸附剂达吸附平衡时,吸附溶质的物质的量(mol ·g-1);Γm 为饱和吸附量,单位质量吸附剂的表面上吸满一层吸附质分子时所能吸附的最大量(mol ·g-1);c 为达到吸附平衡时,吸附质在溶液本体中的平衡浓度(mol ·dm-3);K 为经验常数,与溶质(吸附质)、吸附剂性质有关。
吸附剂比表面S 比 :S 比 =ΓmLA式中:L 是阿伏加德罗常数;A 是每个吸附质分子在吸附剂表面占据的面积。
配制不同吸附质浓度c0的样品溶液,测量达吸附平衡后吸附质的浓度c ,用下式计算各份样品中吸附剂的吸附量mVc c )(0-=Γ 式中:c0是吸附前吸附质浓度(mol ·dm-3);c 是达吸附平衡时吸附质浓度(mol ·dm-3);V 是溶液体积(dm3);m 是吸附剂质量(g )。
Langmuir 方程可写成Kc cm m Γ+Γ=Γ11 根据改写的Langmuir 单分子层吸附方程,作Γc~c 图,为直线,由直线斜率可求得Γm甲基兰的摩尔质量为373.9g ·mol -1。
假设吸附质分子在表面是直立的,A 值取为1.52×10-18m 2 。
三、实验步骤:1.样品活化2.溶液吸附取5只洗净的干燥的带塞锥形瓶编号,分别用分析天平准确称取活化过的活性炭0.1g ,至于瓶中,分别配置五种浓度的次甲基蓝50ml ,振荡4-6h ,分别移取滤液2ml 放入250ml 容量瓶中,并定容,待用; 3.原始溶液处理4.次甲基蓝标准溶液的配制用移液管分别移取0.4、0.6、0.6、1.0、1.2、1.4ml 的0.3126×10-3mol/L 标准次甲基蓝溶液于100ml 容量瓶中,用蒸馏水稀释至刻度,待用; 5.工作波长的选择:665nm 6.测量吸光度四、数据记录及处理:1.实验基础数据2.作A3.求次甲基蓝原始溶液的浓度和平衡溶液的浓度 C将实验测定的稀释后原始溶液的吸光度,从 A —C 工作曲线上查得对应的浓度,然后乘以稀释倍数 100,即为原始溶液的浓度;计算得:0.0019 mol/L将实验测定的各个稀释后的平衡溶液吸光度,从 A —C 工作曲线上查得对应的浓度,然4.计算吸附溶液的初始浓度 C 05.计算吸附量由平衡浓度 C 及初始浓度 C 0数据,由Γ=(C-C 0)V/m6.作朗缪尔吸附等温线:以Γ 为纵坐标,C 为横坐标0.0400.0420.0440.0460.0480.0500.0520.0540.0560.0580.060吸附量ΓC/(mol/L)7.求饱和吸附量作C/Γ-C 图,由图求得饱和吸附量Γ∞。
溶液吸附法测定固体比表面积.
实验十溶液吸附法测定固体比表面积教学目的1.用溶液吸附法测定活性炭的比表面。
2.了解溶液吸附法测定比表面的基本原理。
教学重点与难点1.比表面的概念及其计算式。
2.实验所测各个物理量的意义,并掌握测定方法。
教学方法与手段示范与讲解教学的基本内容一、实验原理比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。
测定固体比表面的方法很多,常用的有BET低温吸附法、电子显微镜法和气相色谱法,但它们都需要复杂的仪器装置或较长的实验时间。
而溶液吸附法则仪器简单,操作方便。
本实验用次甲基蓝水溶液吸附法测定活性炭的比表面。
此法虽然误差较大,但比较实用。
活性炭对次甲基蓝的吸附,在一定的浓度范围内是单分子层吸附,符合朗格缪尔(Langmuir)吸附等温式。
根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。
平衡浓度为C时的吸附符合朗格缪尔(Langmuir)吸附方程:将(1)式整理可得如下形式:作C/Г—C图,得一直线,由此直线的斜率可求得,再结合截距可求常数K。
此时吸附剂活性炭的比表面可按下式计算:(1)式中,S0为比表面(m2·kg-1);C0为原始溶液的质量分数;C为平衡溶液的质量分数;G为溶液的加入量(kg);W为吸附剂试样质量(kg);2.45×106是1kg次甲基蓝可覆盖活性炭样品的面积(m2·kg-1)。
本实验溶液浓度的测量是借助于分光光度计来完成的,根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液的厚度成正比,即:A=abC。
式中,A为光密度;a为吸光系数;C为溶液浓度;b为液层厚度。
实验首先测定一系列已知浓度的次甲基蓝溶液的光密度,绘出A—C工作曲线,然后测定次甲基蓝原始溶液及平衡溶液的光密度,再在A—C曲线上查得对应的浓度值,代入(1)式计算比表面。
固体比表面积的测定
固体比表面积的测定——溶液吸附法一、目的要求1. 学会用次甲基蓝水溶液吸附法测定活性炭的比表面积。
2. 了解郎缪尔单分子层吸附理论及溶液法测定比表面积的基本原理。
二、基本原理溶液的吸附可用于测定固体比表面积。
次甲基蓝是易于被固体吸附的水溶性染料,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合郎缪尔吸附理论。
郎缪尔吸附理论的基本假设是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能被再吸附;在吸附平衡时候,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。
设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有吸附速率: r 吸 = k 1N (1-θ)c (k 1为吸附速率常数) 脱附速率: r 脱 = k -1N θ (k -1为脱附速率常数)当达到吸附平衡时: r 吸 = r 脱 即 k 1N (1-θ)c = k -1N θ由此可得: c K cK 吸吸+=1θ (2-25-1)式中K 吸=k 1/k -1称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温度,K 吸值越大,固体对吸附质吸附能力越强。
若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则: θ =Γ /Γ∞带入式(2-25-1)得 cK cK 吸吸+=∞1ΓΓ (2-25-2)整理式(2-25-2)得到如下形式c K c∞∞+=ΓΓΓ11吸 (2-25-3)作c /Γ~c 图,从直线斜率可求得Γ∞,再结合截距便可得到K 吸。
Γ∞指每克吸附剂对吸附质的饱和吸附量(用物质的量表示),若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面积可以按照下式计算S =Γ∞L σA (2-25-4)式中S 为吸附剂比表面积,L 为阿伏加德罗常数。
次甲基蓝的结构为:阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m 2,侧面吸附投影面积为75×10–20m 2,端基吸附投影面积为39×10–20m 2。
实验4 溶液吸附法测定固体比表面积
实验四 溶液吸附法测定固体比表面一、实验目的1、了解溶液吸附法测定固体比表面的原理和方法。
2、用溶液吸附法测定活性炭(硅藻土、碱性层析氧化铝)的比表面。
3、掌握分光光度计工作原理及操作方法。
二、实验原理1、朗伯-比尔定律(光吸收原理)根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比:0lg(/)A I I abc ==式中: A :吸光度; I 0:入射光强度; I :透射光强度;a :摩尔吸收系数,与吸收物质的性质及入射光的波长λ有关;b :液层厚度;c :溶液浓度。
一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A 对波长λ作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A 值最大处。
亚甲基蓝溶液在可见区有二个吸收峰:445nm 和665nm ,但在445nm 处活性炭吸附对吸收峰有很大的干扰,固本实验选用的工作波长为665nm 。
2、亚甲基蓝结构及吸附特征 亚甲基蓝具有以下矩形平面结构:阳离子大小为17.0×7.6×3.25×10-30m 3。
亚甲基蓝的吸附有三种取向:平面吸附投影面积为135×10-20m 2,侧面吸附投影面积为75×10-20m 2,端基吸附投影面积为39×10-20m 2。
对于非石墨型的活性炭,亚甲基蓝是以端基吸附取向,吸附在活性炭表面。
3、朗格缪尔(Langmuir )单吸附理论朗格缪尔吸附理论的基本假设是:固体表面是均匀的,吸附时单分子层吸附,吸附剂一旦被吸附质覆盖就不能再吸附,在吸附平衡时,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面积成正比,解吸速率与覆盖度成正比。
水溶性染料的吸附已经应用于测定固体表面积比表面,在所有的染料中亚甲基蓝具有最大的吸附倾向。
研究表明,在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附,符合朗格缪尔吸附理论。