泸西县第二中学2018-2019学年上学期高三数学10月月考试题
泸西县高级中学2018-2019学年上学期高三数学10月月考试题
泸西县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 302. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( ) A .150°B .90°C .60°D .30°3. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( ) A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定4. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}5. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 6. 函数f (x )=1﹣xlnx 的零点所在区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)7. 设集合,则A ∩B 等于( )A .{1,2,5}B .{l ,2,4,5}C .{1,4,5}D .{1,2,4}8. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-9. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π10.定义运算:,,a a ba b b a b ≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A.⎡⎢⎣⎦B .[]1,1- C.⎤⎥⎣⎦ D.⎡-⎢⎣⎦ 二、填空题11.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面 其中正确命题的序号是 .12.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.13.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .14.不等式x 2+x ﹣2<0的解集为 .15.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.16.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .三、解答题17.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC . (Ⅰ)求证:AB ⊥SC ;(Ⅱ)设D ,F 分别是AC ,SA 的中点,点G 是△ABD 的重心,求证:FG ∥平面SBC ; (Ⅲ)若SA=AB=2,AC=4,求二面角A ﹣FD ﹣G 的余弦值.18.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.19.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,22AD =,33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若6PA PD ==,PB PC =,求直线PA 与平面PBC 所成角的大小.20.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.ABCDP21.已知向量,,.(1)若点A 、B 、C 能构成三角形,求实数m 的取值范围;(2)若在△ABC 中,∠B 为直角,求∠A .22. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.泸西县高级中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】解:a==1+,该函数在(0,)和(,+∞)上都是递减的,n图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a10,a9.故选:C.【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.2.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30°故选D.【点评】本题主要考查正弦定理的应用.属基础题.3.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.4.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.5.【答案】A【解析】6.【答案】C【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).故选:C.【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.7.【答案】B【解析】解:∵集合,当k=0时,x=1;当k=1时,x=2;当k=5时,x=4;当k=8时,x=5,∴A∩B={1,2,4,5}.故选B.【点评】本题考查集合的交集的运算,是基础题.解题时要认真审题,注意列举法的合理运用.8. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .9. 【答案】A 【解析】考点:三角函数的图象性质. 10.【答案】D 【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.二、填空题11.【答案】 ③ .【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误; ②经过空间不共线三点有且只有一个平面,故错误; ③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误, 故正确命题的序号是③, 故答案为:③12.【答案】【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.答案:413.【答案】 0.6 .【解析】解:随机变量ξ服从正态分布N (2,σ2), ∴曲线关于x=2对称,∴P (ξ>0)=P (ξ<4)=1﹣P (ξ>4)=0.6, 故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.14.【答案】 (﹣2,1) .【解析】解:方程x 2+x ﹣2=0的两根为﹣2,1,且函数y=x 2+x ﹣2的图象开口向上,所以不等式x 2+x ﹣2<0的解集为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查一元二次不等式的解法,属基础题,深刻理解“三个二次”间的关系是解决该类题目的关键,解二次不等式的基本步骤是:求二次方程的根;作出草图;据图象写出解集.15.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.16.【答案】 [,﹣1] .【解析】解:设点A (acos α,bsin α),则B (﹣acos α,﹣bsin α)(0≤α≤);F (﹣c ,0); ∵AF ⊥BF ,∴=0,即(﹣c ﹣acos α,﹣bsin α)(﹣c+acos α,bsin α)=0,故c 2﹣a 2cos 2α﹣b 2sin 2α=0,cos 2α==2﹣,故cos α=,而|AF|=,|AB|==2c ,而sin θ===,∵θ∈[,],∴sin θ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.三、解答题17.【答案】【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,∴SA⊥AB,又AB⊥AC,SA∩AC=A,∴AB⊥平面SAC,又AS⊂平面SAC,∴AB⊥SC.(Ⅱ)证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,∵D,F分别是AC,SA的中点,点G是△ABD的重心,∴AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FD∥SC,FM∥SB,∵FM∩FD=F,∴平面FMD∥平面SBC,∵FG⊂平面FMD,∴FG∥平面SBC.(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,,0),F(0,0,1),=(0,2,﹣1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos <,>==.∴二面角A ﹣FD ﹣G 的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.18.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质. 19.【答案】【解析】解: (Ⅰ)当13PE PB =时,//CE 平面PAD .设F 为PA 上一点,且13PF PA =,连结EF 、DF 、EC , 那么//EF AB ,13EF AB =. ∵//DC AB ,13DC AB =,∴//EF DC ,EF DC =,∴//EC FD .又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,(1,2,0)C -.由(6)(2PO ==-=知(0,0,2)P . (9分)设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|2||||AP n AP n AP n θ⋅=<>==⋅, ∴πθ=,∴直线PB 与平面PAD 所成角为3π. (13分)20.【答案】(1)320x y ++=;(2)()2228x y -+=.【解析】试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.(2)由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,因为矩形ABCD 两条对角线的交点为()2,0M ,所以M 为距形ABCD 外接圆的圆心, 又AM ==从而距形ABCD 外接圆的方程为()2228x y -+=.1考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力. 21.【答案】【解析】解:(1)…(2分)∵A ,B ,C 不共线, ∴2m ≠m ﹣2即m ≠﹣2…(4分)(2)∴m=3…(7分),…(10分)【点评】本题考查向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.22.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=AC .所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分。
西和县第二中学2018-2019学年上学期高三数学10月月考试题
何条件构造 a, b, c 的关系,处理方法与椭圆相同,但需要注意双曲线中 a, b, c 与椭圆中 a, b, c 的关系不同.求双曲
线离心率的值或离心率取值范围的两种方法:(1)直接求出 a, c 的值,可得;(2)建立 a, b, c 的齐次关系式,
将用 a, c 表示,令两边同除以或 a2 化为的关系式,解方程或者不等式求值或取值范围.
xf
x
,区间
D
1 e 2
5
,e2
,
e
为自然对数的底数。
(ⅰ)若函数 g x 在区间 D 上有两个极值,求实数 m 的取值范围;
(ⅱ)设函数 g x 在区间 D 上的两个极值分别为 g x1 和 g x2 ,
求证: x1 x2 e .
第 5 页,共 17 页
a a
b b
.例如1
2
1
,则函数
f
x sin x cos x 的值域为(
D. a24 和 a25
)
A.
2, 2
2
2
B . 1,1
C.
2 2
,1
D. 1,
2
2
5. 如图,网格纸上的正方形的边长为 1,粗线画出的是某几何体的三视图,则这个几何体的体积为(
16.设
x,
y
满足条件
x
x
y y
a, 1,
,若
z
ax
y
有最小值,则
a
的取值范围为
.
城区高中2018-2019学年上学期高三数学10月月考试题(3)
城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。
ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。
陇西县第二中学2018-2019学年高三上学期第三次月考试卷数学含答案
陇西县第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .11a b< C .22a b > D .33a b > 2. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2403. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D . 4. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 5. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<6. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 7. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.8. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 9. 已知定义在R 上的奇函数f (x )满足f (x )=2x ﹣4(x >0),则{x|f (x ﹣1)>0}等于( ) A .{x|x >3} B .{x|﹣1<x <1} C .{x|﹣1<x <1或x >3} D .{x|x <﹣1}10.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .11.若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D 12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .14.设函数()()()31321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .15.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.16.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.三、解答题(本大共6小题,共70分。
泸西县二中2018-2019学年高二上学期第二次月考试卷数学
泸西县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|2. 如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.3. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a4. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2﹣3x+4与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A .[3,4]B .[2,4]C .[1,4]D .[2,3]5. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 6. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .7. 双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .38. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .9. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或C .{}|33x x x <->或D . {}|303x x x <-<<或 10.与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°11.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <012.已知向量=(1,n ),=(﹣1,n ﹣2),若与共线.则n 等于( )A .1B .C .2D .4二、填空题13.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .16.设,则17.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是 度.18.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .三、解答题19.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.20.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m ﹣n|>10”概率.21.平面直角坐标系xOy 中,圆C 1的参数方程为(φ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=4sin θ. (1)写出圆C 1的普通方程及圆C 2的直角坐标方程;(2)圆C 1与圆C 2是否相交,若相交,请求出公共弦的长;若不相交请说明理由.22.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.23.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.24.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.泸西县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.2.【答案】D.第Ⅱ卷(共110分)3.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.4.【答案】D【解析】解:∵m(x)=x2﹣3x+4与n(x)=2x﹣3,∴m(x)﹣n(x)=(x2﹣3x+4)﹣(2x﹣3)=x2﹣5x+7.令﹣1≤x2﹣5x+7≤1,则有,∴2≤x≤3.故答案为D.【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.5.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
泸西县第二中学2018-2019学年上学期高三数学10月月考试题
泸西县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,程序框图的运算结果为( )A .6B .24C .20D .1202. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点3. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π4. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}5. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .6. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自然数为( )A .11B .12C .13D .14 7. 集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 8. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 9. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )11.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .20312.如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是.14.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是15.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 17.若log 2(2m ﹣3)=0,则e lnm ﹣1= .三、解答题18.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .19.2()sin 22f x x x =+. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12A f =,ABC ∆的面积为.20.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.21.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?22.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45方向10海里的B 处有一艘海 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向 一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.23.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.泸西县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.2.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.3.【答案】B【解析】试题分析:由正弦定理可得()sin0,,4sin6B B Bππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.4.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.5.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.6.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.7.【答案】C【解析】考点:真子集的概念.8.【答案】A【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.9. 【答案】B【解析】因为所以,对应的点位于第二象限 故答案为:B 【答案】B10.【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B. 11.【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.12.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。
泸西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
泸西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65 2. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=3. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?4. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a的值为( )A .或﹣B .或3C .或5D .3或55. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-6. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图7. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}8. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1)9. 函数f (x )=lnx ﹣+1的图象大致为( )A .B .C .D .10.已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .11.已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q12.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150°二、填空题13.已知角α终边上一点为P (﹣1,2),则值等于 .14.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .15.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)17.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .18.在复平面内,复数与对应的点关于虚轴对称,且,则____.三、解答题19.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.(1)证明:BC 1∥平面ACD 1.(2)当时,求三棱锥E ﹣ACD 1的体积.20.已知椭圆C :22221x y a b+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别交直线:4x =于M 、N 两点,求证:FM FN ⊥.21.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.22.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.23.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.24.已知cos(+θ)=﹣,<θ<,求的值.泸西县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.2.【答案】D【解析】解:抛物线x=﹣4y2即为y2=﹣x,可得准线方程为x=.故选:D.3.【答案】C【解析】解:模拟执行程序框图,可得S=0,i=1S=2,i=2不满足条件,S=2+4=6,i=3不满足条件,S=6+8=14,i=4不满足条件,S=14+16=30,i=5不满足条件,S=30+32=62,i=6不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S的值为126,故判断框中的①可以是i>6?故选:C.【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.4.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C .5. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .6. 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.7. 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V ≤}. 故选:D .【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.8. 【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题.9.【答案】A【解析】解:∵f(x)=lnx﹣+1,∴f′(x)=﹣=,∴f(x)在(0,4)上单调递增,在(4,+∞)上单调递减;且f(4)=ln4﹣2+1=ln4﹣1>0;故选A.【点评】本题考查了导数的综合应用及函数的图象的应用.10.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.11.【答案】C【解析】解:∵命题p:∀x∈R,32x+1>0,∴命题p为真,由log2x<1,解得:0<x<2,∴0<x<2是log2x<1的充分必要条件,∴命题q为假,故选:C.【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题.12.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.二、填空题13.【答案】.【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.14.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.15.【答案】 .【解析】解:∵sin α+cos α=,<α<,∴sin 2α+2sin αcos α+cos 2α=,∴2sin αcos α=﹣1=,且sin α>cos α,∴sin α﹣cos α===.故答案为:.16.【答案】必要而不充分 【解析】试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.17.【答案】 .【解析】解:复数z==﹣i (1+i )=1﹣i ,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.18.【答案】-2【解析】【知识点】复数乘除和乘方 【试题解析】由题知:所以故答案为:-2三、解答题19.【答案】【解析】(1)证明:∵AB ∥C 1D 1,AB=C 1D 1,∴四边形ABC 1D 1是平行四边形,∴BC 1∥AD 1,又∵AD 1⊂平面ACD 1,BC 1⊄平面ACD 1, ∴BC 1∥平面ACD 1.(2)解:S △ACE =AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.20.【答案】(1) 22143x y +=;(2)证明见解析. 【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=+,122934y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅得FM FN ⊥.试题解析: (1)由题意得22222191,41,2,a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得2,a b =⎧⎪⎨=⎪⎩∴椭圆C 的方程为22143x y +=.又111x my =+,221x my =+, ∴112(4,)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,222(3,)1y FN my =-,1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++22222363499906913434m m m m m -+=+=-=---+++ ∴FM FN ⊥考点:椭圆的性质;向量垂直的充要条件. 21.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;22.【答案】【解析】解:(Ⅰ)因为x ∈[﹣1,1],则2+x ∈[1,3], 由已知,有对任意的x ∈[﹣1,1],f (x )≥0恒成立, 任意的x ∈[1,3],f (x )≤0恒成立,故f (1)=0,即1为函数函数f (x )的一个零点.由韦达定理,可得函数f (x )的另一个零点, 又由任意的x ∈[1,3],f (x )≤0恒成立,∴[1,3]⊆[1,c], 即c ≥3(Ⅱ)函数f (x )=x 2+bx+c 对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4恒成立,即f (x )max ﹣f (x )min ≤4,记f (x )max ﹣f (x )min =M ,则M ≤4.当||>1,即|b|>2时,M=|f (1)﹣f (﹣1)|=|2b|>4,与M ≤4矛盾;当||≤1,即|b|≤2时,M=max{f (1),f (﹣1)}﹣f ()=﹣f ()=(1+)2≤4,解得:|b|≤2, 即﹣2≤b ≤2,综上,b 的取值范围为﹣2≤b ≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.23.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 24.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos (+θ)=﹣,∴sin (+θ)=﹣=﹣,∴sin (+θ)=sin θcos+cos θsin=(cos θ+sin θ)=﹣,∴sin θ+cos θ=﹣,①cos (+θ)=coscos θ﹣sin sin θ=(cos θ﹣cos β)=﹣,∴cos θ﹣sin θ=﹣,②联立①②,得cos θ=﹣,sin θ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.。
泸西县第二中学2018-2019学年高二上学期第二次月考试卷数学
泸西县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.函数的定义域是()A.[0,+∞)B.[1,+∞)C.(0,+∞)D.(1,+∞)2.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.B.C.D.63.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.4.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知条件p:x2+x﹣2>0,条件q:x>a,若q是p的充分不必要条件,则a的取值范围可以是()A.a≥1 B.a≤1 C.a≥﹣1 D.a≤﹣36.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数,y=b xC.f(x)是偶函数D.f(x)是偶函数,7.在△ABC中,a2=b2+c2+bc,则A等于()A.120°B.60°C.45°D.30°8.对“a,b,c是不全相等的正数”,给出两个判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不能同时成立,下列说法正确的是()A.①对②错B.①错②对C.①对②对D.①错②错9. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要10.若复数z 满足=i ,其中i 为虚数单位,则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i11.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)12.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,26二、填空题13.1785与840的最大约数为 .14.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力. 15.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 .16.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .18.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}. 其中正确的是 .(填上所有正确命题的编号)三、解答题19.设函数f (x )=lnx ﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f (x )在x=1处的切线方程;(Ⅱ)当a=时,求函数f (x )的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g (x )=x 2﹣2bx ﹣,若对于∀x 1∈[1,2],∃x 2∈[0,1],使f (x 1)≥g (x 2)成立,求实数b 的取值范围.20.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.21.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.22.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.23.求曲线y=x3的过(1,1)的切线方程.24.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC在矩阵N应对的变换作用下得到矩形区域OA′B′C′,如图所示.(1)求矩阵M;(2)求矩阵N及矩阵(MN)﹣1.泸西县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:由题意得:2x﹣1≥0,即2x≥1=20,因为2>1,所以指数函数y=2x为增函数,则x≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.2.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.3.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.4.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.5.【答案】A【解析】解:∵条件p:x2+x﹣2>0,∴条件q:x<﹣2或x>1∵q是p的充分不必要条件∴a≥1故选A.6.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.7.【答案】A【解析】解:根据余弦定理可知cosA=∵a2=b2+bc+c2,∴bc=﹣(b2+c2﹣a2)∴cosA=﹣∴A=120°故选A8.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.9.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.故选:C.【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.10.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.11.【答案】B【解析】解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b 2=20,∴椭圆的方程是故选B .【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.12.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5, 故选:C .二、填空题13.【答案】 105 .【解析】解:1785=840×2+105,840=105×8+0. ∴840与1785的最大公约数是105. 故答案为10514.【答案】[2e,)-+∞【解析】由题意,知当0,1x ∈()时,不等式2e 1xx ax -≥-,即21e x x a x +-≥恒成立.令()21e xx h x x+-=,()()()211e 'x x x h x x-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,xk x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()211e '0x x x h x x-+-=>,∴()h x 在()0,1x ∈为递增,∴()()12e h x h <=-,则2e a ≥-.15.【答案】 ①③④ .【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.16.【答案】异面.【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面.故答案为:异面.17.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.18.【答案】②③④【解析】解:①函数y=[sinx]是非奇非偶函数;②函数y=[sinx]的周期与y=sinx的周期相同,故是周期为2π的周期函数;③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx不存在零点;④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.故答案为:②③④.【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.三、解答题19.【答案】【解析】解:函数f (x )的定义域为(0,+∞),(2分)(Ⅰ)当a=1时,f (x )=lnx ﹣x ﹣1,∴f (1)=﹣2,,∴f ′(1)=0,∴f (x )在x=1处的切线方程为y=﹣2(5分)(Ⅱ)=(6分)令f ′(x )<0,可得0<x <1,或x >2;令f'(x )>0,可得1<x <2故当时,函数f (x )的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(Ⅲ)当时,由(Ⅱ)可知函数f (x )在(1,2)上为增函数,∴函数f (x )在[1,2]上的最小值为f (1)=(9分)若对于∀x 1∈[1,2],∃x 2∈[0,1]使f (x 1)≥g (x 2)成立,等价于g (x )在[0,1]上的最小值不大于f (x )在(0,e]上的最小值(*) (10分)又,x ∈[0,1]①当b <0时,g (x )在[0,1]上为增函数,与(*)矛盾②当0≤b ≤1时,,由及0≤b ≤1得,③当b >1时,g (x )在[0,1]上为减函数,,此时b >1(11分)综上,b 的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x 1∈[1,2],∃x 2∈[0,1]使f (x 1)≥g (x 2)成立,转化为g (x )在[0,1]上的最小值不大于f (x )在(0,e]上的最小值.20.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.21.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
泸西县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
泸西县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 112.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B.C.tan35° D .tan35°3. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4. △ABC 的内角A ,B ,C所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π5. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )A .0°B .45°C .60°D .90°6. 已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等. 7. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣8.下列函数中哪个与函数y=x相等()A.y=()2B.y=C.y=D.y=9.函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A.2 B.3 C.7 D.910.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<011.若函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g(x)=log a(x+k)的是()A.B.C.D.12.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x二、填空题13.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.14.已知函数f(x)=,点O为坐标原点,点An(n,f(n))(n∈N+),向量=(0,1),θn是向量与i的夹角,则++…+=.15.函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.16.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.17.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.18.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是.三、解答题19.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.(Ⅰ)求A,B;(Ⅱ)若A∪B=B,求实数a的取值范围.20.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.21.已知a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC.(I)求C的值;(Ⅱ)若c=2a,b=2,求△ABC的面积.22.在直角坐标系xOy中,直线l的参数方程为为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.23.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.24.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.泸西县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C2.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.3.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.4.【答案】B【解析】试题分析:由正弦定理可得:(),sin0,,sin24sin6B B BBπππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数. 5.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,∴EF ∥A 1D ,∵A 1B ∥D 1C ,∴∠DA 1B 是CD 1与EF 所成角,∵A 1D=A 1B=BD , ∴∠DA 1B=60°. ∴CD 1与EF 所成角为60°.故选:C .【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6. 【答案】C【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.7. 【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣. 故选:C .【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.8.【答案】B【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.C.函数的定义域为R,y=|x|,对应关系不一致.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选B.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.9.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.10.【答案】A【解析】解:f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,方法2:f′(x)=3ax2+2bx+c,由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,故选:A11.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.12.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.二、填空题13.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.14.【答案】.【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,=,=,…,=,∴++…+=+…+=1﹣=,故答案为:.【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.15.【答案】(﹣3,﹣2)∪(﹣1,0).【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),令y′=0,则x=0或﹣2,﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<﹣2<a+1或a<0<a+1,∴﹣3<a<﹣2或﹣1<a<0.故答案为:(﹣3,﹣2)∪(﹣1,0).16.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:917.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.18.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f(log8x)>0,等价为:f(|log8x|)>f(2),又f(x)在[0,+∞)上为增函数,∴|log8x|>2,∴log8x>2或log8x<﹣2,∴x>64或0<x<.即不等式的解集为{x|x>64或0<x<}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)∵,化为(x﹣2)(x+1)>0,解得x>2或x<﹣1,∴函数f(x)=的定义域A=(﹣∞,﹣1)∪(2,+∞);由不等式x2﹣(2a+1)x+a2+a>0化为(x﹣a)(x﹣a﹣1)>0,又a+1>a,∴x>a+1或x<a,∴不等式x2﹣(2a+1)x+a2+a>0的解集B=(﹣∞,a)∪(a+1,+∞);(Ⅱ)∵A∪B=B,∴A⊆B.∴,解得﹣1≤a≤1.∴实数a的取值范围[﹣1,1].20.【答案】【解析】解:(1)若x>0,则﹣x<0…(1分)∵当x<0时,f(x)=()x.∴f(﹣x)=()﹣x.∵f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴f(x)=﹣()﹣x=﹣2x.…(4分)(2)∵(x)是定义在R上的奇函数,∴当x=0时,f(x)=0,∴f(x)=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.21.【答案】【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,∴sinC=cosC,∴tanC==,由三角形内角的范围可得C=;(Ⅱ)∵c=2a,b=2,C=,∴由余弦定理可得c2=a2+b2﹣2abcosC,∴4a 2=a 2+12﹣4a •,解得a=﹣1+,或a=﹣1﹣(舍去)∴△ABC 的面积S=absinC==22.【答案】【解析】解:(1)圆C 的极坐标方程为,可得直角坐标方程为x 2+y 2=2,即x 2+(y ﹣)2=3;(2)设P (3+,t ),∵C (0,),∴|PC|==,∴t=0时,P 到圆心C 的距离最小,P 的直角坐标是(3,0).23.【答案】【解析】解:(1)由m+>0,(x ﹣1)(mx ﹣1)>0,∵m >0,∴(x ﹣1)(x ﹣)>0,若>1,即0<m <1时,x ∈(﹣∞,1)∪(,+∞); 若=1,即m=1时,x ∈(﹣∞,1)∪(1,+∞); 若<1,即m >1时,x ∈(﹣∞,)∪(1,+∞).(2)若函数f (x )在(4,+∞)上单调递增,则函数g (x )=m+在(4,+∞)上单调递增且恒正.所以, 解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.24.【答案】【解析】(1)∵ρsin 2θ=4cos θ,∴ρ2sin 2θ=4ρcos θ,…∵ρcos θ=x ,ρsin θ=y ,∴曲线C 的直角坐标方程为y 2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…。
泸西县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
泸西县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .2. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4} C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}3. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为( )A .B . C. D .4. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .35. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34 C. 2D .34-6. 如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于( )A .5B .6C .7D .87. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a8. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .489. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞10.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 11.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A .k >7B .k >6C .k >5D .k >412.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .二、填空题13.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为.14.已知实数x ,y 满足约束条,则z=的最小值为 .15.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .16.满足tan (x+)≥﹣的x 的集合是 .17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .18.已知f (x )=,若不等式f (x ﹣2)≥f (x )对一切x ∈R 恒成立,则a 的最大值为 .三、解答题19.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和T n .20.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.21.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围;(3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)22.某游乐场有A 、B 两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A ,丙丁两人各自独立进行游戏B .已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为. (1)求游戏A 被闯关成功的人数多于游戏B 被闯关成功的人数的概率; (2)记游戏A 、B 被闯关总人数为ξ,求ξ的分布列和期望.23.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.24.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.泸西县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.2.【答案】C【解析】解:∵≤1=,∴x≥0,∴A={x|x≥0};又x2﹣6x+8≤0⇔(x﹣2)(x﹣4)≤0,∴2≤x≤4.∴B={x|2≤x≤4},∴∁R B={x|x<2或x>4},∴A∩∁R B={x|0≤x<2或x>4},故选C .3. 【答案】A【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 4. 【答案】 D【解析】解:①∵x ∈[0,],∴fn (x )=sin n x+cos n x ≤sinx+cosx=≤,因此正确;②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,当n ≠2时,令sin 2x=t ∈[0,1],则f n (x )=+=g (t ),g ′(t )=﹣=,当t ∈时,g ′(t )<0,函数g (t )单调递减;当t ∈时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.③f 4(x )=sin 4x+cos 4x=(sin 2x+cos 2x )2﹣2sin 2xcos 2x=1﹣==+,当x ∈[0,],4x ∈[0,π],因此f 4(x )在[0,]上单调递减,当x ∈[,],4x ∈[π,2π],因此f 4(x )在[,]上单调递增,因此正确. 综上可得:①②③都正确. 故选:D .【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.5. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得4x =,即菱形1BED F 44=,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 6. 【答案】B【解析】解:由题意可得抛物线的轴为x 轴,F (2,0), ∴MP 所在的直线方程为y=4在抛物线方程y 2=8x 中,令y=4可得x=2,即P (2,4) 从而可得Q (2,﹣4),N (6,﹣4)∵经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M , ∴直线MN 的方程为x=6 故选:B .【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.7. 【答案】B【解析】解:1<log 23<2,0<8﹣0.4=2﹣1.2,sin π=sin π,∴a >c >b , 故选:B .【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.8. 【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,∴△PF 1F 2的面积=.故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.9. 【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
泸西县高中2018-2019学年高二上学期第二次月考试卷数学
泸西县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 2. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个3. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣54. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( ) ①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .35. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .26. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)7. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15 C .10,10,30 D .10,20,208. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥C .D .9. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( ) A .(﹣1,0) B .(﹣1,1) C .(0,1) D .(1,3)10.已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .11.函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >112.设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 15.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.16.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xx e x f e (其中为自然对数的底数)的解集为 .17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.抛物线C1:y2=2px(p>0)与双曲线C2:交于A,B两点,C1与C2的两条渐近线分别交于异于原点的两点C,D,且AB,CD分别过C2,C1的焦点,则=.三、解答题19.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.20.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象ππ(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.21.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.22.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.23.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.24.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.泸西县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.2. 【答案】D【解析】解:经过2个小时,总共分裂了=6次, 则经过2小时,这种细菌能由1个繁殖到26=64个.故选:D .【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.3. 【答案】C【解析】解:∵f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2 =(((((x ﹣5)x+6)x+0)x+2)x+0.3)x+2, ∴v 0=a 6=1,v 1=v 0x+a 5=1×(﹣2)﹣5=﹣7, 故选C .4. 【答案】 D【解析】解:①∵x ∈[0,],∴fn (x )=sin n x+cos n x ≤sinx+cosx=≤,因此正确;②当n=1时,f 1(x )=sinx+cosx ,不是常数函数;当n=2时,f 2(x )=sin 2x+cos 2x=1为常数函数,当n ≠2时,令sin 2x=t ∈[0,1],则f n (x )=+=g (t ),g ′(t )=﹣=,当t ∈时,g ′(t )<0,函数g (t )单调递减;当t ∈时,g ′(t )>0,函数g (t )单调递增加,因此函数f n (x )不是常数函数,因此②正确.③f 4(x )=sin 4x+cos 4x=(sin 2x+cos 2x )2﹣2sin 2xcos 2x=1﹣==+,当x ∈[0,],4x ∈[0,π],因此f 4(x )在[0,]上单调递减,当x ∈[,],4x ∈[π,2π],因此f 4(x )在[,]上单调递增,因此正确. 综上可得:①②③都正确.故选:D .【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.5. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 6. 【答案】C【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者, ∵a n =﹣n+p ,∴{a n }是递减数列,∵b n =2n ﹣5,∴{b n }是递增数列,∵c 8>c n (n ≠8),∴c 8是c n 的最大者,则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减,∴n=1,2,3,…7时,2n ﹣5<﹣n+p 总成立,当n=7时,27﹣5<﹣7+p ,∴p >11,n=9,10,11,…时,2n ﹣5>﹣n+p 总成立,当n=9时,29﹣5>﹣9+p ,成立,∴p <25,而c 8=a 8或c 8=b 8,若a 8≤b 8,即23≥p ﹣8,∴p ≤16,则c 8=a 8=p ﹣8, ∴p ﹣8>b 7=27﹣5,∴p >12,故12<p ≤16,若a 8>b 8,即p ﹣8>28﹣5,∴p >16,∴c 8=b 8=23,那么c 8>c 9=a 9,即8>p ﹣9, ∴p <17, 故16<p <17, 综上,12<p <17. 故选:C .7. 【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.8.【答案】D【解析】解:由图可知,,但不共线,故,故选D.【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.9.【答案】C【解析】解:∵集合M={x|x2﹣2x﹣3<0}={x|﹣1<x<3},N={x|log2x<0}={x|0<x<1},∴M∩N={x|0<x<1}=(0,1).故选:C.【点评】本题考查集合的交集及其运算,是基础题,解题时要注意一元二次不等式和对数函数等知识点的合理运用.10.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.11.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.12.【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1, ∴y=sinx 在(0,90°)单调递增, ∴sin35°<sin38°<sin90°=1, ∴a <b <c 故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.二、填空题13.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3. 故答案为:x=﹣3.14.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
泸西县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
泸西县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数的定义域为()A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}2. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是()A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)3. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定4. 双曲线E 与椭圆C :+=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积x 29y 23为π,则E 的方程为( )A.-=1B.-=1x 23y 23x 24y 22C.-y 2=1D.-=1x 25x22y 245. 设集合,集合,若 ,则的取值范围3|01x A x x -⎧⎫=<⎨⎬+⎩⎭(){}2|220B x x a x a =+++>A B ⊆()A .B .C.D .1a ≥12a ≤≤a 2≥12a ≤<6. 若实数x ,y 满足不等式组则2x+4y 的最小值是()A .6B .﹣6C .4D .27. 下列命题的说法错误的是()A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”8. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A .B .C .D .9. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )A .12B .8C .6D .410.已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=()A .﹣1B .1C .﹣D .11.若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1 B .2C .3D .412.已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件二、填空题13.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 . 14.运行如图所示的程序框图后,输出的结果是 15.阅读下图所示的程序框图,运行相应的程序,输出的的值等于_________. n 16.函数f (x )=17.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 18.平面内两定点M (0,动点P 的轨迹为曲线E①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
泸西县高中2018-2019学年上学期高三数学10月月考试题
泸西县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150° 2. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力. 3. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-14. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题. 5. 如图,程序框图的运算结果为( )A.6 B.24 C.20 D.1206.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()A.4 B.5 C.6 D.77.函数y=x2﹣2x+3,﹣1≤x≤2的值域是()A.R B.[3,6] C.[2,6] D.[2,+∞)8.已知定义在R上的奇函数f(x)满足f(x)=2x﹣4(x>0),则{x|f(x﹣1)>0}等于()A.{x|x>3} B.{x|﹣1<x<1} C.{x|﹣1<x<1或x>3} D.{x|x<﹣1}9. 复数121ii-+在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限10.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .3011.半径R 的半圆卷成一个圆锥,则它的体积为( ) A.πR 3B.πR 3C.πR 3D.πR 312.如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知直线l的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.14.直线l:(t 为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是 .15.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.16.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .三、解答题(本大共6小题,共70分。
陇西县第二中学2018-2019学年上学期高三数学10月月考试题
二、填空题
13.【答案】 【解析】 试题分析:依题意可知所求直线的斜率为 3 ,故倾斜角为 考点:直线方程与倾斜角.
3
3
.
第 9 页,共 16 页
14.【答案】 75 度. 【解析】解:点 P 可能在二面角 α﹣l﹣β 内部,也可能在外部,应区别处理.当点 P 在二面角 α﹣l﹣β 的内部时,如
{
}
1 2
第 8 页,共 16 页
∴两直线的距离为
=
, + =3 ,
∴AB 的中点 M 到原点的距离的最小值为 故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题. 12.【答案】C 【解析】解:设过右焦点 F 的弦为 AB,右准线为 l,A、B 在 l 上的射影分别为 C、D 连接 AC、BD,设 AB 的中点为 M,作 MN⊥l 于 N 根据圆锥曲线的统一定义,可得 = =e,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|, ∵以 AB 为直径的圆半径为 r= |AB|,|MN|= (|AC|+|BD|) ∴圆 M 到 l 的距离|MN|>r,可得直线 l 与以 AB 为直径的圆相离 故选:C
【点评】本题给出椭圆的右焦点 F,求以经过 F 的弦 AB 为直径的圆与右准线的位置关系,着重考查了椭圆的 简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是( B.相切 C.相离 D.不能确定
二、填空题
13.(文科)与直线 x 3 y 1 0 垂直的直线的倾斜角为___________. 14.二面角 α﹣l﹣β 内一点 P 到平面 α,β 和棱 l 的距离之比为 1: 度. 15.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 . 16.在(1+2x)10 的展开式中,x2 项的系数为 (结果用数值表示). 17.在△ABC 中, , , ,则 _____. :2,则这个二面角的平面角是
泸西县实验中学2018-2019学年上学期高三数学10月月考试题
泸西县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.2.在ABC∆中,b=3c=,30B=,则等于()A B.C D.23.复数的虚部为()A.﹣2 B.﹣2i C.2 D.2i4.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=05.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.抛物线x=﹣4y2的准线方程为()A.y=1 B.y=C.x=1 D.x=7.某几何体的三视图如图所示,则该几何体的表面积为()A.12π+15 B.13π+12 C.18π+12 D.21π+158.设集合{|12}A x x=<<,{|}B x x a=<,若A B⊆,则的取值范围是()A.{|2}a a≤B.{|1}a a≤C.{|1}a a≥D.{|2}a a≥9.已知是虚数单位,若复数)(3iai+-(Ra∈)的实部与虚部相等,则=a()A.1-B.2-C.D.10.奇函数()f x满足()10f=,且()f x在()0+∞,上是单调递减,则()()21xf x f x-<--的解集为()A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,二、填空题11.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
泸西县一中2018-2019学年上学期高三数学10月月考试题
泸西县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .2. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.3. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n4. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)5. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D6. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱7. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111]8. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D . 9. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )10.=()A.﹣i B.i C.1+i D.1﹣i11.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内12.若某程序框图如图所示,则该程序运行后输出的值是()A.7 B.8 C. 9 D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.二、填空题13.= .14.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.15.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.16.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .三、解答题17.已知椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为.(1)求椭圆C 的方程;(2)直线l 1,l 2是椭圆的任意两条切线,且l 1∥l 2,试探究在x 轴上是否存在定点B ,点B 到l 1,l 2的距离之积恒为1?若存在,求出点B 的坐标;若不存在,请说明理由.18.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位 赞同 反对 合计 男 50 150 200 女 30 170 200 合计8032040097.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++19.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .(1)当k =54时,求cos B ;(2)若△ABC 面积为3,B =60°,求k 的值.20.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A+C ),求f (B )的值.21.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(sin ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆3,求c b ,.22.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.23.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45o方向10海里的B 处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75o,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.泸西县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.2.【答案】A3.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.4.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f (x )g (x )>0等价为或,即a 2<x <或﹣<x <﹣a 2,故不等式的解集为(﹣,﹣a 2)∪(a 2,),故选:A . 【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f (x )<0和g (x )<0的解集是解决本题的关键.5. 【答案】B 【解析】由题意,可取,所以6. 【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 7. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)8. 【答案】A 【解析】考点:二元一次不等式所表示的平面区域. 9. 【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B. 10.【答案】 B 【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.11.【答案】B 【解析】解:假设过点P 且平行于l 的直线有两条m 与n∴m ∥l 且n ∥l由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾又因为点P 在平面内 所以点P 且平行于l 的直线有一条且在平面内所以假设错误. 故选B .【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.12.【答案】A【解析】运行该程序,注意到循环终止的条件,有n =10,i =1;n =5,i =2;n =16,i =3;n =8,i =4;n =4,i =5;n =2,i =6;n =1,i =7,到此循环终止,故选 A.二、填空题13.【答案】 2 .【解析】解: =2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.14.【答案】2± 【解析】15.【答案】871-<<-d【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d .考点:数列与不等式综合. 16.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2. ∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4, ∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.三、解答题17.【答案】【解析】解:(1)∵椭圆的左、右焦点分别为F 1(﹣c ,0),F 2(c ,0),P 是椭圆C 上任意一点,且椭圆的离心率为,∴=,解得,∴椭圆C 的方程为.…(2)①当l 1,l 2的斜率存在时,设l 1:y=kx+m ,l 2:y=kx+n (m ≠n ),△=0,m 2=1+2k 2,同理n 2=1+2k 2m 2=n 2,m=﹣n , 设存在,又m 2=1+2k 2,则|k 2(2﹣t 2)+1|=1+k 2,k 2(1﹣t 2)=0或k 2(t 2﹣3)=2(不恒成立,舍去) ∴t 2﹣1=0,t=±1,点B (±1,0), ②当l 1,l 2的斜率不存在时,点B (±1,0)到l 1,l 2的距离之积为1. 综上,存在B (1,0)或(﹣1,0).…18.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.X 的分布列为:X 的数学期望为()51515190123282856568E X =⨯+⨯+⨯+⨯= (12)分19.【答案】【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得54b =a +c ,又a =4c ,∴54b =5c ,即b =4c ,由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =18.(2)∵S △ABC =3,B =60°.∴12ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.X 0123P528 1528 1556 156由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×12=13.∴b =13,∵k sin B =sin A +sin C ,由正弦定理得k =a +c b =513=51313,即k 的值为51313.20.【答案】【解析】解:(Ⅰ)f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3=2sin2x ﹣+3=2sin2x+2cos2x=4sin (2x+).∵x ∈[0,], ∴2x+∈[,],∴f (x )∈[﹣2,4].(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ), ∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA , 由正弦定理得:c=2a , 又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=,故解得:A=,B=,C=,∴f (B )=f ()=4sin =2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.21.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分 (Ⅱ) ΘABC ∆33sin 21=∴A bc ,34=∴bc ①, 8分又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分由 ①②解得32,2==c b 或2,32==c b . 12分22.【答案】(1)详见解析;(2)233λ=-. 【解析】(1)由于2AB =,2AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面I ADM 平面ABCM =AM ,⊂BM 平面ABCM ,∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分23.【答案】(1)23小时;(233【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=ooo,10AB =,9AC t =,21BC t =.由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠g g , 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得36sin 6sin120332sin 141414AC BAC B BC ∠====og g . 所以角B 的正弦值为3314. 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键.。
泸西县第二中学2018-2019学年上学期高二数学12月月考试题含解析
泸西县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条2. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .53. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <04. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .2 5. 已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6. 若命题“p ∧q ”为假,且“≦q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假7. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11C .10D .98. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)9. 正方体的内切球与外接球的半径之比为( )A .B .C .D .10.已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1211.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .612.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.14.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .15.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .16.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .17.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .18.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.三、解答题19.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.PA=;(1)求证:PB∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.(2)OAB【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.20.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.21.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.22.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.23.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积.24.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.泸西县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0的方程可化为,;; ∴圆C 1,C 2的圆心分别为(3,﹣2),(7,1);半径为r 1=1,r 2=6.∴两圆的圆心距=r 2﹣r 1; ∴两个圆外切,∴它们只有1条内公切线,2条外公切线. 故选C . 2. 【答案】B 【解析】考点:三角恒等变换.3. 【答案】A【解析】解:抛物线f (x )=x 2+bx+3开口向上,以直线x=﹣为对称轴,若函数y=x 2+bx+3在[0,+∞)上单调递增函数,则﹣≤0,解得:b ≥0,故选:A .【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.4. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 5. 【答案】B【解析】解:∵A={0,m ,m 2﹣3m+2},且2∈A ,∴m=2或m2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立.当m=2时,集合A={0,0,2}不成立.当m=3时,集合A={0,3,2}成立.故m=3.故选:B.【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.6.【答案】B【解析】解:∵命题“p∧q”为假,且“≦q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.7.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.8.【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f(x)=2sin(2x+φ),由五点对应法知2×+φ=,解得φ=,故f(x)=sin(2x+),故选:D9.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C10.【答案】D【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 11.【答案】A【解析】解:因为向量=(3,m),=(2,﹣1),∥, 所以﹣3=2m , 解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.12.【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a a ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.二、填空题13.【答案】56 27【解析】14.【答案】.【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.15.【答案】[0,2].【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,故由不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,可得|m ﹣1|≤1,∴﹣1≤m ﹣1≤1, 求得0≤m ≤2, 故答案为:[0,2].【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.16.【答案】 {x|﹣1<x <1} .【解析】解:∵A={x|﹣1<x <3},B={x|x <1}, ∴A ∩B={x|﹣1<x <1}, 故答案为:{x|﹣1<x <1}【点评】本题主要考查集合的基本运算,比较基础.17.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c cb b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.118.【答案】),1()21,(+∞-∞【解析】考点:一元二次不等式的解法.三、解答题19.【答案】(1)详见解析;(2)详见解析.∴点P为线段AB中点,PBPA=;…………7分(2)若直线AB斜率不存在,则2:±=xAB,与椭圆2C方程联立可得,)1,2(2--±tA,)1,2(2-±tB,故122-=∆tSOAB,…………9分若直线AB斜率存在,由(1)可得148221+-=+kkmxx,144422221+-=ktmxx,141141222212+-+=-+=ktkxxkAB,…………11分点O到直线AB的距离2221141kkkmd++=+=,…………13分∴12212-=⋅=∆tdABSOAB,综上,OAB∆的面积为定值122-t.…………15分20.【答案】【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin (2x﹣),∴函数的周期为T==π,由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.21.【答案】【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}∵B⊆A,∴(1)B=∅时,a=0(2)当B={1}时,a=2(3))当B={2}时,a=1故a值为:2或1或0.22.【答案】【解析】解:(1)由题意:集合A={x|2≤x≤6},集合B={x|x≥3}.那么:A∩B={x|6≥x≥3}.∴C R(A∩B)={x|x<3或x>6}.(2)C={x|x≤a},∵A C,∴a≥6∴故得实数a的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.23.【答案】【解析】解:四边形ABCD 绕AD 旋转一周所成的 几何体,如右图:S 表面=S 圆台下底面+S 圆台侧面+S 圆锥侧面=πr 22+π(r 1+r 2)l 2+πr 1l 1===24.【答案】(1)3B π=;(2)[1,2).【解析】。
泸西县高级中学2018-2019学年高二上学期第一次月考试卷数学
泸西县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则( )A .x=﹣B .x=C .x=﹣D .x=2. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题3. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.4. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)5. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( ) A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位6. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( )A .B .C .2D .47. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣28. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .9. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( ) A .{x|x <1} B .{x|﹣1≤x ≤2} C .{x|﹣1≤x ≤1} D .{x|﹣1≤x <1}10.若,[]0,1b ∈,则不等式221a b +≤成立的概率为( ) A .16π B .12π C .8π D .4π11.设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .1312.正方体的内切球与外接球的半径之比为( )A .B .C .D .二、填空题13.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .15.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .16.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1); ②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .17.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.18.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.三、解答题19.已知函数f (x )=x|x ﹣m|,x ∈R .且f (4)=0 (1)求实数m 的值.(2)作出函数f (x )的图象,并根据图象写出f (x )的单调区间 (3)若方程f (x )=k 有三个实数解,求实数k 的取值范围.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 623820.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.21.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.22.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;(2)求体积V A′﹣ABCD与V E﹣ABD的比值.23.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.24.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.泸西县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.2.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.3.【答案】C【解析】由已知得双曲线的一条渐近线方程为=y,设00(,)A x y,则02>px,所以2002322ì=ïï-ïïïï+=íïï=ïïïïîypxpxy px,解得2=p或4=p,因为322->p p,故03p<<,故2=p,所以抛物线方程为24y x.4. 【答案】C【解析】解:令f (x )=x 2﹣mx+3, 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.5. 【答案】B【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数 ()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换. 6. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==.∴12122S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质. 7. 【答案】A【解析】解:由,得.又,,∴,解得.故选:A .【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.8. 【答案】 D【解析】解:设|PF 1|=t , ∵|PF 1|=|PQ|,∠F 1PQ=60°, ∴|PQ|=t ,|F 1Q|=t ,由△F 1PQ 为等边三角形,得|F 1P|=|F 1Q|, 由对称性可知,PQ 垂直于x 轴, F 2为PQ 的中点,|PF 2|=, ∴|F 1F 2|=,即2c=,由椭圆定义:|PF 1|+|PF 2|=2a ,即2a=t=t ,∴椭圆的离心率为:e===.故选D .9.【答案】D【解析】解:A∩B={x|﹣1≤x≤2}∩{x|x<1}={x|﹣1≤x≤2,且x<1}={x|﹣1≤x<1}.故选D.【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.10.【答案】D【解析】考点:几何概型.11.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.12.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C二、填空题13.【答案】.【解析】解:∵asinA=bsinB+(c﹣b)sinC,∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,∴由余弦定理可得b2=a2+c2﹣2accosB,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S△ABC=bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.14.【答案】=.【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.15.【答案】.【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,∴10a2=5,即a2=,解得a=.故答案为:.【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.16.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.17.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.18.【答案】15 (,)43三、解答题19.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).20.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.21.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).22.【答案】【解析】(1)证明:设BD交AC于M,连接ME.∵ABCD为正方形,∴M为AC中点,又∵E为A′A的中点,∴ME为△A′AC的中位线,∴ME∥A′C.又∵ME⊂平面BDE,A′C⊄平面BDE,∴A′C∥平面BDE.(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.23.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.24.【答案】【解析】解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE ⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.。
泸西实验中学2018-2019学年高二上学期第二次月考试卷数学
泸西县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥β C .若b ⊂α,b ∥c ,则c ∥α D .若c ∥α,c ⊥β,则α⊥β2. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 3. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2 D .3﹣a4. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱5. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)6. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形7. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 8. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)9.直线:(为参数)与圆:(为参数)的位置关系是()A.相离 B.相切 C.相交且过圆心 D.相交但不过圆心10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.11.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)12.两个随机变量x,y的取值表为若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()A.x与y是正相关B.当y的估计值为8.3时,x=6C.随机误差e的均值为0D.样本点(3,4.8)的残差为0.65二、填空题13.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.14.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.15.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是.16.定义在(﹣∞,+∞)上的偶函数f(x)满足f(x+1)=﹣f(x),且f(x)在[﹣1,0]上是增函数,下面五个关于f(x)的命题中:①f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上为减函数;⑤f(2)=f(0).正确命题的个数是.17.利用计算机产生1到6之间取整数值的随机数a和b,在a+b为偶数的条件下,|a﹣b|>2发生的概率是.18.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.三、解答题19.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.20.(本小题满分10分)选修4-1:几何证明选讲1111]CP=.如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长.(2)若连接OP并延长交圆O于,A B两点,CD OP21.已知函数f(x)=|x﹣m|,关于x的不等式f(x)≤3的解集为[﹣1,5].(1)求实数m的值;(2)已知a,b,c∈R,且a﹣2b+2c=m,求a2+b2+c2的最小值.22.已知函数f(x)=log a(1﹣x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为﹣4,求a的值.23.已知函数f (x )=sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象π π(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣,]上的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=,求△ABC 的面积.24.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.泸西县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:对于A ,设正方体的上底面为α,下底面为β,直线c 是平面β内一条直线 因为α∥β,c ⊂β,可得c ∥α,而正方体上底面为α内的任意直线b 不一定与直线c 平行 故b ⊂α,c ∥α,不能推出b ∥c .得A 项不正确;对于B ,因为α⊥β,设α∩β=b ,若直线c ∥b ,则满足c ∥α,α⊥β, 但此时直线c ⊂β或c ∥β,推不出c ⊥β,故B 项不正确; 对于C ,当b ⊂α,c ⊄α且b ∥c 时,可推出c ∥α. 但是条件中缺少“c ⊄α”这一条,故C 项不正确;对于D ,因为c ∥α,设经过c 的平面γ交平面α于b ,则有c ∥b 结合c ⊥β得b ⊥β,由b ⊂α可得α⊥β,故D 项是真命题 故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.2. 【答案】B 【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.3. 【答案】A【解析】A . C . D .恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12, 故选:A . 4. 【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 5. 【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.6. 【答案】 B【解析】解:对于A ,设圆柱的底面半径为r ,高为h ,设圆柱的过母线的截面四边形在圆柱底面的边长为a ,则截面面积S=ah ≤2rh .∴当a=2r 时截面面积最大,即轴截面面积最大,故A 正确.对于B ,设圆锥SO 的底面半径为r ,高为h ,过圆锥定点的截面在底面的边长为AB=a ,则O 到AB 的距离为,∴截面三角形SAB 的高为,∴截面面积S==≤=.故截面的最大面积为.故B 错误.对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确.对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确.故选:B .【点评】本题考查了旋转体的结构特征,属于中档题.7. 【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.8.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.9.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
泸西县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
泸西县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若某程序框图如图所示,则输出的n 的值是( )A .3B .4C .5D .62. 函数y=+的定义域是( )A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}3. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________4. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日C .6日和11日D .2日和11日5. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.6. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y=C .y=3xD .y=3x 37. ()0﹣(1﹣0.5﹣2)÷的值为( )A .﹣B .C .D .8. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .49. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a10.已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A .B .C .D .11.已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1B .C .3D .212.函数y=x+cosx 的大致图象是( )A .B .C .D .二、填空题13.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .14.设()xxf x e =,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.15.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 . 16.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.17.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 18.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.三、解答题19.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y轴的垂线,垂足为N ,点E 满足MN ME 32=,且0=⋅. (1)求曲线C 的方程;(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为23,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.20.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析 问题和解决问题的能力.
21.【南师附中 2017 届高三模拟二】如下图扇形 AOB 是一个观光区的平面示意图,其中 AOB 为
2 ,半 3
径 OA 为 1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口 A 到出口 B 的观光道路,道路由圆弧
故 f(x)在(﹣1,0)上恰有一个零点; 故选 B. 【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题. 3. 【答案】B 【解析】 试题分析:由正弦定理可得:
3 sin
6
3 6 2 , sin B , B 0, , B 或 ,故选 B. 4 sin B殊角的三角函数. 4. 【答案】B 【解析】解 : 由 Venn 图可知,阴影部分的元素为属于 A 当不属于 B 的元素构成,所以用集合表示为 A∩(∁UB ). A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1}, 则∁UB={x|x≥1}, 则 A∩(∁UB)={x|1≤x<2}. 故选:B.
考点:复合命题的真假. 【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关 系和函数零点存在定理 , 属于综合题 . 由于点 P 满足 APB
2
, 因此在以 AB 为直径的圆上 , 又点 P 在圆
( x 3 ) 2 ( y 1) 2 1 上,因此 P 为两圆的交点 , 利用圆心距介于两圆半径差与和之间 , 求出的范围 . 函数 4 f ( x) log 3 x 是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点. x
x
2 x 1 ax a ,其中 a 1 ,若存在唯一的整数
.
x0 ,使得 f x0 0 ,则 a 的取值范围是
15.函数 f x log 2 x 在点 A 1, 2 处切线的斜率为
16.如图所示,圆 C 中,弦 AB 的长度为 4 ,则 AB ×AC 的值为_______.
2
,则 1 n 3 ;命题:函数 f ( x) ) C. (p ) q )
4 log 3 x 在区间 x
D. (p ) q
2i 在复平面内所对应的点位于( 1 i
C.第三象限 D.第四象限
B.第二象限
10.如图,AB 是半圆 O 的直径,AB=2,点 P 从 A 点沿半圆弧运动至 B 点,设∠AOP=x,将动点 P 到 A,B 两点的距离之和表示为 x 的函数 f(x),则 y=f(x)的图象大致为( )
次到第 次反射点之间的线段记为
竖直放置在同一水平线上,则大致的图形是(
A
第 3 页,共 19 页
B
C
D 二、填空题
13.一个算法的程序框图如图,若该程序输出的结果为 ,则判断框中的条件 i<m 中的整数 m 的值是 .
第 4 页,共 19 页
14.【泰州中学 2018 届高三 10 月月考】设函数 f x e
第 9 页,共 19 页
【点评】本题主要考查 Venn 图表达 集合的关系和运算,比较基础. 5. 【答案】C 【解析】解:如图,设 A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面 AA1O1, 故平面 AA1O1⊥面 AB1D1,交线为 AO1,在面 AA1O1 内过 B1 作 B1H⊥AO1 于 H, 则易知 A1H 的长即是点 A1 到截面 AB1D1 的距离,在 Rt△A1O1A 中,A1O1= AO1=3 故选:C. ,由 A1O1•A1A=h•AO1,可得 A1H= , ,
第 1 页,共 19 页
6. 若 {an } 为等差数列, S n 为其前项和,若 a1 0 , d 0 , S 4 S8 ,则 S n 0 成立的最大自 然数为( A.11 7. 集合 1, 2,3 的真子集共有( A.个 B.个 ) B.12 ) C.个 D.个 C.13 D.14
23.已知二次函数 f ( x) 的最小值为 1,且 f (0) f (2) 3 . (1)求 f ( x) 的解析式; (2)若 f ( x) 在区间 2a, a 1 上不单调,求实数的取值范围; (3)在区间 1,1 上, y f ( x) 的图象恒在 y 2 x 2m 1 的图象上方,试确定实数 m 的取值范围.
第 7 页,共 19 页
第 8 页,共 19 页
泸西县第二中学 2018-2019 学年上学期高三数学 10 月月考试题(参考答案) 一、选择题
1. 【答案】 B 【解析】解:∵循环体中 S=S×n 可知程序的功能是: 计算并输出循环变量 n 的累乘值, ∵循环变量 n 的初值为 1,终值为 4,累乘器 S 的初值为 1, 故输出 S=1×2×3×4=24, 故选:B. 【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键. 2. 【答案】B 【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014 =(1﹣x)(1+x2+…+x2012)+x2014; ∴f′(x)>0 在(﹣1,0)上恒成立; 故 f(x)在(﹣1,0)上是增函数; 又∵f(0)=1, f(﹣1)=1﹣1﹣ ﹣ ﹣…﹣ <0;
A 2
20.(本题满分 15 分) 已知函数 f ( x) ax bx c ,当 x 1 时, f ( x) 1 恒成立.
2
(1)若 a 1 , b c ,求实数 b 的取值范围; (2)若 g ( x) cx bx a ,当 x 1 时,求 g ( x) 的最大值.
A.f(x)在(0,1)上恰有一个零点 C.f(x)在(0,1)上恰有两个零点
B.f(x)在(﹣1,0)上恰有一个零点 D.f(x)在(﹣1,0)上恰有两个零点
3. △ ABC 的内角 A , B , C 所对的边分别为,,,已知 a
3 , b 6 , A
6
,则
B (
A.
)111] B. A={x|x2
AC 、线段 CD 及线段 BD 组成.其中 D 在线段 OB 上,且 CD / / AO ,设 AOC .
(1)用 表示 CD 的长度,并写出 的取值范围; (2)当 为何值时,观光道路最长?
第 6 页,共 19 页
22.一艘客轮在航海中遇险,发出求救信号.在遇险地点 A 南偏西 45 方向 10 海里的 B 处有一艘海
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题. 6. 【答案】A 【解析】
考 点:得出数列的性质及前项和. 【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等 差数列的前项和等公式的灵活应用的知识点的综合考查, 着重考查了学生分析问题和解答问题的能力, 以及推 理与运算能力,属于中档题,本题的解答中,由“ a1 0 , d 0 ”判断前项和的符号问题是解答的关键. 7. 【答案】C 【解析】
4 4 x , f 4 1 log 3 0 , log 3 x
4 log 3 3 0 ,且 f x 在 3,4 上是连续不断的曲线,所以函数 f x 在区间 3,4 内有零点,因此,命题是 3 假命题.因此只有 p (q ) 为真命题.故选 A. f 3
11.某几何体的三视图如下(其中三视图中 ( ) 两条虚线互相垂直)则该几何体的体积为
第 2 页,共 19 页
A.8 3 16 C. 3 12. 如右图, 在长方体
B.4 D.20 3
中,
=11, ,
=7, ,将 )
=12,一质点 射原理),将 线段
从顶点 A 射向点
,遇长方体的面反射(反射服从光的反
第 11 页,共 19 页
为底面的正四棱锥后剩下的几何体如图,其体积 V=23-1×2×2×1=20,故选 D. 3 3 12.【答案】C 【解析】根据题意有: A 的坐标为:(0,0,0),B 的坐标为(11,0,0),C 的坐标为(11,7,0),D 的坐标为(0,7,0); A1 的坐标为:(0,0,12),B1 的坐标为(11,0,12),C1 的坐标为(11,7,12),D1 的坐标为(0, 7,12); E 的坐标为(4,3,12) (1)l1 长度计算 所以:l1=|AE|= (2)l2 长度计算 将平面 A1B1C1D1 沿 Z 轴正向平移 AA1 个单位,得到平面 A2B2C2D2;显然有: A2 的坐标为:(0,0,24),B2 的坐标为(11,0,24),C2 的坐标为(11,7,24),D2 的坐标为(0, 7,24); 显然平面 A2B2C2D2 和平面 ABCD 关于平面 A1B1C1D1 对称。 设 AE 与的延长线与平面 A2B2C2D2 相交于:E2(xE2,yE2,24) 根据相识三角形易知: xE2=2xE=2×4=8, yE2=2yE=2×3=6, 即:E2(8,6,24) 根据坐标可知,E2 在长方形 A2B2C2D2 内。 =13。
▲
C A B
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 17.若 log2(2m﹣3)=0,则 elnm﹣1= .
三、解答题
18.(本小题满分 12 分) 已知圆 C : x y Dx Ey F 0 的圆心在第二象限,半径为 2 ,且圆 C 与直线 3 x 4 y 0 及 y 轴都
4
4
或
3 4
C.
3
或