2010年高考数学试题分类汇编:向量含详解
十年高考真题分类汇编(2010-2019) 数学专题20空间向量(含答案及解析)
十年高考真题分类汇编(2010—2019)数学专题20空间向量1.(2014·全国2·理T11)直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.√3010D.√22 【答案】C【解析】如图,以点C 1为坐标原点,C 1B 1,C 1A 1,C 1C 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 不妨设BC=CA=CC 1=1,可知点 A (0,1,1),N (0,12,0),B (1,0,1),M (12,12,0).∴AN ⃗⃗⃗⃗⃗⃗ =(0,-1,-1),BM ⃗⃗⃗⃗⃗⃗ =(-1,1,-1). ∴cos <AN ⃗⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ >=AN ⃗⃗⃗⃗⃗⃗⃗ ·BM⃗⃗⃗⃗⃗⃗⃗ |AN ⃗⃗⃗⃗⃗⃗⃗ ||BM ⃗⃗⃗⃗⃗⃗⃗ |=√3010. 根据AN ⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角及AN 与BM 所成角的关系可知,BM 与AN 所成角的余弦值为√30.2.(2013·北京·文T8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A.3个B.4个C.5个D.6个【答案】B【解析】设正方体的棱长为a.建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a ,0),B (a ,a ,0),B 1(a ,a ,a ),A (a ,0,0),A 1(a ,0,a ),P (23a ,23a ,13a),则|PB ⃗⃗⃗⃗⃗ |=√19a 2+19a 2+19a 2=√33a , |PD ⃗⃗⃗⃗⃗ |=√49a 2+49a 2+19a 2=a , |PD 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+49a 2+49a 2=2√33a , |PC 1⃗⃗⃗⃗⃗⃗⃗ |=|PA 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+19a 2+49a 2=a , |PC ⃗⃗⃗⃗⃗ |=|PA ⃗⃗⃗⃗⃗ |=√49a 2+19a 2+19a 2=√63a ,|PB 1⃗⃗⃗⃗⃗⃗⃗ |=√19a 2+19a 2+49a 2=√63a ,3.(2012·陕西·理T5)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA=CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.√55B.√53C.2√55D.35【答案】A【解析】不妨设CB=1,则CA=CC 1=2.由题图知,A 点的坐标为(2,0,0),B 点的坐标为(0,0,1),B 1点的坐标为(0,2,1),C 1点的坐标为(0,2,0).所以BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,1).所以cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >=3√5=√55. 4.(2010·大纲全国·文T6)直三棱柱ABC-A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线BA 1与AC 1所成的角等于( )A.30°B.45°C.60°D.90°【答案】C【解析】不妨设AB=AC=AA 1=1,建立空间直角坐标系如图所示,则B(0,-1,0),A 1(0,0,1),A(0,0,0),C 1(-1,0,1),∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).∴cos <BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2×2=12. ∴<BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=60°.∴异面直线BA 1与AC 1所成的角为60°.5.(2019·天津·理T17)如图,AE ⊥平面ABCD,CF ∥AE,AD ∥BC,AD ⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF ∥平面ADE;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E-BD-F 的余弦值为13,求线段CF 的长.【解析】(1)证明依题意,可以建立以A 为原点,分别以AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h>0),则F(1,2,h).依题意,AB⃗⃗⃗⃗⃗ =(1,0,0)是平面ADE 的法向量, 又BF⃗⃗⃗⃗⃗ =(0,2,h ),可得BF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE. (2)解依题意,BD ⃗⃗⃗⃗⃗⃗ =(-1,1,0),BE⃗⃗⃗⃗⃗ =(-1,0,2),CE ⃗⃗⃗⃗⃗ =(-1,-2,2). 设n =(x ,y ,z )为平面BDE 的法向量,则{n ·BD ⃗⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +2z =0,不妨令z=1, 可得n =(2,2,1).因此有cos <CE ⃗⃗⃗⃗⃗ ,n >=CE ⃗⃗⃗⃗⃗⃗ ·n |CE⃗⃗⃗⃗⃗⃗ ||n |=-49. 所以,直线CE 与平面BDE 所成角的正弦值为49.(3)解设m =(x ,y ,z )为平面BDF 的法向量,则{m ·BD ⃗⃗⃗⃗⃗⃗ =0,m ·BF⃗⃗⃗⃗⃗ =0,即{-x +y =0,2y +ℎz =0, 不妨令y=1,可得m =1,1,-2ℎ.由题意,有|cos <m,n >|=|m ·n ||m ||n |=|4-2ℎ|3√2+4ℎ2=13, 解得h=87,经检验,符合题意.所以,线段CF 的长为87.6.(2019·浙江·T 19)如图,已知三棱柱ABC-A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC=90°,∠BAC=30°,A 1A=A 1C=AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC=AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC.又因为A 1F ∥AB ,∠ABC=90°,故BC ⊥A 1F.所以BC ⊥平面A 1EF.因此EF ⊥BC.(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC=4,则在Rt △A 1EG 中,A 1E=2√3,EG=√3.由于O 为A 1G 的中点,故EO=OG=A 1G 2=√152, 所以cos ∠EOG=EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC=AC ,所以,A 1E ⊥平面ABC.如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F √32,32,2√3,C (0,2,0).因此,EF ⃗⃗⃗⃗⃗ =√32,32,2√3,BC⃗⃗⃗⃗⃗ =(-√3,1,0). 由EF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0得EF ⊥BC.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0.2,-2√3).设平面A 1BC 的法向量为n =(x ,y ,z ).由{BC ⃗⃗⃗⃗⃗ ·n =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·n =0,得{-√3x +y =0,y -√3z =0. 取n =(1,√3,1),故sin θ=|cos <EF ⃗⃗⃗⃗⃗ ·n >|=|EF⃗⃗⃗⃗⃗⃗ ·n ||EF ⃗⃗⃗⃗⃗⃗ |·|n |=4.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.7.(2019·全国1·理T18)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A-MA 1-N 的正弦值.【解析】(1)连接B 1C ,ME.因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME= B 1C.又因为N 为A 1D 的中点,所以ND= A 1D.由题设知A 1B 1 DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A (2,0,0),A 1(2,0,4),M (1,√3,2),N (1,0,2),A 1A ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,-√3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗⃗ =0.所以{-x +√3y -2z =0,-4z =0.可取m =(√3,1,0). 设n =(p ,q ,r )为平面A 1MN 的法向量,则{n ·MN ⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =0. 所以{-√3q =0,-p -2r =0.可取n =(2,0,-1). 于是cos <m,n >=m ·n|m ||n |=√32×√5=√155,所以二面角A-MA 1-N 的正弦值为√105.8.(2019·全国2·理T17)如图,长方体ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE=A 1E ,求二面角B-EC-C 1的正弦值.【解析】(1)证明由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE.又BE ⊥EC 1,所以BE ⊥平面EB 1C 1.(2)解由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB=45°,故AE=AB ,AA 1=2AB.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|DA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系D-xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB ⃗⃗⃗⃗⃗ =(1,0,0),CE ⃗⃗⃗⃗⃗ =(1,-1,1),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).{CB ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,即{x =0,x -y +z =0, 所以可取n=(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则{CC 1⃗⃗⃗⃗⃗⃗⃗ ·m =0,CE ⃗⃗⃗⃗⃗ ·m =0,即{2z =0,x -y +z =0, 所以可取m =(1,1,0).于是cos <n,m >=n ·m |n ||m |=-12. 所以,二面角B-EC-C 1的正弦值为√32. 9.(2019·全国3·理T19)图1是由矩形ADEB,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC 折起使得BE 与BF 重合,连接DG,如图2.(1)证明:图2中的A,C,G,D 四点共面,且平面ABC ⊥平面BCGE;(2)求图2中的二面角B-CG-A 的大小.【解析】(1)证明由已知得AD ∥BE,CG ∥BE,所以AD ∥CG,故AD,CG 确定一个平面,从而A,C,G,D 四点共面.由已知得AB ⊥BE,AB ⊥BC,故AB ⊥平面BCGE.又因为AB ⊂平面ABC,所以平面ABC ⊥平面BCGE.(2)解作EH ⊥BC,垂足为H.因为EH ⊂平面BCGE,平面BCGE ⊥平面ABC,所以EH ⊥平面ABC.由已知,菱形BCGE 的边长为2,∠EBC=60°,可求得BH=1,EH=√3.以H 为坐标原点,HC ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A (-1,1,0),C (1,0,0),G (2,0,√3),CG⃗⃗⃗⃗⃗ =(1,0,√3),AC ⃗⃗⃗⃗⃗ =(2,-1,0).则{CG ⃗⃗⃗⃗⃗ ·n =0,AC⃗⃗⃗⃗⃗ ·n =0,即{x +√3z =0,2x -y =0. 所以可取n =(3,6,-√3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos <n,m >=n ·m|n ||m |=√32.因此二面角B-CG-A 的大小为30°.10.(2018·浙江·T 8)已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( )A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【答案】D【解析】当点E 不是线段AB 的中点时,如图,点G 是AB 的中点,SH ⊥底面ABCD,过点H 作HF ∥AB,过点E 作EF ∥BC,连接SG,GH,EH,SF.可知θ1=∠SEF ,θ2=∠SEH ,θ3=∠SGH.由题意可知EF ⊥SF ,故tan θ1=SF EF =SF GH >SH GH=tan θ3. ∴θ1>θ3.又tan θ3=SH GH >SH EH =tan θ2,∴θ3>θ2.∴θ1>θ3>θ2.当点E 是线段AB 的中点时,即点E 与点G 重合,此时θ1=θ3=θ2.综上可知,θ1≥θ3≥θ2.11.(2018·全国3·理T19)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD⏜所在平面垂直,M 是CD ⏜上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【解析】(1)由题设知,平面CMD ⊥平面ABCD,交线为CD.因为BC ⊥CD,BC ⊂平面ABCD,所以BC ⊥平面CMD,故BC ⊥DM.因为M 为CD⏜上异于C,D 的点,且DC 为直径,所以DM ⊥CM.又BC ∩CM=C,所以DM ⊥平面BMC. 而DM ⊂平面AMD,故平面AMD ⊥平面BMC.(2)以D 为坐标原点, DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC 体积最大时,M 为 CD⏜的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0).设n=(x,y,z)是平面MAB 的法向量,则{n ·AM ⃗⃗⃗⃗⃗⃗ =0,n ·AB⃗⃗⃗⃗⃗ =0.即{-2x +y +z =0,2y =0. 可取n=(1,0,2),DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos <n,DA ⃗⃗⃗⃗⃗ >=n ·DA ⃗⃗⃗⃗⃗⃗ |n ||DA ⃗⃗⃗⃗⃗⃗ |=√55,sin <n,DA ⃗⃗⃗⃗⃗ >=2√55. 所以面MAB 与面MCD 所成二面角的正弦值是2√55.12.(2018·北京·理T16)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC= √5,AC=AA 1=2.(1)求证:AC ⊥平面BEF;(2)求二面角B-CD-C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【解析】(1)证明在三棱柱ABC-A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF.∵AB=BC ,∴AC ⊥BE ,∴AC ⊥平面BEF.(2)解由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.∵CC 1⊥平面ABC ,∴EF ⊥平面ABC. ∵BE ⊂平面ABC ,∴EF ⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴CD ⃗⃗⃗⃗⃗ =(2,0,1),CB ⃗⃗⃗⃗⃗ =(1,2,0). 设平面BCD 的法向量为n =(a ,b ,c ), 则{n ·CD⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,∴{2a +c =0,a +2b =0,令a=2,则b=-1,c=-4,∴平面BCD 的法向量n =(2,-1,-4),又平面CDC 1的法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), ∴cos <n,EB⃗⃗⃗⃗⃗ >=n ·EB ⃗⃗⃗⃗⃗⃗ |n ||EB ⃗⃗⃗⃗⃗⃗ |=-√2121.由图可得二面角B-CD-C 1为钝角,∴二面角B-CD-C 1的余弦值为-√2121. (3)证明平面BCD 的法向量为n=(2,-1,-4), ∵G(0,2,1),F(0,0,2), ∴GF⃗⃗⃗⃗⃗ =(0,-2,1), ∴n ·GF ⃗⃗⃗⃗⃗ =-2,∴n 与GF⃗⃗⃗⃗⃗ 不垂直, ∴FG 与平面BCD 不平行且不在平面BCD 内, ∴FG 与平面BCD 相交.13.(2018·天津·理T17)如图,AD ∥BC 且AD=2BC,AD ⊥CD,EG ∥AD 且EG=AD,CD ∥FG 且CD=2FG,DG ⊥平面ABCD,DA=DC=DG=2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE; (2)求二面角E-BC-F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M 0,32,1,N (1,0,2).(1)证明:依题意DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n0=(x,y,z)为平面CDE 的法向量, 则{n 0·DC ⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y =0,2x +2z =0,不妨令z=-1,可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,-32,1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n 0=0.(2)依题意,可得BC ⃗⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗⃗ =(0,-1,2).设n =(x ,y ,z )为平面BCE 的法向量,则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0,不妨令z=1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF ⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0,不妨令z=1,可得m =(0,2,1). 因此有cos <m,n >=m ·n |m ||n |=3√1010,于是sin <m,n >=√1010.所以,二面角E-BC-F 的正弦值为√1010. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP ⃗⃗⃗⃗⃗ =(-1,-2,h ).易知,DC ⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量,故|cos <BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗⃗ ||BP ⃗⃗⃗⃗⃗⃗ ||DC ⃗⃗⃗⃗⃗⃗ |=√ℎ+5.由题意,可得√ℎ+5=sin 60°=√32,解得h=√33∈[0,2].所以,线段DP 的长为√33.14.(2018·全国1·理T18)如图,四边形ABCD 为正方形,E,F 分别为AD,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF. (1)证明:平面PEF ⊥平面ABFD; (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)由已知可得,BF ⊥PF,BF ⊥EF, 所以BF ⊥平面PEF.又BF ⊂平面ABFD,所以平面PEF ⊥平面ABFD. (2)作PH ⊥EF,垂足为H. 由(1)得,PH ⊥平面ABFD.以H 为坐标原点,HF⃗⃗⃗⃗⃗ 的方向为y 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系H-xyz. 由(1)可得,DE ⊥PE.又DP=2,DE=1,所以PE=√3.又PF=1,EF=2,故PE ⊥PF.可得PH=√32,EH=32.则H (0,0,0),P (0,0,√32),D (-1,-32,0),DP ⃗⃗⃗⃗⃗ =(1,32,√32),HP ⃗⃗⃗⃗⃗⃗ =(0,0,√32)为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ, 则sin θ=|HP ⃗⃗⃗⃗⃗⃗ ·DP⃗⃗⃗⃗⃗⃗ |HP ⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ ||=343=√34.所以DP 与平面ABFD 所成角的正弦值为√34.15.(2018·全国2·理T20)如图,在三棱锥P-ABC 中,AB=BC=2√2,PA=PB=PC=AC=4,O 为AC 的中点. (1)证明:PO ⊥平面ABC;(2)若点M 在棱BC 上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.【解析】(1)因为AP=CP=AC=4,O 为AC 的中点, 所以OP ⊥AC ,且OP=2√3. 连接OB ,因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2. 由OP2+OB2=PB2知PO ⊥OB.由OP ⊥OB,OP ⊥AC 知PO ⊥平面ABC.(2)如图,以O 为坐标原点,OB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系O-xyz. 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2√3),AP ⃗⃗⃗⃗⃗ =(0,2,2√3). 取平面PAC 的法向量OB ⃗⃗⃗⃗⃗ =(2,0,0),由AP ⃗⃗⃗⃗⃗ ·n =0,AM ⃗⃗⃗⃗⃗⃗ ·n =0得 {2y +2√3z =9,ax +(4-a )y =0.可取n =(√3(a-4),√3a ,-a ),所以cos <OB ⃗⃗⃗⃗⃗ ,n >=√3(2√3(a -4)+3a 2+a 2.由已知可得|cos <OB ⃗⃗⃗⃗⃗ ,n >|=√32. 所以√32√3(a -4)+3a 2+a 2=√32,解得a=-4(舍去),a=43. 所以n =(-8√33,4√33,-43).又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos <PC ⃗⃗⃗⃗⃗ ,n >=√34. 所以PC 与平面PAM 所成角的正弦值为√34.16.(2018·浙江·T9)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【解析】解法一(1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BC 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5,由AB=BC=2,∠ABC=120°,得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD.由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1,由C 1D ⊥A 1B 1,得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.解法二(1)证明:如图,以AC 的中点O 为原点,分别以射线OB,OC 为x,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1). 因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3).由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{x +√3y =0,2z =0,可取n =(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|n |=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.17.(2018·上海·T17)已知圆锥的顶点为P,底面圆心为O,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.【解析】(1)∵圆锥的顶点为P,底面圆心为O,半径为2,母线长为4,∴圆锥的体积V=13πr 2h=13×π×22×√42-22=8√3π3. (2)∵PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,∴P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0), ∴PM⃗⃗⃗⃗⃗⃗ =(1,1,-4),OB ⃗⃗⃗⃗⃗ =(0,2,0). 设异面直线PM 与OB 所成的角为θ,则cos θ=|PM ⃗⃗⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ ||PM ⃗⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√1+1+(-4)×√0+2+0=√26.∴θ=arccos √26.∴异面直线PM 与OB 所成的角的大小为arccos √26.18.(2017·北京·理T16)如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD,点M 在线段PB 上,PD ∥平面MAC,PA=PD=√6,AB=4. (1)求证:M 为PB 的中点; (2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.【解析】(1)证明设AC,BD 交点为E,连接ME. 因为PD ∥平面MAC,平面MAC ∩平面PDB=ME,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O,连接OP,OE. 因为PA=PD,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD,且OP ⊂平面PAD,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,√2),D (2,0,0),B (-2,4,0),BD⃗⃗⃗⃗⃗⃗ =(4,-4,0),PD ⃗⃗⃗⃗⃗ =(2,0,-√2).设平面BDP 的法向量为n =(x ,y ,z ), 则{n ·BD⃗⃗⃗⃗⃗⃗ =0,n ·PD ⃗⃗⃗⃗⃗ =0,即{4x -4y =0,2x -√2z =0.令x=1,则y=1,z=√2.于是n =(1,1,√2),平面PAD 的法向量为p =(0,1,0).所以cos <n,p >=n ·p|n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3.(3)解由题意知M (-1,2,√22),C (2,4,0),MC ⃗⃗⃗⃗⃗⃗ =(3,2,-√22). 设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n,MC⃗⃗⃗⃗⃗⃗ >|=|n ·MC ⃗⃗⃗⃗⃗⃗⃗ ||n ||MC ⃗⃗⃗⃗⃗⃗⃗ |=2√69.所以直线MC 与平面BDP 所成角的正弦值为2√6.19.(2017·全国1·理T18)如图,在四棱锥P-ABCD 中,AB ∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB ⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C 的余弦值.【解析】(1)证明由已知∠BAP=∠CDP=90°,得AB ⊥AP,CD ⊥PD. 由于AB ∥CD,故AB ⊥PD,从而AB ⊥平面PAD. 又AB ⊂平面PAB,所以平面PAB ⊥平面PAD. (2)解在平面PAD 内作PF ⊥AD,垂足为F. 由(1)可知,AB ⊥平面PAD ,故AB ⊥PF , 可得PF ⊥平面ABCD.以F 为坐标原点,FA⃗⃗⃗⃗⃗ 的方向为x 轴正方向, |AB⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系F-xyz. 由(1)及已知可得A (√22,0,0),P (0,0,√22),B (√22,1,0),C (-√22,1,0).所以PC ⃗⃗⃗⃗⃗ =(-√22,1,-√22),CB⃗⃗⃗⃗⃗ =(√2,0,0),PA ⃗⃗⃗⃗⃗ =(√22,0,-√22),AB ⃗⃗⃗⃗⃗ =(0,1,0). 设n =(x ,y ,z )是平面PCB 的法向量,则{n ·PC ⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,即{-√22x +y -√22z =0,√2x =0.可取n =(0,-1,-√2).设m =(x ,y ,z )是平面PAB 的法向量,则{m ·PA⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,即{√22x -√22z =0,y =0.可取m =(1,0,1).则cos <n,m >=n ·m |n ||m |=-√33.所以二面角A-PB-C 的余弦值为-√33.20.(2017·全国2·理T19)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD, AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.【解析】(1)证明取PA 的中点F,连接EF,BF. 因为E 是PD 的中点,所以EF ∥AD,EF=12 AD. 由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,四边形BCEF 是平行四边形,CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB. (2)解由已知得BA ⊥AD ,以A 为坐标原点,AB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,√3),PC ⃗⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗⃗ =(1,0,0). 设M (x ,y ,z )(0<x<1),则BM ⃗⃗⃗⃗⃗⃗ =(x-1,y ,z ),PM ⃗⃗⃗⃗⃗⃗ =(x ,y-1,z-√3). 因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的法向量,所以|cos <BM ⃗⃗⃗⃗⃗⃗ ,n >|=sin 45°,√(x -1)+y 2+z2=√22,即(x-1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则x=λ,y=1,z=√3−√3λ. ②由①,②解得{ x =1+√22,y =1,z =-√62(舍去),{x =1-√22,y =1,z =√62,所以M (1-√22,1,√62),从而AM ⃗⃗⃗⃗⃗⃗ =(1-√22,1,√62).设m=(x0,y0,z0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗⃗ =0,即{(2-√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m =(0,-√6,2).于是cos <m,n >=m ·n |m ||n |=√105.因此二面角M-AB-D 的余弦值为√105.21.(2017·全国3·理T19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD ⊥平面ABC;(2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D-AE-C 的余弦值.【解析】(1)证明由题设可得,△ABD ≌△CBD ,从而AD=DC. 又△ACD 是直角三角形,所以∠ADC=90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO=AO. 又由于△ABC 是正三角形,故BO ⊥AC. 所以∠DOB 为二面角D-AC-B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2,又AB=BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB=90°.所以平面ACD ⊥平面ABC.(2)解由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|OA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系O-xyz.则A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的1,即E 为DB 的中点,得E (0,√3,1). 故AD ⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,0,0),AE ⃗⃗⃗⃗⃗ =(-1,√32,12).设n =(x ,y ,z )是平面DAE 的法向量,则{n ·AD ⃗⃗⃗⃗⃗ =0,n ·AE⃗⃗⃗⃗⃗ =0,即{-x +z =0,-x +√32y +12z =0. 可取n =(1,√33,1).设m 是平面AEC 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AE⃗⃗⃗⃗⃗ =0. 同理可取m =(0,-1,√3).则cos <n,m >=n ·m |n ||m |=√7. 所以二面角D-AE-C 的余弦值为√77. 22.(2017·山东·理T17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF⏜的中点. (1)设P 是 CE⏜ 上的一点,且AP ⊥BE,求∠CBP 的大小; (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.【解析】(1)因为AP ⊥BE,AB ⊥BE,AB,AP ⊂平面ABP,AB ∩AP=A,所以BE ⊥平面ABP,又BP ⊂平面ABP,所以BE ⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取EC⏜的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=√32+22=√13.取AG 中点M,连接EM,CM,EC,则EM ⊥AG,CM ⊥AG,所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM=√13-1=2√3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2√3,因此△EMC 为等边三角形,故所求的角为60°.解法二:以B 为坐标原点,分别以BE,BP,BA 所在的直线为x,y,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,√3,3),C (-1,√3,0),故AE ⃗⃗⃗⃗⃗ =(2,0,-3),AG⃗⃗⃗⃗⃗ =(1,√3,0),CG ⃗⃗⃗⃗⃗ =(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由{m ·AE ⃗⃗⃗⃗⃗ =0,m ·AG⃗⃗⃗⃗⃗ =0,可得{2x 1-3z 1=0,x 1+√3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-√3,2). 设n=(x2,y2,z2)是平面ACG 的一个法向量.由{n ·AG ⃗⃗⃗⃗⃗ =0,n ·CG⃗⃗⃗⃗⃗ =0,可得{x 2+√3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-√3,-2).所以cos <m,n >=m ·n|m ||n |=12. 因此所求的角为60°.23.(2017·天津·理T17)如图,在三棱锥P-ABC 中,PA ⊥底面ABC,∠BAC=90°,点D,E,N 分别为棱PA,PC,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2.(1)求证:MN ∥平面BDE;(2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为√721求线段AH 的长.【解析】如图,以A 为原点,分别以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系. 依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:DE ⃗⃗⃗⃗⃗ =(0,2,0),DB⃗⃗⃗⃗⃗⃗ =(2,0,-2),设n =(x ,y ,z )为平面BDE 的法向量, 则{n ·DE ⃗⃗⃗⃗⃗ =0,n ·DB⃗⃗⃗⃗⃗⃗ =0,即{2y =0,2x -2z =0. 不妨设z=1,可得n =(1,0,1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1),可得MN⃗⃗⃗⃗⃗⃗⃗ ·n =0. 因为MN ⊄平面BDE,所以MN ∥平面BDE.(2)易知n1=(1,0,0)为平面CEM 的一个法向量.设n2=(x,y,z)为平面EMN 的法向量,则{n 2·EM ⃗⃗⃗⃗⃗⃗ =0,n 2·MN ⃗⃗⃗⃗⃗⃗⃗ =0.因为EM ⃗⃗⃗⃗⃗⃗ =(0,-2,-1),MN⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1), 所以{-2y -z =0,x +2y -z =0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-√21, 于是sin <n 1,n 2>=√10521.所以,二面角C-EM-N 的正弦值为√10521.(3)依题意,设AH=h (0≤h ≤4),则H (0,0,h ),进而可得NH ⃗⃗⃗⃗⃗⃗ =(-1,-2,h ),BE⃗⃗⃗⃗⃗ =(-2,2,2). 由已知,得|cos <NH ⃗⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ >|=|NH ⃗⃗⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗⃗ ||NH ⃗⃗⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗⃗ |=√ℎ+5×2√3=√721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.24.(2016·全国1·理T18)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60°.(1)证明:平面ABEF ⊥平面EFDC;(2)求二面角E-BC-A 的余弦值.【解析】(1)证明由已知可得AF ⊥DF,AF ⊥FE,所以AF ⊥平面EFDC.又AF ⊂平面ABEF,故平面ABEF ⊥平面EFDC.(2)解过D 作DG ⊥EF,垂足为G,由(1)知DG ⊥平面ABEF.以G 为坐标原点,GF ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|GF⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系G-xyz.由(1)知∠DFE 为二面角D-AF-E 的平面角,故∠DFE=60°,则|DF|=2,|DG|=√3 ,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0, √3).由已知,AB ∥EF,所以AB ∥平面EFDC.又平面ABCD ∩平面EFDC=CD,故AB ∥CD,CD ∥EF.由BE ∥AF,可得BE ⊥平面EFDC,所以∠CEF 为二面角C-BE-F 的平面角,∠CEF=60°.从而可得C (-2,0,√3).所以EC⃗⃗⃗⃗⃗ =(1,0,√3),EB ⃗⃗⃗⃗⃗ =(0,4,0),AC ⃗⃗⃗⃗⃗ =(-3,-4,√3),AB ⃗⃗⃗⃗⃗ =(-4,0,0), 设n =(x ,y ,z )是平面BCE 的法向量,则{n ·EC ⃗⃗⃗⃗⃗ =0,n ·EB ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,4y =0.所以可取n =(3,0,-√3).设m 是平面ABCD 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,同理可取m =(0,√3,4),则cos <n,m >=n ·m |n ||m |=-2√1919. 故二面角E-BC-A 的余弦值为-2√1919.25.(2016·全国2·理T19)如图,菱形ABCD 的对角线AC 与BD 交于点O,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=54 ,EF 交BD 于点H.将△DEF 沿EF 折到△D'EF 的位置,OD'=√10.(1)证明:D'H ⊥平面ABCD;(2)求二面角B-D'A-C 的正弦值.【解析】(1)证明由已知得AC ⊥BD ,AD=CD.又由AE=CF 得AE AD =CF CD ,故AC ∥EF.因此EF ⊥HD ,从而EF ⊥D'H.由AB=5,AC=6得DO=BO=√AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH=1,D'H=DH=3.于是D'H 2+OH 2=32+12=10=D'O 2,故D'H ⊥OH.又D'H ⊥EF ,而OH ∩EF=H ,所以D'H ⊥平面ABCD.(2)解如图,以H 为坐标原点HF⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),AB ⃗⃗⃗⃗⃗ =(3,-4,0),AC ⃗⃗⃗⃗⃗ =(6,0,0),AD '⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1,3).设m=(x1,y1,z1)是平面ABD'的法向量,则{m ·AB ⃗⃗⃗⃗⃗ =0,m ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m=(4,3,-5).设n=(x2,y2,z2)是平面ACD'的法向量,则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{6x 2=0,3x 2+y 2+3z 2=0, 所以可取n=(0,-3,1).于是cos <m,n >=m ·n|m ||n |=√50×√10=-7√525.sin <m,n >=2√9525. 因此二面角B-D'A-C 的正弦值是2√9525.26.(2016·山东·理T17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O'的直径,FB 是圆台的一条母线.(1)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC;(2)已知EF=FB=12AC=2√3,AB=BC ,求二面角F-BC-A 的余弦值.【解析】(1)证明设FC 中点为I,连接GI,HI.在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF.又EF ∥OB,所以GI ∥OB.在△CFB 中,因为H 是FB 的中点,所以HI ∥BC.又HI ∩GI=I,所以平面GHI ∥平面ABC.因为GH ⊂平面GHI,所以GH ∥平面ABC.(2)解连接OO',则OO'⊥平面ABC.又AB=BC,且AC 是圆O 的直径,所以BO ⊥AC.以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B (0,2√3,0),C (-2√3,0,0).过点F 作FM 垂直OB 于点M,所以FM=√FB 2-BM 2=3,可得F (0,√3,3).故BC ⃗⃗⃗⃗⃗ =(-2√3,-2√3,0),BF ⃗⃗⃗⃗⃗ =(0,-√3,3).设m =(x ,y ,z )是平面BCF 的一个法向量.由{m ·BC ⃗⃗⃗⃗⃗ =0,m ·BF ⃗⃗⃗⃗⃗ =0,可得{-2√3x -2√3y =0,-√3y +3z =0.可得平面BCF 的一个法向量m =(-1,1,√33).因为平面ABC 的一个法向量n =(0,0,1),所以cos <m,n >=m ·n |m |·|n |=√77.所以二面角F-BC-A 的余弦值为√77.27.(2016·浙江·理T17)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.【解析】(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解如图,延长AD,BE,CF相交于一点K,则△BCK为等边三角形. 取BC的中点O,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,√3),A(-1,-3,0),E(12,0,√32),F(-12,0,√32).因此,AC ⃗⃗⃗⃗⃗ =(0,3,0),AK ⃗⃗⃗⃗⃗ =(1,3,√3),AB⃗⃗⃗⃗⃗ =(2,3,0). 设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由{AC ⃗⃗⃗⃗⃗ ·m =0,AK ⃗⃗⃗⃗⃗ ·m =0得{3y 1=0,x 1+3y 1+√3z 1=0, 取m =(√3,0,-1);由{AB ⃗⃗⃗⃗⃗ ·n =0,AK ⃗⃗⃗⃗⃗ ·n =0得{2x 2+3y 2=0,x 2+3y 2+√3z 2=0, 取n =(3,-2,√3).于是,cos <m,n >=m ·n|m |·|n |=√34.所以,二面角B-AD-F 的平面角的余弦值为√34. 28.(2016·全国3·理T19)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD,AD ∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点.(1)证明:MN ∥平面PAB;(2)求直线AN 与平面PMN 所成角的正弦值.【解析】(1)证明由已知得AM=23AD=2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC,故TN AM,四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB,MN ⊄平面PAB,所以MN ∥平面PAB.(2)解取BC 的中点E,连接AE.由AB=AC 得AE ⊥BC,从而AE ⊥AD,且AE=√AB 2-BE 2=√AB 2-(BC 2)2=√5. 以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向, 建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (√5,2,0),N (√52,1,2),PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN ⃗⃗⃗⃗⃗⃗ =(√52,1,-2),AN ⃗⃗⃗⃗⃗⃗ =(√52,1,2).设n =(x ,y ,z )为平面PMN 的法向量,则{n ·PM ⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0, 可取n =(0,2,1).于是|cos <n,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗⃗ ||n ||AN ⃗⃗⃗⃗⃗⃗⃗ |=8√525. 29.(2015·全国2·理T19)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【解析】(1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n=(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗⃗ =0,n ·HE ⃗⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF ⃗⃗⃗⃗⃗ =(-10,4,8), 故|cos <n,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗⃗ ||n ||AF ⃗⃗⃗⃗⃗⃗ |=4√515.所以AF 与平面EHGF 所成角的正弦值为4√515.30.(2015·上海·理T19)如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AB=AD=2,E ,F 分别是棱AB ,BC 的中点.证明A 1,C 1,F ,E 四点共面,并求直线CD 1与平面A 1C 1FE 所成的角的大小.【解析】如图,以D 为原点建立空间直角坐标系,可得有关点的坐标为A 1(2,0,1),C 1(0,2,1),E (2,1,0),F (1,2,0),C (0,2,0),D 1(0,0,1).因为A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,2,0),EF⃗⃗⃗⃗⃗ =(-1,1,0), 所以A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ ,因此直线A 1C 1与EF 共面, 即A 1,C 1,F ,E 四点共面.设平面A 1C 1FE 的法向量为n =(u ,v ,w ),则n ⊥EF ⃗⃗⃗⃗⃗ ,n ⊥FC 1⃗⃗⃗⃗⃗⃗⃗ ,又EF ⃗⃗⃗⃗⃗ =(-1,1,0),FC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),故{-u +v =0,-u +w =0,解得u=v=w. 取u=1,得平面A 1C 1FE 的一个法向量n =(1,1,1).又CD 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),故CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=-√1515.因此直线CD 1与平面A 1C 1FE 所成的角的大小为arcsin √1515.31.(2015·北京·理T17)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O 为EF 的中点.(1)求证:AO ⊥BE;(2)求二面角F-AE-B 的余弦值;(3)若BE ⊥平面AOC,求a 的值.【解析】(1)证明因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF.又因为平面AEF ⊥平面EFCB,AO ⊂平面AEF,所以AO ⊥平面EFCB,所以AO ⊥BE.(2)解取BC 中点G,连接OG.由题设知EFCB 是等腰梯形,所以OG ⊥EF.由(1)知AO ⊥平面EFCB,又OG ⊂平面EFCB,所以OA ⊥OG.如图建立空间直角坐标系O-xyz ,则E (a ,0,0),A (0,0,√3a ),B (2,√3(2-a ),0),EA ⃗⃗⃗⃗⃗ =(-a ,0,√3a ),BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0). 设平面AEB 的法向量为n =(x ,y ,z ),则{n ·EA ⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-ax +√3az =0,(a -2)x +√3(a -2)y =0.令z=1,则x=√3,y=-1.于是n =(√3,-1,1).平面AEF 的法向量为p =(0,1,0).所以cos <n,p >=n ·p |n ||p |=-√55.由题知二面角F-AE-B 为钝角,所以它的余弦值为-√55.(3)解因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0. 因为BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0),OC ⃗⃗⃗⃗⃗ =(-2,√3(2-a ),0), 所以BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =-2(a-2)-3(a-2)2. 由BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0及0<a<2,解得a=43. 32.(2015·浙江·理T17)如图,在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD-B 1的平面角的余弦值.【解析】(1)证明设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE.因为AB=AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE=B 1B ,从而DE ∥A 1A 且DE=A 1A ,所以A 1AED 为平行四边形.故A 1D ∥AE.又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.(2)解以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E-xyz ,如图所示. 由题意知各点坐标如下:A 1(0,0,√14),B (0,√2,0),D (-√2,0,√14),B 1(-√2,√2,√14).因此A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√14),BD ⃗⃗⃗⃗⃗⃗ =(-√2,-√2,√14),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,√2,0).。
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)1.(2019·全国2·文T3)已知向量a=(2,3),b=(3,2),则|a-b|=( ) A.√2 B.2 C.5√2 D.50【答案】A【解析】由题意,得a-b=(-1,1),则|a-b|=√(-1)2+12=√2,故选A.2.(2019·全国·1理T7文T8)已知非零向量a ,b 满足|a|=2|b|,且(a-b)⊥b ,则a 与b 的夹角为( ) A.π6 B.π3C.2π3D.5π6【答案】B【解析】因为(a-b)⊥b , 所以(a-b )·b=a ·b-b 2=0, 所以a ·b=b 2.所以cos<a ,b>=a ·b|a |·|b |=|b |22|b |2=12,所以a 与b 的夹角为π3,故选B.3.(2018·全国1·理T6文T7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ −14AC ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ −34AC⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 【答案】A【解析】如图,EB ⃗⃗⃗⃗⃗ =-BE⃗⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −14BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=3 4AB⃗⃗⃗⃗⃗ −14AC⃗⃗⃗⃗⃗ .4.(2018·全国2·T4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )A.4B.3C.2D.0【答案】B【解析】a·(2a-b)=2a2-a·b=2-(-1)=3.5.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2.∵a,b均为单位向量,∴1-6a·b+9=9+6a·b+1.∴a·b=0,故a⊥b,反之也成立.故选C.6.(2018·浙江·T9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π3,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )A.√3-1B.√3+1C.2D.2-√3【答案】A【解析】∵b2-4e·b+3=0,∴(b-2e)2=1,∴|b-2e|=1.如图所示,平移a,b,e,使它们有相同的起点O,以O为原点,向量e所在直线为x轴建立平面直角坐标系,则b的终点在以点(2,0)为圆心,半径为1的圆上,|a-b|就是线段AB的长度.要求|AB|的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M到直线OA的距离减去圆的半径长,因此|a-b|的最小值为-1.7.(2018·天津·理T8)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则 A.2116 B.32C.2516D.3【答案】A【解析】如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD=∠CAB =60°,∠ACD=∠ACB =30°,则D(0,0),A(1,0),B (32,√32),C(0,√3).设E(0,y)(0≤y≤√3),则AE⃗⃗⃗⃗⃗ =(-1,y),BE ⃗⃗⃗⃗⃗ =(-32,y-√32),∴AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =32+y 2-√32y=(y-√34)2+2116,∴当y=√34时,AE ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ 有最小值2116.8.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的值为( ) A.-15 B.-9 C.-6D.0【答案】C【解析】连接MN ,∵BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ =3AN ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =3AM⃗⃗⃗⃗⃗⃗ .∴MN ∥BC ,且MN BC =13,∴BC ⃗⃗⃗⃗⃗ =3MN ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ ),∴BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ )·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ -|OM ⃗⃗⃗⃗⃗⃗ |2)=3[2×1×(-12)-1]=-6.9.(2017·全国2·理T12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )的最小值是( ) A.-2 B.-32 C.-43 D.-1【答案】B【解析】以BC 所在的直线为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立平面直角坐标系,如图.可知A(0,√3),B(-1,0),C(1,0).设P(x ,y),则PA ⃗⃗⃗⃗ =(-x ,√3-y),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y),PC ⃗⃗⃗⃗ =(1-x ,-y).所以PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =(-2x ,-2y).所以PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )=2x 2-2y(√3-y)=2x 2+2(y -√32)2−32≥-32. 当点P 的坐标为(0,√32)时,PA ⃗⃗⃗⃗ ·(PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )取得最小值为-32,故选10.(2017·全国3·理T12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3 B.2√2C.√5D.2【答案】A【解析】建立如图所示的平面直角坐标系, 则A(0,1),B(0,0),D(2,1).设P(x ,y),由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45. 易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0).由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P(x ,y)在圆(x-2)2+y 2=45上, 所以圆心C 到直线12x-y+1-z=0的距离d≤r,即√14+1≤2√55,解得1≤z≤3,11.(2017·全国2·文T4)设非零向量a ,b 满足|a+b|=|a-b|,则( ) A.a ⊥b B.|a|=|b| C.a ∥b D.|a|>|b| 【答案】A【解析】由|a+b|=|a-b|,平方得a 2+2a ·b+b 2=a 2-2a ·b+b 2,即a ·b=0.又a ,b 为非零向量,故a ⊥b ,故选A.12.(2016·四川·文T9)已知正三角形ABC 的边长为2√3,平面ABC 内的动点P ,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM ⃗⃗⃗⃗⃗⃗ |2的最大值是( ) A.434 B.494 C.37+6√34 D.37+2√334【答案】B【解析】设△ABC 的外心为D ,则|DA ⃗⃗⃗⃗⃗ |=|DB ⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |=2. 以D 为原点,直线DA 为x 轴,过D 点的DA 的垂线 为y 轴,建立平面直角坐标系, 则A(2,0),B(-1,-√3),C(-1,√3). 设P(x ,y),由已知|AP⃗⃗⃗⃗⃗ |=1,得(x-2)2+y 2=1,∵PM ⃗⃗⃗⃗⃗⃗ =MC⃗⃗⃗⃗⃗⃗ ,∴M (x -12,y+√32). ∴BM ⃗⃗⃗⃗⃗⃗ =(x+12,y+3√32). ∴BM ⃗⃗⃗⃗⃗⃗ 2=(x+1)2+(y+3√3)24,它表示圆(x-2)2+y 2=1上点(x ,y)与点(-1,-3√3)距离平方的14,∴(|BM⃗⃗⃗⃗⃗⃗ |2)max =14[√32+(0+3√3)22=494, 故选B.13.(2016·天津·文T7)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.18C.14D.118【答案】B【解析】方法1(基向量法):如图所示,选取AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,则AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )+12×12AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC⃗⃗⃗⃗⃗ ,AB⃗⃗⃗⃗⃗ . 故AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =34AC ⃗⃗⃗⃗⃗ 2−14AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ −12AB⃗⃗⃗⃗⃗ 2 =34−14×1×1×12−12=18.14.(2016·全国2·理T3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b ,则m=( ) A.-8B.-6C.6D.8【答案】D【解析】由题意可知,向量a+b=(4,m-2).由(a+b)⊥b ,得4×3+(m-2)×(-2)=0,解得m=8.故选D.15.(2015·全国2·文T4)向量a=(1,-1),b=(-1,2),则(2a+b )·a=( ) A.-1B.0C.1D.2【答案】C【解析】由已知2a+b=(1,0), 所以(2a+b )·a=1×1+0×(-1)=1.故选C.16.(2015·福建·文T7)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于( )A.-32 B.-53C.53D.32【答案】A【解析】∵a=(1,2),b=(1,1),∴c=(1+k ,2+k). ∵b ⊥c ,∴b ·c=1+k+2+k=0.∴k=-3217.(2015·广东·文T9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 【答案】A【解析】AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(3,-1),所以AD⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5. 18.(2015·山东·理T4)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A.-32a 2 B.-34a 2 C.34a 2 D.32a 2【答案】D【解析】如图,设BA ⃗⃗⃗⃗⃗ =a ,BC⃗⃗⃗⃗⃗ =b. 则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA⃗⃗⃗⃗⃗ =(a+b)·a=a 2+a ·b=a 2+a ·a ·c os 60°=a 2+12a 2=32a 2.19.(2015·四川·理T7)设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗ |=4.若点M ,N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =( ) A.20B.15C.9D.6【答案】C【解析】如图所示,AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ ,NM ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =(AB⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ )·(13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ) =13|AB ⃗⃗⃗⃗⃗ |2-316|AD ⃗⃗⃗⃗⃗ |2+14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ −14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗=13×36-316×16=9.20.(2015·福建·理T9)已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t ,|AC⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值等于( )A.13B.15C.19D.21【答案】A【解析】以点A 为原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图. 则A(0,0),B (1t ,0),C(0,t), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=(0,1). ∴AP⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4). ∴点P 的坐标为(1,4),PB⃗⃗⃗⃗⃗ =(1t-1,-4),PC ⃗⃗⃗⃗ =(-1,t-4). ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13,当且仅当1t =4t ,即t=12时取“=”. ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为13.21.(2015·全国1·文T2)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4) 【答案】A【解析】∵AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3,1),AC ⃗⃗⃗⃗⃗ =(-4,-3), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4). 22.(2015·重庆·理T6)若非零向量a ,b 满足|a|=2√23|b|,且(a-b)⊥(3a+2b),则a 与b 的夹角为 ( )A.π4B.π2C.3π4D .π【答案】A【解析】由(a-b)⊥(3a+2b)知(a-b)·(3a+2b)=0,即3|a|2-a ·b-2|b|2=0.设a 与b 的夹角为θ,则3|a|2-|a||b|cos θ-2|b|2=0,即3·(2√23|b |)2−2√23|b|2cos θ-2|b|2=0,整理,得cos θ=√22.故θ=π4.23.(2015·重庆·文T7)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a+b),则a 与b 的夹角为( ) A.π3 B.π2C.2π3D.5π6【答案】C【解析】因为a ⊥(2a+b),所以a ·(2a+b)=0, 即2|a|2+a ·b=0.设a 与b 的夹角为θ,则有2|a|2+|a||b|cos θ=0. 又|b|=4|a|,所以2|a|2+4|a|2cos θ=0, 则cos θ=-12,从而θ=2π3.24.(2015·全国1·理T7)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC⃗⃗⃗⃗⃗ 【答案】A 【解析】如图,∵AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ . 25.(2014·全国1·文T6)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗C.BC ⃗⃗⃗⃗⃗D.12BC⃗⃗⃗⃗⃗ 【答案】A【解析】EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )-12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=-12(BA ⃗⃗⃗⃗⃗ +CA⃗⃗⃗⃗⃗ )=12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12×2AD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,故选A.26.(2014·山东·文T7)已知向量a=(1,√3),b=(3,m),若向量a ,b 的夹角为π6,则实数m=( ) A.2√3 B.√3 C.0 D.-√3【答案】B【解析】∵cos<a ,b>=a ·b|a ||b |, ∴cos π6=√3m 2×√32+m 2,解得m=√3.27.(2014·北京·文T3)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9) 【答案】A【解析】2a-b=(4-(-1),8-1)=(5,7).故选A.28.(2014·广东·文T3)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 【答案】B【解析】由题意得b-a=(3,1)-(1,2)=(2,-1),故选B.29.(2014·福建·理T8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 【答案】B【解析】对于A ,C ,D ,都有e 1∥e 2,故选B.30.(2014·全国2·理T3文T4)设向量a ,b 满足|a+b|=√10,|a-b|=√6,则a ·b=( ) A.1 B.2 C.3 D.5 【答案】A【解析】∵|a+b|=√10,∴(a+b)2=10.∴|a|2+|b|2+2a·b=10,①∵|a-b|=√6,∴(a-b)2=6,∴|a|2+|b|2-2a·b=6,②由①-②得a·b=1,故选A.31.(2014·大纲全国·文T6)已知a,b为单位向量,其夹角为60°,则(2a-b)·b=( )A.-1B.0C.1D.2【答案】B【解析】由已知得|a|=|b|=1,<a,b>=60°,∴(2a-b)·b=2a·b-b2=2|a||b|cos<a,b>-|b|2=2×1×1×c os 60°-12=0,故选B.32.(2014·大纲全国·理T4)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( )A.2B.√2C.1D.√22【答案】B【解析】∵(a+b)⊥a,|a|=1,∴(a+b)·a=0.∴|a|2+a·b=0.∴a·b=-1.又(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+|b|2=0.∴|b|2=2.∴|b|=√2.故选B.33.(2014·重庆·理T4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.-92B.0 C.3 D.152【答案】C【解析】由已知(2a-3b)⊥c,可得(2a-3b)·c=0,即(2k-3,-6)·(2,1)=0,展开化简,得4k-12=0,所以k=3.故选C.34.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( )A.√22B.12C.0D.-1【答案】C【解析】∵a ⊥b ,∴a ·b=0, ∴-1+2cos 2θ=0,即cos 2θ=0.35.(2012·重庆·理T6)设x ,y ∈R ,向量a=(x ,1),b=(1,y),c=(2,-4),且a ⊥c ,b ∥c ,则|a+b|= ( ) A.√5 B.√10 C.2√5 D.10【答案】B【解析】由a ⊥c ,得a ·c=2x-4=0,解得x=2.由b ∥c 得12=y-4,解得y=-2,所以a=(2,1),b=(1,-2),a+b=(3,-1),|a+b|=√10.故选B.36.(2010·全国·文T2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( ) A.865 B.-865C.1665D.-1665【答案】C【解析】b=(2a+b)-2a=(3,18)-(8,6)=(-5,12), 因此cos<a ,b>=a ·b |a ||b |=165×13=1665.37.(2019·全国3·文T13)已知向量a=(2,2),b=(-8,6),则cos<a ,b>= . 【答案】−√210【解析】cos<a ,b>=a ·b|a ||b |=√22+22×√(-8)+62=2√2×10=-√210. 38.(2019·北京·文T9)已知向量a=(-4,3),b=(6,m),且a ⊥b ,则m= . 【答案】8【解析】∵a=(-4,3),b=(6,m),a ⊥b , ∴a ·b=0,即-4×6+3m=0,即m=8.39.(2019·天津·T14)在四边形ABCD 中,AD ∥BC ,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE ,则BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ = . 【答案】-1【解析】∵AD ∥BC ,且∠DAB=30°,∴∠ABE=30°. ∵EA=EB ,∴∠EAB=30°.∠AEB=120°.在△AEB 中,EA=EB=2, BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ) =-BA ⃗⃗⃗⃗⃗ 2+BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =-12+2√3×2×c os 30°+5×2√3×c os 30°+5×2×c os 180°=-22+6+15=-1.40.(2019·全国3·理T13)已知a ,b 为单位向量,且a ·b=0,若c=2a-√5b ,则cos<a ,c>= . 【答案】23【解析】∵a ,b 为单位向量, ∴|a|=|b|=1.又a ·b=0,c=2a-√5b ,∴|c|2=4|a|2+5|b|2-4√5a ·b=9,∴|c|=3. 又a ·c=2|a|2-√5a ·b=2, ∴cos<a ,c>=a ·c|a |·|c |=21×3=23.41.(2019·浙江·T17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 【答案】0 2√5 【解析】(基向量处理)λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |min =0,由于λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =2AB⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |max =2√42.(2019·江苏·T12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则ABAC 的值是 .【答案】√3【解析】如图,过点D 作DF ∥CE ,交AB 于点F , 由BE=2EA ,D 为BC 中点,知BF=FE=EA ,AO=OD.又AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -13AB⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ ) =32(23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC⃗⃗⃗⃗⃗ 2) =AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2+32AC⃗⃗⃗⃗⃗ 2, 得12AB ⃗⃗⃗⃗⃗ 2=32AC ⃗⃗⃗⃗⃗ 2,即|AB⃗⃗⃗⃗⃗ |=√3|AC ⃗⃗⃗⃗⃗ |,故AB AC=√3. 43.(2018·北京·文T9)设向量a=(1,0),b=(-1,m).若a ⊥(ma-b),则m= . 【答案】-1【解析】由题意,得ma-b=(m+1,-m). ∵a ⊥(ma-b),∴a ·(ma-b)=0,即m+1=0, ∴m=-1.44.(2018·上海·T8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ 的最小值为 . 【答案】-3【解析】依题意,设E(0,a),F(0,b),不妨设a>b ,则 a-b=2,AE ⃗⃗⃗⃗⃗ =(1,a),BF ⃗⃗⃗⃗ =(-2,b),a=b+2,所以AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,a)·(-2,b)=-2+ab=-2+(b+2)b=b 2+2b-2=(b+1)2-3, 故所求最小值为-3.45.(2018·江苏·T2)在平面直角坐标系xOy 中,A 为直线l:y=2x 上在第一象限内的点,B(5,0),以AB 为直径的圆C 与直线l 交于另一点D.若AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为 . 【答案】3【解析】设A(a ,2a)(a>0),则由圆心C 为AB 的中点得C (a+52,a),☉C:(x-5)(x-a)+y(y-2a)=0.将其与y=2x 联立解得x D =1,D(1,2).因为AB ⃗⃗⃗⃗⃗ =(5-a ,-2a),CD ⃗⃗⃗⃗⃗ =(1-a+52,2-a),AB ⃗⃗⃗⃗⃗ ·CD⃗⃗⃗⃗⃗ =0,所以(5-a)·(1-a+52)+(-2a)(2-a)=0,即a 2-2a-3=0,解得a=3或a=-1.因为a>0,所以a=3.46.(2018·全国3·T13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c ∥(2a+b),则λ= . 【答案】12【解析】2a+b=(4,2),c=(1,λ), 由c ∥(2a+b),得4λ-2=0,得λ=12.47.(2017·全国1·文T13)已知向量a=(-1,2),b=(m ,1),若向量a+b 与a 垂直,则m= . 【答案】7【解析】因为a=(-1,2),b=(m ,1), 所以a+b=(m-1,3).因为a+b 与a 垂直,所以(a+b )·a=0,即-(m-1)+2×3=0,解得m=7.48.(2017·山东·文T11)已知向量a=(2,6),b=(-1,λ).若a ∥b ,则λ= . 【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,∴λ=-3.49.(2017·全国1·理T13)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= . 【答案】2【解析】因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·c os 60°+4|b|2=22+4×2×1×12+4×1=12, 所以|a+2b|=√12=2√3.50.(2017·天津,理13文14)在△ABC 中,∠A =60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 . 【答案】311【解析】由题意,知|AB ⃗⃗⃗⃗⃗ |=3,|AC ⃗⃗⃗⃗⃗ |=2, AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =3×2×c os 60°=3, AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ , 所以AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =λ-23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+2λ3AC ⃗⃗⃗⃗⃗ 2 =λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.51.(2017·江苏·T12)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R),则m+n= . 【答案】3【解析】由tan α=7可得cos α=5√2,sin α=5√2,则5√2=OA⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |·|OC ⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,由cos ∠BOC=√22可得√22=OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OB ⃗⃗⃗⃗⃗⃗ |·|OC⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,因为cos ∠AOB=cos (α+45°)=cos αc os 45°-sin αsin45°=5√2×√22−5√2×√22=-35,所以OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-35,所以m-35n=15,-35m+n=1, 所以25m+25n=65,所以m+n=3.52.(2017·山东·理T12)已知e 1,e 2是互相垂直的单位向量,若√3 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 . 【答案】√33【解析】∵e 1,e 2是互相垂直的单位向量, ∴可设a=√3e 1-e 2=(√3,-1),b=e 1+λe 2=(1,λ). 则<a ,b >=60°.∴cos<a ,b>=c os 60°=a ·b|a ||b |=√3-2=12,即√3-λ=2+1,解得λ=√33.53.(2017·江苏·理T13)在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O:x 2+y 2=50上.若PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是 . 【答案】[-5√2,1]【解析】设P(x ,y),由PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,易得x 2+y 2+12x-6y≤20.把x 2+y 2=50代入x 2+y 2+12x-6y≤20得2x-y+5≤0. 由{2x -y +5=0,x 2+y 2=50,可得{x =-5,y =-5或{x =1,y =7.由2x-y+5≤0表示的平面区域及P 点在圆上,可得点P 在圆弧EPF 上,所以点P 横坐标的取值范围为[-5√2,1].54.(2017·北京·文T12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为 .【答案】6【解析】方法1:设P(cos α,sin α),α∈R ,则AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(cos α+2,sin α),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2cos α+4.当α=2k π,k ∈Z 时,2cos α+4取得最大值,最大值为6. 故AO ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ 的最大值为6. 方法2:设P(x ,y),x 2+y 2=1,-1≤x≤1,AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(x+2,y),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2x+4,故AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为6.55.(2016·北京·文T9)已知向量a=(1,√3),b=(√3,1),则a 与b 夹角的大小为 . 【答案】π6【解析】设a 与b 的夹角为θ,则cos θ=a ·b|a ||b |=2√32×2=√32,且两个向量夹角范围是[0,π],∴所求的夹角为π6.56.(2016·全国1·文T13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x= . 【答案】−23【解析】∵a ⊥b ,∴a ·b=x+2(x+1)=0, 解得x=-23.57.(2016·山东·文T13)已知向量a=(1,-1),b=(6,-4).若a ⊥(ta+b),则实数t 的值为 . 【答案】-5【解析】由a ⊥(ta+b)可得a ·(ta+b)=0, 所以ta 2+a ·b=0,而a 2=12+(-1)2=2,a ·b=1×6+(-1)×(-4)=10,所以有t×2+10=0,解得t=-5. 58.(2016·全国2·文T13)已知向量a=(m ,4),b=(3,-2),且a ∥b ,则m= . 【答案】-6【解析】因为a ∥b ,所以-2m-4×3=0,解得m=-6.59.(2016·全国1·理T13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= . 【答案】-2【解析】∵|a+b|2=|a|2+|b|2, ∴(m+1)2+32=m 2+1+5,解得m=-2.60.(2015·浙江·文T13)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b|= . 【答案】2√33【解析】因为b ·e 1=b ·e 2=1,|e 1|=|e 2|=1,由数量积的几何意义,知b 在e 1,e 2方向上的投影相等,且都为1,所以b 与e 1,e 2所成的角相等.由e 1·e 2=12知e 1与e 2的夹角为60°,所以b 与e 1,e 2所成的角均为30°,即|b|c os 30°=1,所以|b|=1cos30°=2√33. 61.(2015·全国2·理T13)设向量a ,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 【答案】12【解析】由题意知存在实数t ∈R ,使λa+b=t(a+2b),得{λ=t ,1=2t ,解得λ=12.62.(2015·北京·理T13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x= ,y= . 【答案】12−16【解析】如图,∵MN ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC⃗⃗⃗⃗⃗ , ∴x=12,y=-16.63.(2014·湖北·理T11)设向量a=(3,3),b=(1,-1).若(a +λb)⊥(a-λb),则实数λ= . 【答案】±3【解析】由题意得(a+λb)·(a-λb)=0,即a 2-λ2b 2=0,则a 2=λ2b 2, λ2=a 2b 2=(√32+32)2[√12+(-1)]=182=9.故λ=±3.64.(2014·陕西·理T3)设0<θ<π2,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a ∥b ,则tan θ= .【答案】12【解析】由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ, 因为0<θ<π2,所以cos θ≠0,所以2sin θ=cos θ. 所以tan θ=12.65.(2014·重庆·文T12)已知向量a 与b 的夹角为60°,且a=(-2,-6),|b|=√10,则a ·b= . 【答案】10【解析】由题意得|a|=2√10,所以a ·b=|a||b|cos<a ,b>=2√10×√10×12=10.66.(2014·全国1·理T15)已知A ,B ,C 为圆O 上的三点,若AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为 . 【答案】90°【解析】由AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°.故AB⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为90°. 67.(2014·湖北·文T12)若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |= . 【答案】2√5【解析】设B(x ,y),由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,可得√10=√x 2+y 2, ① OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x-3y=0, ② 由①②得x=3,y=1或x=-3,y=-1, 所以B(3,1)或B(-3,-1),故AB ⃗⃗⃗⃗⃗ =(2,4)或AB ⃗⃗⃗⃗⃗ =(-4,2),|AB⃗⃗⃗⃗⃗ |=2√5, 68.(2013·江苏·T10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC.若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 【答案】12【解析】由题意作图如图.∵在△ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23.故λ1+λ2=12.69.(2013·北京·理T13)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ= .【答案】4【解析】可设a=-i+j ,i ,j 为单位向量且i ⊥j ,则b=6i+2j ,c=-i-3j.∵c =λa +μb=(6μ-λ)i+(λ+2μ)j ,∴{6μ-λ=-1,λ+2μ=-3,解得{λ=-2,μ=-12.∴λμ=4. 70.(2013·全国1·T13)已知两个单位向量a ,b 的夹角为60°,c=ta+(1-t)b.若b ·c=0,则t= .【答案】2【解析】b ·c=ta ·b+(1-t)|b|2.又|a|=|b|=1,且a 与b 的夹角为60°,b ·c=0,∴0=t|a||b|c os 60°+(1-t),0=12t+1-t.∴t=2.71.(2013·全国2·理T13文T14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗ = .【答案】2【解析】以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ }为基底,则AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,而AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ , ∴AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2=-12×22+22=2.72.(2013·天津·理T12)在平行四边形ABCD 中,AD=1,∠BA D=60°,E 为CD 的中点.若AC⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =1,则AB 的长为 .【答案】12【解析】如图所示,在平行四边形ABCD 中,AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ . 所以AC ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =-12|AB ⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |+1=1,解方程得|AB ⃗⃗⃗⃗⃗ |=12(舍去|AB ⃗⃗⃗⃗⃗ |=0).所以线段AB 的长为12.73.(2013·北京·文T14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D 由所有满足AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为 . 【答案】3【解析】AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =(2,1),AC⃗⃗⃗⃗⃗ =(1,2). 设P(x ,y),则AP⃗⃗⃗⃗⃗ =(x-1,y+1). ∴{x -1=2λ+μ,y +1=λ+2μ,得{λ=2x -y -33,μ=2y -x+33,∵1≤λ≤2,0≤μ≤1,可得{6≤2x -y ≤9,0≤x -2y ≤3,如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A1B1|=√(4-3)2+22=√5,两直线间距离d=√22+1=√5,∴D的面积S=|A1B1|·d=3.74.(2012·全国·理T13文T15)已知向量a,b夹角为45°,且|a|=1,|2a-b|=√10,则|b|= .【答案】3√2【解析】∵a,b的夹角为45°,|a|=1,∴a·b=|a|×|b|c os 45°=√22|b|,|2a-b|2=4-4×√22|b|+|b|2=10,∴|b|=3√2.75.(2012·安徽·文T11)设向量a=(1,2m),b=(m+1,1),c=(2,m),若(a+c)⊥b,则|a|= . 【答案】√2【解析】由题意,可得a+c=(3,3m).由(a+c)⊥b,得(a+c)·b=0,即(3,3m)·(m+1,1)=3(m+1)+3m=0,解之,得m=-12.∴a=(1,-1),|a|=√2.76.(2011·全国·文T13)已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k= .【答案】1【解析】由已知可得|a|=|b|=1,且a与b不共线,所以a·b≠1,a·b≠-1.由已知向量a+b与向量ka-b垂直,所以(a+b)·(ka-b)=0,即ka2-b2+(k-1)a·b=0,即k-1+(k-1)a·b=0,所以(k-1)(1+a·b)=0.因为a·b≠-1,即a·b+1≠0,所以k-1=0,即k=1.(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)。
2010年江苏高考数学试题(含答案详解
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。
一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。
3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。
3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。
3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。
[解析]考查频率分布直方图的知识。
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2010年高考全国数学卷(全国Ⅰ.文)(含详解答案)
2010年普通高等学校招生全国统一考试文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12 (D) 21.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos 602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a === 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====(5)43(1)(1x -的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +y20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a a=+1由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则 12||||PF PF =(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +- ()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF = 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆===== 12||||PF PF = 4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )(B(C )23 (D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯= ,21122ACD SAD CD a ∆== . 所以131A C D A C D S D D D O a S ∆∆= ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠=== (10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--∙==+-≥ 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)
2010年普通高等学校招生全国统一考试(全国卷II )数学(理科)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+> (C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。
【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r,1a =,2b =,则CD =u u u r(A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA2=DBCB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==- ,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。
2010年江苏高考数学试题(含答案详解
2010 年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题——第14 题)、解答题(第15 题——第20 题)。
本卷满分160 分,考试时间为120 分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
参考公式:锥体的体积公式 : V1h 是高。
锥体= Sh,其中 S 是锥体的底面积,3一、填空题:本大题共14 小题,每小题 5 分,共 70分。
请把答案填写在答题卡相应的位.......置上 ...1、设集合 A={-1,1,3},B={a+2,a 2+4},A ∩ B={3} ,则实数 a=______▲ _____.[ 解析 ] 考查集合的运算推理。
3B, a+2=3, a=1.2、设复数 z 满足 z(2-3i)=6+4i (其中 i 为虚数单位),则 z 的模为 ______ ▲_____.[ 解析 ] 考查复数运算、模的性质。
z(2-3i)=2(3+2 i), 2-3i与 3+2 i 的模相等, z 的模为 2。
3、盒子中有大小相同的 3 只白球, 1 只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是 _ ▲ __.[ 解析 ] 考查古典概型知识。
p316 24、某棉纺厂为了了解一批棉花的质量,从中随机抽取了 100 根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40] 中,其频率分布直方图如图所示,则其抽样的100 根中,有 _▲ ___根在棉花纤维的长度小于20mm。
十年高考数学山东卷精校版含详解——8导数与积分部分
十年高考数学山东卷精校版含详解——8导数与积分部分十年高考数学山东卷精校版含详解——8导数与积分部分一、选择题(共11小题;共55分)1. 直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为A. 22B. 42C. 2D. 42. 由曲线y=x2,y=x3围成的封闭图形面积为A. 112B. 14C. 13D. 7123. 直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为A. 2B. 4C. 2D. 44. 曲线y=x3+11在点P1,12处的切线与y轴交点的纵坐标是A. ?9B. ?3C. 9D. 155. 若函数y=f x的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f x具有T性质.下列函数中具有T性质的是A. y=sin xB. y=ln xC. y=e xD. y=x36. 观察x2?=2x,x4?=4x3,cos x?=?sin x,由归纳推理可得:若定义在R上的函数f x满足f?x=f x,记g x为f x的导函数,则g?x=A. f xB. ?f xC. g xD. ?g x7. 抛物线C1:y=12p x2p>0的焦点与双曲线C2:x23y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=A. 316B. 38C. 233D. 4338. 函数y=x22sin x的图象大致是A. B.C. D.9. 已知f x是R上最小正周期为2的周期函数,且当0≤x<2时,f x=x3?x,则函数y=f x的图象在区间0,6上与x轴的交点的个数为A. 6B. 7C. 8D. 910. 抛物线 C 1:y =12px 2 p >0 的焦点与双曲线 C 2:x 23y 2=1 的右焦点的连线交 C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则 p = A. 316B. 38C. 2 33D. 4 3311. 设函数 f x =1x ,g x =?x 2+bx .若 y =f x 的图象与 y =g x 的图象有且仅有两个不同的公共点 A x 1,y 1 ,B x 2,y 2 ,则下列判断正确的是A. x 1+x 2>0,y 1+y 2>0B. x 1+x 2>0,y 1+y 2<0C. x 1+x 2<0,y 1+y 2>0D. x 1+x 2<0,y 1+y 2<0二、填空题(共6小题;共30分) 12. 设 a >0,若曲线 y = x 与直线 x =a ,y =0 所围成封闭图形的面积为 a 2,则 a = . 13.1+tan 75°1?tan 75= .14. 若 limn n +a? n=1 ,则常数 a = .15. 设函数f x =ax 2+c a ≠0 .若 f x d x 10=f x 0 ,0≤x 0≤1 ,则 x 0 的值为.16. 若函数 e x f x (e ≈2.71828? 是自然对数的底数)在 f x 的定义域上单调递增,则称函数f x 具有 M 性质.下列函数中所有具有 M 性质的函数的序号为.①f x =2?x ②f x =3?x ③f x =x 3④f x =x 2+2.17. 若函数 f x =a x ?x ?a (a >0,且a ≠1)有两个零点,则实数 a 的取值范围是.三、解答题(共26小题;共338分)18. 设函数 f x =2x 3?3 a ?1 x 2+1,其中a ≥1.(1)求 f x 的单调区间;(2)讨论 f x 的极值.19. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a +y 2b =1 a >b >0 的离心率为 22,椭圆 C 截直线y =1 所得线段的长度为 2 2.(1)求椭圆 C 的方程;(2)动直线l :y =kx +m m ≠0 交椭圆 C 于 A ,B 两点,交 y 轴于点 M .点 N 是 M 关于 O的对称点,⊙N 的半径为∣NO ∣.设 D 为 AB 的中点,DE ,DF 与⊙N 分别相切于点 E ,F ,求∠EDF 的最小值.20. 两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧AB上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A 与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在弧AB的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)讨论(1)中函数的单调性,并判断弧AB上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.21. 设函数f x=ax?a+1ln x+1,其中a≥?1,求f x的单调区间.22. 已知x=1是函数f x=mx3?3m+1x2+nx+1的一个极值点,其中m,n∈R,m<0.(1)求m与n的关系表达式;(2)求f x的单调区间;(3)当x∈?1,1时,函数y=f x的图象上任意一点的切线斜率恒大于3m,求m的取值范围.23. 设函数f x=e xx ?k2x+ln x (k为常数,e=2.71828?是自然对数的底数).(1)当k≤0时,求函数f x的单调区间;(2)若函数f x在0,2内存在两个极值点,求k的取值范围.24. 设f x=x ln x?ax2+2a?1x,a∈R.(1)令g x=f?x,求g x的单调区间;(2)已知f x在x=1处取得极大值,求实数a的取值范围.25. 已知函数f x=x2+2cos x,g x=e x cos x?sin x+2x?2,其中e≈2.17828?是自然对数的底数.(1)求曲线y=f x在点π,fπ处的切线方程;(2)令x=g x?af x a∈R,讨论 x的单调性并判断有无极值,有极值时求出极值.26. 已知函数f x=13x3?12ax2,a∈R,(1)当a=2时,求曲线y=f x在点3,f3处的切线方程;(2)设函数g x=f x+x?a cos x?sin x,讨论g x的单调性并判断有无极值,有极值时求出极值.27. 已知f x=a x?ln x+2x?1x2,a∈R.(1)讨论f x的单调性;(2)当a=1时,证明f x>f?x+32对于任意的x∈1,2成立.28. 设函数f x=a ln x+x?1,其中a为常数.x+1(1)若a=0,求曲线y=f x在点1,f1处的切线方程;(2)讨论函数f x的单调性.29. 设函数f x=x ln x?ax2+2a?1x,a∈R.(1)令g x=f?x,求函数g x的单调区间;(2)已知f x在x=1处取得极大值,求实数a的取值范围.+c(e=2.71828?是自然对数的底数,c∈R).30. 设函数f x=xe(1)求f x的单调区间、最大值;(2)讨论关于x的方程∣ln x∣=f x根的个数.31. 设函数f x=x+a ln x,g x=x2.已知曲线y=f x在点1,f1处的切线与直线2x?y=0平行.(1)求a的值;(2)是否存在自然数k,使得方程f x=g x在k,k+1内存在唯一的根? 如果存在,求出k;如果不存在,请说明理由;(3)设函数m x=min f x,g x(min p,q表示p,q中的较小值),求m x的最大值.32. 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右立方米,且l≥2r.假设该容器的建造费用仅两端均为半球形,按照设计要求容器的容积为80π3与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c c>3千元.设该容器的建造费用为y 千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.33. 设函数f x=ax2+b ln x,其中ab≠0.证明:当ab>0时,函数f x没有极值点;当ab<0时,函数f x有且只有一个极值点,并求出极值.1a∈R.34. 已知函数f x=ln x?ax+1?ax(1)当a=?1时,求曲线y=f x在点2,f2处的切线方程;(2)当a≤1时,讨论f x的单调性.2ax3+bx2+x+3,其中a≠0.35. 已知函数f x=1(1)当a,b满足什么条件时,f x取得极值?(2)已知a>0,且f x在区间0,1上单调递增,试用a表示出b 的取值范围.36. 已知x=1是函数f x=mx3?3m+1x2+nx+1的一个极值点,其中m,n∈R,m≠0.(1)求m与n的关系式;(2)求f x的单调区间.37. 已知函数f x=ln x+ke x(k为常数,e=2.71828?是自然对数的底数),曲线y=f x在点1,f1处的切线与x轴平行.(1)求k的值;(2)求f x的单调区间;(3)设g x=xf?x,其中f?x为f x的导函数.证明:对任意x>0,g x<1+e?2.38. 已知数列a n的首项a1=5,前n项和为S n,且S n+1=2S n+n+5n∈N?.(1)证明数列a n+1是等比数列;(2)令f x=a1x+a2x+?+a n x n,求函数f x在点x=1处的导数f?1并比较2f?1与23n2?13n的大小.39. 已知数列a n的首项a1=5,前n项和为S n,且S n+1=2S n+n+5n∈N?.(1)证明数列a n+1是等比数列;(2)令f x=a1x+a2x2+?+a n x n,求函数f x在点x=1处的导数f?1.40. 已知函数f x=ln x?ax+1?ax1a∈R.(1)当a≤12时,讨论f x的单调性;(2)设g x=x2?2bx+4,当a=14时,若对任意x1∈0,2,存在x2∈1,2,使f x1≥g x2,求实数b的取值范围.41. 设函数f x=ln x+1+a x2?x,其中a∈R.(1)讨论函数f x极值点的个数,并说明理由;(2)若?x>0,f x≥0成立,求a的取值范围.42. 设函数f x=x2+b ln x+1,其中b≠0.(1)当b>12时,判断函数f x在定义域上的单调性;(2)求函数f x的极值点;(3)证明对任意的正整数n,不等式ln1n +1>1n1n都成立.43. 如图,设抛物线方程为x2=2py p>0,M为直线y=?2p上任意一点,过M引抛物线的切线,切点分别为A,B.(1)求证:A,M,B三点的横坐标成等差数列;(2)已知当M点的坐标为2,?2p时,∣AB∣=410.求此时抛物线的方程;(3)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py p>0上,其中,点C满足OC=OA+OB(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.答案第一部分 1. D【解析】由 y =4x ,y =x 3得 x =0 或 x =2 或 x =2 (舍).所以 S = 4x ?x 3 d x 20= 2x 2?14x 4 ∣∣02=4.2. A 【解析】题中所表示阴影部分如图:利用积分即得答案. 3. D 4. C 【解析】因为 y?=3x 2,切点为 P 1,12 ,所以切线的斜率为 3,故切线方程为3x ?y +9=0,令 x =0,得 y =9.5. A【解析】当 y =sin x 时,y?=cos x ,cos0?cos π=?1,所以在函数 y =sin x 图象存在两点 x =0,x =π 使条件成立,则 A 正确;函数 y =ln x ,y =e x ,y =x 3 的导数值均非负,不符合题意. 6. D【解析】由观察可知,偶函数 f x 的导函数 g x 都是奇函数,所以有 g ?x =?g x .7. D 【解析】由题可知,双曲线右焦点为 F 2,0 ,渐近线方程为 y =± 33x ;抛物线焦点为 F? 0,p 2.设 M x 0,y 0 ,则 y 0=12p x 02.∵k MF?=k FF?,∴12p x 02?p 2x 0=p 22①.又 y?=xp,∴y?∣x =x 0=x 0p=33②.由①②得 p =4 33.8. C【解析】据已知解析式可得 f 0 =0 ,即图象经过坐标原点,故排除 A ;又当x >2π 时, x2>π ,2sin x ≤2 ,即当x >2π 时, f x =x2?2sin x >0 ,故排除 D ;又当x >2π 时, f? x =122cos x 的符号不确定,即函数在区间2π,+∞ 上不单调,故排除B . 9. B【解析】当0≤x <2 时,由 f x =x 3?x =0 得 x =0 或 x =1,故 f x 在 0,2 上有两个零点.结合函数的周期性,可得函数在0,6 上共有7 个零点,即函数在区间 0,6 内的图象与 x 轴共有 7 个交点. 10. D【解析】设抛物线 C 1 的焦点为 F ,则 F 0,p2 .设双曲线 C 2 的右焦点为 F 1,则 F 1 2,0 .直线 FF 1 的方程为 y =?p 4x +p2,设 M x 0,x 022p,因为 M 在直线 FF 1 上,所以 x 022p =?p 4x 0+p2.①因为 y =12p x 2,所以 y?=1p x ,所以 C 1 在 M 点处的切线斜率为 1p x 0,又 x 23?y 2=1 的渐近线方程为y =± 33x ,故由题意得 1p x 0=33,② 将① 、② 联立可得 p =4 33.11. B 【解析】由 f x =g x 得 x 3?bx 2+1=0.因为两个函数图象有且仅有两个不同的公共点,所以不妨设x 3?bx 2+1= x ?x 1 2 x ?x 2 .展开看对应项系数得 x 12x 2=?1,2x 1x 2+x 12 =0,故 x 2<0,x 1=?2x 2>0.于是有x 1+x 2=?x 2>0,y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2<0. 第二部分 12. 49【解析】封闭图形如图所示,则0a x d x =23x 32∣0a =23a 32?0=a 2,解得 a =49. 13. ? 3 14. 2 15. 33【解析】由已知,得 a3+c =ax 02+c ,于是有 x 02=13 ,又0≤x 0≤1 ,故 x 0=33.16. ①④。
高考数学10年真题专题解析—常用逻辑用语
常用逻辑用语年份题号考点考查内容2011课标卷理10命题及其关系平面向量模与夹角、命题真假判断2012新课标理2命题及其关系复数的概念与运算、命题真假的判定2014卷1理9全称量词与特称量词二元一次不等式表示的平面区域、全称命题与特称命题真假的判定卷2文3充分条件与必要条件导数与极值的关系、充要条件的判定2015卷1理3全称量词与特称量词特称命题的否定2017卷1理2命题及其关系复数的有关概念与运算2019卷2理7充分条件与必要条件面面平行的判定与性质、充要条件判定卷3文111.全称量词与特称量词2.简单逻辑联结词二元一次不等式表示的平面区域、全称命题与特称命题真假判断、含逻辑联结词命题的判定2020卷2文理16简单逻辑联结词含逻辑联结词命题真假的判断卷3理16命题及其关系命题真假的判断,三角函数图象及其性质考点出现频率2021年预测考点5命题及其关系4/102021年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假判断、特称命题与全称命题真假判断及其否定的书写、充要条件的判定,其中充要条件判定为重点.考点6简单逻辑联结词2/10考点7全称量词与特称量词3/10考点8充分条件与必要条件2/10考点5命题及其关系1.(2020新课标III 理16)关于函数()1sin sin f x x x=+.①()f x 的图像关于y 轴对称;②()f x 的图像关于原点对称;③()f x 的图像关于2x π=对称;④()f x 的最小值为2.其中所有真命题的序号是.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,∴函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误,故答案为:②③.2.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3p B .1p ,4p C .2p ,3p D .2p ,4p 【答案】B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b-==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .3.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈3:||1[0,3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈其中真命题是A .14,p p B .13,p p C .23,p p D .24,p p【答案】A 【解析】由1a b +==>得,1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
近三年(2018-2019-2020)高考数学试题汇编【含详解】
近三年高考数学试题汇编【含详解】专题01导数及其应用(解答题)1.【2020年高考全国Ⅰ卷文数】已知函数()e (2)x f x a x =-+.(1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)当a =1时,f (x )=e x –x –2,则f x '()=e x –1.当x <0时,f x '()<0;当x >0时,f x '()>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增.(2)f x '()=e x –a .当a ≤0时,f x '()>0,所以f (x )在(–∞,+∞)单调递增,故f (x )至多存在1个零点,不合题意.当a >0时,由f x '()=0可得x =ln a .当x ∈(–∞,ln a )时,f x '()<0;当x ∈(ln a ,+∞)时,f x '()>0.所以f (x )在(–∞,ln a )单调递减,在(ln a ,+∞)单调递增,故当x =ln a时,f (x )取得最小值,最小值为f (ln a )=–a (1+ln a ).(i )若0≤a ≤1e ,则f (ln a )≥0,f (x )在(–∞,+∞)至多存在1个零点,不合题意.(ii )若a >1e,则f (ln a )<0.由于f (–2)=e –2>0,所以f (x )在(–∞,ln a )存在唯一零点.由(1)知,当x >2时,e x –x –2>0,所以当x >4且x >2ln (2a )时,ln(2)22()e e (2)e (2)(2)202x x a xf x a x a x a =⋅-+>⋅+-+=>.故f (x )在(ln a ,+∞)存在唯一零点,从而f (x )在(–∞,+∞)有两个零点.综上,a 的取值范围是(1e,+∞).2.【2020年高考全国Ⅱ卷文数】已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.【解析】设h (x )=f (x )−2x −c ,则h (x )=2ln x −2x +1−c ,其定义域为(0,+∞),2()2h x x'=-.(1)当0<x <1时,h '(x )>0;当x >1时,h '(x )<0.所以h (x )在区间(0,1)单调递增,在区间(1,+∞)单调递减.从而当x =1时,h (x )取得最大值,最大值为h (1)=−1−c .故当且仅当−1−c ≤0,即c ≥−1时,f (x )≤2x +c .所以c 的取值范围为[−1,+∞).(2)()()2(ln ln )()f x f a x a g x x a x a--==--,x ∈(0,a )∪(a ,+∞).222(ln ln )2(1ln )()()()x a a a a x x x x g x x a x a -+--+'==--取c =−1得h (x )=2ln x −2x +2,h (1)=0,则由(1)知,当x ≠1时,h (x )<0,即1−x +ln x <0.故当x ∈(0,a )∪(a ,+∞)时,1ln 0a ax x-+<,从而()0g x '<.所以()g x 在区间(0,a ),(a ,+∞)单调递减.3.【2020年高考全国Ⅲ卷文数】已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【解析】(1)2()3f x x k '=-.当k =0时,3()f x x =,故()f x 在()-∞+∞,单调递增;当k <0时,2()30f x x k '=->,故()f x 在()-∞+∞,单调递增.当k >0时,令()0f x '=,得3x =±.当(,3x ∈-∞-时,()0f x '>;当()33x ∈-时,()0f x '<;当()3x ∈+∞时,()0f x '>.故()f x在(,3-∞-,()3+∞单调递增,在()33单减.(2)由(1)知,当0k ≤时,()f x 在()-∞+∞,单调递增,()f x 不可能有三个零点.当k>0时,=x -()f x的极大值点,x 为()f x 的极小值点.此时,11k k --<+且(1)0f k --<,(1)0f k +>,(0f >.根据()f x 的单调性,当且仅当(03f <,即2209k -<时,()f x 有三个零点,解得427k <.因此k 的取值范围为(0427,.10.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减.又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点.所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f = ,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x .又当0,[0,π]a x ∈ 时,ax ≤0,故()f x ax .因此,a 的取值范围是(,0]-∞.11.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-.因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增.因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---== ⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根.综上,()0f x =有且仅有两个实根,且两个实根互为倒数.13.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =.若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭ 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27.17.【2018年高考全国Ⅲ卷文数】已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=.因此切线方程是210x y --=.(2)当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+.令21()1e x g x x x +=+-+,则1()21e x g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增;所以()g x (1)=0g ≥-.因此()e 0f x +≥.18.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x .由题设知,f ′(2)=0,所以a =212e.从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1e x x --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g′(x )<0;当x >1时,g′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0.因此,当1e a ≥时,()0f x ≥.19.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-或x =3+当x ∈(–∞,3-)∪(3++∞)时,f ′(x )>0;当x ∈(3-3+)时,f ′(x )<0.故f (x )在(–∞,3-),(3++∞)单调递增,在(3-,3+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点.专题02平面解析几何(解答题)1.【2020年高考全国Ⅰ卷文数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a = ,(,1)GB a =- .由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<.由于直线PA 的方程为(3)9t y x =+,所以11(3)9t y x =+.直线PB 方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++,即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219x y +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++.代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=.解得3n =-(舍去),32n =.故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2.若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.【2020年高考全国Ⅱ卷文数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a =,||4CD c =.由4||||3CD AB =得2843b c a=,即2322(c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c +=.所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-.由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.3.【2020年高考全国Ⅲ卷文数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.【解析】(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=.(2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-.由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ =,直线11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为1105222⨯=.22||P Q =22P Q 的方程为71093y x =+,点A 到直线22P Q 的距离为13026,故22AP Q △的面积为113052262⨯=.综上,APQ △的面积为52.7.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =.所以C 的方程为22163x y +=.(2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=.于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=,可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21((1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =.此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||23DQ AP ==.若D 与P 重合,则1||||2DQ AP =.综上,存在点41(,)33Q ,使得||DQ 为定值.8.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b +=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,得m =±8,与AM 距离比较远的直线方程:28x y -=,直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:1255d ==,由两点间距离公式可得||AM ==.△AMN 的面积的最大值:11825⨯=.10.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a .故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值.理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .11.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C 的离心率是1ce a==-.(2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b +=,即||16c y =,①222x y c +=,②22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P .所以4b =,a的取值范围为)+∞.12.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+.由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=.于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭.由于EM AB ⊥ ,而()2,2EM t t =- ,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆方程22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||EM = ,所求圆方程22522x y ⎛⎫+-= ⎪⎝⎭.17.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.①将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN .综上,∠ABM =∠ABN .18.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x =-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+=,故212224k x x k ++=.所以212244(1)(1)k AB AF BF x x k +=+=+++=.由题设知22448k k+=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩,因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.19.【2018年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+ .【解析】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得302m <<,故12k <-.(2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP .于是1||22x FA =- .同理2||=22x FB - .所以1214()32FA FB x x +=-+= .故2||=||+||FP FA FB .专题3解三角形1.【2020年高考全国Ⅲ卷文数】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =A B .2C .D .8【解析】设,,AB c BC a CA b===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=222145cos ,sin ,299a cb B B ac +-==∴==tan B ∴=.故选:C2.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =14-,则b c=A .6B .5C .4D .3【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,4.【2018年高考全国Ⅲ文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =A .2πB .3πC .4πD .6π【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=,由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,5.【2018年高考全国Ⅱ文数】在ABC △中,cos 25C =,1BC =,5AC =,则AB =A .B .CD .【解析】因为cos25C =,所以cos C =22cos 2C −1=2×25−1=35-.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2−2AC ×BC ×cos C =52+12−2×5×1×(35-)=32,所以AB =.故选A.6.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π ,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=10.【2018年高考全国Ⅰ文数】ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.【解析】根据题意,由sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin B C C B+4sin sin sin A B C =,即1sin 2A =,由2228b c a +-=,结合余弦定理可得2cos 8bc A =,所以A 为锐角,且cos 2A =,从而求得833bc =,所以ABC △的面积为1183123sin 22323S bc A ==⨯⨯=,故答案是233.12.【2020年高考全国Ⅰ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC △的面积;(2)若sin A sin C ,求C .【解析】(1)由题设及余弦定理得2222832cos150c c =+-⨯︒,解得2c =-(舍去),2c =,从而a =.ABC △的面积为12sin1502⨯⨯︒=.(2)在ABC △中,18030A B C C =︒--=︒-,所以sin sin(30)sin(30)A C C C C =︒-=︒+,故sin(30)2C ︒+=.而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒.13.【2020年高考全国Ⅱ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若3b c a -=,证明:△ABC 是直角三角形.【解析】(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=.所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -=.由(1)知23B C π+=,所以2sin sin()33B B ππ--=.即11sin cos 222B B -=,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形.18.【2020年新高考全国Ⅰ卷】在①ac =,②sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C π=和余弦定理得22222a b c ab +-=.由sin A B =及正弦定理得a =.2222=,由此可得b c =.由①ac =,解得1a b c ===.因此,选条件①时问题中的三角形存在,此时1c =.方案二:选条件②.由6C π=和余弦定理得22222a b c ab +-=.由sin A B =及正弦定理得a =.2222=,由此可得b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =.方案三:选条件③.由6C π=和余弦定理得22222a b c ab +-=.由sin A B =及正弦定理得a =.2222=,由此可得b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.19.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=.因为sin A ≠0,所以sinsin 2A CB +=.由180A B C ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=.因为cos02B ≠,故1sin 22B =,因此B =60°.(2)由题设及(1)知△ABC 的面积4ABC S a =△.由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△.因此,△ABC 面积的取值范围是,82⎛⎫ ⎪ ⎪⎝⎭.专题4数列11.【2020年高考全国Ⅰ卷文数】数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a =.【解析】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-.设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++ 135********()()a a a a a a a a =+++++++ 111111(2)(10)(24)(44)(70)a a a a a a =++++++++++11(102)(140)(5172941)a a ++++++++118392928484540a a =++=+=,17a ∴=.14.【2020年新高考全国Ⅰ卷】将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.【解析】因为数列{}21n -是以1为首项,以2为公差的等差数列,数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列,所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-,故答案为:232n n -.19.【2020年高考全国Ⅲ卷文数】设等比数列{a n }满足124a a +=,138a a -=.(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .【解析】(1)设{}n a 的公比为q ,则11n n a a q -=.由已知得1121148a a q a q a +=⎧⎪⎨-=⎪⎩,解得11,3a q ==.所以{}n a 的通项公式为1=3n n a -.(2)由(1)知3log 1.n a n =-故(1).2n n n S -=由13m m m S S S +++=得(1)(1)(3)(2)m m m m m m -++=++,即2560m m --=.解得1m =-(舍去),6m =.21.【2020年新高考全国Ⅰ卷】已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .【解析】(1)设{}n a 的公比为q .由题设得31120a q a q +=,218a q =.解得12q =-(舍去),2q =.由题设得12a =.所以{}n a 的通项公式为2n n a =.(2)由题设及(1)知10b =,且当122n n m +≤<时,m b n =.所以10012345673233636465100()()()()S b b b b b b b b b b b b b =+++++++++++++++ 2345012223242526(10063)=+⨯+⨯+⨯+⨯+⨯+⨯-480=.25.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【解析】(1)设{}n a 的公差为d .由95S a =-得140a d +=.由a 3=4得124a d +=.于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=.由10a >知0d <,故n n S a ≥等价于211100n n -+ ,解得1≤n ≤10.所以n 的取值范围是{|110,}n n n *≤≤∈N .26.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为21321n n +++-= .31.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.【解析】(1)由条件可得a n +1=2(1)n n a n+.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4.将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得121n na a n n+=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得12n na n-=,所以a n =n ·2n -1.32.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =.综上,6m =.33.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.所以当n =4时,S n 取得最小值,最小值为–16.专题5概率与统计(解答题)1.【2020年高考全国Ⅰ卷文数】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级A B C D 频数40202020乙分厂产品等级的频数分布表等级A B C D 频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【解析】(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=;乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=.(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润6525−5−75频数40202020因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为利润70300−70频数28173421因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题.2.【2020年高考全国Ⅱ卷文数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,20219000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r (()niix y x y--∑.【解析】(1)由己知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000.(2)样本(,)ii x y (1,2,,20)i =的相关系数20)0.943iix y r x y --=∑((.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.3.【2020年高考全国Ⅲ卷文数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:人次≤400人次>400空气质量好3337空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.4.【2020年新高考全国Ⅰ卷】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO PM 2.5[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.8416.63510.828【解析】(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=.(2)根据抽查数据,可得22⨯列联表:2SO PM 2.5[0,150](150,475][0,75]6416(75,115]1010(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯.由于7.484 6.635>,故有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关.5.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.P (K 2≥k )0.0500.0100.001k3.8416.63510.828【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.6.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i ii s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦=0.0296,0.020.17s ==⨯≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.7.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.10.【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.。
20010年普通高等学校招生全国统一考试数学卷(湖北.文)含详解
绝密*启用前2010年普通高等学校招生全国统一考试(湖北卷)数 学本试题卷共4页,三大题21小题,全卷满分150分,考试用时120分钟。
*祝考试顺利* 注意事项:1. 答题前,考生务必将自己的姓名、准考证号走宝在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A (或B )后的方框涂黑。
2. 选择题的作答:每小题迁出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后。
再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
4. 考生必须保持答题卡的整洁,考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合M={1,2,4,8},N={x|x 是2的倍数},则M ∩N= A.{2,4} B.{1,2,4} C.{2,4,8} D{1,2,8}2.函数f(x)= ),24x x R π-∈的最小正周期为A.2πB.xC.2πD.4π3.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =A.4B.14C.-4 D-144.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b . A. ①②B. ②③C. ①④D.③④5.函数y =的定义域为A.( 34,1) B(34,∞) C (1,+∞) D. ( 34,1)∪(1,+∞)6.现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是 A .45B. 56C.5654322⨯⨯⨯⨯⨯ D.6543⨯⨯⨯⨯27.已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+A.1+B. 1-C. 3+D 3-8.已知ABC ∆和点M 满足0MA MB MC ++= .若存在实m 使得AM AC m AM +=成立,则m =A.2B.3C.4D.59.若直线y x b =+与曲线3y =-b 的取值范围是A.[1-1+B.[1-,3]C.[-1,1+D.[1-10.记实数12,,x x …n x 中的最大数为max {12,,x x …n x },最小数为min{12,,x x …n x }.已知ABC ∆的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为m ax{,,}m in{,,},a b c a b ct b c a b c a=∙则“t=1”是“ABC ∆为等边三解形”的A,充分布不必要的条件 B.必要而不充分的条件 C.充要条件 D.既不充分也不必要的条件二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,摸棱两可均不得分。
十年真题(2010_2019)高考数学真题分类汇编专题06平面向量文(含解析)
专题06平面向量
历年考题细目表
历年高考真题汇编
1.【2019年新课标1文科08】已知非零向量,满足||=2||,且()⊥,则与的夹角为()A.B.C.D.
【解答】解:∵()⊥,
∴
,
∴
,
∵,
∴.
故选:B.
2.【2018年新课标1文科07】在△ABC中,AD为BC边上的中线,E为AD的中点,则()A.B.C.D.
【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,
()
,
故选:A.
3.【2015年新课标1文科02】已知点A(0,1),B(3,2),向量(﹣4,﹣3),则向量()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)
【解答】解:由已知点A(0,1),B(3,2),得到(3,1),向量(﹣4,﹣3),
则向量(﹣7,﹣4);
故选:A.
4.【2014年新课标1文科06】设D,E,F分别为△ABC的三边BC,CA,AB的中点,则()
A.B.C.D.
【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,
∴()+()(),
故选:A.
5.【2010年新课标1文科02】平面向量,已知(4,3),(3,18),则夹角的余弦值等于()
A.B.C.D.
【解答】解:设(x,y),
∵a=(4,3),2a+b=(3,18),
∴
∴cosθ
,
故选:C.
6.【2017年新课标1文科13】已知向量(﹣1,2),(m,1),若向量与垂直,则m=.。
2010年高考数学试题分类汇编--向量
2010年高考数学试题分类汇编——向量(2010江苏卷)15、(本小题满分14分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()·=0,求t的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。
满分14分。
(1)(方法一)由题设知,则+=-=(2,6),(4,4).AB AC AB AC所以故所求的两条对角线的长分别为、。
(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则: E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(-2,-1),。
由()·=0,得:,从而所以。
或者:,(2010江苏卷)15、(本小题满分14分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(3)求以线段AB、AC为邻边的平行四边形两条对角线的长;(4)设实数t满足()·=0,求t的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。
满分14分。
(1)(方法一)由题设知,则+=-=AB AC AB AC(2,6),(4,4).所以故所求的两条对角线的长分别为、。
(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则: E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(-2,-1),。
由()·=0,得:,从而所以。
或者:,温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
十年真题(2010-2019)高考数学(理)分类汇编专题06 平面向量(新课标Ⅰ卷)(解析版)
专题06平面向量历年考题细目表题型年份考点试题位置单选题2019 平面向量的数量积2019年新课标1理科07单选题2018 平面向量基本定理2018年新课标1理科06单选题2015 平面向量基本定理2015年新课标1理科07单选题2011 平面向量的定义2011年新课标1理科10填空题2017 向量的模2017年新课标1理科13填空题2016 平面向量的数量积2016年新课标1理科13填空题2014 平面向量的数量积2014年新课标1理科15填空题2013 平面向量的数量积2013年新课标1理科13填空题2012 向量的模2012年新课标1理科13历年高考真题汇编1.【2019年新课标1理科07】已知非零向量,满足||=2||,且()⊥,则与的夹角为()A.B.C.D.【解答】解:∵()⊥,∴,∴,∵,∴.故选:B.2.【2018年新课标1理科06】在△ABC中,AD为BC边上的中线,E为AD的中点,则()A.B.C.D.【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,(),故选:A.3.【2015年新课标1理科07】设D为△ABC所在平面内一点,,则()A.B.C.D.【解答】解:由已知得到如图由;故选:A.4.【2011年新课标1理科10】已知与均为单位向量,其夹角为θ,有下列四个命题P1:||>1⇔θ∈[0,);P2:||>1⇔θ∈(,π];P3:||>1⇔θ∈[0,);P4:||>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P4【解答】解:由,得出2﹣2cosθ>1,即cosθ,又θ∈[0,π],故可以得出θ∈(,π],故P3错误,P4正确.由||>1,得出2+2cosθ>1,即cosθ,又θ∈[0,π],故可以得出θ∈[0,),故P2错误,P1正确.故选:A.5.【2017年新课标1理科13】已知向量,的夹角为60°,||=2,||=1,则|2|=.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴4•4=22+4×2×1×cos60°+4×12=12,∴|2|=2.【解法二】根据题意画出图形,如图所示;结合图形2;在△OAC中,由余弦定理得||2,即|2|=2.故答案为:2.6.【2016年新课标1理科13】设向量(m,1),(1,2),且||2=||2+||2,则m=﹣2.【解答】解:||2=||2+||2,可得•0.向量(m,1),(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.7.【2014年新课标1理科15】已知A,B,C为圆O上的三点,若(),则与的夹角为.【解答】解:在圆中若(),即2,即的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°8.【2013年新课标1理科13】已知两个单位向量,的夹角为60°,t (1﹣t ).若•0,则t= . 【解答】解:∵,,∴0,∴t cos60°+1﹣t =0,∴10,解得t =2.故答案为2.9.【2012年新课标1理科13】已知向量夹角为45°,且,则 .【解答】解:∵, 1∴∴|2|解得 故答案为:3考题分析与复习建议本专题考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积,平面向量的综合应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:平面向量的线性运算,平面向量基本定理及坐标表示,平面向量的数量积等,预测明年本考点题目会比较稳定,备考方向以知识点平面向量的线性运算,平面向量的数量积,平面向量的综合应用等为重点较佳.最新高考模拟试题1.在ABC ∆中,2AB AC AD +=u r ,0AE DE +=u u u r u u u r r ,若EB xAB y AC =+u u u r u u u r u u u r,则( ) A .3y x =B .3x y =C .3y x =-D .3x y =-【答案】D 【解析】因为2AB AC AD +=u u u v u u u v u u u v ,所以点D 是BC 的中点,又因为0AE DE +=u u u v u u u v v,所以点E 是AD 的中点,所以有:11131()22244BE BA AE AB AD AB AB AC AB AC =+=-+=-+⨯+=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v ,因此31,344x y x y =-=⇒=-,故本题选D.2.已知非零向量a r ,b r 的夹角为60o,且满足22a b -=r r ,则a b ⋅r r 的最大值为( )A .12B .1C .2D .3【答案】B 【解析】因为非零向量a r ,b r 的夹角为60o,且满足22a b -=r r , 所以2222444a b a b a b -=+-⋅=r r rr r r ,即2244cos 604a b a b +-=or r r r ,即22424a b a b +-=r r r r ,又因为2244a b a b +≥r rr r ,当且仅当2a b =r r 时,取等号;所以222424a b a b a b ≤+-=r r rr r r ,即2a b ≤r r ;因此,1cos6012a b a b a b ⋅==≤or r r r r r .即a b ⋅r r 的最大值为1.故选B3.设a r ,b r 均为单位向量,则“a r 与b r夹角为2π3”是“||a b +=r r ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】因为a r ,b r均为单位向量, 若a r 与b r夹角为2π3,则222||211211cos 13a b a ba b π+=++⋅=++⨯⨯⨯=r r r r r r ;因此,由“a r 与b r 夹角为2π3”不能推出“||3a b +=r r ”;若||3a b +=r r ,则22||211211cos ,3a b a b a b a b +=++⋅=++⨯⨯⨯=r r r r r r r r,解得1cos ,2a b =v v ,即a r 与b r 夹角为π3,所以,由“||3a b +=r r ”不能推出“a r 与b r 夹角为2π3”因此,“a r 与b r 夹角为2π3”是“||3a b +=r r ”的既不充分也不必要条件.故选D4.在矩形ABCD 中,4AB =uu u r ,2AD =u u u r .若点M ,N 分别是CD ,BC 的中点,则AM MN ⋅=u u u u r u u u u r( )A .4B .3C .2D .1【答案】C 【解析】由题意作出图形,如图所示:由图及题意,可得:12AM AD DM AD AB =+=+u u u u r u u u r u u u u r u u u r u u u r ,1122MN CN CM CB CD =-=-u u u u r u u u r u u u u r u u u r u u u r 11112222BC DC AD AB =-+=-+u u u r u u u r u u ur u u u r .∴111222AM MN AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u u r u u u r u u u r u u u r u u u r 221111||||41622424AD AB =-⋅+⋅=-⋅+⋅=u u u r u u u r .故选:C .5.已知P 为等边三角形ABC 所在平面内的一个动点,满足()BP BC R λλ=∈u u u r u u u r,若2AB =u u u r ,则()AP AB AC u u u v u u u v u u u v⋅+=( )A .23B .3C .6D .与λ有关的数值【答案】C 【解析】如图:以BC 中点为坐标原点O ,以BC 方向为x 轴正方向,OA 方向为y 轴正方向,建立平面直角坐标系,因为2AB =u u u r ,则3AO =u u u r,因为P 为等边三角形ABC 所在平面内的一个动点,满足()BP BC R λλ=∈u u u r u u u r,所以点P 在直线BC ,所以AP uu u r 在AO u u ur 方向上的投影为AO u u u v ,因此2()226AP AB AC AO AP AO ⋅+=⋅==u u u r u u u r u u u r u u u r u u u r u u u r .故选C6.已知向量(2,1),(,1)a b m ==-r r,且()a a b ⊥-rr r,则m 的值为( ) A .1 B .3C .1或3D .4【答案】B 【解析】因为(2,1),(,1)a b m ==-r r,所以(2,2)a b m -=-rr,因为()a a b ⊥-rr r,则()2(2)20a a b m ⋅-=-+=rr r,解得3m = 所以答案选B.7.已知向量a r 、b r 为单位向量,且a b +r r 在a r 的方向上的投影为312+,则向量a r 与b r 的夹角为( )A .6π B .4π C .3π D .2π 【答案】A【解析】设向量a r 与b r的夹角为θ, 因为向量a r 、b r为单位向量,且a b +r r 在a r 的方向上的投影为31+,则有3()||1a b a a ⎛⎫+⋅=+ ⎪ ⎪⎝⎭r r r r ,变形可得:3112a b +⋅=+rr ,即3cos c 1o 1s a b θθ⋅=⨯⨯==rr ,又由0θπ≤≤,则6πθ=,故选A .8.在矩形ABCD 中,3,4,AB AD AC ==与BD 相交于点O ,过点A 作AE BD ⊥,垂足为E ,则AE EC ⋅=u u u v u u u v( )A .725B .14425C .125D .1225【答案】B 【解析】 如图:由3AB =,4=AD 得:9165BD =+=,125AB AD AE BD ⋅== 又()AE EC AE EO OC AE EO AE OC AE EO AE AO ⋅=⋅+=⋅+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rAE BD ⊥Q 0AE EO ∴⋅=u u u r u u u r又2144cos 25AE AE AO AE AO EAO AE AO AE AO⋅=∠=⋅==u u u ru u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r14425AE EC ∴⋅=u u u r u u u r 本题正确选项:B 9.已知直线y=+m 和圆2+y 2=1交于A 、B 两点,O 为坐标原点,若3AO AB 2⋅=u u u r u u u r ,则实数m=( )A .1± B. C.2±D .12±【答案】C 【解析】联立221y x mx y =+⎧⎨+=⎩ ,得22+2m+m 2-1=0, ∵直线y=+m 和圆2+y 2=1交于A 、B 两点,O 为坐标原点, ∴△=4m 2+8m 2-8=12m 2-8>0,解得mm <,设A (1,y 1),B (2,y 2),则1+2=-m ,21212m x x -= , y 1y 2=(1+m )(2+m )=12+m (1+2)+m 2,AO u u u r=(-1,-y 1),AB u u u v=(2-1,y 2-y 1),∵21123,2AO AB AO AB x x x ⋅=∴⋅=-u u u r u u u r u u u r u u u r +y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=32, 解得m=2±. 故选:C .10.已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=u u u r u u u r,则λ的值为( )A .3B .2C .23 D .52【答案】B 【解析】 由题意可得:()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r113AB BC BC AB λ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r 22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭u u u r u u u r u u ur u u u r ,且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-o u u u r u u u r u u u r u u u r, 故()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭,解得:2λ=. 故选:B .11.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u ru u u r=,那么EB EC ⋅u u u r u u u r的值为( ) A .83- B .1-C .1D .3【答案】B 【解析】由已知可得:7, 又23tan BED 3BD ED ∠===所以221tan 1cos 1tan 7BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EBEC BEC ⎛⎫⋅=∠=-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ‖ 故选:B .12.在ABC ∆中,3AC =,向量AB u u u v 在AC u u u v上的投影的数量为2,3ABC S ∆-=,则BC =( ) A .5 B .27C 29D .2【答案】C【解析】∵向量AB u u u v 在AC u u u v上的投影的数量为2-, ∴||cos 2AB A =-u u u r.① ∵3ABC S ∆=,∴13||||sin ||sin 322AB AC A AB A ==u u u r u u u r u u ur , ∴||sin 2AB A =u u u r.②由①②得tan 1A =-, ∵A 为ABC ∆的内角,∴34A π=,∴2||3sin4AB π==u u u r . 在ABC ∆中,由余弦定理得2222232cos323(2942BC AB AC AB AC π=+-⋅⋅⋅=+-⨯⨯-=,∴BC =故选C .13.在△ABC 中,,2,BD DC AP PD BP AB AC u u u r u u u r u u u r u u u r u u u r u u u r u u u rλμ===+,则λμ+= ( ) A .1-3B .13C .1-2D .12【答案】A 【解析】因为,2,BD DC AP PD ==u u u r u u u r u u u r u u u r所以P 为ABC ∆的重心,所以11311,22222AD AB AC AP AB AC =+∴=+u u u r u u u r u u u r u u u r u u u r u u u r ,所以1133AP AB AC =+u u u r u u u r u u u r ,所以23BP AP AB AB AC =-=-+u u u r u u u r u u u r u u ur u u u r因为BP AB AC λμ=+u u u r u u u r u u u r, 所以211=,,333λμλμ-=∴+=- 故选:A14.在ABC ∆中,543AB BC BC CA CA AB →→→→→→==g g g ,则sin :sin :sin A B C =( ) A .9:7:8 B .9:7:8C .6:8:7D .6:8:7【答案】B 【解析】设•••543AB BC BC CA CA AB t ===u u u r u u u r u u u r u u u r u u u r u u u r ,所以5,4,3AB BC t BC CA t CA AB t ⋅=⋅=⋅=u u u r u u u r u u u r u u u r u u u r u u u r,所以cos 5,cos 4,cos 3ac B t ab C t bc A t -=-=-=,所以22222222210,8,6c a b t b a c t c b a t +-=-+-=-+-=-, 得9,7,8a t b t c t =-=-=- 所以sin :sin :sin ::A B C a b c ==9:7:8故选:B15.在平行四边形ABCD 中,113,2,,,32AB AD AP AB AQ AD ====u u u r u u u r u u u r u u u v 若12,CP CQ ⋅=u u u v u u u v则ADC ∠=( )A .56πB .34π C .23π D .2π【答案】C 【解析】如图所示,平行四边形ABCD 中, 3,2AB AD ==,11,32AP AB AQ AD ==u u u r u u u r u u u r u u u r ,23CP CB BP AD AB ∴=+=--u u u r u u u r u u u r u u u r u u u r ,12CQ CD DQ AB AD =+=--u u u r u u u r u u u r u u u r u u u r ,因为12CP CQ ⋅=u u u r u u u r,所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r22214323AB AD AB AD =++⋅u u ur u u u r u u u r u u u r222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C.16.已知△ABC 中,22BC BA BC =⋅=-u u u r u u u r u u u r ,.点P 为BC 边上的动点,则()PC PA PB PC ⋅++u u u r u u u r u u u r u u u r的最小值为( ) A .2 B .34-C .2-D .2512-【答案】D 【解析】以BC 的中点为坐标原点,建立如图的直角坐标系,可得()()1010B C -,,,,设()()0P a A x y ,,,, 由2BA BC ⋅=-u u u r u u u r,可得()()120222x y x +⋅=+=-,,,即20x y =-≠,, 则()()()101100PC PA PB PC a x a a a y ⋅++=-⋅---+-++u u u r u u u r u u u r u u u r,, ()()()()21312332a x a a a a a =--=---=--21253612a ⎛⎫=-- ⎪⎝⎭,当16a =时,()PC PA PB PC ⋅++u u u r u u u r u u u r u u u r 的最小值为2512-.17.如图Rt ABC ∆中,2ABC π∠=,2AC AB =,BAC ∠平分线交△ABC 的外接圆于点D ,设AB a =u u u r r ,AC b =u u u r r ,则向量AD =u u u r( )A .a b +r rB .12a b +r rC .12a b +r rD .23a b +r r【答案】C 【解析】解:设圆的半径为,在Rt ABC ∆中,2ABC π∠=,2AC AB =, 所以3BAC π∠=,6ACB π∠=,BAC ∠平分线交ABC ∆的外接圆于点D ,所以6ACB BAD CAD π∠=∠=∠=,则根据圆的性质BD CD AB ==,又因为在Rt ABC ∆中,12AB AC r OD ===, 所以四边形ABDO 为菱形,所以12AD AB AO a b =+=+u u u r u u u r u u u r r r.故选:C .18.在ABC ∆中,90A ∠=︒,1AB =,2AC =,设点D 、E 满足AD AB λ=u u u r u u u r ,(1)AE λ=-u u ur ()AC R λ∈u u u r ,若5BE CD ⋅=u u u r u u u r,则λ=( ) A .13- B .2 C .95D .3【答案】D因为90A ∠=︒,则•0AB AC =u u u r u u u r ,所以()()BE CD AE AB AD AC •=-•-u u u r u u u r u u u r u u u r u u u r u u u r22[(1)]()(1)4(1)34AC AB AB AC AC AB λλλλλλλ=--•-=---=---=-u u u u r u u u r u u u r u u u r u u u r u u u r .由已知,345λ-=,则3λ=. 选D .19.已知点C 为扇形AOB 的弧AB 上任意一点,且120AOB ∠=︒,若(,)OC OA OB R λμλμ=+∈u u u r u u u r u u u r,则λμ+的取值范围为( )A .[2,2]-B .C .D .[1,2]【答案】D 【解析】解:设半径为1,由已知可设OB 为轴的正半轴,O 为坐标原点,建立直角坐标系,其中A (12-,2),B (1,0),C (cos θ,sin θ)(其中∠BOC =θ203πθ⎛⎫≤≤⎪⎝⎭有OC OA OB λμ=+u u u r u u u r u u u r (λ,μ∈R )即:(cos θ,sin θ)=λ(12-)+μ(1,0);整理得:12-λ+μ=cos θ=sin θ,解得:λ=,μ=cos θ,则λ+μ=+cos θ=sin θ+cos θ=2sin (θ6π+),其中203πθ⎛⎫≤≤ ⎪⎝⎭;易知λ+μ=cos θ=θ+cos θ=2sin (θ6π+),由图像易得其值域为[1,2] 故选:D .20.在同一平面内,已知A 为动点,B ,C 为定点,且∠BAC=3π,2ACB π∠≠,BC=1,P 为BC 中点.过点P 作PQ⊥BC 交AC 所在直线于Q ,则AQ uuu r 在BC uuu r方向上投影的最大值是( )A .13B .12C D .23【解析】建立如图所示的平面直角坐标系,则B (-12,0),C (12,0),P (0,0), 由BAC 3π∠=可知,ABC 三点在一个定圆上,且弦BC 所对的圆周角为3π,所以圆心角为23π.圆心在BC 的中垂线即y 轴上,且圆心到直线BC 的距离为132tan 3BCπ=3(0,6,半径为22133()()26+=. 所以点A 的轨迹方程为:22313x y ⎛+= ⎝⎭,则213x ≤ ,则303x -≤< , 由AQ uuu r 在BC u u u r 方向上投影的几何意义可得:AQ uuu r 在BC u u u r方向上投影为|DP|=||,则AQ uuu r在BC u u u r3故选:C .21.已知圆22450x y x ++-=的弦AB 的中点为(1,1)-,直线AB 交x 轴于点P ,则PA PB ⋅u u u r u u u r的值为______. 【答案】5- 【解析】设(1,1)M -,圆心(2,0)C -, ∵10112MC k -==-+,根据圆的性质可知,1AB k =-,∴AB 所在直线方程为1(1)y x -=-+,即22gRr,联立方程224500x y x x y ⎧++-=⎨+=⎩可得,22450x x +-=,设11(,)A x y ,22(,)B x y ,则1252x x +=-, 令0y =可得(0,0)P ,12121225PA PB x x y y x x ⋅=+==-u u u r u u u r,故答案为:-5.22.已知向量(2,1),(,1)a b λ=-=r r ,若||||a b a b +=-r rr r ,则λ=______.【答案】12【解析】解:()()2,1,,1a b λ=-=r Q r()()2,0,2,2a b a b λλ∴+=+-=--r rr r ;a b a b +=-r r r r Q ;2λ∴+=()()22224λλ∴+=-+;解得12λ=. 故答案为:12.23.向量()1,2a v=-,()1,0b =-r ,若()()a b a b λ-⊥+r r r r ,则λ=_________.【答案】13【解析】向量()1,2a =-v,()1,0b =-r ,所以()()()2,2,1,2a b a b λλλ-=-+=--r r r r,又因为()()a b a b λ-⊥+r r r r,所以()()0a b a b λ-⋅+=r r r r,即()()21220λλ--⨯-=,解得13λ=,故答案为13. 24.设向量12,e e r r的模分别为1,2,它们的夹角为3π,则向量21e e -r r 与2e r 的夹角为_____. 【答案】6π 【解析】()221221242cos33e e e e e e π-⋅=-⋅=-=r r r r r r又21e e -===r r()212212212cos ,e e e e e e e e e -⋅∴<->===-⋅r r r r r r r r r向量21e e -r r 与r2e 的夹角为:6π本题正确结果:6π 25.已知平面向量a r ,m v ,n v ,满足4a =r ,221010m a m n a n ⎧-⋅+=⎨-⋅+=⎩v v v v v v ,则当m n -=u r r _____,则m v 与n v的夹角最大. 【解析】设a r,m v ,n v的起点均为O ,以O 为原点建立平面坐标系, 不妨设(4,0)a =r,(,)m x y v=,则222m x y =+u r ,4a m x ⋅=r u r, 由210m a m -⋅+=u r r u r可得22410x y x +-+=,即22(2)3x y -+=, ∴m v的终点M 在以(2,0) 同理n v的终点N在以(2,0)为圆心,以显然当OM ,ON 为圆的两条切线时,MON ∠最大,即m v ,n v的夹角最大.设圆心为A,则3 AM=,∴221OM OA AM=-=,3sin2MOA∠=,∴60MOA∠=︒,设MN与x轴交于点B,由对称性可知MN x⊥轴,且2MN MB=,∴322sin2132MN MB OM MOA==⋅∠=⨯⨯=.故答案为:3.26.如图,已知P是半径为2,圆心角为3π的一段圆弧AB上一点,2A BB C=u u u v u u u v,则PC PA⋅u u u r u u u r的最小值为_______.【答案】5﹣13【解析】设圆心为O,AB中点为D,由题得22sin2,36AB ACπ=⋅⋅=∴=.取AC中点M,由题得2PA PC PMPC PA AC⎧+=⎨-=⎩u u u v u u u v u u u u vu u u v u u u v u u u v,两方程平方相减得2221944PC PA PM AC PM⋅=-=-u u u r u u u r u u u u r u u u r u u u u r,要使PC PA⋅u u u r u u u r取最小值,就是PM最小,当圆弧AB的圆心与点P、M共线时,PM最小.此时DM=221113,()3222DM∴=+=,所以PM 有最小值为2﹣13, 代入求得PC PA ⋅u u u r u u u r 的最小值为5﹣213.故答案为:5﹣21327.如图,在边长为2的正三角形ABC 中,D 、E 分别为边BC 、CA 上的动点,且满足CE mBD =(m 为定常数,且(0,1]m ∈),若AD DE ⋅u u u r u u u r 的最大值为34-,则m =________.【答案】12【解析】 以BC 中点为坐标原点O ,OC 方向为x 轴正方向,OA 方向为y 轴正方向,建立如图所示平面直角坐标系, 因为正三角形ABC 边长为2,所以(1,0)B -,(1,0)C ,3)A ,则(2,0)BC =u u u r ,(3)CA =-u u u r ,因为D 为边BC 上的动点,所以设BD tBC =u u u r u u u r ,其中01t ≤≤, 则(2,0)BD t =u u u r ,所以(21,0)D t -;又CE mBD tmBC ==,所以(3)CE tmCA tm tm ==-u u u r u u u r ,因此(13)E tm tm -,所以(21,3)AD t =--u u u r ,(223)DE tm t tm =--u u u r, 故2(21)(22)32(2)2(3)2AD DE t tm t tm m t m t ⋅=----=-++--u u u r u u u r2223332(2)22(2)222424m m m m t t m t m m m ⎡⎤---⎛⎫⎛⎫⎛⎫=-+--=-+---⎢⎥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦223101(2)2424m m m m t m m --+⎛⎫=-+-+ ⎪++⎝⎭,因为(0,1]m ∈,所以31513,2422434m m m -⎡⎫=-+∈⎪⎢++⎣⎭,又01t ≤≤, 所以当且仅当324m t m -=+时,AD DE ⋅u u u r u u u r 取得最大值, 即21013244m m m -+=-+,整理得221780m m -+=,解得12m =或8m =(舍) 故答案为1228.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B 成等差数列,则AB 的长为________.23 【解析】 因为1tan A ,1tan C ,1tan B成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B C C A B A B A B +=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=, 又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v =+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 即22224232c b a ab c ab =++⋅=,解23c =即AB 的长为23. 故答案为23 29.如图,在平面四边形ABCD 中,90CBA CAD ∠=∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC的中点.若AC AD AE λμ=+u u u r u u u r u u u r (,R λμ∈),则λμ的值为_______.43 【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2,则有A (0,0),B (2,0),C (2,2),E (2,1),AC =2,AD =2×tan30°=263,过D 作DF⊥轴于F ,∠DAF=180°-90°-45°=45°, DF =26326223=D (233-23, AC u u u r =(2,2),AD u u u r =(233-23),AE u u u r =(2,1),因为AC AD AE λμ=+u u u r u u u r u u u r , 所以,(2,2)=λ(233-23)+μ(2,1), 所以,23223232μμ⎧-+=⎪⎪⎨⎪+=⎪,解得:3343λμ⎧=⎪⎪⎨⎪=⎪⎩λμ43 4330.在平面直角坐标系xOy 中,已知()11,A x y ,()22,B x y 为圆221x y +=上两点,且121212x x y y +=-.若C 为圆上的任意一点,则CA CB u u u r u u u r g 的最大值为______. 【答案】32 【解析】因为C 为圆2+y 2=1上一点,设C (si nθ,cosθ),则 ()()1122sin ,cos ,sin ,cos CA x y CB x y θθθθ=--=--u u u r u u u r ,∵()11,A x y ,()22,B x y 为圆221x y +=上两点,∴222211221,1x y x y +=+=,又121212x x y y +=-, ∴()()2212121212CA CB x x y y x x sin y y cos sin cos θθθθ⋅=+-+-+++u u u r u u u r ()()2212121)2x x y y θϕ=++++ 222211*********)2x y x y x x y y θϕ=++++++ 1sin()2θϕ=-+,其中1212tan y y x x ϕ+=+, ∵sin()θϕ+∈[﹣1,1],∴当sin()θϕ+=1时,CA CB ⋅u u u r u u u r 的最大值为32. 故答案为:32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年高考数学试题分类汇编——向量 含详解
(2010江苏卷)15、(本小题满分14分)
在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(2)设实数t 满足(OC t AB -)·OC =0,求t 的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。
满分14分。
(1)(方法一)由题设知(3,5),(1,1)AB AC ==-,则
(2,6),(4,4).AB AC AB AC +=-= 所以||210,||4 2.AB AC AB AC +=-=
故所求的两条对角线的长分别为、
(方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:
E 为B 、C 的中点,E (0,1)
又E (0,1)为A 、D 的中点,所以D (1,4)
故所求的两条对角线的长分别为BC=AD=;
(2)由题设知:OC =(-2,-1),(32,5)AB tOC t t -=++。
由(OC t AB -)·OC =0,得:(32,5)(2,1)0t t ++⋅--=,
从而511,t =-所以115t =-。
或者:2· AB OC tOC =,(3,5),AB =2115||AB OC t OC ⋅==- (2010江苏卷)15、(本小题满分14分)
在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(3)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(4)设实数t 满足(OC t AB -)·OC =0,求t 的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。
满分14分。
(1)(方法一)由题设知(3,5),(1,1)AB AC ==-,则
(2,6),(4,4).AB AC AB AC +=-= 所以||210,||4 2.AB AC AB AC +=-=
故所求的两条对角线的长分别为、
(方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:
E 为B 、C 的中点,E (0,1)
又E (0,1)为A 、D 的中点,所以D (1,4)
故所求的两条对角线的长分别为BC=AD=;
(2)由题设知:OC =(-2,-1),(32,5)AB tOC t t -=++。
由(OC t AB -)·OC =0,得:(32,5)(2,1)0t t ++⋅--=,
从而511,t =-所以115t =-。
或者:2· AB OC tOC =,(3,5),AB =2115||AB OC t OC ⋅==-。