计量经济学实验报告3

合集下载

计量经济学实验报告(三)

计量经济学实验报告(三)

2012 — 2013 第 1 学期计量经济学实验报告实验(三):计量经济检验与修正实验学号:0101702 姓名:宋蕾专业: 财务管理选课班级:A(2实验日期: 2 0 11.112实验地点:南区综合楼经济管理与创业模拟实验中心实验室实验名称:计量经济检验与修正实验【实验目标、要求】使学生掌握用Eviews做1.异方差性检验和修正方法;2.自相关性检验和修正方法;3.【实验内容】实验内容以课后练习:以114页第6题、130页应用题第2题为例进行操作【实验步骤】一、第114页第6题(一)创建工作文件在主菜单上依次单击File T New^Workfile ,选择数据类型和起止日期。

时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。

本题中在workfile structure type 中选Unstructured/Undated, 在Data range Observation 中填 2 8。

单击OK后屏幕出现Workfile工作框,如图所示。

(二)输入和编辑数据在命令窗口直接输入:Data Y X . 屏幕出现数据编辑框,如下图所示。

点击上图中对话框的"Edit +/-",将数据进行输入,如下图所示。

数据输入完毕,单击工作文件窗口工具条的存入磁盘。

(三)0 LS估计参数利用2008年中国部分省市城镇居民家庭平均全年可支配收入(的相关数据表,作散点图。

Eviews命令:scat X Y ; 如图所示X)与消费性支出(Y)Save或单击菜单兰的File宀Save将数据可看出2 0 0 8年中国部分省市城镇居民家庭平均全年可支配收入 (X)与消费性支出(Y)的关系近似直线关系可建立线性回归模型。

在主菜单命令行键入:“LS Y C X ”,然后回车。

即可直接出现如下图所示的计算结果Depe ndent Variable: Y Method: Least Squares Date: 12/12/12 Time: 20:15 Sample: 1 28In cluded observati ons: 28VariableCoefficie ntStd. Errort-StatisticProb.C 735.1080 477.1123 1.540744 0.1355 X0.6662220.03055821.802130.0000R-squared0.948138Mean depe ndent var 10780.65 Adjusted R-squared 0.946144 S.D. dependent var 2823.752 S.E. of regressi on 655.3079 Akaike info criteri on 15.87684 Sum squared resid 11165139 Schwarz criteri on 15.97199 Log likelihood -220.2757 F-statistic 475.3327 Durb in -Watson stat1.778976Prob(F-statistic)0.000000(477. 1123) (0 . 030558) 点击 store to DB,将估计式以“ eq01 ”为名保存。

计量经济学回归模型实验报告(大全)

计量经济学回归模型实验报告(大全)

计量经济学回归模型实验报告(大全)第一篇:计量经济学回归模型实验报告(大全)回归模型分析报告背景意义:教育是立国之本,强国之基。

随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。

一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。

本报告将从这两个方面进行分析。

我国1991 年~2013 年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。

试建立教育经费收入Y 关于人均国内生产总值指数 X 1 和年末城镇人口数 X 2的回归模型,并进行回归分析。

年份教育经费收入Y(亿元)人均国内生产总值指数X 1(1978 年=100)年末城镇人口数X 2(万人)1991 731.50282 256.67 31203 1992 867.04905 289.72 32175 1993 1059.93744 326.32 33173 1994 1488.78126 364.91 34169 1995 1877.95011 400.6 35174 1996 2262.33935 435.76 37304 1997 2531.73257 471.13 39449 1998 2949.05918 503.25 41608 1999 3349.04164 536.94 437482000 3849.08058 577.64 45906 2001 4637.66262 621.09 48064 2002 5480.02776 672.99 50212 2003 6208.2653 735.84 52376 2004 7242.59892 805.2 54283 2005 8418.83905 891.31 56212 2006 9815.30865 998.79 58288 2007 12148.0663 1134.67 60633 2008 14500.73742 1237.48 62403 2009 16502.7065 1345.07 64512 2010 19561.84707 1480.87 66978 201123869.29356 1613.61 69079 2012 28655.30519 1730.18 71182 2013 30364.71815 1853.97 73111 资料来源:中经网统计数据库。

计量经济学实验报告

计量经济学实验报告

一、实验目的及要求:1、目的利用EVIEWS 实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。

2、内容及要求(1) 熟悉EVIEWS实验软件的基本操作程序和方法; (2) 掌握一元线性回归模型基本概念,了解其估计和检验原理 (3) 提交实验报告二、仪器用具:三、实验结果与数据处理:1下面是利用1970-1980年美国数据得到的回归结果。

其中Y 表示美国咖啡消费(杯/日.人),X 表示平均零售价格(美元/磅)。

注:262.2)9(2/=αt ,228.2)10(2/=αt6628.006.42)()1216.0(4795.06911.2ˆ2===-=R t se X Y tt)(值1. 写空白处的数值。

12. 对模型中的参数进行显著性检验。

3. 解释斜率系数1β的含义,并给出其95%的置信区间。

解:(1)1308.221216.06911.2)(00===ββse t0114.006.424795.0)(11-=-==tse ββ(2)用t 检验法分别对模型中的参数0β1β进行显著性水平检验: 在5%的显著性水平下,模型的自由度为11-2=9,且262.2)9(025.0=t 由于262.21308.220>=βt ,故该模型的截距项在统计上是显著的; 同理 262.206.421>=βt ,即斜率系数在统计上也是显著的。

(3)斜率系数4795.01-=β,小于0,在其他条件不变的情况下,咖啡的平均零售价格每增加一个单位,美国咖啡的日消费将平均减少0.4795个单位,说明咖啡的消费量与其平均零售价格呈负相关关系。

1β的95%的置信区间为:]4537.0,5053.0[)]ˆ(ˆ),ˆ(ˆ[12/112/1--+-即ββββααse t se t2美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上。

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

计量经济 实验报告三

计量经济 实验报告三

计量经济实验报告实验三异方差的识别与补救一、实验目的:1.掌握异方差的识别方法2.能针对具体问题提出解决异方差问题的措施二、实验内容:下表是储蓄与收入得样本观测值,试建立储蓄Y关于收入X的线性模型并进行异方差的检验与修正。

个人储蓄与收入数据(百万英镑)序号Y X 序号Y X1 264 8777 17 1578 241272 105 9210 18 1654 256043 90 9954 19 1400 265004 131 10508 20 1829 276705 122 10979 21 2200 283006 107 11912 22 2017 274307 406 12747 23 2105 295608 503 13499 24 1600 281509 431 14269 25 2250 3210010 588 15522 26 2420 3250011 898 16730 27 2570 3250012 950 17663 28 1720 3350013 779 18575 29 1900 3600014 819 19635 30 2100 3620015 1222 21163 31 2300 3820016 1702 228801.用以上数据对储蓄-收入模型进行估计2.检验模型是否存在异方差3.假设随机项的异方差形式为22var()i ixμσ=,消除模型的异方差并重新对模型进行估计。

三、实验结果:1、模型估计:Dependent Variable: YMethod: Least SquaresDate: 12/06/13 Time: 16:58Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.C -655.9600 124.2692 -5.278540 0.0000X 0.085352 0.005161 16.53779 0.0000R-squared 0.904132 Mean dependent var 1250.323 Adjusted R-squared 0.900826 S.D. dependent var 820.9407 S.E. of regression 258.5299 Akaike info criterion 14.01024 Sum squared resid 1938294. Schwarz criterion 14.10276 Log likelihood -215.1587 F-statistic 273.4984 Durbin-Watson stat 1.039802 Prob(F-statistic) 0.0000002、white检验:White Heteroskedasticity Test:F-statistic 11.18080 Probability 0.000270 Obs*R-squared 13.76465 Probability 0.001026Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/06/13 Time: 17:00Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.C 38802.30 71391.21 0.543516 0.5911X -4.563188 7.025231 -0.649543 0.5213X^2 0.000217 0.000154 1.411320 0.1692R-squared 0.444021 Mean dependent var 62525.62 Adjusted R-squared 0.404308 S.D. dependent var 75015.93S.E. of regression 57898.10 Akaike info criterion 24.86252 Sum squared resid 9.39E+10 Schwarz criterion 25.00130 Log likelihood -382.3691 F-statistic 11.18080 Durbin-Watson stat 1.491234 Prob(F-statistic) 0.0002703、消除模型的异方差并重新对模型进行估计。

《计量经济学》实训报告内容

《计量经济学》实训报告内容
Object-Generate Series Quick-Generate Series…,输入生成新数据的公式: w=1/resid Quick-Equation Estimation-输入计量模型,在Option选项 卡中选择Weighted LS/TSLS
进一步检查是否存在异方差,倘若存在,更改权重 (例如,残差项平方的倒数作为权重)
2019/2/14 4
第二次实训内容:对时间序列数据 进行线性回归
• 基本步骤
建立数据文件 Quick-Equation Estimation-输入计量模型
2019/2/14
5
• 如何防止多重共线性?
相关性分析(View-Covariance Analysis) 解决方法:排除变量法、差分法(在时间序列 数据、面板数据中使用)
2019/2/14
6
• 如何防止序列相关性?
在回归方程中加入ar(1)、ar(2)……,检验D.W. 值是否接近于2
2019/2/14
7
第三次实训内容:对面板数据进行 线性回归
• 基本步骤
建立数据文件
如何防止多重共线性?略。
一般不考虑异方差性和序列相关性。
2019/2/14
8
Estimate,在Specification中输入被解释变量 (加一个问号),在cross-section中选择 random;在Common coefficents中各自变 量(每个自变量后面加一个问号,并且用空格 隔开),点击确定。 固定效应和随机效应的选择:ViewFixed/Random Effect Testing-Correlated Random Effects-Hausman Test,倘若 Cross-section random的伴随概率小于0.1, 那么运用固定效应,否则运用随机效应。

计量经济学综合实验报告

计量经济学综合实验报告
农村居民:
1、用Eviews创建变量LE、NI,输入样本数据,、打开Eviews工作文件,建立新的文件夹,在命令框中输入“data le ni”回车 ,从数据表中粘贴数据到Eviews数据表中即可;
2、估计河南省农村居民消费支出LE依可支配收入NI的一元回归模型
下图就是河南省农村居民消费支出LE和可支配收入NI的一元线性回归结果:
6、对ce为被解释变量,di为解释变量模型输出结果进行经济理论检验,拟合优度检验和t检验;
1经济意义检验:所估计参数β1=,β2=,说明可支配收入增加1元,平均说来可导致城市居民消费支出增加元;
2拟合优度检验:通过以上的回归数据可知,可决系数为,说明所建模型整体上对样本数据拟合度不是太好;
3t检验:针对H1:β1=0和H2:β2=0,由上回归结果可以看出,估计的回归系数B1的标准误差和t值分别为:SEβ1=,tβ1=: β2的标准误差和t值分别为SEβ2= tβ2=. 取a=0,05,查t分布表得自由度为n-2=18-2=16的临界值为= 19,tβ1=<= 19,不拒绝H1, tβ2=>= 19,拒绝H2.这表明,城市居民可支配收入对其消费水平有很大影响;
但两者的之一比例均大于,可见用凯恩斯的绝对收入假说解释现阶段河南省居民消费规律是合理的;
实验二 截面数据一元线性回归模型
异方差性
实验目的和要求
1、掌握一元线性回归估计方程的异方差性检验方法;
2、掌握一元线性回归估计方程的异方差性纠正方法;
3、在老师的指导下独立完成实验,并得到正确结果;
实验内容
1、估计河南省城市居民消费支出CE依可支配收入DI的一元线性回归模型和农村居民生活消费支出LE与纯收入NI的一元线性回归模型;
城市居民:

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告《计量经济学》实验报告一,数据某年中国部分省市城镇居民家庭人均年可支配收入(X)与消费性支出(Y)统计数据二,理论模型的设计解释变量:可支配收入X 被解释变量:消费性支出Y 软件操作:(1)X与Y散点图从散点图可以粗略的看出,随着可支配收入的增加,消费性支出也在增加,大致呈线性关系。

因此,建立一元线性回归模型:1iiiY X ββμ=++(2)对模型做OLS 估计OLS 估计结果为272.36350.7551Y X∧=+011.705732.3869t t ==20.9831.. 1.30171048.912R DW F ===三,模型检验从回归估计结果看,模型拟合较好,可决系数为0.98,表明家庭人均年可消费性支出变化的98.31%可由支配性收入的变化来解释。

t检验:在5%的显著性水平下1β不显著为0,表明可支配收入增加1个单位,消费性支出平均增加0.7551单位。

1,预测现已知2018年人均年可支配收入为20000元,预测消费支出预测值为0272.36350.75512000015374.3635Y=+⨯=E(X)=6222.209,Var(X)=1994.033则在95%的置信度下,E(Y)的预测区间为(874.28,16041.68)2,异方差性检验对于经济发达地区和经济落后地区,消费支出的决定因素不一定相同甚至差异很大。

如经济越落后储蓄率越高,可能出现异方差性问题。

G-Q检验对样本进行处理,X按从大到小排序,去掉中间4个,分为两组数据,128n n==分别回归1615472.0RSS =2126528.3RSS =于是的F 统计量:()()12811 4.86811RSS F RSS --==--在5%的想著想水平下,0.050.05(6,6) 4.28,(6,6)FF F =>,即拒绝无异方差性假设,说明模型存在异方差性。

计量经济学实验报告

计量经济学实验报告

实验一一元线性回归模型一、实验目的:了解EViews软件的基本操作对象,掌握软件的基本操作二、实验内容:1、搜集2001-2011年,人均消费和人均gdp数据,构建消费模型,并估计,检验,按照教材例题数据处理过程处理。

表一 2001-2011年人均消费和人均gdp数据年份人均消费人均GDP2001 3611 75432002 3791 81842003 4089 91012004 4552 105612005 5439 140402006 6111 160842007 7081 189342008 8183 226982009 9098 255752010 9968 299922011 12272 351812、下表是中国1978-2000年的财政收入Y和国内生产总值(GDP)的统计资料要求,(1)作出散点图。

建立财政收入随国内生产总值变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2001年中国国内生产总值为105709亿元,求财政收入的预测值及预测区间。

表二中国1978-2000年的财政收入Y和国内生产总值(GDP)年份Y GDP 年份Y GDP 1978 1132.26 3624.1 1990 2937.1 18547.91979 1146.38 4038.2 1991 3149.48 21617.81980 1159.93 4517.8 1992 3483.37 26638.11981 1175.79 4862.4 1993 4348.95 34634.41982 1212.33 5294.7 1994 5218.1 46759.41983 1366.95 5934.5 1995 6242.2 58478.11984 1642.86 7171 1996 7407.99 67884.61985 2004.82 8964.4 1997 8651.14 74462.61986 2122.01 10202.2 1998 9875.95 78345.21987 2199.35 11962.5 1999 11444.08 82067.51988 2357.24 14928.3 2000 13395.23 89403.61989 2664.9 16909.2三、实验步骤及结果1.1建立工作文件,输入数据在Eviews软件的命令窗口中键入数据输入命令:DATA XF GDP此时将显示一个数组窗口(如所示),即可以输入每个变量的数值图1-1 2001-2011年人均消费和人均gdp数据1.2图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,合理地确定模型的数学形式。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告
标题:基于地区人民收入与犯罪率的实证分析
摘要:
本实验报告旨在使用计量经济学方法对地区的人民收入与犯罪率之间的关系进行实证分析。

通过收集该地区多年的相关数据,并建立合适的计量模型,我们得出了以下结论:在控制其他因素的情况下,人民收入对犯罪率具有显著的负向影响。

这一研究结果对相关当局在制定犯罪预防政策时具有重要的指导意义。

1.引言
犯罪问题一直是社会关注的焦点。

了解犯罪率的影响因素对改善社会治安具有重要的意义。

本实验以地区为例,通过实证分析人民收入对犯罪率的影响,希望为相关当局提供制定犯罪预防政策的参考。

计量经济学实验报告(完成)

计量经济学实验报告(完成)

实验报告课程名称:计量经济学实验项目:我国国内资金利用研究学生姓名:曾健超学号:200973250131班级:0901班专业:国际经济与贸易指导教师:刘潭秋2011 年 06 月计量经济学实验报告实验时间:2011年6月24日实验地点:一教10楼实验目的:使用Eviews软件,将多元线性回归模型的理论和方法应用于我国的资金来源的研究分析。

实验原理:改革开放以来,我们国家经济持续显著的增长,经济发展一片大好。

经济的持续快速增长需要资本的不断注入,所以我对我们国家的近15年的资金利用做了一个研究。

随着资金的源源不断的涌入,我们国家的资金构成大致分成五个部分,国家预算内资金,国内贷款,利用外资,自筹资金和其他资金。

这五个部分基本上构成了我国资金来源的全部,我选取了改革开放30年来中的15个年份,具有一定的代表性。

资金是经济发展的血液,对我国的资金来源的构成做一个研究十分必要。

在这个实验中,选取国家预算内资金为被解释变量Y,解释变量为国内贷款X1利用外资X2,自筹资金X3,其他资金X4,对我国的资金利用的各部分之间的关系做一个细致的研究。

一、计量经济学模型:根据变量之间的关系,我们假定回归模型为:Y=β0+β1X1+β2X2+β3X3+β4X4+U其中Y表示我国的国家内预算资金,X1、X2、X3、X4分别代表国内贷款,利用外资,自筹资金,其他资金, 0表示在不变的情况下,资金利用的固定部分,β1β2、β3、β4、分别代表我国资金利用的各部分的权数,U 代表随机误差项。

由式子可知,我国资金利用的后面四个部分每增长1个百分点,国家预算内资金会如何变化。

二、验证方法选择:多元线性计量经济学模型的初步估计与分析、异方差检验、序列相关检验、多重共线性检验三、实验步骤:1、基本假设:设国家预算内资金为被解释变量Y,解释变量为国内贷款X1,国外资金X2,自筹资金X3,其他资金X4,U是随机干扰项,代表所有的影响因素。

【精品】《计量经济学》实验报告

【精品】《计量经济学》实验报告

【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。

二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。

三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。

(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。

四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。

五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。

(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。

(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。

3.3计量经济学实验报告

3.3计量经济学实验报告

.3计量经济学实验报告3.33.3 经调查研究发现,家庭书刊消费受家庭收入及户主受教育年数的影响,表3.6为对某地区部分家庭抽样调查得到的样本数据。

表3.6 家庭书刊消费、家庭收入及户主受教育年数数据家庭书刊年消费支出(元)Y 家庭月平均收入(元)户主受教育年数(年)家庭书刊年消费支出(元)家庭月平均收入(元)户主受教育年数(年)X T Y X T450 1027.2 8 793.2 1998.6 14 507.7 1045.2 9 660.8 2196 10 613.9 1225.8 12 792.7 2105.4 12 563.4 1312.2 9 580.8 2147.4 8501.5 1316.4 7 612.7 2154 10781.5 1442.4 15 890.8 2231.4 14541.8 164191121 2611.8 18 611.1 1768.8 10 1094.2 3143.4 161222.1 1981.2 1812533624.6 20(1)作家庭书刊消费(Y )对家庭月平均收入(X )和户主受教育年数(T )的多元线性回归:123iiiiu Y X T βββ=+++利用样本数据估计模型的参数,对模型加以检验,分析所估计模型的经济意义和作用。

步骤: 1.打开EViews6,点“File ”→“New ”→“Workfile ”。

选择 “Unstructured/Unda=ted ”在Observations 后输入18,点击ok 。

2. 在命令行输入:DATA Y X T,回车。

将数据复制粘贴到Group中的表格中。

3. 建立数据关系图为初步观察数据的关系,在命令行输入命令:sort Y,从而实现数据Y的递增排序。

4. 在数据表“group”中点“view/graph/line”,最后点击确定,出现序列Y、X、T的线性图。

5. OLS估计参数,点击主界面菜单Quick\Estimate Equation,弹出对话框,如下图。

计量经济学试验报告

计量经济学试验报告

计量经济学试验报告实验报告实验1:单方程线性计量经济学模型的最小二乘估计和统计检验1实验目的掌握计量经济学专用软件(Eviews)使用方法,理解和正确解释输出结果。

在学习计量经济学的基本理论和方法的基础上,掌握建立计量经济模型对实际经济问题进行实证分析的方法。

运用Eviews软件完成对线形回归模型的最小二乘估计、统计检验、计量经济学检验以及进一步进行经济结构分析、经济预测和政策评价,培养发现问题、分析问题、解决问题的能力。

2实验软件Eviews5.03实验数据甲商品从1988―2021年的销售量Y/千个,价格X1 /(元/个),售后服务支出X2 /万元年份 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2021 2021 2021Y 121 133 130 126 131 147 148 159 160 156 155 157 179 189 180 183 202 200X1 1500 1490 1480 1470 1460 1450 1440 1430 1420 1410 1400 1390 1380 1370 1360 1350 1340 1330 X2 12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 12021 2021 2021 2021201 203 258 234 1320 1310 1300 1290 11 10 15 12 4实验内容及其步骤实验内容:研究甲商品1988―2021年价格和售后服务支出对销售量的影响。

其中,销售量Y、价格X1、售后服务支出X2的数据如上所示。

建立多元线性计量经济学回归模型为:Yi = β0 + β1X1i + β2X2i + μi实验步骤:1、建立工作文件:双击Eviews,进入Eviews主界面在主菜单上依次点击File → New → Workfile,出现Workfile对话框,在workfile frequency中选择Annual,在Start里输入起始日期1988,在End里输入结束日期2021。

计量经济学实训实验报告

计量经济学实训实验报告

一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。

本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。

二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。

三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。

2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。

包括去除缺失值、异常值等。

(2)建立模型根据实验目的,选择合适的计量经济学模型。

本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。

(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。

(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。

(5)模型预测根据估计得到的模型,对地区生产总值进行预测。

3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。

(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。

(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。

预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。

四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。

计量经济学实验报告_4

计量经济学实验报告_4

《计量经济学》课程实验报告1专业国际经济与贸易班级B谢谢谢谢姓名XXX 日期2012.9.28一、实验目的1.学会Eviews工作文件的建立、数据输入、数据的编辑和描述;2.掌握用Eviews软件求解简单线性回归模型的方法;3.掌握用Eviews软件输出结果对模型进行统计检验;4.掌握用Eviews软件进行经济预测。

二、实验内容:根据1978年到2007年的中国居民的人均消费水平和人均GDP的数据,通过模型设定,估计参数,模型检测,回归预测等步骤,分析中国全体居民的消费水平和经济发展的数量关系,对于探寻居民消费增长的规律性。

三、实验数据四:实验步骤:1:模型设定。

由上表分析居民人均消费水平(y)和人均GDP(x)的关系,制作散点图。

从中可以看出居民消费水平(y)和人均GDP(x)大体呈现为线性关系。

2:估计参数:利用软件eviews作简单线性分析的步骤包括以下几方面内容。

建立文件夹,首先双击eviews图标,进入主页。

在其菜单栏中点击File|new|workfile,并选择数据频率为1978和2007.输入数据:在eviews命令框中直接输入“data x y”回车出现“Group”窗口数据编辑框,在对应的“y”,“x”下输入数据。

估计参数。

在eviews命令框中直接键入“LS Y C X”,按回车,即出现回归结果。

Dependent Variable: YMethod: Least SquaresDate: 11/17/12 Time:8:37Sample: 1978 2007Included observations: 30Coefficient Std. Error t-Statistic Prob.C 224.3149 55.64114 4.031457 0.0004X 0.386430 0.007743 49.90815 0.0000R-squared 0.988884 Mean dependent var 2175.067Adjusted R-squared 0.988487 S.D. dependent var 2021.413S.E. of regression 216.8978 Akaike info criterion 13.66107Sum squared resid 1317251. Schwarz criterion 13.75448Log likelihood -202.9161 Hannan-Quinn criter. 13.69095F-statistic 2490.823 Durbin-Watson stat 0.115812Prob(F-statistic) 0.000000若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项、实际值、拟合值的图形:3:模型检测:包括经济意义检测和拟合有度、统计检验。

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告本实验的目的是通过一个计量经济学实验来探讨价格对商品需求的影响。

在实验中,我们设定了两组价格水平,并观察了对应的商品需求量。

通过对实验结果的统计分析,我们得出了一些有关价格与需求关系的结论。

实验过程中,我们邀请了50位参与者来参与实验。

实验的流程如下:首先,我们向参与者展示了一段视频介绍了商品的特点和使用价值。

然后,我们给每位参与者一份价格调查问卷,询问他们对该商品的需求情况以及他们愿意出多少钱购买该商品。

根据参与者的回答,我们将他们分为两组,一组是高价组,另一组是低价组。

高价组的参与者被告知商品价格为100元,而低价组的参与者被告知商品价格为50元。

接下来,我们记录了每组参与者购买该商品的数量。

通过对实验结果的分析,我们发现价格与商品需求之间存在着显著的负向关系。

具体而言,对于高价组的参与者,他们的购买数量明显低于低价组的参与者。

这说明高价对于商品需求有着抑制的效果,而低价则相对而言更吸引人。

这个结果与经济学理论中的需求理论相吻合,即价格上升会导致需求减少,价格下降会导致需求增加。

通过本实验的结果,我们进一步验证了这一理论。

此外,我们还通过计算得到了价格弹性系数。

价格弹性系数是一种衡量价格变动对需求变动影响程度的指标。

计算结果显示,高价组的价格弹性系数为-1.5,而低价组的价格弹性系数为-2.5。

这表明当价格上涨1%,高价组的需求量会下降1.5%,而低价组的需求量会下降2.5%。

可以看出,价格对于低价组的参与者来说,其影响更加敏感。

通过这个实验,我们得出了结论:价格对商品需求有着显著影响,高价会抑制需求,而低价则会促进需求。

这个实验结果对于企业制定定价策略以及消费者作出购买决策都具有一定的指导意义。

然而,需要注意的是,本实验具有一定的局限性。

首先,实验规模相对较小,只有50位参与者。

其次,实验环境与真实市场环境存在差异,可能会影响实验结果的有效性。

为了更好地了解价格与需求的关系,今后可以进一步开展更大规模的实验,并且尽可能真实地模拟市场环境。

计量经济学试验报告书三 2

计量经济学试验报告书三 2

R有所下降,且在X2、X1基础上,加入X3后的回归模型y=f( x2, x1, x3),2检验不显著;加入X4或X5后回归模型y =f(x2, x1 ,x4)或y =f( x2, x1, x5)回归系数T检验不显著,甚至X4的回归系数也不符合经济理论分析和经验判断;加入y =f( x2, x1, x5)与加入X4后的回归模型相同,X5回归系数经济意义不合理且相较而言加入X3后的回归模型y=f( x2, x1, x3)其回归系数经济合理,果,以此为基础,建立四元回归模型:在X2、X1、X3基础上引入X4后,2R虽有所上升,但X1的回归系数T检验不通过且的回归系数为负值,与经济理论分析和经验判断不符;引入X5后也与引入X4相同,升,但X3与X5的回归系数T检验不通过且经济意义不合理,故引入所有的变量建立回归模型,结果如下:Ls y c x2 x1 x3 x4 x5经检验X4和X5的回归系数符号为负值,且X1与X5的T检验不显著。

逐步回归估计结果表:RX2 X1 X3 X4 X5 20.9952Y=f(x2) 0.8841(62.4859)Y=f(x2,x1) 0.4872 0.4159 0.997047例5.服装需求函数。

根据理论和经验分析,影响居民服装需求Y的主要因素有:可支配收入X、流动资产拥有量K、服装类价格指数P1和总物价指数P0 ,统计资料如下。

设服装需求函数为:Y=a+b1x+b2P1+b3P0+b4K+ε(1)多重共线性检验运用①相关系数、②辅助回归模型以及③方差膨胀因子检验服装需求回归模型的多重共线性的可能类型;(2)逐步回归法①根据相关分析,建立服装需求一元基本回归模型②根据逐步回归原理,建立服装需求模型答案:(1)多重共线性检验①相关系数检验键入:COR Y X K P1 P0 输出的相关系数矩阵为:由上表可以看出,解释变量之间相关系数至少为0.969477,表明模型存在严重的多重共线性,且解释变量都与服装需求高度相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sid
264434.8
Schwarz criterion
12.46705
Log likelihood
-167.8743
F-statistic
3271.944
Durbin-Watson stat
1.369270
Prob(F-statistic)
0.000000
13.76260
Sum squared resid
1347921.
Schwarz criterion
13.85776
Log likelihood
-190.6765
F-statistic
3402.401
Durbin-Watson stat
0.701578
Prob(F-statistic)
0.000000
59.99073
-1.266806
0.2165
R-squared
0.992416
Mean dependent var
2362.277
Adjusted R-squared
0.992125
S.D. dependent var
2565.722
S.E. of regression
227.6909
Akaike info criterion
5、结合相关的经济理论,分析估计的二元回归模型的经济意义。
二)宏观经济模型
根据广东数据,研究广东省居民消费行为、固定资产投资行为、货物和服务净出口行为和存货行为,分别建立居民消费模型、固定资产投资模型、货物和服务净出口模型和存货增加模型。
要求:按照试验指导课本 ~ ,分别作出以下模型,并对需要改进的模型进行改进。写出最终估计的模型结果,并结合相关的经济理论,分析模型的经济意义。
1、居民消费模型
Pairwise Granger Causality Tests
Date:04/05/12Time: 14:44
Sample: 1978 2005
Lags: 2
Null Hypothesis:
Obs
F-Statistic
Probability
XFJ does not Granger Cause LB
Method: Least Squares
Date:04/05/12Time: 14:32
Sample: 1978 2005
Included observations: 28
Variable
Coefficient
Std. Error
t-Statistic
Prob.
ZC
1.658388
0.017184
96.51042
0.0000
C
-629.0716
89.74389
-7.009632
0.0000
R-squared
0.997216
Mean dependent var
5437.386
Adjusted R-squared
0.997109
S.D. dependent var
6304.032
S.E. of regression
0.896862
S.D. dependent var
6304.032
S.E. of regression
2024.549
Akaike info criterion
18.13283
Sum squared resid
1.07E+08
Schwarz criterion
18.22799
Log likelihood
Lags: 1
Null Hypothesis:
Obs
F-Statistic
Probability
XFJ does not Granger Cause YY
27
0.09358
0.76232
YY does not Granger Cause XFJ
4.25720
0.05006
显然回归得到了改善,引入YY是正确的,最后得到回归方程:
要求:按照试验指导课本 ~ ,分别作:
1、作散点图(GDPB同ZC,GDPB同RY)
2、进行因果关系检验(GDPB同ZC,GDPB同RY)
Pairwise Granger Causality Tests
Date:04/05/12Time: 14:30
Sample: 1978 2005
Lags: 2
Null Hypothesis:
XFJ=0.740808235483*LB+0.362075366798*YY+46.9151325983
2、固定资产投资模型
Dependent Variable: TZG
Method: Least Squares
Date:04/05/12Time: 15:03
Sample: 1978 2005
Included observations: 28
-251.8596
F-statistic
235.7844
Durbin-Watson stat
0.075138
Prob(F-statistic)
0.000000
4、将建立的二元回归模型(GDPB同ZC和RY)同一元回归模型(GDPB同ZC、GDPB同RY)相比较,分析优点。
答:估计方程的判定系数R-squared、参数显著性t检验、方程显著性F检验和调整的判定系数有些比一元回归有改进,表明这些确实应该进行二元回归。
55.09170
0.566270
0.5765
R-squared
0.997561
Mean dependent var
1628.997
Adjusted R-squared
0.997256
S.D. dependent var
2003.852
S.E. of regression
104.9672
Akaike info criterion
338.9384
Akaike info criterion
14.55826
Sum squared resid
2986860.
Schwarz criterion
14.65342
Log likelihood
-201.8157
F-statistic
9314.262
Durbin-Watson stat
0.483741
实验报告
程名称:计量经济学
实验项目:多元线性回归模型的估计和检验
实验类型:综合性√设计性□验证性□
专业班别:09本国际经济与贸易3班
姓名:陈春丽
学号:409010304
实验课室:创新楼E506
指导教师:石立
实验日期:2012年4月5日
广东商学院华商学院教务处制
一、实验项目训练方案
小组合作:是□否√
小组成员:陈春丽
Date:04/05/12Time: 14:46
Sample: 1978 2005
Included observations: 28
Variable
Coefficient
Std. Error
t-Statistic
Prob.
LB
0.986702
0.016916
58.33010
0.0000
C
-75.99662
Prob(F-statistic)
0.000000
Dependent Variable: GDPB
Method: Least Squares
Date:04/05/12Time: 14:32
Sample: 1978 2005
Included observations: 28
Variable
Coefficient
26
5.45516
0.01236
LB does not Granger Cause XFJ
7.19010
0.00418
从散点图看它们之间具有线性关系,从因果关系检验看它们之间似乎具有双向因果关系,宏观经济中确实如此。进行医院线性回归如下:
Dependent Variable: XFJ
Method: Least Squares
3、作GDPB同ZC和RY的多元线性回归,写出模型估计的结果,并分析模型检验是均否通过?(三个检验)
Dependent Variable: GDPB
Method: Least Squares
Date:04/05/12Time: 14:40
Sample: 1978 2005
Included observations: 28
Prob.
ZJ
1.191878
0.086993
13.70091
0.0000
YY
0.438422
0.048129
9.109365
0.0000
C
33.65613
26.52092
1.269041
0.2161
R-squared
0.997561
Mean dependent var
1628.997
Adjusted R-squared
Sample: 1978 2005
Lags: 3
Null Hypothesis:
Obs
F-Statistic
Probability
GDPB does not Granger Cause RY
25
2.00878
0.14880
RY does not Granger Cause GDPB
0.68805
0.57102
相关文档
最新文档