用两性捕收剂从磷酸盐矿石中浮选白云石时某些操作参数的统计方面的显著性

合集下载

浮选药剂用法及用量

浮选药剂用法及用量

1.磷矿的浮选磷石可分为两类;磷灰(石)岩和磷块岩。

磷灰石的主要化学成分是磷酸钙,其中还含有氟(F)、氯(C1)等元素。

至于铁、铝、锰、镁的磷酸盐矿物仅占磷矿物的5%。

磷灰(石)岩是指磷以晶质磷灰石形式出现在岩浆岩和变质岩中的磷灰石。

磷灰石晶体多种多样,可从巨大晶体到普通显微镜也观察不到的微晶。

这类矿石一般品位较低,但可选性较好。

磷块岩是指以含肢磷矿为主的磷矿石,主要是沉积成因或风化淋滤成因的磷灰石。

胶磷矿是指在高倍显微镜下也分辨不出晶体的那些磷酸盐矿物的统称。

以前人们在显微镜下观察具有许多胶体结构,认为它是非晶质物质,但实际证明它是结晶质的,只是结晶体非常细小,一般不易观察,其可选性次于磷灰(石)岩。

B磷矿石的浮选方法磷矿石浮选的主要问题是含磷矿物与含钙的碳酸盐(如方解石、白云石等)的分离。

因为用一些常用脂肪酸类捕收剂浮选时,它们的可浮性都相近似,其分离的方法有以下几种:(1)使用水玻璃和淀粉等抑制剂,对碳酸盐等脉石矿物进行抑制,再用脂肪酸作捕收剂浮出磷矿物。

(2)首先加入偏磷酸钠抑制磷矿物,然后用脂肪酸先浮出碳酸盐等脉石矿物,再浮磷矿物。

(3)用选择性的烃基硫酸酯作捕收剂,先浮出碳酸盐的矿物,尔后再用油酸浮选磷矿物。

C磷矿石浮选实例某矿原矿物质组成:主要矿物为胶磷矿,次要矿物为结晶磷灰石和纤维状胶磷矿。

而主要脉石矿物为碳酸盐、石英、玉髓,其次是长石、白云母、绢云母、黄铁矿及氧化铁等物质。

矿石结构为鲕状、假鲕粒状、胶状、网格状及砂状等。

矿石构造为块状、条带状、扁豆状等。

处理流程如图5-27所示。

以擦洗分级脱泥-浮选联合流程处理该矿,所获技术经济指标为:精矿含P20532.4%;回收率为86.70%。

某磷矿处理的钙质沉积磷块岩矿石,属含碘微碳氟磷灰石,矿石中磷矿物含磷约占70%,呈非晶质和隐晶质产出,脉石矿物以白云石为主,约占21%,硅质脉石小于5%。

矿石中碳酸盐矿物与磷矿物胶结。

由于碳酸盐脉石的嵌布粒度较磷矿物粗,易于粉碎,且原矿含P205比较高,故在较粗磨的条件下,用反浮选使白云石成为泡沫产品除去。

磷矿石浮选工艺

磷矿石浮选工艺

书山有路勤为径,学海无涯苦作舟
磷矿石浮选工艺
一、正浮选工艺流程
正浮选工艺流程适合于分选硅质磷矿,采用Na2SiO3 等抑制硅酸盐矿物而用阴离子捕收剂正浮磷酸盐矿物的正浮选工艺,分选效果较好,如宁夏贺兰山
矿,工艺流程见图1。

沉积变质型硅一钙质磷灰岩属易浮磷灰石型磷块岩,采
用Na2CO3、Na2SiO3 等抑制硅、钙矿物,阴离子捕收剂正浮选磷灰石的直接浮选工艺,对含P2O58.0%的原矿,经此工艺可以获得磷精矿P2O5 品位大于35%,磷回收率83%的良好指标,如湖北大悟县黄麦岭选矿厂。

二、正一反浮选工艺流程
正一反浮选工艺流程适合分选沉积钙质磷矿,加Na2CO3、Na2SiO3 等抑制
硅酸盐,阴离子捕收剂浮选磷酸盐及含钙镁等碳酸盐矿物,然后再用H2SO4
或H3PO4 将pH 值调至5.5~6.0 以抑制磷酸盐,阴离子捕收剂反浮选碳酸盐矿物,这样可使磷精矿P2O5 含量提高到35.17%,MgO 降至0.78%、R2O31.97 %、磷回收率91.98%的良好选矿指标,如贵州瓮福磷矿,工艺流程见图2。

图2 沉积钙质磷矿正一反浮选工艺流程
三、双反浮选工艺流程
双反浮选工艺流程适合磷矿石中最难选的胶磷矿,该工艺先用H2SO4 或
H3PO4 抑制磷矿物,阴离子捕收剂反浮选白云石等碳酸盐矿物,然后矿浆经脱泥后再用阳离子捕收剂反浮选硅酸盐矿物,工艺流程见图3。

但对选择性好的
高效阳离子捕收剂及选矿工艺尚需做进一步的研究,如湖北宜昌磷矿、荆襄磷
矿等。

从磷酸盐矿石中生物浮选含碳杂质的优化

从磷酸盐矿石中生物浮选含碳杂质的优化

设 计来 筛选 和优 化影 响浮选 过程 的操作 条 件 。
1 试 验 物 料 和 方 法
1 1 磷 酸 盐 样 品 .
在 波长为 5 0n 以清水作 为参 比物 测量 悬 浮液 的 5 m,
浊 度 , . 1读 数 相 当 1。个 细 胞 / 。 在 1 0 0 00 O mL 5 0
关 键 词 白云石
磷酸盐
统计设计
C D 细菌 C
微生物 生物选
概 述
目前 , 酸 盐工 业 面 临 的主 要 问题 是 矿 石 中含 磷
( . 5 . 4 ~0 2 +0 0 4mm) 为 浮选 给 矿 。该 中间 组 分 作 ( . 5 . 4 mm) P O ~0 2 +0 0 4 中 2 5含量 较 低 ( 7 0 ) 2. 7 , Mg O含 量较 高 ( . ) ~2 5 。
设计 法 ( C 对 过程 进 行优 化 。实 验 设 计 结 果 表 明 , 用 细 菌 可 以从 磷 酸 盐 矿 石 中 选 择 性 的 分 离 出 碳 酸 盐 。在 p 为 C D) 使 H 5 5 微 生 物浓 度 为 1 ., O・1 个 细 胞 / 捕 收 剂 的 用 量 为 2k / 时 , 到 的 精 矿 Mg 和 P O5含 量分 别 为 0 7 0 L, g t 得 O 2 . %和 3 , 1 P0 2 5回收 率 为 9 。 3
1 2 化 学 试 剂 .
有碳 酸盐 杂质 。 目前 推荐用 不 同的流 程从 沉积 型磷
酸盐 矿石 中分离 碳质 脉石 。然 而 , 仅有 一个 方法 ( 重
使 用纯 度 为 9 的油 酸钠 作 为 捕 收剂 。分 析 9
纯级 的 Na OH 和 H S 作 为 p 调 整 剂 。所 有 的 O H 试 剂 并没 有经 过进 一步 提纯 。

两性捕收剂

两性捕收剂

刘鸿儒等合成了N -烷基氨基乙酸系列(R-X)、N-烷基氨基丁酸系列(4R-X)、N-烷基氨基己酸系列(6RX),如表所示。
氨基磺酸型两性表面活性剂主要分为:烷基氨基磺酸和烷基氨基二磺酸,主要以烷基胺和卤代烷基磺酸盐或 磺酸内酯为原料进行合成。汤芝平等开发了一种新合成方法:以烷基胺、甲醛和无机磺化剂(NaHSO3或 Na2SO3) 为原料合成氨基磺酸型两性表面活性剂。
针对目前齐大山矿山铁矿石和脉石平均粒径越来越小,特别是赤铁矿的平均粒径越来越小,共生矿明显增多 的特点,梅建庭等研发了 KS -Ⅱ、KS -Ⅲ多功能捕收剂。实践表明它们可以大幅度提高精矿回收率降低尾矿品 位。
KS -Ⅱ合成首先以氨基酸和醇胺化合物为主要原料合成高效助剂,再将其与植物油脂产品反应生成KS -Ⅱ; KS -Ⅲ合成首先以植物脂肪酸为主要原料,经过磺化、卤化、氨化和水解等反应,合成一种含有氨基、羧基和磺 酸基于同一分子的捕收剂,再将其与植物脂肪酸在复合催化剂的催化下部分生成缩合产物 。
定义
两性捕收剂,分子中同时带有阴离子和阳离子的异极性有机化合物,常见的阴离子基团主要是—COOH基SO3H基和—OCSSH基;阳离子基团主要是—NH2。含有阴、阳离子基团的捕收剂,已经研究的有各种胺基酸、胺基 磺酸以及用于浮选镍矿和次生铀矿的胺醇类黄药、二乙胺乙黄药等。二乙胺乙黄药的结构式如下:
捕收剂概述
凡能选择性地作用于矿物表面,使矿物表面疏水的有机物质,称为捕收剂。国内对捕收剂命名结尾常带“药” 字(黄药、黑药等)。可以作为捕收剂的有机化合物很多,实践中常用的如黄油酸,煤油等。作为工业上适用的 优良捕收剂应满足如下要求:
(1)原料来源广,易于制取; (2)价格低,便于使用,即易溶于水,无臭,无毒,成分稳定、不易变质等; (3)捕收作用强,具有足够的活性; (4)有较高的选择性,最好只对某一种矿物具有捕收能力。 按照捕收剂的分子结构,可将捕收剂分为异极性捕收剂、非极性油类捕收剂和两性捕收剂等三类 。

白云石浮选中磷酸根与捕收剂的竞争关系分析

白云石浮选中磷酸根与捕收剂的竞争关系分析

mi n 。 所用 XP S 测试仪 矿主要用于制取磷酸。目前, 浮选是 去除磷矿石中碳酸 盐、 剂与捕收剂后的调浆 时间分别为 3 硅酸 盐杂质 的主要工艺 [ 】 ] 。白云石是磷矿石中主要 的脉石 矿物之一, 其浮选行为直接影 响磷矿石浮选 除杂 过程 中的 作业效率 以及产品质量 ] 。 有文献 报道 , 碳酸 盐一 磷灰石浮选体系中, 由于矿
剂对矿物的捕收能力逐渐增加, 导致以肉豆蔻酸作捕收剂时, 调整剂对白云石浮选没有明显影响, 而当月桂酸和
癸酸作捕剂时, 在相同 条件下调整剂则可以完全抑制单矿物浮选。 当 调整剂用量大于特定值时, 与捕收剂相比,
调整剂与 c a 和 Mg 2 + 的结合能力较强, 导致在此条件下矿物被抑制。 关键词:白云石; 单矿物浮选; 热力学分析; 饱和脂肪酸
度 的对 数 值。如 图3 所 示,在一 定 p H条件 下,当 肉豆 蔻
基金项 目: “ 十一五”国家科技 支撑计划项 目 ( 2 0 0 7 B A B 0 8 B 0 2 ) 收 稿 日期 :2 0 1 2 — 0 8 - 0 6 作 者简介 :祁 宗( 1 9 8 1 一 ) ,男,银 川市人 ,主要从事矿物加工 工程等方面 的研 究。
有色金属工程 2 0 1 3 年第 1 期 3 3
NONFERR0US M E下 AL S ENGI NEERI NG
捕 收剂 用量/ ( 1 O 。 4 mo l L )
l o g C f ( C f = [ N a 3 P O 4 ] )
图 1捕收剂用量对 白云石浮选 回收率的影响 酸 作 捕 收 剂时, 调 整剂 用量 由 5 . 2 6 × 1 0 mo l / L增 加至
致矿物浮选规 律发生变化 。 通过 浮选试验 、 x射线光 电子

钙镁离子对磷矿浮选的界面反应机理探讨

钙镁离子对磷矿浮选的界面反应机理探讨

8 6・
有 色ቤተ መጻሕፍቲ ባይዱ 属 ( 选矿 部 分)
2 0 1 7年第 1 期
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 6 7 1 - 9 4 9 2 . 2 0 1 6 . 0 6 . 0 2 0
钙镁离子对磷矿浮选的界面反应机理探讨
梁 欢 , 虞 肖呖 , 杨 成 , 沈博 玮 , 潘 志权
( N a t i o n a l E n g i n e e r i n g a n d T e c h n o l o g y R e s e a r c h C e n t e r f o r D e v e l o p m e n t a n d U t i l i z a t i o n o f P h o s p h o r u s R e s o u r c e s ,W u h a n I n s t i t u t e o f T e c h n o l o g y ,Wu h a n 4 3 0 0 7 3 ,C h i n a )
关键词 : 钙镁离 子; 胶磷矿 ; 白云石 ; 浮选 ; 界面反应 中 图分 类 号 : T D 9 2 3 . 1 ; T D 9 7 文 献 标 志码 : A 文章编号 : 1 6 7 1 - 9 4 9 2 ( 2 0 1 7 ) 0 1 - 0 0 8 6 - 0 5
Di s c u s s i o n o n Me c h a n i s m o f Ca l c i um a nd Ma g ne s i u m i o n s o n Ph o s p ha t e
Fl O t a t i o n o f I n t e r f a c e Re a c t i o n

复配捕收剂从白云石中选择性浮选菱锌矿

复配捕收剂从白云石中选择性浮选菱锌矿

Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089Selective flotation of smithsonite from dolomite byusing novel mixed collector systemLi WANG1,2, Guang-yan HU1,2, Wei SUN1,2, Sultan Ahmed KHOSO1,2, Run-qing LIU1,2, Xiang-feng ZHANG1,21. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China;2. Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containingMineral Resources, Central South University, Changsha 410083, ChinaReceived 2 June 2018; accepted 14 January 2019Abstract: A novel mixed collector (BHOA) was prepared by mixing benzohydroxamic acid (BHA) and sodium oleate (NaOL) and applied to the flotation separation of smithsonite from dolomite. Flotation results showed that NaOL alone had good collecting performance on smithsonite and common gangue mineral dolomite but had poor selectivity. By using a BHA/NaOL mixed system with a molar ratio of 2:1, the recoveries of smithsonite and dolomite reached approximately 90% and 5%, respectively. Surface tension analysis showed that the surface activity of BHOA was a little higher than that of a single NaOL because of synergistic effects. Zeta potential and X-ray photoelectron spectroscopy measurements indicated that surfactants BHA and NaOL co-absorbed on the smithsonite surface and only NaOL was present on the dolomite surface in the presence of BHOA.Key words: flotation; smithsonite; dolomite; sodium oleate; benzohydroxamic acid; sulfuration1 IntroductionFlotation is the most effective pretreatment technique for zinc oxide ores, and the flotation of zinc oxide ores has been extensively researched. The sulfide–xanthate method is one of the main flotation methods for zinc oxide recovery. However, the recovery efficiency is not high because of the short carbon chains and weak collection performance of xanthate [1], and the sulfide–xanthate method has several notable drawbacks: (1) it is sensitive to slime, thus necessitating removal of slime beforehand and resulting in a low total recovery of zinc; (2) it is unsuitable for zinc oxide ores with high iron contents; (3) zinc oxide minerals are difficult to recover from the silicate phase; (4) the control of sodium sulfide dosage as a sulfide agent is difficult; and (5) sulfuration consumes a considerable amount of energy during heating and thus increases costs. Therefore, the sulfide–xanthate method is only suitable for the treatment of smithsonite with low iron oxide and slime contents [2−4].The feasibility of fatty acids as collectors for zinc oxides has been extensively investigated because of their low costs [5]. Fatty acid collectors can be used in the reverse flotation process owing to their good flotation performance for quartz or clay gangue minerals in zinc oxide ores [6]. Fatty acids exhibit excellent flotation performance but have relatively poor selectivity for smithsonite [7−9]. The strong collection of fatty acids on iron oxide ores prevents the separation of zinc oxide from iron oxide gangues. Benzohydroxamic acid is commonly used as an anionic chelating collector and widely used in the flotation of oxidized ores, such as scheelite and cassiterite [10]. However, the use of a single anion collector often results in poor selectivity, although selective separation can be enhanced by using activators and depressants [11].The synergy between individual components considerably enhances the performance of resulting recovery system when the surfactants are mixed at certain proportions [12−15]. Mixed surfactant systems often show synergistic behaviors that decrease critical micelle concentration, improve the efficiency of wetting, decrease surface tension of water, and promote solubilization and foaming [16]. The combination ofFoundation item: Project (51704329) supported by the National Natural Science Foundation of China; Project (2018YFC1901901) supported by the National Key Scientific Research Project of ChinaCorresponding author: Xiang-feng ZHANG; Tel: +86-731-88830482; Fax: +86-731-88660477; E-mail: 095611077@DOI:10.1016/S1003-6326(19)65016-8Li WANG, et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089 1083 different flotation reagents can enhance the treatmenteffect and flotation index and reduce the total dosage of treatment, thereby improving the economic benefit of production [17]. The mixed anionic and cationic (catanionic system) collectors for smithsonite were firstly investigated in solutions containing DDA/KAX collectors [18,19]. Although anionic collectors are generally used in mineral flotation industries, their adsorption and flotation mechanisms remain unknown.The purpose of this study is to prepare a novel mixed collector system by mixing benzohydroxamic acid (BHA) and sodium oleate (NaOL) for the selective flotation separation of smithsonite from dolomite. The difference between the flotation effects of NaOL and BHA on smithsonite and dolomite was evaluated before and after sulfuration. The surface activity and adsorption mechanism of a mixed collector on the surface of smithsonite and dolomite were investigated.2 Experimental2.1 Materials and reagentsSmithsonite and dolomite samples were purchased from Yunnan Province and Hunan Province, China, respectively. After the impurities were discarded, the samples were ground with a ceramic ball mill. Single mineral flotation experiments were performed on 0.074−0.037 mm size fract ion. The fraction with size less than 0.037 mm was used for further analysis of surface activity and adsorption mechanisms. The X-ray diffraction (XRD) spectra of pure smithsonite and dolomite minerals are shown in Fig. 1. The purities of smithsonite and dolomite were 98.78% and 98.93%, respectively, which satisfied the purity requirement of the mineral tests. Benzohydroxamic acid, sodium oleate, and sodium sulphide were purchased from Sinopharm Chemical Reagent Co., Ltd. All the reagents had an analytical purity of 99.9%. The pH value of the solution was adjusted with reagent-grade hydrochloric acid and sodium hydroxide, and deionized water was used in all the processes.2.2 Flotation testsSingle-mineral flotation tests were conducted by using a 40 mL XFG flotation machine operated at a fixed rotational speed of 1800 r/min. Pulp was prepared by mixing 2 g of mineral in 40 mL of water and agitated for 1 min. Pulp pH was controlled by the addition of an acid or alkali stack solutions. The collector was then added to the pulp and conditioned for 3 min. Then, pine oil (120 g/t) was added. The conditioning time was 2 min. Finally, froth collection was performed for 3 min. The concentrates and tailings received were filtered, dried, weighed, and sent for further analysis, and the yield rateFig. 1 XRD spectra of smithsonite (a) and dolomite (b)and recovery were calculated. Flotation results were represented by the average value of three different measurements.2.3 Surface tension measurementsSurface tension values of NaOL, BHA, and BHOA solutions were determined through the Wihlmy–Cooper gold plate hanging piece method. An ILMS surface tester (GBX Company, France) was used. Firstly, 15 mL of the sample solution was placed in a glass dish, which was in turn placed onto the sample stage of the surface tension instrument. The surface tension value of the solution was obtained. Then, anhydrous ethanol and ultra-pure water were used to clean the glass dish and the hanging piece, and an alcohol lamp was used to dry the hanging piece. All tests were conducted through the same procedure. Each test was repeated three times for each sample, and the average was taken as the measured value.2.4 Zeta potential measurementsZeta potentials of minerals before and after the treatment with reagents were measured by a JS94H microelectrophoresis instrument (Shanghai ZhongchenLi WANG, et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089 1084Digital Technic Apparatus Co., China) [20]. Exactly0.2 g of the sample and 20 mL of ultra-pure water were mixed to a 50 mL beaker. The pH of the slurry was adjusted with hydrochloric acid or sodium hydroxide. A fixed concentration of the collector was added to the slurry, and the mixture was placed on a magnetic stirrer, which was set to a fixed speed for 5 min. Finally, the zeta potential of the slurry was measured. The results presented are the average of three independent measurements with a typical variation of ±2 mV.2.5 X-ray photoelectron spectroscopy measurementsX-ray photoelectron spectroscopy (XPS) analysis was performed on an ESCALAB 250Xi model spectro- meter (ThermoFisher-VG Scientific, Massachusetts, USA). In accordance with the single-mineral flotation test, 2.0 g of the mineral sample and 40 mL of water were added to a 40 mL flotation cell. The mixture was stirred for 1 min, and the collector solution was added to the sample. The sample was thoroughly stirred, then filtered, and finally rinsed with ultra-pure water. The sample was repeatedly rinsed five times and then filtered and dried in a vacuum chamber at 25 °C prior to further testing.3 Results and discussion3.1 Flotation performance of single mineralThe flotation efficiency of smithsonite with different proportions of BHA and NaOL was studied extensively. The total concentration of the collector was set to be 6×10−4 mol/L. Smithsonite flotation recovery at pH 9.0 is shown in Fig. 2(a). Smithsonite was not recovered by flotation when only BHA was used. By contrast, the flotation recovery for smithsonite was as high as 94% when only NaOL was used. The mixed collector system (BHA/NaOL) exhibited a good smithsonite recovery (>80%). When the molar ratio of the BHA/NaOL system was set to be 1:2, the flotation recovery of smithsonite reached approximately 92%, which is nearly equal to that obtained when only NaOL was used. Therefore, a mixed collector system with BHA/NaOL molar ratio of 1:2 was proposed and designated as BHOA. Figures 2(b) and (c) show the effects of pH and Na2S dosage on the flotation recovery of smithsonite, respectively. The optimum flotation pH was 9.0, and the optimum Na2S dosage was 2500 g/t.Figure 3 shows the effect of collector concentration on the flotation recoveries of smithsonite and dolomite. As shown in Figs. 3(a) and (b), the flotation recovery of smithsonite was considerably high in the presence of sodium sulfide, and sodium sulfide slightly influenced the recovery of dolomite.Fig. 2 Effects of BHA/NaOL molar ratio (a), pH (b) and Na2S dosage (c) on smithsonite flotation recoveryFurthermore, the recovery of smithsonite increased rapidly with increasing the collector concentration in the presence of BHOA and then reached a maximum recovery of 95% when the collector concentration was 6×10−4mol/L. The recovery of smithsonite decreased slightly, and the recovery of dolomite remained below 10% when the collector concentration was less 6×10−4 mol/L. When only NaOL was used, the flotation recovery of smithsonite showed a quit equivalent trend with BHOA, and the amount of recovered dolomite was slightly higher than that in the case of BHOA. Thus, the selective separation of these two minerals is difficult when NaOL is used alone. Therefore, smithsonite can be selectively separated from dolomite by using BHOA and controlling BHOA concentration.Li WANG, et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089 1085Fig. 3Recoveries of smithsonite and dolomite at different collector concentrations without (a) and with (b) sulfuration at pH 9.03.2 Surface properties of BHOA, NaOL and BHAThe equilibrium surface tension values of NaOL, BHA, and BHOA as function of their concentrations in ultrapure water at pH 9 are presented in Fig. 4.Fig. 4 Equilibrium surface tension values of NaOL, BHA, and BHOA as function of their concentrations in ultrapure water at pH 9.0The critical micelle concentration (CMC) values for surfactant mixtures were determined from Fig. 4 by separately fitting straight lines to rapidly decreasing, stable, and increasing portions of the curves and then calculating the surfactant concentrations where the lines intersected [21]. As shown in Fig. 4, BHA showed a relative low surface activity because of its high surface tension. The surface tension of the NaOL solution decreased rapidly when its concentration changed from 1×10−5to 1×10−4 mol/L. Moreover, the surface tension remained unchanged when the concentration of the NaOL solution exceeded 1×10−4mol/L. The surface tension of the BHOA solution rapidly decreased at concentrations ranging from 1×10−5 to 1×10−4 mol/L (see Fig. 4).By comparing the surface tension curves of BHOA, NaOL, and BHA solutions, BHOA surfactants were found to be more efficient than single collector in decreasing air−water interfacial tension, particularly in low surfactant concentration conditions. This finding indicated that the mixture of NaOL and BHA has a synergistic effect on surface tension.3.3 Zeta potential measurementsThe adsorption mechanisms of the collectors on smithsonite and dolomite surfaces were investigated. Zeta potential measurements were carried out before and after the addition of collectors. As shown in Fig. 5(a), the isoelectric point of smithsonite was pH 8.2, which was similar to that reported in Ref. [22]. Figure 5(b) shows the surface potential of smithsonite as a function of concentration of collectors. After the addition of sodium sulfide, the zeta potential of smithsonite remained unchanged. This response indicated that BHA was not adsorbed on the smithsonite surface. Before the addition of sodium sulfide, NaOL or BHOA caused the increase in the negative surface zeta potential of smithsonite. The higher the concentration of NaOL or BHOA solution is, the greater the negative value of the surface zeta potential of smithsonite is. This relationship indicates the adsorption of large amount of these collectors onto the smithsonite surface. Furthermore, under the same concentration, BHOA caused a higher increase in the negative surface zeta potential of smithsonite than NaOL in the presence or absence of sodium sulfide. This result indicated that BHA also played an important role in the adsorption behavior of mixed collectors on smithsonite surface.Figure 6(a) shows that the surface zeta potential of dolomite varies with changes in pH. The isoelectric point of dolomite was at pH 6.5. As shown in Fig. 6(b), the zeta potential of dolomite remained unchanged after the addition of sodium sulfide and BHA, and thus no adsorption or limited adsorption occurred on the surface of dolomite. After sulfuration, the negative zeta potential of dolomite was high in the NaOL or BHOA system.Li WANG , et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−10891086Fig. 5 Surface potentials of smithsonite at different pH values (a) and collector concentrations at pH 9.0 (b)Fig. 6 Surface potentials of dolomite at different pH values (a) and collector concentrations at pH 9.0 (b)These results may be attributed to the negative effect of sodium sulfide and to the increased adsorption of the reagent. The effect of a fixed concentration of BHOA on the surface zeta potential of dolomite was equivalent to the effect of NaOL. Therefore, in the presence of mixed collectors, BHA had no effect on the surface and surface zeta potential of dolomite.3.4 XPS analysisXPS uses X-ray photons to excite the inner electrons of atoms on the material surface. An energy spectrum is obtained by analyzing the excitation of inner electrons. Therefore, XPS can be used for the qualitative, quantitative, or semi-quantitative analysis of the composition and chemical state of the surface of a solid sample [23]. In this work, we conducted XPS analysis to characterize the differences between treated and untreated smithsonite and dolomite samples with different collectors, and the results are presented in Figs. 7−9.Figure 7 shows XPS spectra of smithsonite, Zn 2p, S 2p, and C 1s of smithsonite before and after treatmentwith different collectors. Figure 7(a) shows the full spectra of the smithsonite surface before and after treatment in the binding energy range of 1020−1060 eV . Figure 7(b) shows that new absorption peaks at 1020.25 eV were observed after the treatment with sodium sulfide, indicating that a new Zn-containing compound was produced on the smithsonite surface. Figure 7(c) shows that the S 2p peak in the spectra of smithsonite and sodium sulfide appeared at 161.9 eV. The spectra of Zn 2p and S 2p before and after the action of smithsonite and sodium sulfide indicated that S 2− and Zn 2+ reacted together to produce ZnS after smithsonite and sodium sulfide treatment.In Fig. 7(d), the C 1s absorption peaks at 285 eV corresponded to the organic carbon in alkyl, whereasthose at 290 eV corresponded to 23CO. In the presence of Na 2S and NaOL, the intensities of the absorption peaks at 285 eV significantly increased. The increase indicated that NaOL was adsorbed on the smithsonite surface. The XPS spectra of smithsonite after Na 2S and BHOA treatment showed that the intensity of C 1s absorption peak at 285 eV was significantly enhancedLi WANG , et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089 1087Fig. 7 XPS spectra of smithsonite (a), Zn 2p (b), S 2p (c), and C 1s (d) of pure smithsonite before and after treatment with different collectorsrelative to that in the XPS spectra of pure smithsonite. Thus, NaOL or BHA was adsorbed on the smithsonite surface after vulcanization. In N 1s spectra, the absorption peaks at 405 eV corresponded to N atoms in BHA (see Fig. 8), indicating that low amounts of BHA were weakly adsorbed on smithsonite.Figure 8 shows that the XPS spectra of dolomite remained unchanged after Na 2S treatment, and Na 2S and dolomite did not react to form sulfides. Figure 9 showsFig. 8 XPS spectra for N atoms of BHOA after reaction with sodium sulfideFig. 9 XPS spectra of dolomite before and after treatment with different collectorsthe XPS spectra of the dolomite surface before and after treatment with different collectors. The increased intensity of the C 2p absorption peak at 285 eV after Na 2S and NaOL treatment indicated that NaOL was adsorbed on the dolomite surface. As shown in Figs. 8 and 9, no significant absorption peaks were observed in the N 1s spectra in the presence of Na 2S and BHOA. The absence of these peaks indicated that only NaOL was adsorbed onto the dolomite surfaces in the mixed collectors.Li WANG, et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089 1088In the XPS results, the reaction of sodium sulfide with smithsonite produced ZnS on the surface of smithsonite. In the presence of Na2S and BHOA, NaOL was adsorbed on the surfaces of smithsonite and dolomite. Meanwhile, BHOA only affected smithsonite, thus increasing the selectivity of the mixed collector system.4 Conclusions(1) A novel mixed collector (BHOA) was prepared by mixing BHA and NaOL and used for the selective flotation separation of smithsonite from dolomite. The separation mechanism of BHOA was evaluated by flotation tests, surface tension analysis, zeta potential, and XPS.(2) BHOA has a better collecting efficiency for smithsonite than NaOL. The flotation recovery of smithsonite reached 92% when the NaOL/BHA molar ratio was set to be 2:1. Meanwhile, a poor dolomite recovery of less than 20% was obtained.(3) The BHOA shows better surface activity than pure collectors because of synergistic effects and thus it is much more suitable for the flotation separation of smithsonite.(4) Negative surface potentials of smithsonite and dolomite increased considerably when NaOL or BHOA was used alone. However, the BHOA system only increased the negative surface potential of smithsonite. Meanwhile, NaOL affected the negative surface potential of dolomite, and the effect was independent of BHA.(5) NaOL chemically reacted with smithsonite and dolomite and the BHA in BHOA collector only reacted with smithsonite, thus increasing the selectivity of the collector for smithsonite.References[1]ESPIRITU E R L, SILV A G R D, AZIZI D, LARACHI F, WATERSK E. The effect of dissolved mineral species on bastnäsite, monazite and dolomite flotation using benzohydroxamate collector [J].Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 539: 319−334.[2]YANG Jin-lin, ZHANG Hong-mei, MO Wei, MA Shao-jian, SUXiu-juan. Flotation tests of zinc oxide ore with iron [J]. Advanced Materials Research, 2013, 826: 57−60.[3]CHEN Jin-quan, ZHOU De-yan, WEI Zong-wu, CHEN Jian-hua.Experimental study on flotation o f a mudded lead−zinc oxide ore with high iron content [J]. Mining Research & Development, 2007, 17: 475−484.[4]CHEN Zhi-wei. Experimental study on flotation technology ofiron-bearing and sliming zinc oxide ore [J]. Mining & Metallurgical Engineering, 2008, 28: 51−53.[5]ZHANG Ye, HU Y ue-hua, SUN Ning, LIU Run-qing, WANG Zhen,WANG Li, SUN Wei. Systematic review of feldspar beneficiationand its comprehensive application [J]. Minerals Engineering, 2018, 128: 141−152.[6]WAN R Y, LEVIER M K, CLAYTON R B. Hydrometallurgicalprocess for the recovery of precious metal values from precious metal ores with thiosulfate lixiviant [J]. Minerals Engineering, 1995, 8: 939.[7]HOSSEINI S H, FORSSBERG E. Adsorption studies of smithsoniteflotation using dodecylamine and oleic acid [J]. Minerals & Metallurgical Processing, 2006, 23: 87−96.[8]SHI Qing, FENG Qi-ming, ZHANG Guo-fan, DENG Hong.Electrokinetic properties of smithsonite and its floatability with anionic collector [J]. Colloids & Surfaces A: Physicochemical & Engineering Aspe cts, 2012, 410: 178−183.[9]SHI Qing, ZHANG Guo-fan, FENG Qi-ming, DENG Hong. Effectof solution chemistry on the flotation system of smithsonite and calcite [J]. International Journal of Mineral Processing, 2013, 119: 34−39.[10]TIAN Meng-jie, LIU Run-qing, GAO Zhi-yong, CHEN Pan, HANHai-sheng, WANG Li, ZHANG Chen-yang, SUN Wei, HU Yue-hua.Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector [J]. Minerals Engineering, 2018, 119: 31−37.[11]LYU Fei, GAO Jian-de, SUN Ning, LIU Run-qing, SUN Xiao-dong,CAO Xue-feng, WANG Li, SUN Wei. Utilisation of propyl gallate asa novel selective collector for diaspore flotation [J]. MineralsEngineering, 2019, 131: 66−72.[12]VIDYADHAR A, KUMARI N, BHAGAT R P. Adsorptionmechanism of mixed cationic/anionic collectors in quartz–hematite flotation system [J]. Journal of Colloid and Interface Science, 2007, 306(2): 195−204.[13]MEHDILO A, ZAREI H, IRANNAJAD M, ARJMANDFAR H.Flotation of zinc oxide ores by cationic and mixed collectors [J].Mineral s Engineering, 2012, 36−38: 331−334.[14]XU Long-hua, HU Yue-hua, TIAN Jia, WU Hou-qin, YANG Yao-hui,ZENG Xiao-bo, WANG Zhen, WANG Jin-ming. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors [J]. Minerals Engineering, 2016, 89: 84−92.[15]WANG Li, SUN Wei, HU Yue-hua, XU Long-hua. Adsorptionmechanism of mixed anionic/cationic collectors in muscovite−quartz flotation system [J]. Minerals Engineering, 2014, 64: 44−50.[16]WANG Li, SUN Ning, WANG Zhen, HAN Hai-sheng, YANG Yue,LIU Run-qing, HU Y ue-hua, TANG Hong-hu, SUN Wei.Self-assembly of mixed dodecylamine−dodecanol molecules at the air/water interface based on large-scale molecular dynamics [J].Journal of Molecular Liquids, 2019, 276: 867−874.[17]HOSSEINI S H, FORSSBERG E. Smithsonite flotation using mixedanionic/cationic collector [J]. Mineral Processing and Extractive Metallurgy, 2007, 118: 186−190.[18]HOSSEINI S H, FORSSBERG E. Physicochemical studies ofsmithsonite flotation using mixed anionic/cationic collector [J].Minerals Engineering, 2007, 20: 621−624.[19]WANG Zhen, XU Long-hua, WANG Jin-ming, WANG Li, XIAOJun-hui. A comparison study of adsorption of benzohydroxamic acid and amyl xanthate on smithsonite with dodecylamine as co-collector [J]. Applied Surface Science, 2017, 426: 1141−1146.[20]WANG Zhen, WANG Li, ZHENG Yong-xing, XIAO Jun-hui. Roleof calcium dioleate in the flotation of powellite particles using oleate [J]. Minerals Engineering, 2019, 138: 95−100.Li WANG, et al/Trans. Nonferrous Met. Soc. China 29(2019) 1082−1089 1089[21]AHN C K, WOO S H, PARK J M. Selective adsorption ofphenanthrene in nonionic–anionic surfactant mixtures using activated carbon [J]. Chemical Engineering Journal, 2010, 158: 115−119. [22]SHI Q, FENG Q, ZHANG G, DENG H. Electrokinetic properties ofsmithsonite and its floatability with anionic collector [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects, 2012, 410: 178−183.[23]NOWAK P, LAAJALEHTO K. Oxidation of galena surface: An XPSstudy of the formation of sulfoxy species [J]. Applied Surface Science, 2000, 157: 101−111.复配捕收剂从白云石中选择性浮选菱锌矿王丽1,2,胡广艳1,2,孙伟1,2,Sultan Ahmed KHOSO1,2,刘润清1,2,张祥锋1,21. 中南大学资源加工与生物工程学院,长沙410083;2. 中南大学战略含钙矿产资源清洁高效利用湖南省重点实验室,长沙410083摘要:将苯甲羟肟酸(BHA)与油酸钠(NaOL)混合,制备一种新的复配捕收剂(BHOA),并将其应用于从白云石中浮选分离菱锌矿。

两种捕收剂反浮选菱镁矿的效果对比

两种捕收剂反浮选菱镁矿的效果对比

两种捕收剂反浮选菱镁矿的效果对比
王倩倩;李晓安;魏德洲;张思慧
【期刊名称】《金属矿山》
【年(卷),期】2012(000)002
【摘要】分别以水玻璃或六偏磷酸钠为抑制剂,采用自行研制的阳离子捕收剂Wely对辽宁海城地区的菱镁矿进行反浮选脱硅试验,并与常规菱镁矿反浮选捕收剂十二胺进行对比.结果显示:两种捕收剂适宜的矿浆pH均为5左右;在合适的用量下,两种捕收剂与水玻璃或六偏磷酸钠配合均可获得MgO品位>47%、SiO2含量<0.2%的菱镁矿精矿,但Wely所获MgO回收率比十二胺高2.15 ~4.06个百分点,可达77.15%~83.64%,证明Wely对硅酸盐矿物有更好的选择性捕收性能;水玻璃作抑制剂时所需用量达六偏磷酸钠的10倍,且精矿回收率较低,因此六偏磷酸钠更适合作为菱镁矿反浮选的抑制剂.
【总页数】5页(P82-85,120)
【作者】王倩倩;李晓安;魏德洲;张思慧
【作者单位】东北大学资源与土木工程学院;辽宁科技大学资源与土木工程学院;东北大学资源与土木工程学院;辽宁科技大学资源与土木工程学院
【正文语种】中文
【相关文献】
1.新型铁矿石反浮选捕收剂MG-2捕收性能研究 [J], 葛英勇;张敏;余俊;余永富
2.疏水强化浮选:双亲矿基捕收剂与常规捕收剂的对比 [J], 刘胜;刘广义;黄耀国;钟宏
3.疏水强化浮选:双亲矿基捕收剂与常规捕收剂的对比 [J], 刘胜;刘广义;黄耀国;钟宏
4.硫化矿电化学调控浮选及无捕收剂浮选的理论与应用(Ⅲ)无捕收剂浮选的发展与硫化矿可浮性的新分类 [J], 王淀佐;孙水裕;李柏淡
5.阳离子捕收剂反浮选酒钢弱磁精矿对比分析 [J], 朱霞丽;李京伦
因版权原因,仅展示原文概要,查看原文内容请购买。

捕收剂NH-03浮选次生硫化铜矿石试验

捕收剂NH-03浮选次生硫化铜矿石试验

捕收剂NH-03浮选次生硫化铜矿石试验曹海英;李琳;李永峰【摘要】通过纯矿物和实际矿石浮选试验,采用丁基黄药、Z-200和NH-03作为捕收剂,在不同条件下进行了辉铜矿和黄铁矿的浮选对比试验,并通过吸附量测试,研究NH-03对辉铜矿和黄铁矿浮选效果的影响.结果表明:NH-03对辉铜矿具有较强的捕收能力及选择性,在弱碱性环境下即可实现同黄铁矿的有效分离.实际矿石闭路试验结果显示:在原矿含铜0.92%、含硫7.51%的情况下,可获得含铜21.16%、铜回收率为80.50%的铜精矿,含硫38.92%、硫回收率为66.13%的硫精矿.吸附量测试结果表明:在整个pH值区间内,辉铜矿对NH-03的吸附能力均强于黄铁矿,辉铜矿表面NH-03的吸附量受pH值的影响较小,而黄铁矿在高pH值区间内,对NH-03的吸附能力很弱.【期刊名称】《现代矿业》【年(卷),期】2017(000)001【总页数】5页(P118-122)【关键词】次生硫化铜矿;NH-03;捕收剂;铜硫分离;浮选【作者】曹海英;李琳;李永峰【作者单位】江西离子型稀土工程技术研究有限公司;江西理工大学资源与环境工程学院;威海市海王旋流器有限公司【正文语种】中文铜被誉为国民经济和社会发展的“红色金属”。

由于铜资源需求量巨大且自身资源严重不足,近几年我国铜资源的对外依存度始终维系在70%左右,因此,铜也属于我国严重紧缺的矿种之一,国内铜矿山供应的严重短缺将成为一个长期存在的问题[1]。

铜的主要来源为原生硫化铜矿石,但随着经济社会的快速发展尤其是人类社会进入工业化发展阶段,新兴工业化国家之间的资源竞争日趋激烈,工业上较易处理的原生硫化铜矿资源日益枯竭,低品位、多金属伴生、难处理铜矿的开发利用日益受到重视。

因此,实现次生硫化铜矿的高效综合回收利用对保障铜矿石供矿能力,构建绿色矿业,建立资源节约型社会,发展国民经济具有重要意义[2-3]。

为此,通过纯矿物试验和实际矿石试验,研究了捕收剂NH-03在次生型硫化铜矿石(以辉铜矿为对象)中对铜硫分离浮选的效果,着重研究出了适合某地次生铜硫矿石的选矿新工艺。

Gemini型捕收剂对石英和磁铁矿的浮选性能

Gemini型捕收剂对石英和磁铁矿的浮选性能

Gemini型捕收剂对石英和磁铁矿的浮选性能邹文博;夏柳荫;钟宏【摘要】Through the flotation tests of single mineral, the flotation performance of quartz and magnetite were investigated with Gemini collector Gemini -31503 and the lauryl amine as collector respectively.The results showed that Gemini collector 31503 had better collecting ability to quartz in a wide pH range and good selectivity in quartz, and its performance was much superior to the lauryl amine.With the Gemini -31503 used as collector, the reverse flotation tests on the artificial mixed ores of quartz and magnetite were made, obtaining good separation index without any other reagents added.The Zeta potential measurements and infrared spectroscopy results showed that Gemini -31503 adsorption on the two minerals surface is mainly electrostatic adsorption.Under the same conditions, Gemini -31503 adsorption on quartz surfaces is higher than that on the magnetite.%通过单矿物浮选试验,考察了Gemini型捕收剂Gemini-31503和十二胺对石英和磁铁矿的浮选特性,结果表明,Gemini-31503在较宽的pH范围里对石英具有很强的捕收能力,并且对石英具有良好的选择性,其性能明显优于十二胺.用Gemini-31503对石英和磁铁矿的人工混合矿进行反浮选,在不需再添加其他任何药剂的情况下取得了良好的分选指标.动电位测定和红外光谱分析结果显示,Gemini-31503在两种矿物表面的吸附主要为静电吸附,且在相同条件下,Gemini-31503在石英表面的吸附量比在磁铁矿表面的吸附量大.【期刊名称】《金属矿山》【年(卷),期】2011(000)006【总页数】4页(P78-80,92)【关键词】Gemini型捕收剂;十二胺;石英;磁铁矿;捕收能力;选择性【作者】邹文博;夏柳荫;钟宏【作者单位】中南大学化学化工学院;中南大学化学化工学院;中南大学化学化工学院【正文语种】中文我国贫铁矿石中的脉石主要是石英。

螯合物在选矿中的应用详解

螯合物在选矿中的应用详解

殷佳琪资土01班配位化学螯合剂在选矿中的应用摘要近年来,螯合捕收剂的发展取得了飞速进步,一些研究及实践的资料证明,螯合捕收剂的浮选性能与它们的螯合特性密切相关。

本文从配位原子、捕收性能、捕收机理、药剂种类等方面,总结了近年来的研究发现,并以苯甲羟肟酸为例,展示了螯合类捕收剂在工业中的运用。

关键词:螯合捕收剂捕收机理药剂种类工业1螯合剂的简介1.1 应用方向在浮选药剂发展过程中,第一代混合捕收油早已过时,第二代离子型水溶性捕收力强的浮选药剂(如黄药、黑药等)已经历了70余年,越来越无法满足目前世界范围内日渐贫、细、杂矿石的浮选分离要求。

近年来,人们都把注意力转向第三代非离子型高选择性浮选剂上,特别是螯合捕收剂更以其卓越的选择性深受人们关注[1]。

因为金属螯合物比普通的离子型和共价型金属盐更稳定,长期以来将螯合剂当作选择性更好的捕收剂,并且,它们似乎可以代替常规的捕收剂,从已知的分析化学中的分离金属方法也可以看出这一点[2,3]。

螯合剂在选矿中的运用主要包括浮选和选择性絮凝。

这两种工艺的主要表面化学原理十分相似。

它们分选的选择性基本上都是取决于药剂在矿物一水界面上的选择性吸附。

这种选择性实际上是药剂的官能团在矿物表面吸附点的亲和力的函数。

由于螯合型官能团对某些金属离子具有较高的专一性,因而可以认为它是选矿药剂的理想组成部分。

1.2 螯合剂和螯合作用螯合型药剂至少必须有两个原子同时由金属配位。

这些原子通常是O、N、S和P。

“配位”物质提供的这些给予体原子称为“配位体”。

如果单个配位体分子或离子不止有一个原子与金属离子配位,便使共自身围绕中心原子弯成螯状,形成复杂的环状结构,称为“螯合物”(来源于希腊语中的“蟹钳”)根据配位体在带正电的金属离子周围配位区域内的配位位置数目是二、三、四、五、六,可将它们相应地称作二元环.、三元环、四元环、五元环和六元环。

下面给出的例子为二乙基二硫代氨基甲酸脂螯合剂的S一S型配位体与镍形成的二员环(l:2)[4]。

磷酸体系下白云石与脂肪酸类捕收剂作用研究

磷酸体系下白云石与脂肪酸类捕收剂作用研究

磷酸体系下白云石与脂肪酸类捕收剂作用研究
章铁斌;张覃;卯松;敖先权
【期刊名称】《矿冶工程》
【年(卷),期】2022(42)4
【摘要】采用单矿物浮选试验、Zeta电位测试和分子模拟手段研究了磷酸对白云石表面吸附油酸阴离子的影响。

浮选试验和Zeta电位测试结果显示,磷酸导致白云石电负性增强,可浮性降低。

分子模拟结果显示,白云石表面形成CO_(3)^(2-)空位缺陷,磷酸离子与缺陷处的Ca、Mg原子形成桥位吸附,缺陷处剩余的Ca、Mg原子可以进一步吸附油酸阴离子。

油酸阴离子和H_(2)PO_(4)^(-)可以共同吸附在白云石表面导致白云石疏水;H_(2)PO_(4)^(-)的预先作用导致油酸根离子吸附能减小可能是白云石可浮性下降的原因。

【总页数】4页(P60-63)
【作者】章铁斌;张覃;卯松;敖先权
【作者单位】贵州大学矿业学院;贵州科学院;喀斯特地区优势矿产资源高效利用国家地方联合工程实验室;贵州省非金属矿产资源综合利用重点实验室;贵州大学化学与化工学院
【正文语种】中文
【中图分类】TD923
【相关文献】
1.脂肪酸类白钨矿捕收剂的结构性能关系研究
2.脂肪酸类白钨矿捕收剂的结构性能关系研究
3.某新型脂肪羧酸类捕收剂的浮选性能试验研究
4.基于Blends模块计算的脂肪酸类捕收剂与水的混溶性研究
5.耐低温脂肪酸类捕收剂浮选内蒙古某高含泥石英型萤石矿试验研究
因版权原因,仅展示原文概要,查看原文内容请购买。

苯丙烯基羟肟酸捕收剂浮选某萤石矿试验研究

苯丙烯基羟肟酸捕收剂浮选某萤石矿试验研究

苯丙烯基羟肟酸捕收剂浮选某萤石矿试验研究
梁毅;姚旗升;谢鸿辉;余新阳
【期刊名称】《非金属矿》
【年(卷),期】2024(47)2
【摘要】为解决萤石矿浮选难分离,浮选回收率不高的问题,研究了苯丙烯基羟肟酸(PHA)作为萤石矿捕收剂的浮选特性及机理,通过单矿物及实际矿试验研究了其浮选性能。

结果表明,PHA具有优异的选择捕收性能,在pH为8,PHA用量为15 mg/L,甲基异丁基甲醇(MIBC)用量为20 mg/L的条件下,萤石、白云石和方解石的回收率分别为91%、24.2%和41%。

采用“5精2扫”的闭路流程,得到CaF_(2)品位为97.63%、回收率为88.58%的萤石精矿。

通过zeta电位和傅里叶红外光谱(FTIR)测试分析了PHA与萤石、白云石和方解石的的吸附机理,PHA可通过化学吸附选择吸附在萤石表面。

【总页数】5页(P63-67)
【作者】梁毅;姚旗升;谢鸿辉;余新阳
【作者单位】河南省第一地质矿产调查院有限公司;江西理工大学资源与环境工程学院;江西省矿业工程重点实验室
【正文语种】中文
【中图分类】TD97
【相关文献】
1.苯甲羟肟酸捕收白钨矿浮选溶液化学研究
2.羟肟酸磷矿浮选捕收剂的设计合成及应用研究
3.螯合型捕收剂—辛基羟肟酸浮选氧化锌矿机理的研究
4.新型双极性捕收剂烷基羟肟酸磺酸对白钨矿的浮选性能及吸附机理研究
5.新型羟肟酸捕收剂对硅孔雀石的浮选机理研究
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是用 于生 产磷 酸 等化 学 制 品 的原 料 。 1 9 9 8年世 界
磷酸 盐矿石 的产 量 约 为 1 4 7 t . 6 亿 。每年 应 用 浮 选 法处 理大量 的含 硅 的磷 酸盐 矿石 。在磷 酸盐 矿石 选 矿 中所用 的浮选 工艺种 类决 定于 矿石 中伴生 的杂 质
矿物 的种类 。大 多数磷 酸盐 矿石 都含有 硅酸 盐脉 石
物 和 碳 酸 盐 矿 物 的润 湿 性 。第 二 是 研 制 能 选 择 性 浮
选磷 酸盐 矿物 的捕 收剂 。 有几 个研究 者对 抑制 磷酸盐 矿物 而反 浮选碳 酸 盐矿 物工 艺进 行 了试 验 。他们 的试 验 结 果 表 明 , 在 弱酸 性介 质 中可 从 磷 酸 盐 矿 物 中优 先 浮选 出 白云 石 。但是 , 在应 用这 些浮选 方法 时 , 们 的研究 目的 他 是 寻找磷 酸盐 矿物 的最好 抑制 剂 。最 近对 从磷 酸盐
矿 石 中浮 选 脱 除 白 云 石 做 了 很 大 的努 力 。
用 筛 孔为 0 0 4mm 筛 子筛 分 。 一0 4 .4 . 4mm 粒级 分
离 出 作 为 含 磷 酸 盐 的 黏 土 矿 泥 。 一 02 + 00 4 .5 . 4 mm 粒级 Mg O含 量较 高 , 干燥 后作 为 浮选 给矿 。样 品用 缩分 机分 成 2 0g一袋 以备浮选 试 验之 用 。 5
第 二个 目的 是 确 定 该 法 能 够 生 产 Mg 含 量 低 于 O
1 的磷酸盐 精矿 的可 行性 。
பைடு நூலகம்
碳酸 盐矿 物的 物理化 学性 质类似 , 以 , 所 从磷 酸盐 矿 石 中分离碳 酸盐 矿物 相 当困难 。不仅磷 酸盐 矿物 本
身 的溶液化 学性 质 , 而且从 其它 盐类矿 物 ( 方解 石 如 和 白云石 ) 解 下来 的组 分 也会 影 响 磷 酸盐 矿 物 的 溶
1 2 试 验 方 法 .
1 2 1 样 品 特性研 究 ..
每 一 批 样 品 ( g 在 震 筛 机 上 用 德 国 套 筛 湿 式 3k )
中国连云 港设计 研究 院提 出 了最 令人鼓 舞 的浮
筛 分 1 n 5mi。各 个 粒级 在 1 5 0 ℃下 干燥 后 称重 。然
量 的试 验方 法 , 确定 主要 参 数 的显 著 性 。之所 以选
择 统计 设计 方法 是 因为 , 法 比较简单 , 该 只需要 进行
几 个很 少 的试验 , 方 法考 虑 了变量 之 间的交互 性 。 该
数情 况下 , 合应 用正 浮选 法和 反浮选法 。但 是 , 联 最
近碳 酸盐矿 物 与含硅 杂质矿 物 同时存在 于磷 酸盐 矿 石 中向选矿 工作 者提 出 了挑 战 。 由于磷 酸盐 矿物 和
杂 质矿 物与 磷 酸盐 矿 物 的 分离 。该 法包 括 , 石 先 矿 磨 至矿 物单 体 解 离 , 后 不 脱 泥 直 接 浮选 白云 石 。 然
接 着 寻找能 够有效 从磷 酸盐 矿石 中浮 选分 离 白云石 的表 面活性 剂 。作 者应 用 两 性 捕 收 剂 作 为 C DR L I 法 中的捕收 剂 的替 代 物 。探 索 性试 验结 果 表 明 , 在 广 泛 的 p 范 围 内, 种 捕 收剂 可 以从 磷 酸 盐 矿 石 H 这 中浮选 分离 白云 石 。 一
维普资讯
3 8
国 外 金
属 矿 选 矿
2 0. 088
用两 性 捕 收剂 从 磷 酸 盐 矿 石 中浮 选 白云 石 时 某 些操 作 参 数 的 统 计 方 面 的显 著 性
A ・ ・ 尔马 赫 帝 M 埃 等
摘 要 在从磷 酸盐矿石中脱除白云石 的浮选 中对丽性捕收剂进行 了试验。应用统计设计 试验考查 了一 些操作 参数及其对 白
表 面性质 。
1 试 验
1 1 试 验 物 料 .
所 用试 验样 品采 集 自埃及 。先 用 颚式 破 碎 机 , 再 用对 辊破 碎 机将 样 品破 碎 至 一2mm。为 了 制 备
研究 者主要 关注 提高碳 酸盐 矿物 与磷 酸盐矿 物
分离 的选 择性 , 们 的研 究 主 要集 中两 个 方 面 。第 他

浮选 给矿 , 矿 样 在 固体 浓 度 为 5 下 磨 剥 擦 洗 在 5 1 mi , 5 n 然后 用 0 2 . 5mm 筛 孔 筛子 筛 分 。筛 上 产 品
( 2 0 . 5rm) 出 作 为 粗 粒 精 矿 , 下 产 品 再 一 . +0 2 a 分 筛
是 应用 不 同的抑制 剂 和 p 调整剂控 制 磷 酸盐 矿 H
云石 浮 选影 响 的显 著 性 。所 研 究 的操 作 参 数 有 叶 轮 转 速 、 收 剂 用 量 和 p 值 。试 验 结 果 分 析 表 明 , H 是 影 响 白 云 石 捕 H p
浮选 最 显 著 的 参 数 。 在 p 2 捕 收剂 用 量 为 2 5k / 和 叶 轮 转 速 为 10 / i , H 1, . g t 0 0rr n时 获得 的精 矿 Mg 含 量 为 0 5 , a O .3
矿物 。处理 的方 法有正 浮选 法和 反浮选 法 。一般 在 正浮选 中用脂 肪 酸 捕 收剂 浮 选 磷酸 盐 矿 物 , 在 反 而 浮选 中用胺类 捕 收剂 浮选硅 酸盐 脉石矿 物 。在大 多
本 文有 两个 目的。第一 个 目的是 用统 计设计 方
法( 因素设计 法 ) 而 不 是 用 常规 的一 个 变 量一 个 变 ,
P05含 量 为 3 % , 2 2 1 P 05回 收率 为 9 %。 0
关 键 词 反浮选
脱除 白云石 两性捕收剂 统计优化
磷酸盐矿石
概 述
磷酸 盐矿 石 不 仅是 肥 料 工业 的主要 原 料 , 且 而
选 方法 ( L RI ) C D 法 。这 个 方 法 可 以解 决 含 碳 酸 盐
相关文档
最新文档