suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats

合集下载

NLRP3炎症小体组分NLRP3及CARD8基因的遗传变异与缺血性脑卒中

NLRP3炎症小体组分NLRP3及CARD8基因的遗传变异与缺血性脑卒中

[14]Tayman C, Öztekin O, Serkant U, et al. Ischemia-modified albumin may be a novel marker for predicting neonatal neurologic injury in small-for-gestational-gge infants in addition to neuron-specific enolase [J]. Am J Perinatol, 2017, 34(4): 349-358. [15]Jena I, Nayak SR, Behera S, et al. Evaluation of ischemia-modified albumin, oxidative stress, and antioxidant status in acute ischemic stroke patients [J]. J Nat Sci Biol Med, 2017, 8(1): 110-113. [16]Topuzova MP, Alekseeva TM, Panina EB, et al. The possibility of using neuron-specific enolase as a biomarker in the acute period of stroke [J]. Zh Nevrol Psikhiatr Im S S Korsakova, 2019, 119(8. Vyp. 2): 53-62. [17]Wang Y, Xu S, Pan S, et al. Association of serum neuron-specificenolase and bilirubin levels with cerebral dysfunction and prognosis in large-artery atherosclerotic strokes [J]. J Cell Biochem, 2018, 119(12): 9685-9693.[18]Liu Q, Zhang Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis [J]. Biochem Biophys Res Commun, 2019, 519(3): 453-461.[19] Ingram S, Mengozzi M, Heikal L, et al. Inflammation-induced reactive nitrogen species cause proteasomal degradation of dimeric peroxiredoxin-1 in a mouse macrophage cell line [J]. Free Radic Res, 2019, 53(8): 875-881.(收稿日期:2020-03-20)NLRP3炎症小体组分NLRP3及CARD8基因的遗传变异与缺血性脑卒中吕 洁 蒋晓山 张 晶 彭湘晖 林红梅中图分类号:R743.32 文献标识码:A 文章编号:1006-351X(2020)10-0645-05作为重要的先天免疫模式识别受体,Nod 样受体蛋白3(nucleotide-binding domain (NOD)-like receptor protein 3,NLRP3)炎症小体在参与动脉粥样硬化(atherosclerosis,AS)的病理生理学机制以及介导缺血性脑卒中(ischemic stroke,IS)的炎性损伤中发挥着关键的作用,而编码NLRP3炎症小体组分的基因变异会影响其介导的炎症反应。

miRNA对心肌细胞缺血再灌注损伤的干预作用机制研究进展

miRNA对心肌细胞缺血再灌注损伤的干预作用机制研究进展

miRNA对心肌细胞缺血再灌注损伤的干预作用机制研究进展符珍珍1,彭瑜2,张钲21 兰州大学第一临床医学院心脏中心,兰州730000;2 兰州大学第一医院心脏中心摘要:心肌缺血再灌注损伤(MIRI)是急性心肌梗死患者预后不良的主要因素,也是血流再通治疗所面临的主要挑战。

现有研究表明,部分miRNA能够通过抑制程序性细胞死亡因子4、磷酸酶和紧张素同源物、Toll样受体4、肿瘤坏死因子超家族家族成员FASLG蛋白、分泌型磷蛋白1等蛋白表达,减少凋亡蛋白的活性及表达量,减少细胞凋亡,从而减轻MIRI。

miRNA还可通过调节氧化应激和线粒体能量代谢、调节细胞自噬和细胞增殖等机制,达到减轻MIRI的目的。

实验研究发现,多种手段调节miRNA表达,有助于减轻MIRI动物心肌细胞凋亡。

然而目前相关技术并不完善,基于miRNA治疗方案的临床应用尚有待进一步研究。

关键词:微小RNA;心肌缺血再灌注损伤;细胞凋亡;细胞自噬;细胞增殖doi:10.3969/j.issn.1002-266X.2023.32.027中图分类号:R542.2 文献标志码:A 文章编号:1002-266X(2023)32-0112-04急性心肌梗死(AMI)是全球心血管疾病患者死亡的主要原因之一[1],随着各种药物和再灌注技术的应用,AMI患者急性期病死率有所下降,但仍然高,高病死率与心肌梗死面积的增加密切相关[2]。

研究表明,心肌缺血再灌注损伤(MIRI)是导致再灌注后心肌梗死面积增加的主要原因[3-4]。

MIRI可引发一系列不良生物学效应,包括氧化应激和炎症反应加剧、凋亡相关信号通路激活、细胞内钙超载、线粒体功能障碍、细胞膜功能损害及微血管损伤等,这些因素加重组织缺氧损伤并扩大了梗死面积[5-7]。

微小RNA(miRNA)是一类分子量在21~25 nt的非编码RNA[8],参与基因转录后表达调控,能通过促进体内各种mRNA的降解和沉默[9],导致细胞生理功能改变,并最终影响疾病的发生发展[10]。

Rho激酶抑制剂Y27632促进人诱导多能干细胞来源原始神经上皮细胞向多巴胺能神经前体细胞的转化

Rho激酶抑制剂Y27632促进人诱导多能干细胞来源原始神经上皮细胞向多巴胺能神经前体细胞的转化

参考文献:[1]Virani SS,Alonso A,Aparicio HJ,et al.Heart disease and strokestatistics-2021update:a report from the American heart association [J ].Circulation,2021,143(8):e254-743.[2]李天伦,张中,赵蓓,等.急性心肌梗死患者血浆白细胞介素22水平与冠状动脉病变程度和预后的关系[J ].海军军医大学学报,2022,43(4):398-405.[3]Yeh KC,Lee CJ,Song JS,et al.Protective effect of CXCR4antagonist DBPR807against ischemia-reperfusion injury in a rat and porcine model of myocardial infarction:potential adjunctive therapy for percutaneous coronary intervention [J ].Int J Mol Sci,2022,23(19):11730.[4]Zhou ML,Yu YF,Luo XX,et al.Myocardial ischemia-reperfusioninjury:therapeutics from a mitochondria-centric perspective [J ].I/R+CCC I/R+CCC+DSMPSOI/R图7秋水仙碱通过激活AMPK 逆转I/R 手术导致的小鼠心功能下降和心脏损伤Fig.7Colchicine reverses reduced cardiac function and cardiac damage in mice induced by I/R by activating AMPK.A :Representative M-mode ultrasound images of the mice in each group.B -D :Quantitative analysis of the LVEF,LVFS and HR (n =4).E :Representative TTC staining images of the mice in each group.F -H :Quantitative analysis of the infarct area and serum cTnT and LDH levels (n =4).*P <0.05vs SO group;#P <0.05vs I/R group;&P <0.05vs I/R+colchicine group.B CEF ADG H I /RS O I /R+C C C I /R +C CC +D SM P L V E F (%)#*&100.090.080.070.060.050.040.0I /RS O I /R +CC CI /R +C C C +D SM P L V F S (%)SO I/RI/R+CCC I/R+CCC+DSMP60.050.040.030.020.010.00.0H R (B P M )500.0400.0300.0200.0100.00.0I /RS O I /R +CC C I /R +C C C +D SM P I /RS O I /R +C C C I /R +C CC +D SM P I /RS O I /R +C C C I /R +C C C +D SM P I /RS O I /R+C C C I /R +C CC +D SM P I n f a r c a r e a (%)70.060.050.040.030.020.010.00.0L D H i n s e r u m (U /L )1600.01400.01200.01000.0800.0600.0400.0200.00.0c T n T i n s e r u m (p g /m L )450.0400.0350.0300.0250.0200.0150.0100.050.00.0#*&#*&#*&#*&J South Med Univ,2024,44(2):226-235··234Cardiology,2021,146(6):781-92.[5]Chen MX,Li XP,Yang H,et al.Hype or hope:Vagus nerve stimulation against acute myocardial ischemia-reperfusion injury [J].Trends Cardiovasc Med,2020,30(8):481-8.[6]Liu X,Xu L,Wu J,et al.Down-regulation of SIK2expression alleviates myocardial ischemia-reperfusion injury in rats by inhibiting autophagy through the mTOR-ULK1signaling pathway [J].J South Med Univ,2022,42(7):1082-8.[7]Lu CH,Guo X,He XH,et al.Cardioprotective effects of sinomenine in myocardial ischemia/reperfusion injury in a rat model[J].Saudi Pharm J,2022,30(6):669-78.[8]Cadenas S.ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J].Free Radic Biol Med, 2018,117:76-89.[9]Maximilian Buja L.Mitochondria in ischemic heart disease[J].Adv Exp Med Biol,2017,982:127-40.[10]Peoples JN,Saraf A,Ghazal N,et al.Mitochondrial dysfunction and oxidative stress in heart disease[J].Exp Mol Med,2019,51(12):1-13.[11]Zou RJ,Shi WT,Qiu JX,et al.Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis[J].Cardiovasc Diabetol,2022,21(1): 106.[12]Tong DC,Wilson AM,Layland J.Colchicine in cardiovascular disease:an ancient drug with modern tricks[J].Heart,2016,102(13):995-1002.[13]Elshafei MN,El-Bardissy A,Khalil A,et al.Colchicine use might be associated with lower mortality in COVID-19patients:a meta-analysis[J].Eur J Clin Invest,2021,51(9):e13645.[14]Deftereos SG,Beerkens FJ,Shah B,et al.Colchicine in cardio-vascular disease:In-depth review[J].Circulation,2022,145(1):61-78.[15]Wang LR,Shan YL,Chen L,et al.Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation[J].Iran J Basic Med Sci,2016,19(6):670-5.[16]Tang YJ,Shi CY,Qin YY,et work pharmacology-based investigation and experimental exploration of the antiapoptotic mechanism of colchicine on myocardial ischemia reperfusion injury [J].Front Pharmacol,2021,12:804030.[17]李晨霏,樊迪,杨政,等.AMPK在心肌纤维化相关疾病中的作用及机制研究进展[J].解放军医学杂志,2021,46(12):1239-44.[18]胡淼,童旭辉,黄杰,等.基于铁死亡探讨AMPK抗小鼠脑缺血/再灌注损伤的作用及机制[J].华中科技大学学报:医学版,2021,50(4):418-23.[19]Zhang Y,Wang Y,Xu JN,et al.Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/ mitophagy and activating the AMPK-OPA1signaling pathways[J].J Pineal Res,2019,66(2):e12542.[20]曾菲,李强,曾昪,等.氢溴酸加兰他敏介导AMPKα1/Nrf2/HO-1通路对大鼠心肌缺血再灌注损伤的保护作用[J].四川大学学报:医学版,2020,51(3):337-43.[21]Wang Y,Viollet B,Terkeltaub R,et al.AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages[J].Ann Rheum Dis,2016,75(1): 286-94.[22]Lu YY,Chen YC,Kao YH,et al.Colchicine modulates calcium homeostasis and electrical property of HL-1cells[J].J Cell MolMed,2016,20(6):1182-90.[23]Liu HQ,Mo HQ,Yang CB,et al.A novel function of ATF3in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion[J].Free Radic Biol Med,2022,189:122-35.[24]Akodad M,Fauconnier J,Sicard P,et al.Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure ina mouse model[J].Int J Cardiol,2017,240:347-53.[25]Yu HL,Liu Q,Chen GD,et al.SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis[J].IntImmunopharmacol,2022,106:108600.[26]Lv DY,Luo MH,Cheng Z,et al.Tubeimoside I ameliorates myocardial ischemia-reperfusion injury through SIRT3-dependentregulation of oxidative stress and apoptosis[J].Oxid Med CellLongev,2021,2021:5577019.[27]Xiang M,Lu YD,Xin LY,et al.Role of oxidative stress in reperfusion following myocardial iIschemia and Its treatments[J].Oxid Med Cell Longev,2021,2021:6614009.[28]Yue HH,Liang WT,Zhan YJ,et al.Colchicine:emerging therapeutic effects on atrial fibrillation by alleviating myocardial fibrosis in a ratmodel[J].Biomedecine Pharmacother,2022,154:113573.[29]Yang MY,Lv H,Liu Q,et al.Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1pathway[J].Oxid Med Cell Longev,2020,2020:9173530.[30]Xin T,Lu CZ.SirT3activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury[J].Aging,2020,12(16):16224-37.[31]Feng LF,Ren JL,Li YF,et al.Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway[J].Free Radic Res,2019,53(1):82-93.[32]Tian L,Cao WJ,Yue RJ,et al.Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats withmyocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1alpha signaling pathway[J].J Pharmacol Sci,2019,139(4):352-60.[33]吴志林,朱轶.右美托咪定通过Trx1/AMPK通路减轻心肌缺血再灌注损伤中的氧化应激[J].华中科技大学学报:医学版,2020,49(4):404-7.[34]Wu SN,Zou MH.AMPK,mitochondrial function,and cardio-vascular disease[J].Int J Mol Sci,2020,21(14):4987.[35]秦秀男,秦溱,冉珂,等.七氟醚预处理通过线粒体NAD+-SIRT3通路减轻大鼠心肌缺血再灌注损伤[J].中南大学学报:医学版,2022,47(8):1108-19.[36]韦亚忠,薛晓梅,何斌.活性氧介导心肌缺血再灌注损伤的研究进展[J].上海交通大学学报:医学版,2021,41(6):826-9.[37]Paradies G,Paradies V,Ruggiero FM,et al.Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury:implications for pharmacological cardiopro-tection[J].Am J Physiol Heart Circ Physiol,2018,315(5):H1341-52.[38]Brenner D,Mak TW.Mitochondrial cell death effectors[J].Curr Opin Cell Biol,2009,21(6):871-7.(编辑:经媛) J South Med Univ,2024,44(2):226-235··235帕金森病(PD )是一种进行性神经退行性疾病,是60岁以上人群中第2常见的神经退行性疾病,其主要原因是黑质致密部(SNc )多巴胺能(DA )神经元的死亡和含α-突触核蛋白的路易体的形成[1]。

细胞培养用青霉素-链霉素产品说明书

细胞培养用青霉素-链霉素产品说明书

细胞培养用青霉素-链霉素产品简介:细胞培养用青霉素-链霉素(Penicillin-Streptomycin for Cell Culture)为粉剂,是最常用的细胞培养用抗生素(即通常所谓的双抗)。

在细胞培养液中推荐的青霉素的工作浓度为100U/ml ,链霉素的工作浓度为0.1mg/ml 。

一个包装的细胞培养用青霉素-链霉素可以配制80L 细胞培养液。

保存条件:室温保存。

4ºC 保存可以使用更长时间。

注意事项:开瓶后需防止受潮。

本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。

为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:细胞培养用青霉素-链霉素可以参考如下两种方法之一使用:1. 配制细胞培养液时加入细胞培养用青霉素-链霉素,然后再过滤除菌:配制细胞培养液时按照青霉素的工作浓度为100U/ml ,链霉素的工作浓度为0.1mg/ml 进行配制,配制完成后过滤除菌即可使用。

2. 配制青霉素-链霉素溶液(100X)母液,然后再添加到细胞培养液中:按照青霉素的含量为10KU/ml ,链霉素的含量为10mg/ml ,配制青霉素-链霉素溶液(100X)母液。

过滤除菌后即可按照100倍稀释加入到细胞培养液中使用。

配制的母液可以-20ºC 冻存。

使用本产品的文献:1. Wang PH, Gu ZH, Wan DH, Zhang MY , Weng SP, Yu XQ, He JG. The shrimp NF-κB pathway is activated by white spot syndrome virus (WSSV) 449 to facilitate the expression of WSSV069 (ie1), WSSV303 and WSSV371.PLoS One. 2011;6(9):e24773.2. Xia M, Zhu Y . Signaling pathways of ATP-induced PGE2 release inspinal cord astrocytes are EGFR transactivation-dependent. Glia. 2011 Apr;59(4):664-74. 3. He YH, Song Y , Liao XL, Wang L, Li G, A lima, Li Y , Sun CH. Thecalcium-sensing receptor affects fat accumulation via effects on antilipolytic pathways in adipose tissue of rats fed low-calcium diets. J N utr. 2011 Nov;141(11):1938-46. 4. Liu XY , Wei W, Wang CL, Yue H, Ma D, Zhu C, Ma GH, Du YGApoferritin-camouflaged Pt nanoparticles: surface effects on cellular uptake and cytotoxicity. J. Mater. Chem., 2011,21, 7105-7110. 5. Wang MN, Liu XY , Cao CB, Shi C Synthesis of band-gap tunable Cu –In –S ternary nanocrystals in aqueous solution RSC Adv. 2012 Feb; 7:2666-70. 6. Fan H, Yang L, Fu F, Xu H, Meng Q, Zhu H, Teng L, Yang M, Zhang L,Zhang Z, Liu K Cardio protective effects of salvianolic Acid a on myocardial ischemia-reperfusion injury in vivoand in vitro. Evid Based Complement Alternat Med. 2012;2012:508938. 7. Zhang J, Tang L, Shen L, Zhou S, Duan Z, Xiao L, Cao Y , Mu X, Zha L,Wang H High level of WA VE1 expression is associated with tumor aggressiveness and unfavorableprognosis of epithelial ovarian cancer. Gynecol Oncol. 2012 Oct;127(1):223-30.8. Zhang Y , Zhang Y , Chen M, Yan J, Ye Z, Zhou Y , Tan W, Lang M.Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of humanmesenchymal stem cell behavior. J Colloid Interface Sci. 2012 Feb 15;368(1):64-9. 9. Jiang M, Gan L, Zhu C, Dong Y , Liu J, Gan Y . Cationic core-shellliponanoparticles for ocular gene delivery. Biomaterials. 2012 Oct; 33(30):7621-30. 10. Chai YY , Wang F, Li YL, Liu K, Xu H. Antioxidant Activities ofStilbenoids from Rheum emodi Wall. Evid Based Complement Alternat Med. 2012;2012:603678. 11. Guo S, Sun X, Cheng J, Xu H, Dan J, Shen J, Zhou Q, Zhang Y , Meng L,Cao W, Tian Y . Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy. Int J Nanomedicine. 2013;8:2239-46. 12. Wang S, Luo Y , Zeng S, Luo C, Yang L, Liang Z, Wang Y .Dodecanol-poly(D,L-lactic acid)-b-poly (ethylene glycol)-folate (Dol- PLA-PEG-FA) nanoparticles: evaluation of cell cytotoxicity and selecting capability in vitro. Colloids Surf B Biointerfaces. 2013 Feb 1;102:130-5.碧云天生物技术/Beyotime Biotechnology 订货热线: 400-1683301或800-8283301 订货e-mail :****************** 技术咨询: ***************** 网址: 碧云天网站 微信公众号13.Zhou S, Tang L, Wang H, Dai J, Zhang J, Shen L, Ng SW, Berkowitz RS.Overexpression of c-Abl predicts unfavorable outcome in epithelial ovarian cancer. Gynecol Oncol. 2013 Oct;131(1):69-76.14.Xia M, Zhu Y. FOXO3a Involvement in the Release of TNF-α Stimulatedby ATP in Spinal Cord Astrocytes. J Mol Neurosci. 2013 Nov;51(3):792-804.15.Zhou DH, Wang X, Yang M, Shi X, Huang W, Feng Q. Combination ofLow Concentration of (-)-Epigallocatechin Gallate (EGCG) and Curcumin Strongly Suppresses the Growth of Non-Small Cell Lung Cancer in Vitro and in Vivo through Causing Cell Cycle Arrest. Int J Mol Sci. 2013 Jun 5;14(6):12023-36.16.Jiang XY, Lu DB, Jiang YZ, Zhou LN, Cheng LQ, Chen B.PGC-1αprevents apoptosis in adipose-derived stem cells by reducing reactive oxygen species production in adiabetic microenvironment. Diabetes Res Clin Pract. 2013 Jun;100(3):368-75.17.Zhu Q, Guo T, Xia D, Li X, Zhu C, Li H, Ouyang D, Zhang J, Gan Y.Pluronic F127-modified liposome-containing tacrolimus-cyclodextrin inclusion complexes: improved solubility, cellular uptake and intestinal penetration.J Pharm Pharmacol. 2013 Aug;65(8):1107-17.18.Hu HJ, Lin XL, Liu MH, Fan XJ, Zou WW. Curcumin mediatesreversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Metexpression in DU145 cells. Oncol Lett. 2016 Feb;11(2):1499-1505.19.Sun C, Feng SB, Cao ZW, Bei JJ, Chen Q, Zhao WB, Xu XJ, Zhou Z, YuZP, Hu HY. Up-Regulated Expression of Matrix Metalloproteinases in Endothelial Cells Mediates PlateletMicrovesicle-Induced Angiogenesis.CELL PHYSIOL BIOCHEM . 2017;41(6):2319-2332.20.Wang J, Zeng H, Li H, Chen T, Wang L, Zhang K, Chen J, Wang R, Li Q,Wang S. MicroRNA-101 Inhibits Growth, Proliferation and Migration and Induces Apoptosis of BreastCancer Cells by Targeting Sex-Determining Region Y-Box 2. CELL PHYSIOL BIOCHEM .2017;43(2):717-732.21.Jiang W, Huang W, Chen Y, Zou M, Peng D, Chen D. HIV-1Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cellsvia the Ras Signaling Pathway. Oxid Med Cell Longev . 2017;2017:3160360.22.Li W, Yang Y, Ba Z, Li S, Chen H, Hou X, Ma L, He P, Jiang L, Li L, HeR, Zhang L, Feng D. MicroRNA-93 Regulates Hypoxia-Induced Autophagy by Targeting ULK1. Oxid Med Cell Longev .2017;2017:2709053.23.Hu SY, Zhang Y, Zhu PJ, Zhou H, Chen YD. Liraglutide directly protectscardiomyocytes against reperfusion injury possibly via modulation of intracellular calcium homeostasis. J Geriatr Cardiol . 2017 Jan;14(1):57-66.24.Li W, Wang Z, Zha L, Kong D, Liao G, Li H. HMGA2 regulatesepithelial-mesenchymal transition and the acquisition of tumor stem cellproperties through TWIST1 in gastric cancer. Oncol Rep . 2017 Jan;37(1):185-192.25.Tang J, Dong Q. Knockdown of TREM-1 suppresses IL-1β-inducedchondrocyte injury via inhibiting the NF-κB pathway. BIOCHEM BIOPH RES CO . 2017 Jan 22;482(4):1240-1245.26.Yang T, Cheng J, Yang Y, Qi W, Zhao Y, Long H, Xie R, Zhu B. S100BMediates Stemness of Ovarian Cancer Stem-Like Cells Through Inhibiting p53. Stem Cells . 2017 Feb;35(2):325-336.27.Sun K, Liu F, Wang J, Guo Z, Ji Z, Yao M. The effect of mechanicalstretch stress on the differentiation and apoptosis of human growthplate chondrocytes. IN VITRO CELL DEV-AN . 2017 Feb;53(2):141-148. 28.Peng L, Wang R, Shang J, Xiong Y, Fu Z. Peroxiredoxin 2 is associatedwith colorectal cancer progression and poor survival of patients.ONCOTARGET . 2017 Feb 28;8(9):15057-15070.29.Li L, Guan Q, Dai S, Wei W, Zhang Y. Integrin β1 Increases Stem CellSurvival and Cardiac Function after Myocardial Infarction. Front Pharmacol . 2017 Mar 17;8:135.30.Sui Y, Yao H, Li S, Jin L, Shi P, Li Z, Wang G, Lin S, Wu Y, Li Y, HuangL, Liu Q, Lin X. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signalingpathway. J MOL MED . 2017 Mar;95(3):311-322.31.Zuo S, Ge H, Li Q, Zhang X, Hu R, Hu S, Liu X, Zhang JH, Chen Y,Feng H. Artesunate Protected Blood-Brain Barrier via Sphingosine 1 Phosphate Receptor1/Phosphatidylinositol 3 Kinase Pathway After Subarachnoid Hemorrhage in Rats. Mol Neurobiol . 2017 Mar;54(2):1213-1228.32.Shen XQ, Geng YM, Liu P, Huang XY, Li SY, Liu CD, Zhou Z, Xu PP.Magnitude-dependent response of osteoblasts regulated by compressive stress. SCI REP-UK . 2017 Mar 20;7:44925.33.Yang R, Wei L, Fu QQ, You H, Yu HR. SOD3 Ameliorates Aβ25-35-Induced Oxidative Damage in SH-SY5Y Cells by Inhibiting the Mitochondrial Pathway. Cell Mol Neurobiol . 2017 Apr;37(3):513-525.34.Lin H, Zhao L, Ma X, Wang BC, Deng XY, Cui M, Chen SF, Shao ZW.Drp1 mediates compression-induced programmed necrosis of rat nucleus pulposus cells by promoting mitochondrial translocation of p53 and nuclear translocation of AIF. BIOCHEM BIOPH RES CO . 2017 May 20;487(1):181-188.35.Zhang C, Zhou G, Cai C, Li J, Chen F, Xie L, Wang W, Zhang Y, Lai X,Ma L. Human umbilical cord mesenchymal stem cells alleviate acute myocarditis by modulatingendoplasmic reticulum stress and extracellular signal regulated 1/2-mediated apoptosis. Mol Med Rep . 2017 Jun;15(6):3515-3520.36.Zhang EF, Hou ZX, Shao T, Yang WW, Hu B, Wang XX, Zhang ZX,Huang Y, Xiong LZ, Hou LC. Combined administration of a sedative dose sevoflurane and 60% oxygen reduces inflammatoryresponses to sepsis in animals and in human PMBCs. Am J Transl Res . 2017 Jun 15;9(6):3105-3119.37.Shi S, Zhong D, Xiao Y, Wang B, Wang W, Zhang F, Huang H.Syndecan-1 knockdown inhibits glioma cell proliferation and invasion by deregulating a c-src/FAK-associated signaling pathway.ONCOTARGET . 2017 Jun 20;8(25):40922-40934.38.Lin XL, Hu HJ, Liu YB, Hu XM, Fan XJ, Zou WW, Pan YQ, Zhou WQ,Peng MW, Gu CH. Allicin induces the upregulation of ABCA1 expression via PPARγ/LXRαsignaling in THP-1macrophage-derived foam cells. Int J Mol Med . 2017 Jun;39(6):1452-1460.39.Peng K, Yang L, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Cui Z, Ao L, Liu J,Zou Z, Sai Y, Cao J. The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1αRegulatesRotenone-Induced Dopaminergic Neurotoxicity. Mol Neurobiol . 2017 Jul;54(5):3783-3797.40.Liu Z, Zeng W, Wang S, Zhao X, Guo Y, Yu P, Yin X, Liu C, Huang T. Apotential role for the Hippo pathway protein, YAP, in controlling proliferation, cell cycleprogression, and autophagy in BCPAP and KI thyroid papillary carcinoma cells. Am J Transl Res . 2017 Jul 15;9(7):3212-3223.41.Ge Z, Diao H, Yu M, Ji X, Liu Q, Chang X, Wu Q. Connexin 43mediates changes in protein phosphorylation in HK-2 cells during chronic cadmiumexposure. ENVIRON TOXICOL CHEM . 2017 Jul;53:184-190.42.Zhu YM, Gao X, Ni Y, Li W, Kent TA, Qiao SG, Wang C, Xu XX, ZhangHL. Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation afterischemia-reperfusion brain injury.Neuroscience . 2017 Jul 25;356:125-141.43.Wei JL, Fang M, Fu ZX, Zhang SR, Guo JB, Wang R, Lv ZB, Xiong YF.Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectalcancer. ONCOTARGET . 2017 Jul 25;8(30):49318-49328.44.Zhao L, Yang Y, Yin S, Yang T, Luo J, Xie R, Long H, Jiang L, Zhu B.CTCF promotes epithelial ovarian cancer metastasis by broadly controlling the expression of metastasis-associated genes.ONCOTARGET . 2017 Jul 10;8(37):62217-62230.45.Fu QQ, Wei L, Sierra J, Cheng JZ, Moreno-Flores MT, You H, Y u HR.Olfactory Ensheathing Cell-Conditioned Medium Reverts Aβ25-35-Induced Oxidative Damage in SH-SY5Y Cells by Modulating the Mitochondria-Mediated Apoptotic Pathway. Cell Mol Neurobiol . 2017 Aug;37(6):1043-1054.46.Wang T, Liu YP, Wang T, Xu BQ, Xu B. ROS feedback regulates themicroRNA-19-targeted inhibition of the p47phox-mediated LPS-induced inflammatory response. BIOCHEM BIOPH RES CO . 2017 Aug 5;489(4):361-368.47.Zhu Y, Wang L, Y u H, Yin F, Wang Y, Liu H, Jiang L, Qin J. In situgeneration of human brain organoids on a micropillar array. Lab Chip .2017 Aug 22;17(17):2941-2950.48.Liu C, Liu J, Hao Y, Gu Y, Yang Z, Li H, Li R.6,7,3',4'-Tetrahydroxyisoflavone improves the survival of whole-body-irradiated mice viarestoration of hematopoietic function. Int J Radiat Biol . 2017 Aug;93(8):793-802.49.Liao Q, Zhang R, Wang X, Nian W, Ke L, Ouyang W, Zhang Z. Effect offluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosisregulators in PC12 cells. ENVIRON TOXICOL CHEM . 2017 Sep;54:74-79.2 / 3ST488 细胞培养用青霉素-链霉素400-1683301/800-8283301碧云天/Beyotime50.Pan S, Cui Y, Dong X, Zhang T, Xing H. MicroRNA-130b attenuatesdexamethasone-induced increase of lipid accumulation in porcinepreadipocytes by suppressing PPAR-γexpression.ONCOTARGET . 2017 Sep 27;8(50):87928-87943.51.Zhong Y, Jin C, Gan J, Wang X, Shi Z, Xia X, Peng X. Apigeninattenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediatedmitochondrial dysfunction and caspase signal pathway.Toxicon . 2017 Oct;137:106-113.52.Yin L, Huang D, Liu X, Wang Y, Liu J, Liu F, Yu B. Omentin-1 effectson mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther . 2017 Oct 10;8(1):224.53.Tang X, Zha L, Li H, Liao G, Huang Z, Peng X, Wang Z. Upregulationof GNL3 expression promotes colon cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Oncol Rep . 2017 Oct;38(4):2023-2032.54.Wu S, Wu F, Jiang Z. Identification of hub genes, key miRNAs andpotential molecular mechanisms of colorectalcancer. Oncol Rep . 2017 Oct;38(4):2043-2050.55.Wang X, Chen G, Huang C, Tu H, Zou J, Yan J. Bone marrow stemcells-derived extracellular matrix is a promising material.ONCOTARGET . 2017 Oct 9;8(58):98336-98347.56.Sun R, Yin L, Zhang S, He L, Cheng X, Wang A, Xia H, Shi H. SimpleLight-Triggered Fluorescent Labeling of Silica Nanoparticles for Cellular ImagingApplications. Chemistry . 2017 Oct 9;23(56):13893-13896. 57.Lin H, Ma X, Wang BC, Zhao L, Liu JX, Pu FF, Hu YQ, Hu HZ, ShaoZW. Edaravone ameliorates compression-induced damage in rat nucleus pulposus cells. Life Sci . 2017 Nov 15;189:76-83.58.Sun G, Sui X, Han D, Gao J, Liu Y, Zhou L. TRIM59 promotes cellproliferation, migration and invasion in human hepatocellular carcinomacells. Pharmazie . 2017 Nov 1;72(11):674-679.59.Zhu Y, Wang L, Yin F, Yu Y, Wang Y, Shepard MJ, Zhuang Z, Qin J.Probing impaired neurogenesis in human brain organoids exposed to alcohol. INTEGR BIOL-UK . 2017 Dec 11;9(12):968-978.60.Shan Y, Wang Y, Li J, Shi H, Fan Y, Yang J, Ren W, Y u X. Biomechanicalproperties and cellular biocompatibility of 3D printed tracheal graft.Bioprocess Biosyst Eng . 2017 Dec;40(12):1813-1823.61.Liu H, Wu B, Ge Y, Huang J, Song S, Wang C, Yao J, Liu K, Li Y, Li Y,Ma X. Phosphamide-containing diphenylpyrimidine analogues (PA-DPPYs) as potent focal adhesionkinase (FAK) inhibitors with enhanced activity against pancreatic cancer cell lines. BIOORG MED CHEM LETT . 2017 Dec 15;25(24):6313-6321.62.Lin XL,Liu M,Liu Y,Hu H,Pan Y,Zou W,Fan X,Hu X. Transforminggrowth factor β1 promotes migration and invasion in HepG2 cells: Epithelial-to-mesenchymal transition via JAK/STA T3 signaling. Int J Mol Med. 2018 Jan;41(1):129-136.63.Duan C,Liu Y,Li Y,Chen H,Liu X,Chen X,Y ue J,Zhou X,Yang J.Sulfasalazine alters microglia phenotype by competing endogenous RNA effect of miR-136-5p and long non-coding RNA HOTAIR in cuprizone-induced demyelination. Biochem Pharmacol. 2018 Sep;155:110-123.64.Zhou X,Li T,Chen Y,Zhang N,Wang P,Liang Y,Long M,Liu H,Mao J,LiuQ,Sun X,Chen H. Mesenchymal stem cell-derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. Int J Oncol. 2019 May;54(5):1843-1852.65.Zheng W,Liu C. The cystathionine γ-lyase/hydrogen sulfide pathwaymediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol. 2019 Sep;22(3):102-111.66.Lou K,Huang P,Ma H,Wang X,Xu H,Wang W. Orlistat increases arsenitetolerance in THP-1 derived macrophages through the up-regulation of ABCA1. Drug Chem Toxicol. 2019 Oct 31:1-9.67.Liang S,Wang F,Bao C,Han J,Guo Y,Liu F,Zhang Y. BAG2 amelioratesendoplasmic reticulum stress-induced cell apoptosis in Mycobacterium tuberculosis-infected macrophages through selective autophagy.Autophagy. 2019 Nov 11:1-15.68.Yuan K,Lai C,Wei L,Feng T,Yang Q,Zhang T,Lan T,Yao Y,XiangG,Huang X. The Effect of Vascular Endothelial Growth Factor on Bone Marrow Mesenchymal Stem Cell Engraftment in Rat Fibrotic Liver upon Transplantation. Stem Cells Int. 2019 Dec 4;2019:5310202.Version 2021.11.04碧云天/Beyotime 400-1683301/800-8283301 ST488 细胞培养用青霉素-链霉素 3 / 3。

G-左卡尼汀与肝病的相关性

G-左卡尼汀与肝病的相关性

30CHINA MEDICINE AND PHARMACY左卡尼汀与肝病的相关性傅熙玲东南大学附属第二医院,江苏南京 210000[摘要] 左卡尼汀是脂肪代谢必需的辅助因子。

多种肝病患者体内卡尼汀代谢异常,研究表明补充外源性卡尼汀可以为肝细胞修复和再生提供所需要的能量,减轻肝脏脂肪变性,左卡尼汀对急、慢性肝损伤均有保护作用。

[关键词] 左卡尼汀;肝疾病[中图分类号] R972 [文献标识码] A [文章编号] 2095-0616(2011)16-30-02The correlation between L-carnitine and liver diseasesFU Xiling The Second Affiliated Hospital of Southeast University,Nanjing 210000,China[Abstract] L-carnitine is a necessary accessory factor of fat metabolism. Patients of liver diseases have carnitine metabolism abnormalities .Studies show that supplementof carnitine could provide the energy of liver restoration and regeneration and minimize hepatic steatosis.Carnitine has a remarkably protective effect on acute and chronic liver injury. [Key words] L-carnitine;Liver diseases左卡尼汀(L-carnitine,LC)又名左旋肉碱,化学名β-羟基γ-三甲氨基丁酸,是广泛存在于机体组织中的特殊氨基酸,可促进长链脂肪酸的氧化。

皮肤性病学名词解释之欧阳道创编

皮肤性病学名词解释之欧阳道创编

【名词解释】1、Epidermal melainin unit:表皮黑素单元。

1个黑素细胞可通过其树枝状突起向周围的10~36个角质形成细胞提供黑素,形成1个黑素单元。

2、Desmosome:桥粒。

是角质形成细胞间连接的主要结构,由相邻的细胞膜发生卵圆形致密增厚而共同构成。

3、Hemidesmosome:半桥粒。

是基底细胞与与下方基底膜带之间的主要结构,由角质形成细胞真皮侧胞膜的不规则突起与基底膜带相互嵌合而成,其结构类似于半个桥粒。

4、丘疹:为局限性、充实性、浅表性皮损,隆起于皮面,直径小于1厘米,可由表皮或真皮浅层细胞增殖、代谢产物聚集或炎性细胞浸润引起。

5、斑疹:皮肤粘膜的局限性颜色改变。

皮损与周围皮肤平齐,无隆起或凹陷,大小可不一,形状可不规则,直径一般小于2厘米。

6、苔藓样变:也称苔藓化,即局限性皮肤增厚,常由搔抓、摩擦及皮肤慢性炎症所致。

表现为皮嵴隆起,皮沟加深,皮损界限清楚。

见于慢性瘙痒性皮肤病(神经性皮炎、慢性湿疹等)。

7、尼氏征:又称棘层松解征,可有四种阳性表现:手指推压水疱一侧,可使水疱沿推压方向移动;手指轻压疱顶,疱液可向四周移动;稍用力在外观正常皮肤上推擦,表皮即剥离;牵扯已破损的水疱壁时,可见水疱以外的外观正常皮肤一同剥离。

常见于天疱疮。

8、斑丘疹:形态介于斑疹与丘疹之间的稍隆起皮损称斑丘疹。

9、角化不良:是指表皮或附属器中个别细胞过早角化,表现为胞核浓缩变小,胞浆嗜伊红深染。

可见于良性疾病如毛囊角化病,也可见于恶性疾病如鳞状细胞癌。

10、角珠:鳞状细胞癌中角化不良细胞呈同心圆排列,近中心部逐渐角化,称为角珠。

11、假上皮瘤样增生:表皮不规则增生,棘层高度肥厚,表皮突不规则延伸可达汗腺水平,常见于慢性感染灶边缘。

12、海绵水肿:棘细胞间水肿,细胞间液体增多,细胞间隙增宽,细胞间桥拉长而清晰可见,形似海绵,故名海绵水肿。

13、棘层松解:由于表皮细胞间桥变性,细胞间粘合力丧失,细胞失去紧密联系而呈松解状态,致使形成表皮内裂隙、水疱或大疱。

211099479_高尿酸血症对小鼠生精功能和精子质量的影响及其机制

211099479_高尿酸血症对小鼠生精功能和精子质量的影响及其机制

doi:10.1007/s11255-016-1439-0.[13]TAKENAKA T,INOUE T,MIYAZAKI T,et al.Klotho suppresses the renin-angiotensin system in adriamycin nephropathy[J]. Nephrol Dial Transplant,2017,32(5):791-800.doi:10.1093/ndt/ gfw340.[14]YIN S,ZHANG Q,YANG J,et al.TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis[J].Biochim Biophys Acta Mol Cell Res,2017,1864(7):1207-1216.doi:10.1016/j.bbamcr.2017.03.002.[15]章炜,王鸣,费晓,等.Klotho对缺血再灌注急性肾损伤的影响研究[J].浙江医学,2020,42(20):2175-2184.ZHANG W,WANG M,FEI X,et al.Effects of Klotho on acute kidney injury induced by ischemia reperfusion[J].Zhejiang Med J,2020,42(20):2175-2184.doi:10.12056/j.issn.1006-2785.2020.42.20.2020-1755.(2022-07-05收稿2022-11-25修回)(本文编辑魏杰)高尿酸血症对小鼠生精功能和精子质量的影响及其机制江晓翠,田代志,赵敏,龚健,余何,姜兴宇,萧闵△摘要:目的探讨高尿酸血症(HUA)通过氧化损伤诱导睾丸细胞凋亡、降低小鼠生精功能和精子质量的机制。

医学考博--病理生理学名词解释+问答题(带英文)

医学考博--病理生理学名词解释+问答题(带英文)

病理生理学考博资料名词解释:病理生理学 (Pathologic Physiology 或Pathophysiology ),是基础医学理论学科之一,它同时还肩负着基础______________课程到临床课程之间的桥梁作用。

它的任务是研究疾病发生的原因和条件,研究整个疾病过程中的患病机体的机能、代谢的动态变化及其发生机理,从而揭示疾病发生、发展和转归的规律,阐明疾病的本质,为疾病的防治提供理论基础。

1、水肿(edema):体液在组织间隙或体腔积聚过多,称为水肿2、代谢性碱中毒(metabolic alkalosis ):由于血浆中 NaHCO原发性增加,继而引起 H2CO3含量改变,使NaHCO3/H2CO3 > 20/1,血浆pH升高的病理改变。

3、代谢性酸中毒(metabolic acidosis ):由于血浆中 NaHCO原发性减少,继而引起H2CO3含量改变,使 NaHCO3/H2CO3<20/1,血浆PH值下降的病理过程。

4、呼吸性碱中毒(respiratory alkalosis ):由于血浆中H2CO源发性减少,使血浆NaHCO3/H2CO增加,血浆pH 值升高的病理过程。

5、呼吸性酸中毒(respiratory acidosis ):由于血浆中H2CO3原发性增加,使 NaHCO3/H2笔低,血浆pH值下降的病理过程。

6、缺氧(hypoxia):是指因组织的氧气供应不足或用氧障碍,而导致组织的代谢、功能和形态结构发生异常变化的病理过程。

缺氧是临床各种疾病中极常见的一类病理过程,脑、心脏等生命重要器官缺氧也是导致机体死亡的重要原因。

而且,由于动脉血氧含量明显降低导致组织供氧不足,又称为低氧血______________________ hypoxemia )。

7、发热(fever ):由于致热原的作用,使体温调节中枢的调定点上移,而引起的调节性体温升高称为发热。

8、应激(stress ):机体在受到各种因素刺激时,所出现的非特异性全身反应称为应激。

鱼腥草雾化吸入的作用与功效

鱼腥草雾化吸入的作用与功效

鱼腥草雾化吸入的作用与功效鱼腥草(Artemisia annua)是一种常见的中药植物,历来被用于治疗感冒、疟疾等疾病。

最近几年,鱼腥草的雾化吸入疗法作为一种新的治疗方式逐渐受到关注。

本文将详细介绍鱼腥草雾化吸入的作用与功效。

1. 鱼腥草的雾化吸入原理鱼腥草雾化吸入是将鱼腥草制成草本粉末后,通过雾化器将粉末转化为微细颗粒,然后通过呼吸道吸入进入人体。

这种吸入方式可以使药物直接进入呼吸道的上部和下部,并趋于周围肺组织,提高治疗效果。

2. 鱼腥草雾化吸入的作用2.1 抗炎作用研究发现,鱼腥草中含有一种称为青蒿素的活性成分,具有明显的抗炎作用。

青蒿素通过抑制炎症介质的产生,调节免疫反应,减轻炎症反应及相关症状。

雾化吸入可以使青蒿素直接作用于呼吸道黏膜,发挥更好的抗炎作用。

2.2 改善气道通畅鱼腥草雾化吸入可以有效改善气道通畅,减轻哮喘、慢性阻塞性肺病等疾病引起的呼吸困难。

鱼腥草中的活性成分能够扩张气道,减少支气管痉挛,缓解气道狭窄等症状。

2.3 抗菌作用鱼腥草中的活性成分具有显著的抗菌作用,可以抑制多种细菌、病毒和真菌的生长。

雾化吸入可以使药物直接作用于感染病灶,起到更好的抗菌效果。

尤其对于呼吸道感染引起的咳嗽、喉咙痛等症状,鱼腥草雾化吸入具有较好的治疗效果。

2.4 免疫调节作用鱼腥草中的一些活性成分可以调节人体免疫系统的功能,提高机体的抵抗力。

雾化吸入可以使这些活性成分直接作用于呼吸道黏膜和肺部组织,增强呼吸系统的免疫功能,减少感染的发生。

2.5 抗癌作用鱼腥草中的活性成分青蒿素被广泛应用于治疗疟疾,同时也具有一定的抗癌作用。

雾化吸入可以使青蒿素直接作用于肺部组织,对肺癌等呼吸道肿瘤有一定的治疗效果。

3. 鱼腥草雾化吸入的功效3.1 缓解呼吸系统疾病症状鱼腥草雾化吸入可以减轻咳嗽、喉咙痛、气短、胸闷等呼吸系统疾病引起的症状,改善呼吸困难,提高患者的生活质量。

3.2 防止感染和复发鱼腥草雾化吸入具有较好的抗菌作用,可以预防呼吸道感染的发生,同时对已经感染的疾病也能起到治疗作用。

碧云天生物技术 Western萤光检测试剂 BeyoECL Star 说明书

碧云天生物技术 Western萤光检测试剂 BeyoECL Star 说明书

碧云天生物技术/Beyotime Biotechnology 订货热线:400-1683301或800-8283301 订货e-mail :****************** 技术咨询:***************** 网址:碧云天网站 微信公众号BeyoECL Star (特超敏ECL 化学发光试剂盒) (试用装)产品简介:碧云天生产的Western 萤光检测试剂BeyoECL Star 是一种特超敏ECL 化学发光试剂盒,发光效果显著优于BeyoECL Plus ,可与二抗上偶联的辣根过氧化物酶(horseradish peroxidase, HRP)发生化学反应,发出萤光,从而可以通过用X 光片压片或其它化学发光成像设备检测样品。

碧云天生产的Western 萤光检测试剂目前共有三种,分别是P0018S/P0018M BeyoECL Plus 、P0018AS/P0018AM BeyoECL Star 和P0018FS/P0018FM BeyoECL Moon 。

常规的Western 检测,优先推荐使用BeyoECL Star 。

对于丰度比较高的目的蛋白的检测,例如内参蛋白等的检测,推荐使用性价比更高的BeyoECL Plus 。

对于低丰度较难检测的目的蛋白,优先推荐使用检测灵敏度最高的BeyoECL Moon 。

但对于丰度适中的目的蛋白的检测,不太推荐使用BeyoECL Moon ,因为使用BeyoECL Moon 时由于检测灵敏度特别高,容易产生过曝的现象。

BeyoECL Star 灵敏度极高,比DAB 显色的灵敏度至少高1000倍,比Amersham 公司的ECL 或碧云天以前生产的BeyoECL 的灵敏度高100-500倍左右,比碧云天生产的BeyoECL Plus 的灵敏度高约5-10倍(参考图1),比原Pierce 公司(现Thermo 公司)的SuperSignal West Pico Substrate 的灵敏度高10倍以上,实际检测效果与原Pierce 公司的SuperSignal West Dura 和SuperSignal West Femto 的检测灵敏度相近。

姜黄素在神经系统疾病治疗中的应用

姜黄素在神经系统疾病治疗中的应用

姜黄素在神经系统疾病治疗中的应用陈思砚【摘要】姜黄素是一种天然多酚.近年来,姜黄素的抗炎症、抗氧化、免疫调节、促凋亡等药理作用已在神经系统疾病的研究中得到证实,特别是在基因及信号通路转导多重水平中的作用,已经成为研究热点.文章就姜黄素的生物学特性及其在神经系统疾病中的研究进展作一综述.【期刊名称】《上海交通大学学报(医学版)》【年(卷),期】2010(030)006【总页数】4页(P732-734,741)【关键词】姜黄素;生物学特性;神经系统疾病【作者】陈思砚【作者单位】上海交通大学,医学院瑞金医院神经科神经病学研究所,上海,200025【正文语种】中文【中图分类】R915;R741.05姜黄素(curcumin) 是一种在古代亚洲医学中广泛应用的天然多酚,来自一种在印度和东南亚广泛种植的植物——姜黄(curcuma longa L.)。

姜黄根包含三种最主要的姜黄素类:姜黄素、脱甲氧基姜黄素及双脱甲氧基姜黄素。

其中,姜黄素占70%,是姜黄中富含的活性成分。

近年来,已经被作为天然营养素应用的姜黄素经实验研究证明还具有抗肿瘤、抗氧化、抗炎症、降血脂等广泛的药理作用。

但姜黄素本身的生物利用度低,口服后不能达到足够的血药浓度以发挥其在肠道外组织的药理学效应,因此,姜黄素治疗消化系统以外疾病的相关研究相对较少。

但在姜黄素应用较为广泛的国家如印度,帕金森病等一些无法治愈的神经变性疾病的发病率明显低于其他一些国家。

这些现象提示,有必要关注姜黄素的药理作用及其在神经系统疾病预防及治疗中的应用价值。

1 姜黄素的研究历史1937年,姜黄素用于治疗人类疾病的研究[1]首次被报道。

在此研究中,Oppenheimer等观察了姜黄素对胆道疾病的治疗作用:最终,67例受试者的症状得到了改善,其中18例在影像学上有变化。

在印度草药学和中药研究中,关于姜黄素的研究已有千年历史;而在近10~15年,姜黄素才开始进入临床研究领域。

EPO信号通路在肾间质纤维化中的研究进展

EPO信号通路在肾间质纤维化中的研究进展

EPO信号通路在肾间质纤维化中的研究进展【关键词】 EPO 信号通路肾间质纤维化肾脏内分泌缺氧肾性贫血研究进展【摘要】慢性肾脏病(chronic kidney disease,CKD)在全球范围内发病率逐年递增,肾脏疾病进展至终末期肾衰竭可呈现共同的肾脏病理表现:肾小球硬化,肾小管萎缩伴肾单位丢失,管周毛细血管破坏,炎症细胞聚集以及纤维化。

肾间质纤维化(renal interstitial fibrosis,RIF)是肾功能改变的最重要影响因素。

深入研究肾脏纤维化的发病机制是获取慢性肾脏疾病治疗靶点,延缓肾脏病进展的重点。

近年来,促红细胞生成素(erythropotin,EPO)信号通路在肾间质纤维化中的作用受到了越来越多的关注,本文就EPO信号通路的特点以及其参与肾间质纤维化的可能机制加以综述,探寻EPO信号通路作为靶点治疗肾间质纤维化的价值。

一.EPO在肾纤维化的发病机制中对信号通路的调控作用EPO是一种n-链糖蛋白,由166个aa组成,在成年期在肾脏中产生,同时作为一种肽激素和造血生长因子(Hematopoietic Growth Factor,HGF),刺激骨髓红细胞生成。

EPO是一种肽激素,在早期发育过程中由胎儿肝脏产生,在成人体内由肾脏产生。

EPO受体(EPOR)在多种细胞类型中表达,包括神经元、内皮细胞和心肌细胞。

在体外,EPO可减少细胞凋亡、氧化应激和炎症反应。

根据Lee M, Kim SH研究结果表明,hEPO-MPs通过Smad2、Smad3和p38MAPK通路调节TGF-β1诱导的MDCK细胞EMT,并显著减弱单侧输尿管梗阻肾脏的肿瘤抑制因子(tumor-inhibiting factor,TIF)【1】。

肾间质成纤维细胞(Renal interstitial fibroblast,RIFs)转化为α-平滑肌肌动蛋白阳性的肌成纤维细胞,其缺氧诱导的EPO表达缺失,被认为是TIF合并肾性贫血的中心机制。

碧云天细胞凋亡-一步法TUNEL检测试剂盒

碧云天细胞凋亡-一步法TUNEL检测试剂盒

一步法TUNEL细胞凋亡检测试剂盒产品简介:碧云天生产的一步法TUNEL细胞凋亡检测试剂盒(One Step TUNEL Apoptosis Assay Kit)为您提供了一种高灵敏度又快速简便的细胞凋亡检测方法。

对于经过固定和洗涤的细胞或组织,只要经过一步染色反应,洗涤后就可以通过荧光显微镜或流式细胞仪检测到呈现绿色荧光的凋亡细胞。

细胞在发生凋亡时,会激活一些DNA内切酶,这些内切酶会切断核小体间的基因组DNA。

细胞凋亡时抽提DNA进行电泳检测,可以发现180-200bp的DNA ladder。

基因组DNA断裂时,暴露的3’-OH可以在末端脱氧核苷酸转移酶(Terminal Deoxynucleotidyl Transferase, TdT)的催化下加上绿色荧光探针荧光素(FITC)标记的dUTP(fluorescein-dUTP),从而可以通过荧光显微镜或流式细胞仪进行检测,这就是TUNEL(T dT-mediated d U TP N ick-E nd L abeling)法检测细胞凋亡的原理。

注:FITC是fluorescein isothiocyanate的缩写,实际上大多数情况下所谓的FITC即为fluorescein。

本试剂盒有如下优点。

(1) 高灵敏度:可以在单细胞水平检测到细胞凋亡,同时由于凋亡早期就有DNA断裂,可以检测到早期的细胞凋亡。

(2) 特异性:TUNEL检测时通常更容易标记凋亡细胞,而不容易标记坏死细胞。

(3) 快速:仅需约1-2个小时即可完成。

(4) 方便:只需一步染色反应,洗涤后即可观察,不必使用二抗等进行多步操作。

(5) 应用范围广:可以用于检测冷冻或石蜡切片中的细胞凋亡情况,也可以检测培养的贴壁细胞或悬浮细胞的凋亡情况。

TUNEL法特异性检测细胞凋亡时产生的DNA断裂,但不会检测出射线等诱导的DNA断裂(和细胞凋亡时的断裂方式不同)。

这样一方面可以把凋亡和坏死区分开,另一方面也不会把射线等诱导发生DNA断裂的非凋亡细胞判断为凋亡细胞。

甲泼尼龙琥珀酸钠预处理对腹腔镜直肠癌根治患者围术期应激及免疫功能的影响

甲泼尼龙琥珀酸钠预处理对腹腔镜直肠癌根治患者围术期应激及免疫功能的影响

甲泼尼龙琥珀酸钠预处理对腹腔镜直肠癌根治患者围术期应激及免疫功能的影响吴国荣;甘林光;陈骏萍【摘要】目的观察甲泼尼龙琥珀酸钠(甲强龙)预处理对腹腔镜直肠癌根治患者围术期应激及免疫功能的影响.方法 40例择期行腹腔镜直肠癌根治术患者分为甲强龙组(M组)和对照组(C组),各20例.M组术前2h静脉输注甲强龙5 mg/kg,其余操作两组一致.检测两组术后即刻(T0)、6 h(T1)、12 h(T2)、24 h(T3),术后第3天(T4)和第7天(T5)白介素-6(IL-6)和白介素-10(IL-10),T1、T3、T4和T5 C反应蛋白(CRP)浓度,T3、T4和T5免疫抑制酸性蛋白(IAP)浓度,并观察术后不良反应.结果M组血清IL-6浓度在T1,T2,T3,T4时间点显著低于C组(均P< 0.05),血清IL-10在T1,T2时间点显著低于C组(均P<0.05),C反应蛋白浓度在T3,T4,T5时间点显著低于C组(均P< 0.05),血清IAP浓度在T4,T5时间点显著降低.M组术后恶心、呕吐的发生率明显低于C组(均P< 0.05).结论甲强龙预处理可以减轻腹腔镜直肠癌根治术时手术创伤和气腹导致的围术期应激反应,并减轻术后免疫抑制,同时术后恶心呕吐的发生率也显著降低.【期刊名称】《现代实用医学》【年(卷),期】2012(024)011【总页数】2页(P1255-1256)【关键词】甲泼尼龙琥珀酸钠;直肠肿瘤;癌;应激;免疫功能【作者】吴国荣;甘林光;陈骏萍【作者单位】315010宁波,宁波市第二医院;315010宁波,宁波市第二医院;315010宁波,宁波市第二医院【正文语种】中文【中图分类】R614手术和创伤能使机体产生一系列应激反应,导致内分泌、代谢的改变[1]。

近年来,腹腔镜手术越来越多的应用于结、直肠恶性疾病的根治,但手术创伤及高压气腹所导致的腹压增高和高碳酸血症等各种应激反应,激活机体神经内分泌系统,会导致急性炎症反应和免疫抑制,从而对机体产生有害的影响,不利于术后恢复,并可增加围手术期的并发症[2]。

泽泻醇在小胶质细胞中对基质金属蛋白酶3与一氧化氮的抑制作用

泽泻醇在小胶质细胞中对基质金属蛋白酶3与一氧化氮的抑制作用

泽泻醇在小胶质细胞中对基质金属蛋白酶3与一氧化氮的抑制作用刘瑜【摘要】This paper investigates the inhibitory effect and mechanism of alismol on neuroinflamination in the activated BV2 microglial cells which are stimulated by lipopolysaccharides(LPS). NO was measured by using Griess reagent. RT-PCR and Western blot are used to analyse ERK, JNK, Akt, and MMP3 . Alismol can significantly inhibit LPS-induced NO production and the MMP3 expression. The mechanism is involved to its inhibition of PI3K/Akt pathway.%利用脂多糖(LPS)刺激小鼠小胶质细胞BV2,研究泽泻醇对炎症相关分子的抑制及机制.Griess法测定一氧化氮(NO)浓度,RT-PCR和Western blot法检测细胞外调节蛋白激酶(ERK)、p38、c-Jun氨基末端激酶(JNK)、蛋白激酶B(Akt)、基质金属蛋白酶3(MMP3)的变化.研究结果表明,泽泻醇不仅对LPS刺激小胶质细胞产生的NO有明显抑制作用,还能在mRNA与蛋白质水平抑制MMP3的表达,这种抑制与其对PI3K/Akt通路的干预相关.阐述了泽泻醇对小胶质细胞的抑制与PI3K/Akt通路的相关机制.【期刊名称】《实验技术与管理》【年(卷),期】2012(029)010【总页数】4页(P47-50)【关键词】小胶质细胞;泽泻醇;一氧化氮;基质金属蛋白酶3【作者】刘瑜【作者单位】南开大学医学院,天津 300071【正文语种】中文【中图分类】R914Abstract:This paper investigates the inhibitory effect and mechanism of alismol on neuroinflammation in the activated BV2microglial cells whichare stimulated by lipopolysaccharides(LPS).NO was measured by using Griess reagent.RT-PCR and Western blot are used to analyse ERK,JNK,Akt,and MMP3 .Alismol can significantly inhibit LPS-induced NO production and the MMP3expression.The mechanism is involved to its inhibition of PI3K/Akt pathway.Key words:microglia;alismol;NO;MMP3小胶质细胞是中枢神经系统内的免疫细胞,长期激活而形成中枢神经系统的慢性炎症,其释放的大量氧自由基、炎症介质细胞因子以及基质金属蛋白酶(matrix metalloproteinases,MMP)是神经元损伤的重要原因之一,也是阿尔茨海默病(Alzheimer’s disease,AD)与帕金森病(Parkinson’s disease,PD)等许多中枢神经退行性疾病发生与发展的重要因素之一[1-2]。

琥珀酸通过活性氧途径诱导人脐静脉内皮细胞焦亡

琥珀酸通过活性氧途径诱导人脐静脉内皮细胞焦亡

[收稿日期]㊀2020-08-28[修回日期]㊀2020-10-27[基金项目]㊀国家自然科学基金(31670962,81370378);湖南省卫健委临床重大专项(20200011-1003);湖南省大学生创新创业训练计划项目(S201910555137)[作者简介]㊀章舒蕾,硕士研究生,研究方向为动脉粥样硬化病因发病学与防治基础,E-mail 为1029645492@㊂通信作者危当恒,博士,教授,博士研究生导师,研究方向为动脉粥样硬化病因发病学与防治基础,E-mail 为759353094@㊂㊃实验研究㊃[文章编号]㊀1007-3949(2021)29-01-0042-06琥珀酸通过活性氧途径诱导人脐静脉内皮细胞焦亡章舒蕾,梁亚敏,罗涔方,危当恒(南华大学心血管疾病研究所动脉硬化学湖南省重点实验室湖南省动脉硬化性疾病国际科技创新合作基地,湖南省衡阳市421001)[关键词]㊀琥珀酸;㊀人脐静脉内皮细胞;㊀线粒体;㊀活性氧;㊀焦亡;㊀动脉粥样硬化[摘㊀要]㊀目的㊀探讨琥珀酸对人脐静脉内皮细胞(HUVEC )焦亡的影响及其调控机制㊂方法㊀用琥珀酸类似物琥珀酸二乙酯(DS )处理HUVEC 24h ,比色法检测细胞内琥珀酸含量,Western blot 检测细胞焦亡相关蛋白半胱氨酸天冬氨酸特异性蛋白酶1(Caspase-1)㊁白细胞介素1β(IL-1β)㊁IL-18㊁NOD 样受体蛋白3(NLRP3)㊁消皮素D N 端(GSDMD-N )的含量;ATP 测定试剂盒以及活性氧(ROS )荧光探针分别检测琥珀酸对HUVEC 的ATP 以及ROS 生成的影响㊂ROS 清除剂N-乙酰半胱氨酸(NAC )检测ROS 在琥珀酸诱导HUVEC 焦亡中的作用㊂琥珀酸氧化抑制剂丙二酸二甲酯(DMM )检测琥珀酸氧化代谢对ROS 产生的影响㊂结果㊀DS 促HUVEC 内琥珀酸蓄积,上调焦亡相关蛋白Caspase-1㊁IL-1β㊁IL-18㊁GSDMD-N 和NLRP3的表达,抑制ATP 生成并上调ROS 产生㊂NAC 抑制琥珀酸诱导的ROS 生成,并下调上述焦亡相关蛋白的表达㊂DMM 下调琥珀酸诱导的ROS 产生以及HUVEC 的焦亡㊂结论㊀琥珀酸通过氧化代谢上调ROS 生成,进而促进HUVEC 焦亡㊂[中图分类号]㊀R54[文献标识码]㊀ASuccinate induces pyroptosis of human umbilical vein endothelial cells via reactive ox-ygen species pathwayZHANG Shulei,LIANG Yamin,LUO Cenfang,WEI Dangheng(Institute of Cardiovascular Disease &Key Laboratory for Arteriosclerology of Hunan Province &Hunan International Scientif-ic and Technological Cooperation Base of Arteriosclerotic Disease ,Hengyang Medical College ,University of South China ,Hengyang ,Hunan 421001,China )[KEY WORDS ]㊀succinate;㊀human umbilical vein endothelial cell;㊀mitochondria;㊀reactive oxygen species;㊀py-roptosis;㊀atherosclerosis[ABSTRACT ]㊀㊀Aim ㊀To investigate the effect of succinate on pyroptosis of human umbilical vein endothelial cells (HUVEC)and its regulatory mechanism.㊀㊀Methods ㊀HUVECs were treated with succinate analogue diethyl succinate (DS)for 24h,and the content of succinate was detected by colorimetry.㊀Western blot was used to detect the expressions of pyroptosis-related protein cysteinyl aspartate specific proteinase 1(Caspase-1),interleukin-1β(IL-1β),IL-18,NOD-like receptor protein 3(NLRP3),gasdermin D N termine (GSDMD-N).㊀The effects of succinate on ATP and reactive oxygen species (ROS)production of HUVEC were detected by ATP assay kit and ROS fluorescent probe.㊀ROS scavenger N-acetylcysteine (NAC)was used to observe the role of ROS in HUVEC pyroptosis induced by succinate.㊀Dimethyl mal-onate (DMM),a succinate oxidation inhibitor,was used to detect the effect of succinate oxidative metabolism on ROS pro-duction.㊀㊀Results ㊀DS promoted the accumulation of succinate in HUVEC,up-regulated the expressions of pyroptosis-related proteins Caspase-1,IL-1β,IL-18,GSDMD-N and NLRP3,inhibited ATP production and up-regulated ROS pro-duction.㊀NAC inhibited the production of ROS induced by succinate and down-regulated the expressions of above pyropto-sis-related proteins.㊀DMM down-regulated succinate-induced ROS production and HUVEC pyroptosis.㊀㊀Conclusion ㊀Succinate up-regulates ROS production through oxidative metabolism,thus promoting HUVEC pyroptosis.㊀㊀动脉粥样硬化(atherosclerosis,As)为慢性炎症性病理过程,血管内皮细胞炎性活化为As发生发展过程的重要环节[1]㊂近来的研究发现,三羧酸循环中间体及其衍生物通过 非能量代谢途径 调控细胞功能并参与As的发生发展进程[2]㊂琥珀酸为三羧酸循环重要的中间代谢产物,其促进炎症因子的释放以及血管内皮细胞的损伤[3]㊂琥珀酸上调小鼠骨髓来源的树突状细胞白细胞介素1β(interleukin-1β,IL-1β)的表达[4]㊂高糖通过琥珀酸/G蛋白偶联受体91(G-protein coupled receptor 91,GPR91)信号促进血管紧张素Ⅱ释放,损伤人脐静脉内皮细胞(human umbilical vein endothelial cell, HUVEC)[5]㊂Koenis等[6]发现Nur77敲除促As病变,该模型小鼠血清琥珀酸水平明显增加,并且Nur77-/-的巨噬细胞中琥珀酸大量积蓄,但琥珀酸积蓄与血管内皮细胞炎性活化间关系尚不清楚㊂血管内皮细胞焦亡(炎性㊁程序性细胞死亡)发生于As进程,并与As的稳定性密切相关[7]㊂在焦亡过程中,Nod样受体蛋白3(NOD-like receptor pro-tein3,NLRP3)炎性小体被活化,半胱氨酸天冬氨酸特异性蛋白酶1(cysteinyl aspartate specific proteinase1,Caspase-1)前体蛋白被激活,并介导IL-1β和IL-18的加工和成熟㊁活化及裂解消皮素D (gasdermin D,GSDMD)㊂此外,Pro-Caspase-1还能直接裂解GSDMD触发焦亡,参与血管内皮细胞的损伤以及炎性活化[8-9]㊂活性氧(reactive oxygen species,ROS)是细胞焦亡重要的诱导分子,Koenis 等[6]发现琥珀酸大量蓄积的Nur77-/-巨噬细胞伴随有大量的ROS产生㊂因此,本文采用外源性的琥珀酸类似物观察琥珀酸对血管内皮细胞ROS产生以及焦亡的影响,以探讨琥珀酸对血管内皮细胞炎性活化的影响及其机制㊂1㊀材料和方法1.1㊀细胞株与试剂HUVEC购自中国科学院上海生物化学与细胞生物学研究所,琥珀酸二乙酯(diethyl succinate, DS)㊁丙二酸二甲酯(dimethyl malonate,DMM)㊁N-乙酰半胱氨酸(N-acetylcysteine,NAC)购自TCI(上海)化成工业发展有限公司,琥珀酸比色测定试剂盒购自美国Sigma-Aldrich公司,DMEM高糖培养基㊁胎牛血清(fetal bovine serum,FBS)购自美国Gibco公司,ATP测定试剂盒购自中国南京建成生物工程研究所,ROS检测荧光探针二氢乙啶(dihydroethidium,DHE)购自江苏凯基生物技术股份有限公司,BCA蛋白定量试剂盒购自中国上海康为世纪生物科技有限公司,消皮素D N端(GSDMD-N)㊁IL-1β㊁GAPDH㊁Caspase-1㊁NLRP3抗体购自美国Proteintech公司,IL-18抗体购买于美国GeneTex 公司㊂1.2㊀HUVEC培养与处理HUVEC采用含10%FBS的DMEM高糖培养基培养,加入琥珀酸类似物DS(可显著增加胞质和线粒体基质中的琥珀酸),DS的终浓度为10mmol/L;2.5mmol/L NAC预处理3h后加入DS处理24h,观察ROS对DS诱导的血管内皮细胞焦亡的影响; DMM预处理6h后加入DS处理24h,观察琥珀酸氧化代谢途径对血管内皮细胞ROS产生以及焦亡的影响,DMM的浓度10mmol/L㊂1.3㊀BCA蛋白定量法按照说明书处理样品,用酶标仪在562nm波长处测定并记录吸光度,根据标准曲线计算样品中蛋白浓度㊂1.4㊀ATP含量测定将收集好的细胞加入90~100ħ双蒸水,置于热水浴(90~100ħ)中将其匀浆破碎,后将细胞悬液于沸水浴中加热10min,取出细胞悬液用1mL移液枪混匀1min㊂然后按照说明书加试剂,最后混匀,常温静置5min㊂检测波长为636nm,光径为0.5cm,双蒸水调零,测定各管吸光度值,保存并分析结果㊂1.5㊀ROS荧光探针DHE检测从培养箱中取出处理好的细胞,用PBS洗3次㊂加入终浓度为50μmol/L的DHE液,在37ħ水浴箱避光条件下孵育45min,PBS清洗细胞3次,每次6min㊂荧光显微镜拍照,保存并分析结果㊂1.6㊀Western blot检测蛋白的表达收集细胞,使用预冷的PBS洗3次,加入裂解液后4ħ静置30min,12000r/min离心10min,取上清后采用BCA法进行蛋白定量㊂目的蛋白经SDS-PAGE凝胶电泳分离并转移至PVDF膜上,5%脱脂牛奶室温封闭2h,加入单克隆抗体GSDMD (1ʒ1000)㊁IL-1β(1ʒ1000)㊁IL-18(1ʒ1000)㊁Caspase-1(1ʒ1000)㊁NLRP3(1ʒ1000)㊁GAPDH (1ʒ2000)4ħ孵育过夜,TBST洗3次,每次10 min,相应二抗室温孵育2h,ECL发光试剂显色,拍照并保存结果㊂1.7㊀琥珀酸含量测定收集细胞,在冰中快速匀浆,加入100μL低温琥珀酸测定缓冲液,以10000r /min 离心10min ,收集上清液㊂采用琥珀酸比色测定试剂盒,加入各反应物,在37ħ下避光孵育30min ,450nm 波长处测定吸光度㊂1.8㊀统计学方法所有实验数据均用x ʃs 表示,运用Image ProPlus ㊁GraphPad Prism 5统计软件进行数据分析,组间比较采用方差分析及t 检验,P <0.05表示差异具有统计学意义㊂2㊀结㊀果2.1㊀琥珀酸促HUVEC 焦亡㊀㊀为了探讨琥珀酸对血管内皮细胞焦亡的影响,首先观察了琥珀酸的类似物DS 处理24h 后血管内皮细胞内琥珀酸含量,结果显示DS 明显增加血管内皮细胞内琥珀酸含量(图1A)㊂然后Western blot 检测了DS 对血管内皮细胞焦亡相关蛋白NLRP3㊁GSDMD-N㊁Caspase-1㊁IL-18以及IL-1β蛋白表达的影响,结果表明DS 上调NLRP3㊁GSDMD-N㊁Caspase-1㊁IL-18以及IL-1β的表达(图1B)㊂这些结果表明细胞内琥珀酸蓄积促焦亡㊂2.2㊀琥珀酸抑制HUVEC 的ATP 生成线粒体是细胞的能量工厂,ATP 是维持机体正常生理活动的重要物质㊂ATP 含量检测的结果表明DS 抑制ATP 生成(图2)㊂图1.琥珀酸促HUVEC 焦亡(n =3)A 为DS 促HUVEC 内琥珀酸蓄积;B 为DS 处理HUVEC 24h,Western blot 检测焦亡相关蛋白NLRP3㊁Caspase-1㊁GSDMD-N㊁IL-18以及IL-1β的表达㊂a 为P <0.05,b 为P <0.01,与Control 组比较㊂Figure 1.HUVEC pyroptosis promoted by succinate (n =3)图2.琥珀酸对HUVEC 线粒体ATP 生成的影响(n =3)a 为P <0.01,与Control 组比较㊂Figure 2.Effect of succinate on mitochondrial ATPproduction in HUVEC (n =3)2.3㊀琥珀酸增加HUVEC 的ROS 水平随后,我们采用荧光探针检测琥珀酸对ROS 的影响,结果表明DS 显著增加HUVEC 的ROS 水平(图3)㊂图3.琥珀酸增加HUVEC 的ROS 水平Figure 3.Succinate promoted the generation ofROS in HUVEC2.4㊀ROS 清除剂NAC 抑制琥珀酸诱导的HUVEC 焦亡为了探讨ROS 在琥珀酸诱导血管内皮细胞焦亡中的作用,我们采用ROS 清除剂NAC(2.5mmol /L)预处理血管内皮细胞3h,再DS 孵育HUVEC,结果表明NAC 预处理抑制琥珀酸诱导的ROS 积聚(图4A),并且抑制琥珀酸诱导的焦亡相关蛋白表达(图4B)㊂图4.NAC 抑制琥珀酸诱导的HUVEC 焦亡(n =3)A 为NAC 预处理3h 减少琥珀酸诱导的线粒体ROS 含量;B 为NAC 减少焦亡相关蛋白NLRP3㊁GSDMD-N㊁Caspase-1㊁IL-18和IL-1β的含量㊂a 为P <0.05,与Control 组比较;b 为P <0.05,与DS 组比较㊂Figure 4.NAC inhibited HUVEC pyroptosis induced by succinate (n =3)2.5㊀琥珀酸氧化抑制剂DMM 抑制琥珀酸诱导的HUVEC 焦亡为了进一步探讨琥珀酸促ROS 生成的机制,我们采用琥珀酸氧化抑制剂DMM(10mmol /L)抑制琥珀酸的氧化㊂结果表明DMM 减少血管内皮细胞中ROS 的积聚(图5A),焦亡相关蛋白NLRP3㊁GS-DMD-N㊁Caspase-1㊁IL-18以及IL-1β表达水平降低(图5B),这些结果表明琥珀酸氧化促进ROS 的生成进而促HUVEC 焦亡㊂3㊀讨㊀论琥珀酸是三羧酸循环中间产物,由琥珀酰辅酶A 合成酶催化生成㊂研究发现,琥珀酸通过非能量代谢底物途径参与多种生理和病理过程㊂琥珀酸上调心肌细胞肥大标志物心房利钠多肽和p-Akt /t-Akt 的水平,参与右心室肥厚的形成[10];肿瘤组织琥珀酸/GPR91信号靶向PI3K-HIF-1α轴介导肿瘤相关巨噬细胞极化和肿瘤转移[11]㊂琥珀酸通过HIF-1α/VEGF 轴诱导类风湿关节炎滑膜血管生成[12]㊂我们的研究发现琥珀酸上调血管内皮细胞焦亡标记物的表达,提示细胞内的琥珀酸蓄积促进焦亡㊂焦亡是一种新发现的促炎性㊁程序性细胞死亡方式,在经典的Caspase-1依赖性焦亡通路中,活化的NLRP3促前体Caspase-1成熟,进而剪切IL-18㊁IL-1β和GSDMD,介导细胞焦亡㊂Wu 等[13]发现尼古丁引起血管内皮细胞损伤并诱发焦亡;阿托伐他汀通过lncRNA NEXN-AS1/NEXN 通路抑制血管内皮细胞焦亡,以非降脂途径保护血管内皮细胞功能[14]㊂我们的结果表明,琥珀酸促血管内皮细胞焦亡,提示琥珀酸可能通过焦亡途径引起血管内皮细胞损伤以及炎症活化㊂ROS 是细胞焦亡重要的激活分子,介导氧化低图5.DMM抑制琥珀酸诱导的HUVEC焦亡(n=3)A为DMM抑制琥珀酸诱导的ROS产生;B为DMM减少琥珀酸诱导的焦亡相关蛋白NLRP3㊁GSDMD-N㊁Caspase-1㊁IL-18和IL-1β的含量㊂a为P<0.05,与Control组比较;b为P<0.05,与DS组比较㊂Figure5.DMM inhibited HUVEC pyroptosis induced by succinate(n=3)密度脂蛋白处理的HUVEC焦亡[15];肠道菌群代谢产物氧化三甲胺通过激活ROS-TXNIP-NLRP3炎症小体轴诱导炎症和内皮功能损伤[16]㊂我们的结果表明琥珀酸类似物DS增加了血管内皮细胞ROS含量,ROS清除剂NAC可降低细胞内ROS含量并下调琥珀酸诱导的血管内皮细胞焦亡相关蛋白NLRP3㊁GSDMD-N㊁Caspase-1㊁IL-1β和IL-18的表达,表明琥珀酸通过ROS途径促血管内皮细胞焦亡㊂细胞内ROS来源于呼吸链以及底物的氧化代谢[17]㊂Li等[18]发现DMM抑制腹膜炎小鼠肿瘤坏死因子的分泌和ROS的产生㊂在本研究中我们采用琥珀酸脱氢酶抑制剂DMM观察琥珀酸氧化代谢对ROS生成的影响,结果发现DMM明显减少ROS 的产生及焦亡相关蛋白NLRP3㊁GSDMD-N㊁Caspase-1㊁IL-1β和IL-18的表达,表明细胞内琥珀酸通过氧化途径增加ROS的生成和蓄积并促焦亡发生㊂多位学者研究发现琥珀酸脱氢酶抑制剂DMM通过抑制琥珀酸的氧化代谢改善缺血后再灌注时心㊁脑㊁肾组织损伤[19-21];Mills等[22]发现DMM抑制脂多糖诱导的IL-1β的产生,抑制炎症反应,提示通过抑制琥珀酸的氧化代谢可以抑制血管内皮细胞焦亡并保护血管内皮细胞功能㊂综上所述,琥珀酸通过氧化代谢途径增加ROS 的生成,促血管内皮细胞焦亡,但琥珀酸在As发生㊁发展中的作用有待于进一步的探讨和验证㊂[参考文献][1]李苗,王丽丽,常冰梅.血管内皮细胞功能损伤机制的研究进展[J].中国动脉硬化杂志,2019,27(8): 730-736.[2]Martinez-Reyes I,Chandel NS.Mitochondrial TCA cycle metabolites control physiology and disease[J].Nat Com-mun,2020,11(1):102.[3]Mills E,O N eill LA.Succinate:a metabolic signal in in-flammation[J].Trends Cell Biol,2014,24(5):313-320.[4]Tannahill GM,Curtis AM,Adamik J,et al.Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha[J].Nature,2013,496(7444):238-242.[5]Peti-Peterdi J.High glucose and renin release:the role of succinate and GPR91[J].Kidney Int,2010,78(12): 1214-1217.[6]Koenis DS,Medzikovic L,van Loenen PB,et al.Nuclear receptor Nur77limits the macrophage inflammatory response through transcriptional reprogramming of mitochondrial me-tabolism[J].Cell Rep,2018,24(8):2127-2140. [7]Xu YJ,Zheng L,Hu YW,et al.Pyroptosis and its rela-tionship to atherosclerosis[J].Clin Chim Acta,2018, 476:28-37.[8]He Y,Hara H,Nunez G.Mechanism and regulation of NLRP3inflammasome activation[J].Trends Biochem Sci, 2016,41(12):1012-1021.[9]Xi H,Zhang Y,Xu Y,et al.Caspase-1inflammasome acti-vation mediates homocysteine-induced pyrop-apoptosis in en-dothelial cells[J].Circ Res,2016,118(10):1525-1539.[10]Yang L,Yu D,Mo R,et al.The succinate receptor GPR91is involved in pressure overload-induced ventricular hypertro-phy[J].PLoS One,2016,11(1):e0147597. [11]Wu JY,Huang TW,Hsieh YT,et al.Cancer-derivedsuccinate promotes macrophage polarization and cancer metastasis via succinate receptor[J].Mol Cell,2020,77(2):213-227.[12]Li Y,Liu Y,Wang C,et al.Succinate induces synovialangiogenesis in rheumatoid arthritis through metabolic re-modeling and HIF-1alpha/VEGF axis[J].Free Radic Biol Med,2018,126:1-14.[13]Wu X,Zhang H,Qi W,et al.Nicotine promotes athero-sclerosis via ROS-NLRP3-mediated endothelial cell pyrop-tosis[J].Cell Death Dis,2018,9(2):171. [14]Wu LM,Wu SG,Chen F,et al.Atorvastatin inhibits py-roptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells[J].Atherosclerosis,2020,293:26-34.[15]Zeng Z,Chen J,Wu P,et al.Ox-LDL induces vascularendothelial cell pyroptosis through miR-125a-5p/TET2pathway[J].J Cell Physiol,2019,234(5):7475-7491.[16]Wu P,Chen J,Chen J,et al.Trimethylamine N-oxidepromotes ApoE-/-mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway [J].J Cell Physiol,2020,235(10):6582-6591. [17]Jardim-Messeder D,Caverzan A,Rauber R,et al.Succi-nate dehydrogenase(mitochondrial complex II)is a source of reactive oxygen species in plants and regulates development and stress responses[J].New Phytol,2015, 208(3):776-789.[18]Li Y,Jia A,Wang Y,et al.Immune effects of glycolysisor oxidative phosphorylation metabolic pathway in protecting against bacterial infection[J].J Cell Physiol,2019,234(11):20298-20309.[19]Beach TE,Prag HA,Pala L,et al.Targeting succinatedehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury[J].Redox Biol,2020, 36:101640.[20]Kula-Alwar D,Prag HA,Krieg T.Targeting succinate me-tabolism in ischemia/reperfusion injury[J].Circulation, 2019,140(24):1968-1970.[21]Zhang J,Wang YT,Miller JH,et al.Accumulation ofsuccinate in cardiac ischemia primarily occurs via canonical Krebs cycle activity[J].Cell Rep,2018,23(9): 2617-2628.[22]Mills EL,Kelly B,Logan A,et al.Succinate dehydro-genase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J].Cell,2016,167(2):457-470.(此文编辑㊀曾学清)。

外源性BMMSCs通过改善内源性BMMSCs成骨分化能力缓解去卵巢大鼠骨质疏松

外源性BMMSCs通过改善内源性BMMSCs成骨分化能力缓解去卵巢大鼠骨质疏松

外源性BMMSCs通过改善内源性BMMSCs成骨分化能力缓解去卵巢大鼠骨质疏松帅逸;于洋;邵秉一;常鹤然;张立超;廖立;金岩【摘要】目的观察系统注射骨髓间充质干细胞(BMMSCs)是否通过改善内源性BMMSCs成骨分化能力缓解去卵巢大鼠骨质疏松.方法 12只雌性SD大鼠随机分为假手术(sham)组、去卵巢(OVX)组、高剂量(high-dose)组和低剂量(low-dose)组.建立OVX和sham模型.术后24h,高、低剂量组分别经尾静脉注射1.5 ×107和0.375×107 cells/kg细胞.microCT扫描股骨近端.ALP和茜素红染色检测BMMSCs成骨能力,RT-PCR检测成骨相关基因.结果 1)OVX组的骨密度(BMD)和骨小梁数量(Tb.N)低于sham组(P<0.05),OVX组内源性BMMSCs的成骨能力弱于sham组(P<0.05).2)高剂量组的BMD和Tb.N高于OVX组(P<0.05).高、低剂量组内源性BMMSCs的成骨能力均强于OVX组(P<0.05),高剂量组强于低剂量组(P<0.05).结论系统注射BMMSCs通过改善OVX大鼠内源性BMMSCs的成骨分化能力,缓解OVX大鼠骨质疏松.【期刊名称】《基础医学与临床》【年(卷),期】2014(034)005【总页数】5页(P610-614)【关键词】系统注射;骨髓间充质干细胞;成骨分化;骨质疏松【作者】帅逸;于洋;邵秉一;常鹤然;张立超;廖立;金岩【作者单位】第四军医大学口腔医院口腔组织病理科,陕西西安710032;第四军医大学组织工程研发中心,陕西西安710032;重庆医科大学附属口腔医院牙体牙髓病科,重庆400015;重庆医科大学附属口腔医院牙体牙髓病科,重庆400015;佳木斯大学附属第二口腔医院口腔颌面外科,黑龙江佳木斯154000;佳木斯大学附属第二口腔医院口腔颌面外科,黑龙江佳木斯154000;第四军医大学口腔医院口腔组织病理科,陕西西安710032;第四军医大学组织工程研发中心,陕西西安710032;第四军医大学口腔医院口腔组织病理科,陕西西安710032;第四军医大学组织工程研发中心,陕西西安710032【正文语种】中文【中图分类】R322.7+1《骨质疏松中国白皮书》(2009)[1]显示,2006年中国50岁以上人群中,约有5 600万女性患有骨质疏松,其中近50%有骨折史,严重影响生活质量,因此绝经后骨质疏松的防治至关重要。

每周散步4h,即使发生卒中也程度较轻

每周散步4h,即使发生卒中也程度较轻

• 1083 •中国循证心血管医学杂志2018年9月第10卷第9期 Chin J Evid Based Cardiovasc Med,September,2018,Vol.10,No.9有保护作用,其机制可能是通过抑制氧化应激和ERS,从而起到抑制内皮细胞凋亡的作用。

该研究结果将会为和厚朴酚在AS相关疾病如冠心病的开发应用提供可靠的科学依据。

但ox-LDL诱导的氧化应激与ERS之间的关系,以及ERS其他通路在和厚朴酚保护内皮细胞中的作用尚不明确,有待于在今后的研究中进一步阐述。

参 考 文 献[1] Di Pietro N,Formoso G,Pandolfi A. Physiology and pathophysiologyof oxLDL uptake by vascular wall cells in atherosclerosis[J]. Vascul Pharmacol,2016,84:1-7.[2] Gi mb ro ne M A Jr,G a rc i a-C a r de n a G.E n do t he l i a l C e l lDysfunction and the Pathobiology of Atherosclerosis[J]. Circ Res,2016,118(4):620-36.[3] Zhao W,Feng H,Sun W,et al. Tert-butyl hydroperoxide (t-BHP)induced apoptosis and necroptosis in endothelial cells:Roles of NOX4 and mitochondrion[J]. Redox Biol,2017,11:524-34.[4] Yang K,Zhang H,Luo Y,et al. Gypenoside XVII PreventsAtherosclerosis by Attenuating Endothelial Apoptosis and Oxidative Stress:Insight into the ERalpha-Mediated PI3K/Akt Pathway[J]. Int J Mol Sci,2017,18(2):77.[5] 康超,张秋香,赵美丽. 黄芩苷对ox-LDL诱导的人脐静脉内皮细胞损伤的保护作用[J]. 中国动脉硬化杂志,2017,25(04):365-8. [6] 张宇,孙淑娴,马威,等.蛇床子素通过A k t/e N O S降低氧化低密度脂蛋白诱导血管内皮细胞凋亡[J].中药药理与临床,2017,(01):59-63.[7] Qi JC,Liu PG,Wang C,et al. Tacrolimus protects vascularendothelial cells from injuries caused by Ox-LDL by regulating endoplasmic reticulum stress[J]. Eur Rev Med Pharmacol Sci,2017,21(17):3966-73.[8] 宜全,谭芳慧,陈伟东,等. 和厚朴酚对大鼠心肌缺血再灌注损伤的保护作用[J]. 广东医学,2017,38(15):2276-9.[9] Yang J,Zou Y,Jiang D. Honokiol suppresses proliferation andinduces apoptosis via regulation of the miR21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells[J]. Int J Mol Med,2018,41(4):1845-54.[10] Sun H,Zhu X,Zhou Y,et al. C1q/TNF-Related Protein-9 AmelioratesOx-LDL-Induced Endothelial Dysfunction via PGC-1alpha/AMPK-Mediated Antioxidant Enzyme Induction[J]. Int J Mol Sci,2017,18(6):1097.[11] Chen B,Meng L,Shen T,et al. Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity[J]. Biochem Biophys Res Commun,2017,490(4):1326-33.[12] 陆荣荣,呼小龙,吾麦尔江·克力木,等. 高尿酸血症对冠状动脉粥样硬化性心脏病大鼠炎性指标及氧化型低密度脂蛋白与凝集素样氧化型低密度脂蛋白受体1水平的影响[J]. 中国医药,2017,12(10):1487-90.[13] Zhang M,Jiang L. Oxidized low-density lipoprotein decreasesVEGFR2 expression in HUVECs and impairs angiogenesis[J]. Exp Ther Med,2016,12(6):3742-8.[14] Hong D,Bai YP,Gao HC,et al. Ox-LDL induces endothelial cellapoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway[J]. Atherosclerosis,2014,235(2):310-7.[15] Qiu L,Xu R,Wang S,et al. Honokiol ameliorates endothelialdysfunction through suppression of PTX3 expression,a key mediator of IKK/IkappaB/NF-kappaB,in atherosclerotic cell model[J]. Exp Mol Med,2015,47(e171).[16] Zhu X,Wang Z,Hu C,et al. Honokiol suppresses TNF-alpha-inducedmigration and matrix metalloproteinase expression by blocking NF-kappaB activation via the ERK signaling pathway in rat aortic smooth muscle cells[J]. Acta Histochem,2014,116(4):588-95.[17] Wang Y,Zhang ZZ,Wu Y,et al. Honokiol protects rat hearts againstmyocardial ischemia reperfusion injury by reducing oxidative stress and inflammation[J]. Exp Ther Med,2013,5(1):315-9.[18] Sheu ML,Chiang CK,Tsai KS,et al. Inhibition of NADPH oxidase-related oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis[J]. Free Radic Biol Med,2008,44(12):2043-50.[19] Tao YK,Yu PL,Bai YP,et al. Role of PERK/eIF2alpha/CHOPEndoplasmic Reticulum Stress Pathway in Oxidized Low-density Lipoprotein Mediated Induction of Endothelial Apoptosis[J]. Biomed Environ Sci,2016,29(12):868-76.[20] Jangra A,Dwivedi S,Sriram CS,et al. Honokiol abrogates chronicrestraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice[J]. Eur J Pharmacol,2016,770:25-32.本文编辑:阮燕萍每周散步4 h,即使发生卒中也程度较轻我们都知道适当的体育锻炼有助于维护心脑血管健康,实际上即使是轻度非常小的锻炼也能够带来明显获益,近日发表于Neurology杂志的一项研究再次证实了这一说法。

艾司洛尔联合硝酸甘油在高血压脑出血术中的应用研究

艾司洛尔联合硝酸甘油在高血压脑出血术中的应用研究

艾司洛尔联合硝酸甘油在高血压脑出血术中的应用研究李艳丽;何光范;汪友平;陈伟锋【摘要】目的:探讨艾司洛尔联合硝酸甘油在高血压脑出血术中的应用。

方法将72例急诊脑出血手术(入选标准为SBP≥200 mmHg)的患者随机分为A、B组,A组(n=36)为艾司洛尔联合硝酸甘油;B组(n=36)硝酸甘油组。

观察分析A、B组患者血流动力学、术中出血及麻醉时间。

结果两组MAP与同组T0相比较T1、T2、T3均明显降低(p<0.05),A组与B组MAP在各时点间比较无统计学差异。

B 组 HR 在 T1、T2、T3较 T0时点明显增快(p <0.05),A组T2、T3、T4心率较T0时点明显减低(p<0.05);A组T1、T2、T3、T4时点HR较B组同时点降低(p<0.01)。

结论艾司洛尔联合硝酸甘油对高血压脑出血手术干预有一定优势。

%Objective To explore the application of nitroglycerin combined with esmolol in hypertensive cerebral hemorrhagesurgery.Methods 72 patients undergoing emergency surgery for cerebral hemorrhage ( inclusion criteria: SBP≥200 mmHg) were randomly divided into two groups (Group A and Group B).Nitroglycerin combined with esmolol was used in Group A (n=36); nitroglycerin was used in Group B(n=36).Hemodynamics, the intraoperative blood loss and the duration of anesthesia in patients in Group A and Group B were observed and statistically analyzed .Results Compared to T0, MAP in both two groups atT1, T2 and T3 were decreased significantly (p<0.05).There were no significant differences between Group A and Group B in MAP at any time pared to T0 , HR at T1 , T2 and T3 in Group B were increased significantly (p<0.05), while HR at T2, T3 and T4 in Group A weredecreased significantly (p<0.05).HR at T1,T2, T3 and T4 in Group A were lower than those in Group B (p<0.01).Conclusion Nitroglycerin combined with esmolol on inter-vention for hypertensive cerebral hemorrhage surgery has certain advantages.【期刊名称】《现代医院》【年(卷),期】2014(000)007【总页数】3页(P27-29)【关键词】脑出血手术;高血压;艾司洛尔;硝酸甘油【作者】李艳丽;何光范;汪友平;陈伟锋【作者单位】广东药学院附属第二医院/广州新海医院广东广州 510300;广东药学院附属第二医院/广州新海医院广东广州 510300;广东药学院附属第二医院/广州新海医院广东广州 510300;广东药学院附属第二医院/广州新海医院广东广州510300【正文语种】中文高血压脑出血是临床神经危重急症之一,其病死率和致残率较高,围手术期血压管理和脑保护一直备受麻醉医师及神经外科关注,围术期管理既关系到患者的安全,又与预后密切相关。

丙酮酸乙酯抗肿瘤作用及其机制的研究进展

丙酮酸乙酯抗肿瘤作用及其机制的研究进展

丙酮酸乙酯抗肿瘤作用及其机制的研究进展李松(综述);杭春华(审校)【摘要】Ethyl pyruvate ( EP) is a stable lipophilic ester derivative of pyruvate with many pharmacological actions confirmed by researches , the anti-tumor effects of EP has attracted the attention of many domestic and foreign scholars .EP exerts antitumor activi-ty through several ways , such as inhibiting proliferation , inducing apoptosis , inhibiting angiogenesis , blocking cell cycle .This paper briefly reviews the rencent findings of antitumor function of EP .%丙酮酸乙酯( ethyl pyruvate , EP)是一种丙酮酸酯类衍生物,具有广泛的药理作用,其抗肿瘤作用的研究日益受到国内外学者关注。

它可通过抑制细胞增殖、诱导细胞凋亡、抗血管生成及阻滞细胞周期等机制发挥抗肿瘤作用,现就近年来EP抗肿瘤作用的研究进展进行简要综述。

【期刊名称】《医学研究生学报》【年(卷),期】2014(000)010【总页数】3页(P1111-1113)【关键词】丙酮酸乙酯;抗肿瘤作用;作用机制【作者】李松(综述);杭春华(审校)【作者单位】210002 南京,南方医科大学南京临床医学院南京军区南京总医院神经外科;210002 南京,南方医科大学南京临床医学院南京军区南京总医院神经外科【正文语种】中文【中图分类】R979.10 引言自1970年以来,肿瘤在我国的发病率和病死率逐年升高,其中恶性肿瘤是导致我国城乡居民死亡的第一大病因[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nephrol Dial Transplant (2010)0:1–7doi:10.1093/ndt/gfq727Original ArticleIntake of water with high levels of dissolved hydrogen (H 2)suppresses ischemia-induced cardio-renal injury in Dahl salt-sensitive rats Wan-Jun Zhu 1,2,Masaaki Nakayama 3,4,Takefumi Mori 1,3,Keisuke Nakayama 1,Junichiro Katoh 1,Yaeko Murata 1,Toshinobu Sato 1,Shigeru Kabayama 2,3and Sadayoshi Ito 1,31Division of Nephrology,Endocrinology and Vascular Medicine,Graduate School of Medicine,Tohoku University,Sendai,Japan,2Medical Device Division,Nihon Trim Co.,Ltd.,Osaka,Japan,3United Centers for Advanced Research and Translational Medicine,Center for Advanced and Integrated Renal Science,Tohoku University,Sendai,Japan and 4Fukushima University School of Medicine,Fukushima,JapanCorrespondence and offprint requests to:Wan-Jun Zhu;E-mail:wanjun@med.tohoku.ac.jpAbstract Background.Hydrogen (H 2)reportedly produces an anti-oxidative effect by quenching cytotoxic oxygen radicals.We studied the biological effects of water with dissolved H 2on ischemia-induced cardio-renal injury in a rat modelof chronic kidney disease (CKD).Methods.Dahl salt-sensitive rats (7weeks old)were al-lowed ad libitum drinking of filtered water (FW:dissolved H 2,0.0060.00mg/L)or water with dissolved H2produced by electrolysis (EW:dissolved H 2,0.3560.03mg/L)for upto 6weeks on a 0.5%salt diet.The rats then underwent ischemic reperfusion (I/R)of one kidney and were killed a week later for investigation of the contralateral kidney and the heart.Results.In the rats given FW,unilateral kidney I/R induced significant increases in plasma monocyte chemoattractant protein-1,methylglyoxal and blood urea nitrogen.Histolog-ically,significant increases were found in glomerular adhesion,cardiac fibrosis,number of ED-1(CD68)-positive cells and nitrotyrosine staining in the contralateral kidney and the heart.In rats given EW,those findings were signifi-cantly ameliorated and there were significant histological differences between rats given FW and those given EW.Conclusion.Consumption of EW by ad libitum drinking has the potential to ameliorate ischemia-induced cardio-renal injury in CKD model rats.This indicates a novel strategy of applying H 2produced by water electrolysistechnology for the prevention of CKD cardio-renal syn-drome.Keywords:chronic kidney disease;electrolyzed water;hydrogen water;inflammation;oxidative stress.Introduction Chronic kidney disease (CKD)is a leading cause of end-stage renal disease.In addition,CKD constitutes an in-dependent risk factor for cardiac events and has thus become a serious public health concern [1].In those cases,the kidney injury may induce pathological burdens to the heart and this in turn further exaggerates kidney dysfunction.The same cycle could start by heart injury.A common predisposed systemic pathology may damage the two organs simultaneously.Whichever the original process is,the pathological condition constitutes a vi-cious cycle of damage to two organ systems,the so-called cardio-renal syndrome [2,3].Among the causativefactors associated with organ injury,it has been pointed out that oxidative stress and inflammation play crucial roles in the pathology [4,5].However,clinically avail-able means to suppress these factors have been limited [6–8].Recently,the novel role of H 2as an antioxidant that reduces cytotoxic oxygen radicals has been revealed.Ani-mal studies have demonstrated that the administration of H 2suppresses ischemic reperfusion (I/R)injury in the brain [9]and liver [10],stress-induced oxidative injury to the hippo-campus [11],drug-induced chronic inflammation in the colon [12]and inflammatory injury of transplanted intesti-nal grafts [13].Notably,H 2intake by drinking water may ameliorate chronic allograft nephropathy [14].Regarding the method of H2administration in thosestudies,H 2was directly inhaled [13]or dissolved in waterby a bubbling technique [9,11,14].Another way tosupply H 2water is to use water electrolysis technology.Water electrolysis gives rise to a unique property of dis-solved H 2at high levels under nanobubble conditions incathode-side water [15]and chemically,it is shown to suppress oxygen radical generation similar to the actionof H 2water reported elsewhere [16].This technologydoes not need processed H 2gas for producing H 2water,and therefore,it renders good applicability for clinicaluse [17–22].Here,we used water with dissolved H2produced byelectrolysis (EW)and studied its biological effect oncardio-renal injury in a rat model of CKD.ÓThe Author 2010.Published by Oxford University Press on behalf of ERA-EDTA.All rights reserved.For Permissions,please e-mail:journals.permissions@NDT Advance Access published December 30, 2010 by guest on January 4, 2011 Downloaded fromMaterials and methods Animals and protocols Seven-week-old male Dahl salt-sensitive rats were allocated to two groups:one group was given filtered water (FW,n ¼17)and the other group was given water with dissolved H 2(EW,n ¼18).All rats were housed in atemperature-and humidity-controlled room with 12-h light/dark cycles.Rats were fed a 0.5%salt diet with ad libitum access to the group-specific water over a 6-week period.Water was changed twice a day,in the morning and afternoon,and was delivered by a metallic straw from a closed bottle.At Week 6,rats were subjected to unilateral clamping of the left kidney artery for 45min and,thereafter,reperfused.One week after I/R,rats were killed for histological and plasma analyses.During the course of the study,blood pressure,body weight,volume of drinking water,24-h urinary volume,24-h urinary excretion of protein and thiobarbituric acid reactive substances (TBARS)were regularly measured.Whole kidneys and heart for histological examination and blood samples from the aortic artery were collected at the end of the study.During I/R,rats were anesthetized using intraperitoneal phenobarbital.All procedures were performed in accordance with institutional guidelines for the care and use of laboratory animals and all protocols were approved by the Animal Committee at Tohoku University School of Medicine.Generation and chemical properties of electrolyzed water EW was generated using a TRIM ION TI-9000system (Nihon Trim Co.,Ltd,Osaka,Japan),which is equipped with a filtration system and elec-trolysis system connected to a tap.FW was generated by the TI-9000system using only the filtration system.The properties of EW are shown in Table 1.EW showed negative oxidation–reduction potential and high levels of dissolved H 2.Measurements Blood pressure was measured in the morning by the tail-cuff method using an MK2000A blood pressure monitor for mice and rats (Muromachi,Tokyo,Japan).Urinary protein was measured using a Quick Start bovine serum albumin standard set (Bio-Rad Laboratories,Hercules,CA).Uri-nary TBARS were measured by the lipid peroxidation assay method.Plasma creatinine and blood urea nitrogen (BUN)were measured using an auto-analyzer (Beckman Coulter,Fullerton,CA)and clearance of creatinine was calculated.Tumor necrosis factor a ,interleukin-6and monocyte chemoattractant protein (MCP)-1were measured using enzyme-linked immunosorbent assays (Invitrogen,Carlsbad,CA).Methylglyoxal and 3-deoxyglucosone were measured using liquid chromatography–mass spectrometry,as previously reported [23].Histological examinationsKidney and heart sections were stained using the Elastica-Masson method for determining renal injury and cardiac fibrosis.Glomerular adhesion was determined from the findings of all cortical glomeruli in each rat (>70).To semiquantify the glomerular matrix,50glomeruli were selected randomly.The percentage of each glomerulus occupied by mesangial matrix was estimated and given a score (0,normal;1,<25%of the glomerulus;2,25–50%of the glomerulus;3,50–75%of the glomerulus or 4,>75%ofthe glomerulus).A glomerular injury score (GIS)was obtained using thefollowing formula:[(03n 0)1(13n 1)1(23n 2)1(33n 3)1(43n 4)]/50.To semiquantify the tubulointerstitial fibrosis area,five areas ofrenal medulla were randomly selected.The percentage of each area thatshowed sclerofibrotic changes (blue area in Masson staining)was meas-ured by Image J software (National Institute of Health,Bethesda,MD).To semiquantify the tubular dilation area,five areas of renal medulla wererandomly selected.The percentage of each area that showed dilated change (unstained area following Masson staining)was measured by Im-age J software.To semiquantify the area of cardiac fibrosis,five areas ofheart tissue were randomly selected.The percentage of each area thatshowed dilated change (blue area following Masson staining)was meas-ured by Image J software.Cardiomyocyte size was determined according to the methods reported elsewhere [24].Briefly,five areas of heart tissue from inner,medial and outer portions were randomly selected to measure the minimum length of sectioned myocardium in the short axis.The per-centage of each area that showed dilated change (blue area in Masson staining)was measured by Image J software.Changes in the cardiac vascular wall from arteriole to small artery and post-capillary venule to venule were examined as previously reported [25].Outer and inner diam-eters of respective vessels were measured to calculate the ratios of those two measurements.For immunohistochemical analysis,kidney and heart tissue was immediately fixed with 95%ethanol overnight and then again with 100%ethanol overnight.Tissue was embedded in paraffin and 3-l m-thick sections were cut and mounted on slide glasses.Slides were deparaffinized with xylene and ethanol.Immunohistochemical staining was performed using monoclonal antibody against ED-1(Serotec,Oxford,UK),polyclonal antibody against nitrotyrosine (Upstate,New York,NY)and monoclonal antibody against 4-hydroxy-2-nonenal (4-HNE)(NOF corporation,Tokyo,Japan).The slides were then incubated overnight at 4°C.Results were analyzed by counting the number of cells labeled pos-itively for ED-1in kidney and heart,nitrotyrosine-positive cells in heartand measuring the area of positive nitrotyrosine in kidney,4-HNE staining in kidney and heart by Image J software.RNA preparation and quantitative reverse transcriptase-mediated polymerase chain reactionTotal RNA was isolated from the whole kidney by using the guanidine–isothiocyanate based-reagent Isogen (Nippon Gene,Tokyo,Japan)accord-ing to the instruction manual.Quantitative reverse transcription–polymerase chain reaction.For cDNAsynthesis by Invitrogen Superscript III First-strand Synthesis SuperMix (Invitrogen)according to the instruction manual,2l g of total RNA was used as a template.We performed real-time polymerase chain reaction analysis with probe sets from Applied Biosystems (Foster City,CA).The gene-specific primers of NADPH oxidase 4:NM_053524.1—forward:ACTGCCTCCATCAAGCCAAGA and reverse:CTTCCAAATGGGCC-ATCAATGTA and glyceraldehyde-3-phosphate dehydrogenase (GAPDH):NM_017008.3—forward:GGCACAGTCAAGGCTGAGAATG and re-verse:ATGGTGGTGAAGACGCCAGTA were used for the amplification of certain cDNAs using the Syber Premix Ex Taq solution (Takara Bio,Shiga,Japan).The relative expression level of each messenger RNA (mRNA)was normalized by using the glyceraldeyde-3-phosphate dehydro-genase mRNA level.Statistical analysisData are expressed as mean Æstandard error of the mean and were ana-lyzed using the independent t -test or two-way repeated measure analysis of variance.Differences between groups were considered significant for val-ues of P <0.05.All analyses were performed using Sigmastat 3.5software (Systat Software,Chicago,IL).ResultsChanges in mean body weight,blood pressure,food con-sumption,water consumption,urinary protein and albu-min during the course of 6-week feeding before I/R areshown in Table 2.No differences were found in thechanges of these parameters between the FW and EWgroups.Plasma and urinary parameters in sham and I/R rats at1week after I/R are shown in Table 3.Significantly higherlevels were seen in plasma MCP-1,methylglyoxal andBUN and in urinary MCP-1in rats given FW with I/R ascompared to sham.Whereas no differences were found in those plasma parameters in rats given EW,although nostatistical differences were found between FW and EW ofI/R rats.Table 1.Chemical properties of test water a Water type pH Dissolved hydrogen (mg/L)Redox potential (mV)FW 8.3360.020.0060.001140.164.2EW 10.4360.010.3560.03À148.064.0a Values represent mean 6SEM.2W.-J.Zhu et al. by guest on January 4, 2011 Downloaded fromRepresentative histological findings of kidney and heart are shown in Figure 1.Figure 2shows the histological comparisons of kidney between the two groups (FW versus EW)in sham and I/R rats,respectively.In rats given FW,there were significant increases in adhesive glomeruli (Sham versus I/R:3.6Æ0.1%versus 9.2Æ0.8%,P <0.05,Figure 2a),GIS (0.09Æ0.02versus 0.43Æ0.05,P <0.05,Figure 2b)and nitro-tyrosine staining area (1.46Æ0.37%versus 5.51Æ1.74%per slice;P <0.05,Figure 2e),while no differences were found in interstitial fibrosis (10.0Æ2.1%versus 11.9Æ1.8%per slice,Figure 2c),number of ED-1cells (64.7Æ16.6versus 75.3Æ14.6,Figure 2d)and 4-HNE staining area in kidney (56.0Æ3.2%versus 57.6Æ2.7%per slice,Figure 2f).In the rats given EW,there were significant increases in GIS (Sham versus I/R:0.09Æ0.03versus 0.36Æ0.05,per slice;P <0.05,Figure 2b),number of ED-1cells (18.0Æ4.9versus 41.0Æ6.9per slice;P <0.05,Figure 2d)and nitrotyrosine staining area (1.58Æ0.01%versus 2.93Æ1.01%,P <0.05,Figure 2e),while no differences were found in interstitial fibrosis (8.9Æ1.2%versus 9.3Æ0.5%,Figure 2c),adhesive glomeruli (3.1Æ0.3%versus 4.7Æ0.8%,Figure 2a),4-HNE stain-ing area (55.7Æ6.1%versus 55.0Æ3.8%per slice,Figure 2f).In comparison of the rats on FW and EW,the levels were significantly less in the glomerular adhesion rate in I/R rats on EW (P <0.05,Figure 2a),ED-1staining in sham and I/R rats on EW (P <0.05;Figure 2d),nitrotyrosine staining in I/R rats on EW (P <0.05;Figure 2e),as com-pared to the counterparts,respectively.Figure 3shows the histological comparisons of heart between the two groups (FW versus EW)in sham and I/R rats,respectively.In rats given FW,there were significant increases in fibrosis area (Sham versus I/R:3.0Æ0.2ver-sus 3.9Æ0.3,P <0.05,Figure 3a),number of ED-1cells (60.4Æ10.4versus 99.9Æ10.7per slice;P <0.05,Figure 3b),number of positive nitrotyrosine cells (41.3Æ7.6versus 70.3Æ8.2per slice;P <0.05,Figure 3c),4-HNE staining area in heart (46.1Æ8.0%versus 63.0Æ4.4%per slice;P <0.05,Figure 3d),while no difference was found in heart/body weight ratio (0.32Æ0.01%versus 0.33Æ0.01%),left ventricular wall thickness (1.90Æ0.09mm versus 1.90Æ0.04mm),arterial or venous wall thickness ratios (51.7Æ2.5%versus 52.5Æ1.3%),cardiomyocyte size (41.3Æ1.6l m versus 41.7Æ0.8l m).In rats given EW,there were significant increases in fibrosis area (Sham versus I/R:2.0Æ0.2%versus 2.9Æ0.3%,P <0.05,Figure 3a),number of ED-1cells (29.5Æ4.2versus 40.9Æ4.9,per slice;P <0.05,Figure 3b),while no difference was found in 4-HNE staining area (48.5Æ7.4versus 47.8Æ5.7,per slice,Figure 3d)and number of nitrotyrosine cells (28.6Æ5.0versus 30.2Æ1.9,per slice,Figure 3c).There were no differences in cardiomyocyte size (48.0Æ1.6l mversus 49.0Æ1.6l m),heart/body weight ratio (0.32Æ0.01%versus 0.33Æ0.01%),left ventricular wall thickness (1.95Æ0.06mm versus 1.97Æ0.04mm)and arterial or venous wall thickness ratios (47.5Æ2.1%versus 51.1Æ1.9%).In comparison of the rats on FW and EW,the sig-nificantly lower levels were found in cardiac fibrosis in sham and I/R rats given EW (P <0.05;Figure 3a),ED-1-positive cells in sham and I/R rats given EW (P <0.05;Figure 3b),nitrotyrosine-positive cells in I/R rats given EW (P <0.05;Figure 3c)and 4-HNE staining area in I/R ratsgiven EW (P <0.05;Figure 3d),respectively as compared to the counterparts.Cardiomyocyte size was smaller in sham and I/R rats given FW (data not shown,P <0.05).There were no differences in mRNA levels (per GAPDH ratio)between sham and I/R rats given FW or EW (Table 4),but there was a significant difference in heart NOX4expressions in I/R rats between FW and EW.DiscussionA growing amount of evidence suggest that renal ischemic insults induce immune activation which plays a crucial role for distant organ injury [26].Notably,unilateral kidney I/R induces an inflammatory reaction in the contralateral kid-ney [27,28].In the present study,CKD model rats were subjected to unilateral kidney I/R to induce injury in the contralateral kidney and heart (cardio-renal injury model).Rats were allowed ad libitum drinking of group-specific water for 6weeks.Findings at 1week after I/R are sum-marized as follows.Firstly,significant increases were seen Table parison of parameters between rats on FW and EW aGroup Baseline 2weeks 4weeks 6weeksBody weight (g)FW 99.960.7196.661.2308.861.7363.362.1EW 101.260.9196.661.6307.761.9361.562.7Blood pressure (mmHg)FW 111.162.0115.962.1143.764.3162.263.0EW 117.361.8115.462.4148.761.7162.563.3Food consumption (g/day)FW 23.460.924.061.526.261.028.661.3EW 22.560.724.961.425.960.927.861.9Water consumption (g/day)FW 28.061.331.360.935.561.237.361.1EW 27.460.830.861.035.160.836.062.2Urinary protein (mg/mg Cr)FW 11.261.538.562.885.865.489.866.6EW 12.062.037.862.892.563.898.167.9Urinary albumin (mg/mg Cr)FW 0.3060.040.8060.06 1.3060.10 1.3060.07EW 0.3060.060.9060.08 1.2060.11 1.3060.07Urinary TBARS (l M MDA/mg Cr)FW ND ND ND 0.1260.10EW ND ND ND 0.1260.07a Values represent mean 6SEM.ND,not determined.H 2water for cardio-renal injury 3 by guest on January 4, 2011 Downloaded fromTable parison of parameters between rats on FW and EW aGroup Sham rat I/R rat PPlasma MCP-1(pg/mL)FW 22.161.628.461.5<0.05EW 27.163.332.761.6NSPlasma IL-6(pg/mL)FW 15.262.613.661.4NSEW 13.061.814.361.2NSPlasma TNF-a (pg/mL)FW 6.560.810.063.5NSEW 6.960.98.461.1NSPlasma methylglyoxal (nM)FW 92.865.1106.463.8<0.05EW 94.564.1104.863.8NSPlasma 3-deoxyglucosone (nM)FW 651.6663.2673.7626.0NSEW 666.5661.4674.4625.0NSPlasma creatinine (mg/dL)FW 0.5260.060.3660.03NSEW 0.4260.020.4560.02NSBUN (mg/dL)FW 19.060.523.060.8<0.05EW 18.761.221.260.8NSUrinary TBARS excretion (l M MDA/mg Cr)FW 0.1360.01b 0.1360.01NSEW 0.1060.010.1360.02NSUrinary albumin excretion (mg/mg Cr)FW 1.5860.36 1.8760.17NSEW 1.1260.27 1.9660.20<0.05Urinary MCP-1excretion (pg/mg Cr)FW 0.2660.030.3960.03<0.05EW 0.1960.010.3860.02<0.05a Values represent mean 6SEM.NS,no significance;IL-6,interleukin 6;TNF-a ,tumor necrosisfactor a .b FW versus EW,P <0.05.Fig.1.Representative histological findings of kidneys (the contralateral side)and hearts of rats with I/R.Glomerular adhesion with crescent formation in a rat with I/R given FW (a )and EW (b ).Tubular dilation and fibrosis in a rat with I/R given FW (c )and EW (d ).ED-1staining in the renal cortex of a rat with I/R given FW (e )and EW (f ).Nitrotyrosine staining in the renal cortex of a rat with I/R given FW (g )and EW (h ).Myocardium fibrosis of a rat with I/R given FW (i )and EW (j).ED-1staining in the heart of a rat with I/R given FW (k )and EW (l ).Nitrotyrosine staining in the heart of a rat with I/R given FW (m )and EW (n ).4-HNE staining in the heart of a rat with I/R given FW (o )and EW (p ).4W.-J.Zhu et al.by guest on January 4, 2011 Downloaded fromin plasma MCP-1,methylglyoxal and BUN in the FW group,whereas no changes were found in the EW group.Secondly,in histological analysis,significant increases in glomerular adhesion,cardiac fibrosis,ED-1-positive cells and nitrotyrosine staining were seen in the contralateral kidney and the heart of rats given FW.In rats given EW,those findings were significantly ameliorated and there were significant differences in histological data between rats given FW or EW not only in the sham group (EW:fewer ED-1cell numbers in kidney and heart,less fibrosis in the heart)but also in the I/R group (less glomerular adhesion,fewer ED-1cells and less nitrotyrosine staining in the kidney and heart).Regarding the pathological characteristics of rats given FW in the present study,the model indicates enhanced oxidative stress and inflammation in remote organs by unilateral kidney I/R.There were findings of enhanced glomerular adhesion and cardiac fibrosis,with accompany-ing increased ED-1cells and nitrotyrosine staining,which reflects nitric oxide deactivation by oxygen radicals.Those findings may well support our hypothesis.In the findings of rats given EW,there were the same changes in the con-tralateral kidney as those of rats given FW,but the levels were significantly less than those of rats given FW.In the heart,no increases were found in cardiac fibrosis,ED-1cells and nitrotyrosine staining with I/R,and the levels were significantly less than those of FW.This indicates the bioaction of drinking EW for ameliorating inflamma-tory and oxidative stress and protecting histological de-rangement due to those injuries,partly by suppressing nitric oxide inactivation.In a comparison of rats given EW or FW without I/R,the number of ED-1cells in the kidney was lower in rats given EW,with accompanying lower levels of TBARS and MCP-1in the urine.Furthermore,less cardiac fibrosis and fewer ED-1cells were found in rats given EW.Therefore,itis Fig.2.Histological findings of kidney in rats 6I/R given FW or EW.(a )Glomerular adhesion ratios per slice (%)in sham rats (h FW:n ¼7,n EW:n ¼5)and I/R rats (contralateral kidney,h FW:n ¼11,n EW:n ¼12).(b )Gromerular sclerosis index in sham rats and I/R rats.(c )Tubular fibrosis area per field (%)in sham rats and I/R rats.(d )Number of ED-1-labeled cells per slice in sham rats and I/R rats.(e )Nitrotyrosine-positive area per field (%)in sham rats and I/R rats.(f )4-HNE-positive area per field (%)in sham rats and I/R rats.#P <0.05versus sham;*P <0.05versus FW.H 2water for cardio-renal injury 5 by guest on January 4, 2011 Downloaded fromspeculated that as a result of the preceding drinking for 6weeks before I/R,less inflammatory status may be precondi-tioned,which could contribute to less histological damage.Special mention should be made of the fact that these differences were achieved simply by changing the daily drinking water to EW,without the use of any supplements such as antioxidants.The findings of the present study thus suggest that daily EW drinking may offer an innovative ap-proach to preventing cardio-renal injury and ischemic stress.Regarding the primary biological mechanisms by which EW suppresses the histological changes,it is speculated that H 2,which quenches oxygen radicals such as super-oxide anions or hydroxyradicals,may play a crucial role.Previous studies employed water with dissolved H2levels>0.4mM [9],approximately equivalent to the level in the EW employed in the present study.In addition,EW isknown to suppress the generation of hydrogen peroxide during the oxidative stress.This chemical character may benefit the rats given EW with I/R.It is known that plasma methylglyoxal,which was increased with I/R in rats givenFW,reacts with hydrogen peroxide to generate carbon rad-icals,which could be involved with progressive cellularinjury.Whether there are differences in hydrogenated water produced by bubbling or electrolysis could be an interest-ing issue to be clarified for clinical use.In conclusion,EW at least partially suppressed cardio-renal syndrome in rats with the combination of oxidative and ischemic insults.The leading mechanism by which EW exerts effects may involve the inhibition of inflammationand oxidative stress.This indicates a novel strategy forapplying H 2produced by water electrolysis for the preven-tion of CKD cardio-renal syndrome.Acknowledgments.We wish to thank Dr Takashi Nakamichi (MD),Dr Yusuke Ohsaki (PhD),Miss Yoshimi Yoneki (Technical Assistant)for the technique advices for the study,the Trim Medical Institute (Sendai,Japan)for technical support for measuring methylglyoxal and 3-deoxyglucosoneand Biomedical Research Core of Tohoku University Graduate School ofMedicine for technical support for the study.Conflict of interest statement.W.J.Z and S.K.are employees of Nihon Trim Co.,Ltd.Other authors have no financial connection with Nihon Trim Co.,Ltd.and nothing to declare.The study was conducted by a grantofficially contracted between Tohoku University Graduate School of Med-icine and Nihon Trim (from 2008to 2010).References1.K/DOQI clinical practice guidelines for chronic kidney disease:eval-uation,classification,and stratification.Am J Kidney Dis 2002;39(2Suppl.1):S1–266Fig.3.Histological findings of heart in rats 6I/R given FW or EW.(a )Cardiac fibrosis per field (%)in sham rats (h FW:n ¼7,n EW:n ¼5)and I/R rats (h FW:n ¼11,n EW:n ¼12).(b )Number of ED-1-labeled cells per slice in sham rats and I/R rats.(c )Number of nitrotyrosine-labeled cells per slice in sham rats and I/R rats.(d )4-HNE-positive area per field (%)in sham rats and I/R rats.#P <0.05versus sham;*P <0.05versus FW.Table parison of mRNA level of NADPH oxidase 4between ratson FW and EW a Group Sham rat I/R rat P Heart tissue (NOX4/GAPDH)FW 0.00860.0050.02860.011b NS EW 0.00560.0030.01260.017NS Kidney tissue (NOX4/GAPDH)FW 1.59961.053 1.70160.789NS EW 1.44260.7900.98660.464NS a NOX4,NADPH oxidase 4;GAPDH,glyceraldehyde-3-phosphate dehy-drogenase.Values represent mean 6SEM.NS,no significance.b FW versus EW,P <0.05.6W.-J.Zhu et al. by guest on January 4, 2011 Downloaded from2.Ronco C,Haapio M,House AA et al.Cardiorenal syndrome.J Am Coll Cardiol 2008;52:1527–15393.Ronco C,Chionh CY,Haapio M et al.The cardiorenal syndrome.Blood Purif 2009;27:114–1264.Cottone S,Lorito MC,Riccobene R et al.Oxidative stress,inflam-mation and cardiovascular disease in chronic renal failure.J Nephrol 2008;21:175–1795.Shamseddin MK,Parfrey PS.Mechanisms of the cardiorenal syn-dromes.Nat Rev Nephrol 2009;5:641–6496.Boaz M,Smetana S,Weinstein T et al.Secondary prevention with antioxidants of cardiovascular disease in end-stage renal disease (SPACE):randomised placebo-controlled ncet 2000;356:1213–12187.Mann JF,Lonn EM,Yi Q et al.Effects of vitamin E on cardiovascular outcomes in people with mild-to-moderate renal insufficiency:results of the HOPE study.Kidney Int 2004;65:1375–13808.Tepel M,van der Giet M,Statz M et al.The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure:a randomized,controlled trial.Circulation 2003;107:992–9959.Ohsawa I,Ishikawa M,Takahashi K et al.Hydrogen acts as a ther-apeutic antioxidant by selectively reducing cytotoxic oxygen radicals.Nat Med 2007;13:688–69410.Fukuda K,Asoh S,Ishikawa M et al.Inhalation of hydrogen gassuppresses hepatic injury caused by ischemia/reperfusion through re-ducing oxidative stress.Biochem Biophys Res Commun 2007;361:670–67411.Nagata K,Nakashima-Kamimura N,Mikami T et al.Consumptionof molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice.Neuropsychopharmacology 2009;34:501–50812.Kajiya M,Silva MJ,Sato K et al.Hydrogen mediates suppressionof colon inflammation induced by dextran sodium sulfate.Biochem Biophys Res Commun 2009;386:11–1513.Buchholz BM,Kaczorowski DJ,Sugimoto R et al.Hydrogen inhala-tion ameliorates oxidative stress in transplantation induced intestinal graft injury.Am J Transplant 2008;8:2015–202414.Cardinal JS,Zhan J,Wang Y et al.Oral hydrogen waterprevents chronic allograft nephropathy in rats.Kidney Int 2010;77:101–10915.Kikuchi K,Tanaka Y,Saihara Y et al.Concentration of hydrogennanobubbles in electrolyzed water.J Colloid Interface Sci 2006;298:914–91916.Shirahata S,Kabayama S,Nakano M et al.Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxi-dative damage.Biochem Biophys Res Commun 1997;234:269–27417.Nakayama M,Kabayama S,Nakano H et al.Biological effects of electrolyzed water in hemodialysis.Nephron Clin Pract 2009;112:c9–1518.Huang KC,Yang CC,Lee KT et al.Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water.Kidney Int 2003;64:704–71419.Huang KC,Yang CC,Hsu SP et al.Electrolyzed-reduced water reduced hemodialysis-induced erythrocyte impairment in end-stage renal disease patients.Kidney Int 2006;70:391–39820.Huang KC,Hsu SP,Yang CC et al.Electrolysed-reduced water dialysate improves T-cell damage in end-stage renal disease patients with chronic haemodialysis.Nephrol Dial Transplant 2010;25:2730–273721.Nakayama M,Kabayama S,Terawaki H et al.Less-oxidative hemo-dialysis solution rendered by cathode-side application of electrolyzed water.Hemodial Int 2007;11:322–32722.Masakai N,Hirofumi N,Hiromi H et al.A novel bioactive haemo-dialysis system using dissolved dihydrogen (H2)produced by water electrolysis:a clinical trial.Nephrol Dial Transplant 2010;25:3026–303323.Nakayama K,Nakayama M,Iwabuchi M et al.Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients.Am J Nephrol 2008;28:871–87824.Zanesco A,Costa SK,Riado SR et al.Modulation of coronary flow and cardiomyocyte size by sensory fibers.Hypertension 1999;34(4Pt 2):790–79425.Tanaka Y,Nagai M,Date T et al.Effects of bradykinin on cardio-vascular remodeling in renovascular hypertensive rats.Hypertens Res 2004;27:865–87526.Feltes CM,Van Eyk J,Rabb H.Distant-organ changes after acute kidney injury.Nephron Physiol 2008;109:80–8427.Meldrum KK,Meldrum DR,Meng X et al.TNF-alpha-dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion.Am J Physiol Heart Circ Physiol 2002;282:H540–H54628.Ko GJ,Boo CS,Jo SK et al.Macrophages contribute to the develop-ment of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury.Nephrol Dial Transplant 2008;23:842–852Received for publication:2.4.10;Accepted in revised form:8.11.10H 2water for cardio-renal injury7 by guest on January 4, Downloaded from。

相关文档
最新文档